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Abstract We define when a ternary term m of an algebraic language L is called a
distributive nearlattice term (DN-term) of a sentential logic S. Distributive nearlat-
tices are ternary algebras generalising Tarski algebras and distributive lattices. We
characterise the selfextensional logics with a DN-term through the interpretation of
the DN-term in the algebras of the algebraic counterpart of the logics. We prove that
the canonical class of algebras (under the point of view of Abstract Algebraic Logic)
associated with a selfextensional logic with a DN-term is a variety, and we obtain that
the logic is in fact fully selfextensional.
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1 Introduction

This paper ismotivatedby the results and ideas given in [33,34]. In [33], selfextensional
finitary logics with a binary term → satisfying the deduction-detachment theorem are
studied. There, these logics are characterised as logics S for which there is a class
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of algebras K such that the equations defining Hilbert algebras (also called positive
implication algebras) hold for → and the following condition is satisfied:

ϕ0, . . . , ϕn−1 �S ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

h(ϕ0 → (· · · → (ϕn−1 → ϕ) . . . )) = 1.

Similar results are obtained in [34]. There, selfextensional finitary logics with a con-
junction term ∧ are characterised as the logics S for which there is a class of algebras
K such that the semilattice equations are satisfied for ∧ and the following condition
holds:

ϕ0, . . . , ϕn−1 �S ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

h(ϕ0) ∧ · · · ∧ h(ϕn−1) ≤ h(ϕ).

As we can notice from the definitions above, the two kinds of sentential logic are
characterised through the behaviour of the interpretation of the implication → and the
conjunction ∧ in the corresponding classes of algebras K.

The notion of distributive nearlattice can be presented in two different and equiv-
alent ways. They can be defined as join-semilattices with some extra properties and
can be defined as algebras with only one ternary operation satisfying some identities.
The two different ways to consider distributive nearlattices are useful for various pur-
poses. After the formal definition of distributive nearlattice (Definition 2.5), we will
see (Remark 2.10) that the variety of distributive nearlattices is a natural generalisation
of both the variety of Tarski algebras (also called implication algebras) and the variety
of distributive lattices.

The primary aim of this paper is to propose a definition of when a ternary term m
of an algebraic languageL can be considered a distributive nearlattice term (DN-term
for short) for a sentential logic S. We present some syntactical properties (Sect. 3) on
a sentential logic S concerning a ternary term m such that, when m is interpreted in
every algebra A of the algebraic counterpart of the logic S, the {m}-reduct 〈A,mA〉
will be a distributive nearlattice.

We show that selfextensional logics with a distributive nearlattice term m can be
characterised as logics S for which there exists a class of algebras K such that the {m}-
reducts of the algebras of K are distributive nearlattices and the consequence relation
of S can be defined using the partial order induced by the term m on the algebras of
K (Sect. 3).

In Sect. 5, given a selfextensional logic S with a DN-term (and with theorems), we
consider two sentential logics associated with the canonical class of algebras of S;
namely, the logic preserving degrees of truth and the logic preserving truth. We show
some properties of these logics, and we present some sufficient conditions for these
logics to coincide with the original logic S.

2 Preliminaries

In this section, we introduce some basic concepts and results of Abstract Algebraic
Logic (AAL) needed for what follows in the paper and we present the algebraic theory
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Selfextensional logics with a distributive nearlattice term 221

of nearlattices. Our main references for AAL are [17,23,26,27] and for the theory of
nearlattice are [10,13,32].

2.1 Abstract algebraic logic

LetL be an algebraic language (or algebraic similarity type).We denote by Fm(L) the
absolutely free algebra of typeLwith a denumerable setVar of propositional variables
as the set of generators. The algebra Fm(L) is called the algebra of formulas of typeL
and its elements are called formulas. When there is no danger of confusion, we write
Fm instead of Fm(L).

A sentential logic (also called deductive system in AAL)1 of type L is a pair S =
〈Fm,�S〉 where Fm is the algebra of formulas of type L and �S ⊆P(Fm) × Fm
is a relation satisfying the following properties: for all Γ,Δ ⊆ Fm and ϕ ∈ Fm (as
usual we write Γ �S ϕ for (Γ, ϕ)∈ �S),

(S1) if ϕ ∈ Γ , then Γ �S ϕ;
(S2) if Γ �S ϕ and Γ ⊆ Δ, then Δ �S ϕ;
(S3) if Γ �S ϕ and for every γ ∈ Γ , Δ �S γ , then Δ �S ϕ;
(S4) if Γ �S ϕ, then there is a finite Γ0 ⊆ Γ such that Γ0 �S ϕ;
(S5) if Γ �S ϕ, then σ [Γ ] �S σ(ϕ) for all substitution σ ∈ Hom(Fm, Fm).

The relation �S is called the consequence relation of S. A set Γ ⊆ Fm is called a
theory of S (S-theory, for short) if is closed under the consequence relation of S, that
is, for every formula ϕ ∈ Fm, if Γ �S ϕ, then ϕ ∈ Γ . Let us denote by Th(S) the
collection of all S-theories. It is easy to see that Th(S) is an algebraic closure system
on Fm and the closure operator associated with Th(S), which is denoted by CS , is
defined as:

ϕ ∈ CS(Γ ) ⇐⇒ Γ �S ϕ

for all Γ ∪ {ϕ} ⊆ Fm. Moreover, it is clear that CS is finitary.
Let S be a sentential logic. The Frege relation of S, in symbols Λ(S), is the

interderivability relation, that is, (ϕ, ψ) ∈ Λ(S) if and only if ϕ �S ψ and ψ �S ϕ.
TheFrege relation of a sentential logic is an equivalence relation but it is not necessarily
a congruence on Fm. A sentential logic S is said to be selfextensional (or S has the
congruence property) if the Frege relation Λ(S) is a congruence on Fm.

Let A be an algebra of the same similarity type as S. A subset F ⊆ A is said
to be an S-filter of A if and only if for any Γ ∪ {ϕ} ⊆ Fm and any interpretation
h ∈ Hom(Fm, A),

if Γ �S ϕ and h[Γ ] ⊆ F, then h(ϕ) ∈ F.

1 Conditions (S1), (S2), (S3) and (S5) define the notion of sentential logic that is usually considered in
abstract algebraic logic. The concept of logic considered in this paper is that of finitary sentential logic, that
is, sentential logics satisfying (S4).
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The set of allS-filters on a given algebra A is denoted byFiS(A); this set is an algebraic
closure system. The associated closure operator will be denoted by FiAS .

Let L be a fixed but arbitrary algebraic language. A generalized matrix, g-matrix
for short, of similarity type L is a pair 〈A, C〉 where A is an algebra of type L and C
is an algebraic closure system on A. We denote by C the closure operator associated
with C and we will often identify the g-matrix 〈A, C〉 with the pair 〈A,C〉. Notice that
the closure operator C is finitary, i.e., for all X ∪{a} ⊆ A, a ∈ C(X) implies that there
is a finite X0 ⊆ X such that a ∈ C(X0).

The reader should keep in mind that all logics and g-matrices considered in this
paper are finitary and thus some general results of AAL are restricted to this assump-
tions.

One of the most interesting aspects of g-matrices is that they can be used in a
completely natural way both as models of sentential logics and as models of Gentzen
systems. This double function of g-matrices allows relating the algebraic theory of
sentential logics to the Gentzen systems. We address the interested reader on these
topics to [26,27].

An important example of g-matrix is given by a sentential logicS. IfS is a sentential
logic, then 〈Fm,Th(S)〉 is a g-matrix.

Definition 2.1 A g-matrix 〈A,C〉 is said to be a g-model of a sentential logic S when
for all Γ ∪ {ϕ} ⊆ Fm, if Γ �S ϕ, then h(ϕ) ∈ C(h[Γ ]) for all h ∈ Hom(Fm, A).
Let us denote the class of all g-models of a sentential logic S by GMod(S).

The logical concept of Frege relation is transferred to the setting of g-matrices. The
Frege relation of a g-matrix 〈A,C〉 is defined by:

(a, b) ∈ ΛA(C) ⇐⇒ C(a) = C(b)

for every a, b ∈ A. The Tarski congruence of a g-matrix 〈A,C〉 is the largest congru-
ence below the Frege relation of the g-matrix. We denote the Tarski congruence of
〈A,C〉 by ˜ΩA(C). A g-matrix is said to be reduced when its Tarski congruence is the
identity relation. Let us denote by GMod∗(S) the class of all reduced g-models of a
sentential logic S.

We can now introduce the class of algebras that is considered in AAL as the natural
algebraic counterpart of a sentential logic, see [18,27].

Definition 2.2 The canonical class of algebras associated with a sentential logic S
(it is also called the algebraic counterpart of S) is the class of the algebraic reducts
of the reduced g-models of S; it is denoted by Alg(S). That is,

Alg(S) : = Alg(GMod∗(S))

= {A : 〈A,C〉 ∈ GMod∗(S) for some finitary closure operator C}.

Moreover, another important class of algebras associated with a sentential logic S is
KS := V(Fm/ ˜Ω(S)), the variety generated by the algebra Fm/ ˜Ω(S). This variety is
called the intrinsic variety of S.
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Lemma 2.3 [26, Proposition 2.26] Let S be a sentential logic. Then, the intrinsic
variety of S is the variety generated by the classAlg(S) and hence we haveAlg(S) ⊆
V(Alg(S)) = KS .

Definition 2.4 A sentential logic S is said to be fully selfextensional (or congruential)
if for every A ∈ Alg(S), the Frege relation of the g-matrix 〈A,FiS(A)〉 is the identity
relation.

2.2 Distributive nearlattices

Nearlattices and distributive nearlattices were studied by several authors [3,8–13,31,
32].

Definition 2.5 [3] An algebra 〈A,m〉 of type (3) is called a nearlattice if the following
identities hold:

(P1) m(x, y, x) = x ,
(P2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z)).

Theorem 2.6 [13] Let 〈A,m〉 be an algebra of type (3) and let ∨ be the binary
operation on A defined by x ∨ y :=m(x, x, y). Then, 〈A,m〉 is a nearlattice if and
only if 〈A,∨〉 is a join-semilattice where for every a ∈ A, the principal upset [a) =
{x ∈ A : a ≤ x} is a lattice with respect to the order ≤ induced by ∨. Moreover, for
all x, y, a ∈ A, m(x, y, a) = (x ∨ a) ∧a (y ∨ a) where ∧a denotes the meet in [a).

Let 〈A,m〉 be a nearlattice. We consider as the partial order of 〈A,m〉 the order of
the join-semilattice defined bym, that is, x ≤ y if and only if y = x ∨ y = m(x, x, y).
Moreover, for every element a ∈ A we have

x ∧a y = m(x, y, a)

for all x, y ∈ [a). It should be noted that the meet x ∧ y exists in A if and only if {x, y}
has a lower bound in A. Thus, the meet of x and y in [a) coincides with their meet in
A for all x, y ∈ [a), i.e., x ∧a y = x ∧ y; for instance, we have

m(a, b, c) = (a ∨ c) ∧c (b ∨ c) = (a ∨ c) ∧ (b ∨ c),

for all a, b, c ∈ A. This should be kept in mind since we will use it without mention.

Definition 2.7 A nearlattice 〈A,m〉 is said to be distributive if and only if it satisfies
either of the following two equivalent identities:

(P3) m(x,m(y, y, z), w) = m(m(x, y, w),m(x, y, w),m(x, z, w));
(P4) m(x, x,m(y, z, w)) = m(m(x, x, y),m(x, x, z), w).

Let us denote by DN the variety of distributive nearlattices.

Proposition 2.8 [13, Theorem 4] A nearlattice 〈A,m〉 is distributive if and only if for
every a ∈ A, the lattice 〈[a),∧a,∨〉 is distributive.

123



224 L. J. González

a b c

x y z

u v w

1

Fig. 1 A distributive nearlattice

Example 2.9 In Fig. 1, it is shown a distributive nearlattice. For instance, we have

m(u, w, y) = (u ∨ y) ∧y (w ∨ y) = y and m(u, w, b) = (u ∨ b) ∧b (w ∨ b) = y.

That is, m(u, w, y) = u ∧y w = u ∧ w = u ∧b w = m(u, w, b).

Remark 2.10 Recall that a Tarski algebra (also called implication algebra) [1,2] can
be defined as a binary algebra 〈A,→〉 satisfying some identities and, equivalently, it
can be defined as a join-semilattice 〈A,∨〉 such that for every a ∈ A, the upset [a) is
a Boolean algebra with respect to the order induced by ∨. Thus, we can noticed that
the concept of distributive nearlattice is a natural generalisation of the notion of Tarski
algebra.

Definition 2.11 Let 〈A,m〉 be a distributive nearlattice. A nonempty subset F ⊆ A
is said to be a filter of A if (i) x ∈ F and x ≤ y implies y ∈ F , and (ii) if x, y ∈ F
and x ∧ y exists in A, then x ∧ y ∈ F .

Let us denote by Fi(A) the collection of all filters of a distributive nearlattice A. It is
easy to check that for every distributive nearlattice A the intersection of any collection
of filters is either a filter or an empty set. So, for every nonempty X ⊆ A, there exists
the least filter containing X ; it is denoted by FiA(X). If X = {a1, . . . , an}, then we
write FiA(a1, . . . , an) instead of FiA({a1, . . . , an}); moreover, it is easy to check that
FiA(a) = [a). There is a useful characterisation of the filter FiA(X) generated by X .
Let X ⊆ A be nonempty. Then,

FiA(X) = {a ∈ A : a = b1 ∧ · · · ∧ bk for some b1, . . . , bk ∈ [X)}.

where [X) = {a ∈ A : a ≥ x for some x ∈ X}, see [15].
Proposition 2.12 [30] Let A be a nearlattice and F ⊆ A be nonempty. Then, the
following conditions are equivalent:

1. F ∈ Fi(A);
2. if a, b ∈ F, then m(a, b, c) ∈ F for all c ∈ A.
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Selfextensional logics with a distributive nearlattice term 225

Now we introduce the following definition that will be useful for what follows.

Definition 2.13 Let 〈A,m〉 be an algebra of type (3). For each integer n ≥ 0, we
define inductively, for all a0, . . . , an, b ∈ A, an elementmn(a0, . . . , an, b) as follows:

– m0(a0, b) :=m(a0, a0, b) and
– for n ≥ 1, mn(a0, . . . , an, b) :=m(mn−1(a0, . . . , an−1, b), an, b).

In particular, for a distributive nearlattice A, we get m0(a0, b) = a0 ∨ b and
m1(a0, a1, b) = m(a0, a1, b). Indeed,

m1(a0, a1, b) = m(m0(a0, b), a1, b) = m(a0 ∨ b, a1, b)

= (a0 ∨ b ∨ b) ∧b (a1 ∨ b) = (a0 ∨ b) ∧b (a1 ∨ b) = m(a0, a1, b).

The proofs of the following two propositions can be found in [31].

Proposition 2.14 Let 〈A,mA〉 and 〈B,mB〉 be algebras of type (3) and h ∈
Hom(A, B). Then, we have h(mn

A(a0, . . . , an, b)) = mn
B(h(a0), . . . , h(an), h(b)) for

all a0, . . . , an, b ∈ A.

Proposition 2.15 Let 〈A,m〉be a distributive nearlattice anda0, . . . , an, an+1, a, b ∈
A. Then:

1. mn(a0, . . . , an, b) = (a0 ∨ b) ∧b · · · ∧b (an ∨ b);
2. b ≤ mn(a0, . . . , an, b);
3. if a ≤ ai for all i ∈ {0, 1, . . . , n}, then a ≤ mn(a0, . . . , an, b);
4. mn+1(a0, . . . , an+1, b) ≤ mn(a0, . . . , an, b);
5. mn(a0, . . . , an, b) = mn(aσ(0), . . . , aσ(n), b), for every permutation σ of

{0, 1, . . . , n};
6. if a ∈ FiA(a0, . . . , an), then a ∈ FiA(mn(a0, . . . , an, a));
7. a ∈ FiA(a0, . . . , an) if and only if a = mn(a0, . . . , an, a).

3 Logics with a distributive nearlatice term

For a ternary term m of an algebraic language L, we will consider the binary term ∨
defined by x ∨ y :=m(x, x, y). We also define, for every integer n ≥ 0 and variables
x0, . . . , xn, x , the formula mn(x0, . . . , xn, x) as follows:

– m0(x0, x) :=m(x0, x0, x)
– for n ≥ 1, mn(x0, . . . , xn, x) :=m(mn−1(x0, . . . , xn−1, x), xn, x).

Definition 3.1 Let S be a sentential logic over an algebraic language L. A ternary
term m of L is said to be a distributive nearlattice term (DN-term) of S if and only if
S satisfies the following properties:

(A1) ϕ ∨ ψ �S χ if and only if ϕ �S χ and ψ �S χ ;
(A2) m(ϕ, ψ, χ) �S ϕ ∨ χ and m(ϕ, ψ, χ) �S ψ ∨ χ ;
(A3) ϕ ∨ χ,ψ ∨ χ �S m(ϕ, ψ, χ);
(A4) if ϕ0, . . . , ϕn �S ϕ, then mn(ϕ0, . . . , ϕn, ϕ) �S ϕ;
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where x ∨ y :=m(x, x, y).

Property (A1) is known in the literature as theweak proof by cases property [14,40].
Moreover, (A1) implies that the following properties hold: ϕ ∨ ϕ �S ϕ, ϕ �S ϕ ∨ ψ ,
ϕ ∨ ψ �S ψ ∨ ϕ and (ϕ ∨ ψ) ∨ χ �S ϕ ∨ (ψ ∨ χ). Then, the binary term ∨ is a
disjunction for the logic S, and thus S can be considered as a disjunctive logic, see
[14,17,26,40].

Proposition 3.2 Ifm is aDN-termof a sentential logicS, then the followingproperties
hold:

1. mn(ϕ0, . . . , ϕn, ψ) �S ϕi ∨ ψ , for all i ∈ {0, 1, . . . , n};
2. ϕ0 ∨ ψ, . . . , ϕn ∨ ψ �S mn(ϕ0, . . . , ϕn, ψ);
3. if mn(ϕ0, . . . , ϕn, ϕ) �S ϕ, then ϕ0, . . . , ϕn �S ϕ;
4. ϕ �S mn(ϕ0, . . . , ϕn, ϕ).

Proof Properties (1) and (2) can be proved by induction on n. Property (1) follows
from (A1) and (A2). Property (2) follows from (A1) and (A3). Properties (3) and (4)
are consequences of (A1) and (2). ��
Proposition 3.3 Let S be a sentential logic. If m and m′ are DN-terms of S, then
m(ϕ, ψ, χ) ��S m′(ϕ, ψ, χ), for all ϕ,ψ, χ ∈ Fm.

Proof Let ϕ,ψ, χ ∈ Fm. Since ϕ �S ϕ ∨′ ψ and ψ �S ϕ ∨′ ψ , it follows by (A1)
that ϕ∨ψ �S ϕ∨′ ψ . Similarly, we have ϕ∨′ ψ �S ϕ∨ψ . Hence ϕ∨ψ ��S ϕ∨′ ψ .
Now, from this and using (A2) and (A3), we obtain

m(ϕ, ψ, χ) ��S {ϕ ∨ χ,ψ ∨ χ} ��S {ϕ ∨′ χ,ψ ∨′ χ} ��S m′(ϕ, ψ, χ). ��
Definition 3.4 A class of algebras K of a given similarity type L is called distributive
nearlattice-based (DN-based for short) if there is a ternary term m of L such that the
distributive nearlattice equations (P1)–(P3) (Definitions 2.5 and 2.7) hold in K. In this
case, we will also say that K is a DN-class relative to m and when there is not danger
of confusion, we simply say that K is a DN-class.

Notice that if K is a DN-class relative to m, then for every algebra A ∈ K the
{m}-reduct 〈A,mA〉 is a distributive nearlattice. Moreover, we have that the variety
V(K) generated by a DN-class K is also a DN-class.

Definition 3.5 A sentential logic S of type L is said to be distributive nearlattice-
based (DN-based for short) if there is a ternary term m and a DN-class K of algebras
of type L such that the following condition holds for every n ≥ 0 and for all formulas
ϕ0, . . . , ϕn, ϕ:

ϕ0, . . . , ϕn �S ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

mn(h(ϕ0), . . . , h(ϕn), h(ϕ)) ≤ h(ϕ).
(3.1)

We will say that S is DN-based relative to m and K.
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Selfextensional logics with a distributive nearlattice term 227

It should be noted, by property (5) of Proposition 2.15, that condition (3.1) is
independent of the order in which the formulas ϕ0, . . . , ϕn are taken.

Let S be a DN-based logic relative to m and K. It is easy to check that for every
formulas ϕ and ψ ,

ϕ �S ψ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))h(ϕ) ≤ h(ψ).

Then, we obtain that for all ϕ,ψ ∈ Fm

ϕ ��S ψ ⇐⇒ K |� ϕ ≈ ψ ⇐⇒ V(K) |� ϕ ≈ ψ. (3.2)

Noticed that (3.2) is independent of the term m.
From (3.1) and by property (2) of Proposition 2.15, we have

ϕ0, . . . , ϕn �S ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A)

mn(h(ϕ0), . . . , h(ϕn), h(ϕ)) = h(ϕ)

⇐⇒ K |� mn(ϕ0, . . . , ϕn, ϕ) ≈ ϕ

⇐⇒ V(K) |� mn(ϕ0, . . . , ϕn, ϕ) ≈ ϕ.

Hence, S is also DN-based relative to the variety V(K) generated by K. Moreover, by
(3.2), we can see that the variety to which S is DN-based is unique. So, let us denote
the only variety relative to which S is DN-based by V(S).

Proposition 3.6 Let S be a DN-based logic relative to m. Then, m is a DN-term of
S.
Proof We have that S is DN-based relative to V(S) and the ternary term m. Property
(A1) is a consequence of the fact that for every A ∈ V(S), the {∨}-reduct 〈A,∨A〉 is a
join-semilattice. Property (A2) holds because for every A ∈ V(S) and all a, b, c ∈ A,
we have mA(a, b, c) = (a ∨ c) ∧ (b ∨ c) ≤ a ∨ c, b ∨ c. In order to prove (A3), let
ϕ,ψ, χ ∈ Fm. Let A ∈ V(S) and h ∈ Hom(Fm, A). Assume that h(ϕ) = a, h(ψ) =
b and h(χ) = c. So, we need to show that m(a ∨ c, b ∨ c,m(a, b, c)) ≤ m(a, b, c).
Now, by condition (P4), we have

m(a ∨ c, b ∨ c,m(a, b, c)) = c ∨ m(a, b,m(a, b, c)) = m(a, b,m(a, b, c))

= (a ∨ m(a, b, c)) ∧ (b ∨ m(a, b, c)) = (a ∨ c) ∧ (b ∨ c) = m(a, b, c).

Hence property (A3) holds. Lastly, property (A4) is an immediate consequence by
(3.1). ��

By the previous proposition and from (3.2), we obtain that if S is a DN-based logic
relative to ternary terms m and m′, then for every A ∈ V(S), we have that the ternary
operationsmA andm′A coincide. Hence, we can say simply that a logicS is DN-based.

Proposition 3.7 Let S be a DN-based logic. Then S is selfextensional and V(S) =
KS .
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Proof Bydefinition of theFrege relation and from (3.2),we have (ϕ, ψ) ∈ Λ(S) ⇐⇒
V(S) |� ϕ ≈ ψ . Hence, we obtain that Λ(S) is a congruence on Fm. Therefore S is
selfextensional. Now, since S selfextensional, it follows that ϕ ��S ψ ⇐⇒ KS |�
ϕ ≈ ψ . Then, by (3.2) again, we obtain that V(S) |� ϕ ≈ ψ ⇐⇒ ϕ ��S ψ ⇐⇒
KS |� ϕ ≈ ψ . Therefore V(S) = KS . ��

Now we are ready to show one of the main results of this paper.

Theorem 3.8 Let S be a sentential logic. Then, S is a selfextensional logic with a
DN-term m if and only if S is a DN-based logic relative to m.

Proof The implication from right to left is a consequence from Propositions 3.6 and
3.7. Now we assume that S is selfextensional and m is a DN-term of S. First, since
S is selfextensional, it follows that Λ(S) is a congruence on Fm and hence, we can
consider the quotient algebra Fm∗ := Fm/Λ(S). Let us show that 〈Fm∗,m∗〉, with
m∗(ϕ, ψ, χ) := m(ϕ, ψ, χ) (ϕ denotes the equivalent class of ϕ in Fm/Λ(S)), is a
distributive nearlattice. By (A1), S satisfies the following properties: ϕ ∨ ϕ �S ϕ,
ϕ �S ϕ ∨ ψ , ϕ ∨ ψ �S ψ ∨ ϕ and ϕ ∨ (ψ ∨ χ) ��S (ϕ ∨ ψ) ∨ χ . Thus, it is easy
to check that 〈Fm∗,∨∗〉, with ϕ ∨∗ ψ :=m∗(ϕ, ϕ,ψ), is a join-semilattice. Let us
denote by ≤ the order of 〈Fm∗,∨∗〉. Let χ ∈ Fm. We prove that [χ) = {ϕ ∈ Fm∗ :
χ ≤ ϕ} = {ϕ ∈ Fm∗ : χ �S ϕ} is a distributive lattice. In order to prove that [χ)

is a lattice, we need only to show that there exists the meet in [χ). Let ϕ,ψ ∈ [χ).
So χ �S ϕ,ψ . Let us prove that m∗(ϕ, ψ, χ) is the meet of ϕ and ψ in [χ). By (A1)
and (A2) we have m(ϕ, ψ, χ) �S ϕ ∨ χ �S ϕ and m(ϕ, ψ, χ) �S ψ ∨ χ �S ψ .
Thus m∗(ϕ, ψ, χ) ≤ ϕ,ψ . Let γ ∈ [χ) be such that γ ≤ ϕ,ψ . So χ �S γ and
γ �S ϕ,ψ . Then γ �S ϕ ∨ χ,ψ ∨ χ . By (A3) we obtain that γ �S m(ϕ, ψ, χ),
that is, γ ≤ m∗(ϕ, ψ, χ). Hence m∗(ϕ, ψ, χ) = ϕ ∧χ ψ . Then, by Theorem 2.6, we
conclude that 〈Fm∗,m∗〉 is a nearlattice. Now we show that condition (P4) holds in
〈Fm∗,m∗〉. Let ϕ,ψ, γ, χ ∈ Fm. Since 〈Fm∗,m∗〉 is a nearlattice, it follows that
ϕ ∨∗ m∗(ψ, γ , χ) ≤ m∗(ϕ ∨∗ ψ, ϕ ∨∗ γ , χ). In order to prove the inverse inequality,
we need to show that m(ϕ ∨ ψ, ϕ ∨ γ, χ) �S ϕ ∨ m(ψ, γ, χ). By (A1), we have
ψ, γ �S ψ ∨ χ, γ ∨ χ , and from (A3) we obtain that ψ, γ �S m(ψ, γ, χ). Thus
ψ, γ �S ϕ ∨ m(ψ, γ, χ). By (A4), it follows that

m(ψ, γ, ϕ ∨ m(ψ, γ, χ)) �S ϕ ∨ m(ψ, γ, χ). (3.3)

By (A1) and (A3), we can deduce ϕ∨ψ ∨χ �S ϕ∨ψ ∨m(ψ, γ, χ) and ϕ∨γ ∨χ �S
ϕ ∨ γ ∨ m(ψ, γ, χ). Then, by (A1)–(A3) and (3.3), we have

m(ϕ ∨ ψ, ϕ ∨ γ, χ) �S ϕ ∨ ψ ∨ χ, ϕ ∨ γ ∨ χ

�S ϕ ∨ ψ ∨ m(ψ, γ, χ), ϕ ∨ γ ∨ m(ψ, γ, χ)

�S ψ ∨ ϕ ∨ m(ψ, γ, χ), γ ∨ ϕ ∨ m(ψ, γ, χ)

�S m(ψ, γ, ϕ ∨ m(ψ, γ, χ))

�S ϕ ∨ m(ψ, γ, χ).

Hence, we have proved that 〈Fm∗,m∗〉 is a distributive nearlattice. Finally, we prove
that S is DN-based relative to {Fm∗} and m. Let ϕ0, . . . , ϕn, ϕ ∈ Fm. From property
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(A4), (3) of Proposition 3.2, (2) of Proposition 2.15 and since S is selfextensional, it
follows that

ϕ0, . . . , ϕn �S ϕ ⇐⇒ mn(ϕ0, . . . , ϕn, ϕ) �S ϕ

⇐⇒ mn(ϕ0, . . . , ϕn, ϕ) ≤ ϕ ⇐⇒ mn(ϕ0, . . . , ϕn, ϕ) = ϕ

⇐⇒ Fm∗ |� mn(ϕ0, . . . , ϕn, ϕ) ≈ ϕ

⇐⇒ (∀h ∈ Hom(Fm, Fm∗))(mn(hϕ0, . . . , hϕn, hϕ) = hϕ)

⇐⇒ (∀h ∈ Hom(Fm, Fm∗))(mn(hϕ0, . . . , hϕn, hϕ) ≤ hϕ).

This completes the proof. ��
Our next aim is to prove that every selfextensional logic S with a DN-term is fully

selfextensional and the class Alg(S) is a variety. Notice, by the previous theorem
and Proposition 3.7, that for every selfextensional logic S with a DN-term m the m-
reducts of the algebras of its intrinsic variety KS are distributive nearlattices and S is
DN-based relative to KS .

Proposition 3.9 Let S be a DN-based logic relative to m. Then, for every algebra
A ∈ KS , the nonemptyS-filters of A are exactly the filters of the {m}-reduct distributive
nearlattice 〈A,mA〉, i.e., FiS(A)\{∅} = Fi(A).

Proof Let A ∈ KS . Let F ∈ Fi(A). Let ϕ0, . . . , ϕn, ϕ ∈ Fm be such that
ϕ0, . . . , ϕn �S ϕ and let h ∈ Hom(Fm, A) be such that h(ϕi ) ∈ F for all
i = 0, 1, . . . , n. By (3.1), we have mn(h(ϕ0), . . . , h(ϕn), h(ϕ)) ≤ h(ϕ). Since F
is a filter of the nearlattice A and h(ϕ0), . . . , h(ϕn) ∈ F , it follows by Proposition
2.12 that mn(h(ϕ0), . . . , h(ϕn), h(ϕ)) ∈ F . Then h(ϕ) ∈ F . Hence F ∈ FiS(A).
Conversely, let now F ∈ FiS(A) be nonempty. Let a, b ∈ F and c ∈ A. By (A1) and
(A3) we have, for variables x , y and z, that x, y �S {x ∨ z, y ∨ z} �S m(x, y, z).
By taking h ∈ Hom(Fm, A) such that h(x) = a, h(y) = b and h(z) = c, we obtain
that h(x), h(y) ∈ F and hence h(m(x, y, z)) ∈ F , i.e., m(a, b, c) ∈ F . Therefore,
F ∈ Fi(A). ��
Theorem 3.10 Let S be a DN-based logic. Then:

1. Alg(S) = KS ;
2. Alg(S) is a variety;
3. S is DN-based relative to Alg(S).

Proof (1) We know by Lemma 2.3 that Alg(S) ⊆ KS . Let A ∈ KS . From Proposition
3.9 we can easily deduce that the g-matrix 〈A,FiS(A)〉 is a reduced g-model of S.
Hence A ∈ Alg(S). Properties (2) and (3) are immediate consequences of (1). ��
Corollary 3.11 If S is a DN-based logic, then S is fully selfextensional.

Proof Recall the definition of fully selfextenisonality, see Definition 2.4. Let A ∈
Alg(S). So A ∈ KS . Then, byProposition 3.9, it is easy check thatΛA(FiS(A)) = IdA.
Hence S is fully-selfextensional. ��
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We have characterised selfextensional logics with a DN-term as those logics that
are DN-based concerning their canonical class of algebras. As happens in the setting
of selfextensional logics with a conjunction [34], two different sentential logics S and
S ′ can be DN-based relative to the same DN-based variety K. The unique possible
case for this is when one of them has theorems and the other has not. Now we will see
under what conditions the uniqueness can be obtained.

Let K be aDN-based variety relative to a ternary termm. Let us define the sentential
logic SK = 〈Fm,�K〉 as follows: let ϕ0, . . . , ϕn, ϕ ∈ Fm,

ϕ0, . . . , ϕn �K ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

mn(hϕ0, . . . , hϕn, hϕ) ≤ hϕ
(3.4)

and

∅ �K ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

(∀a ∈ A)(a ≤ hϕ).
(3.5)

Now, for every Γ ⊆ Fm, Γ �K ϕ if and only if there is a finite Γ0 ⊆ Γ such that
Γ0 �K ϕ. Notice that if SK has a theorem, then for every algebra A ∈ K the {m}-
reduct nearlattice 〈A,mA〉 has a greatest element. Moreover, since K is a variety, it
follows that K is the unique DN-based variety to which SK is DN-based and hence,
by Theorem 3.10, we have KSK = Alg(SK) = K.

A sentential logic S is said to be non-pseudo axiomatic [36] if for every formula
ϕ, ϕ is a theorem if and only if ϕ is derivable from every formula (ψ �S ϕ for all
formulasψ), or equivalently if the intersection of all its nonempty theories is the set of
theorems. Notice that every sentential logic with theorems is non-pseudo axiomatic.
The following proposition is an immediate consequence from (3.4) and (3.5), and thus
we omit its proof.

Proposition 3.12 LetL be an algebraic language and m a ternary term ofL. IfK is a
DN-based variety relative to m, thenSK is the unique non-pseudo axiomatic sentential
logic which isDN-based relative toK and m; moreoverKSK = K. If S is aDN-based
and non-pseudo axiomatic logic relative to m, then SKS = S.

Hence, under the condition of being non-pseudo axiomatic, we obtain the following
kind of uniqueness for DN-based logics: different non-pseudo axiomatic logics must
be DN-based relative to different DN-based varieties.

Now, we show a bijective correspondence between the class of DN-based and non-
pseudo axiomatic logics and the class of subvarieties of the variety axiomatized by
the equations (P1)-(P3).

A sentential logic S ′ is said to be an extension of a sentential logic S if and only if
for every Γ ∪ {ϕ} ⊆ Fm, Γ �S ϕ implies Γ �S ′ ϕ.

Lemma 3.13 Let S and S ′ be DN-based and non-pseudo axiomatic logics. Then,
Λ(S) ⊆ Λ(S ′) if and only if S ′ is an extension of S.
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Proof It is immediate that if S ′ is an extension of S, thenΛ(S) ⊆ Λ(S ′). So, we need
to prove the implication from left to right. Assume that Λ(S) ⊆ Λ(S ′). By property
(A4) and properties (3) and (4) of Proposition 3.2, it follows that

ϕ0, . . . , ϕn �S ϕ ⇐⇒ mn(ϕ0, . . . , ϕn, ϕ) �S ϕ ⇐⇒
mn(ϕ0, . . . , ϕn, ϕ) ��S ϕ �⇒ mn(ϕ0, . . . , ϕn, ϕ) ��S ′ ϕ ⇐⇒
mn(ϕ0, . . . , ϕn, ϕ) �S ′ ϕ ⇐⇒ ϕ0, . . . , ϕn �S ′ ϕ.

Now, if ∅ �S ϕ, then ψ �S ϕ for every formula ψ . By the above, we obtain that
ψ �S ′ ϕ for every formula ψ . Now, since S ′ is non-pseudo axiomatic, it follows that
∅ �S ′ ϕ. Hence, we have proved that S ′ is an extension of S. ��

Let L be an algebraic language and m a ternary term of L. We set

– Sm(L) := {S : S is a non-pseudo-axiomatic logic over L and DN-based
relative to m}

– Km(L) := {K : K is a subvariety of the variety over L axiomatized
by the equations (P1)-(P3) with regard to m}.

We consider Sm(L) ordered by the extension order, i.e., S ≤ S ′ if and only if S ′ is an
extension of S and Km(L) ordered by the inclusion order. Now, we are in a position
to establish and prove the announced result above.

Theorem 3.14 Let L be an algebraic language and m a ternary term of L. Then, the
map F : Sm(L) → Km(L) defined by F(S) = KS , is a dual order isomorphism.

Proof By Proposition 3.7, we have that F is well defined, and by Proposition 3.12 we
obtain that F is an onto map. Let S,S ′ ∈ Sm(L). Then, by Lemma 3.13 and using that
S and S ′ are selfextensional, we have

S ≤ S ′ ⇐⇒ Λ(S) ⊆ Λ(S ′)
⇐⇒ (∀ϕ,ψ ∈ Fm)(KS |� ϕ ≈ ψ �⇒ KS ′ |� ϕ ≈ ψ)

⇐⇒ KS ′ ⊆ KS .

Therefore, F is a dual order isomorphism. ��

4 Two examples

4.1 The logic of distributive nearlattices

In [31], it is defined a sentential logic Sdn through a Gentzen calculus, which can be
considered as naturally associated with the variety of distributive nearlattices. There,
the logic Sdn is denoted by SDN, but here SDN has a specific definition, see (3.4) and
(3.5). Let us show thatSdn is the unique non-pseudo axiomaticDN-based logic relative
to the variety of distributive nearlattices DN. To this end, we need to introduce some
basic notions of Gentzen calculus; we refer the reader to [26,31] for more information.
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Let Fm be the algebra of formulas of a given algebraic similarity type L. For our
purpose, we will consider a sequent of typeL to be a pair 〈Γ, ϕ〉whereΓ is a (possible
empty) finite set of formulas and ϕ is a formula. As usual, we write Γ � ϕ instead of
〈Γ, ϕ〉. Let us denote by Seq(L) the collection of all sequents. A Gentzen-style rule is
a pair 〈X, Γ � ϕ〉 where X is a (possible empty) finite set of sequents and Γ � ϕ is a
sequent. As usual, we shall use the standard fraction notation for Gentzen-style rules:

Γ0 � ϕ0, . . . , Γn−1 � ϕn−1

Γ � ϕ
(4.1)

A substitution instance of a Gentzen-style rule 〈X, Γ � ϕ〉 is a Gentzen-style rule of
the form 〈σ [X ], σ [Γ ]�σ(ϕ)〉 for some substitution σ ∈ Hom(Fm, Fm). AGentzen
calculus is a set of Gentzen-style rules. Given a Gentzen calculus G, the notion of a
formal proof can be defined as usual. That is, a pf in the Gentzen calculus G from
a set of sequents X is a finite sequence of sequents each one of whose elements is
a substitution instance of a rule of G or a sequent in X or is obtained by applying a
substitution instance of a rule of G to previous elements in the sequence. A sequent
Γ �ϕ is derivable in G from a set of sequents X if there is a proof in G from X whose
last sequent in the proof is Γ � ϕ. We express this writing X |∼GΓ � ϕ.

Definition 4.1 A Gentzen system is a pair G = 〈Fm, |∼G〉 where |∼G is a finitary
and structural (substitution-invariant) consequence relation on the set Seq(L) which
in addition satisfies the following structural rules: for every Γ ∪ {ϕ,ψ} ⊆ Fm,

∅(Axiom)
ϕ � ϕ

Γ � ϕ
(Weakening)

Γ,ψ � ϕ

Γ � ϕ Γ, ϕ � ψ
(Cut)

Γ � ψ

We say that a Gentzen system G = 〈Fm, |∼G〉 satisfies a Gentzen-style rule of type
(4.1) or that (4.1) is a Gentzen-style rule of G if Γ0 � ϕ0, . . . , Γn−1 � ϕn−1 |∼GΓ � ϕ

and we say that a sequent Γ � ϕ is a derivable sequent of G when ∅ |∼GΓ � ϕ.

Let G be a Gentzen calculus with the structural rules of (Axiom), (Weakening) and
(Cut). Hence, G defines in a standard way the Gentzen system GG = 〈Fm, |∼G〉 (see
[26,39]).

Now let L = {m} with m a ternary connective.

Definition 4.2 [31, Definition 4.2] Let GDN = 〈Fm, |∼DN〉 be the Gentzen system
defined by the following Gentzen-style rules: the structural rules (Axiom), (Weaken-
ing) and (Cut) and the following rules

ϕ � χ ψ � χ
(∨ �)

ϕ ∨ ψ � χ

Γ � ϕ
(� ∨)

Γ � ϕ ∨ ψ

Γ � ϕ

Γ � ϕ ∨ ψ

(m �)
m(ϕ, ψ, χ) � ϕ ∨ χ m(ϕ, ψ, χ) � ψ ∨ χ

Γ � ϕ ∨ χ Γ � ψ ∨ χ
(� m)

Γ � m(ϕ, ψ, χ)

ϕ1, . . . , ϕn � ϕ
(mn �)

mn(ϕ0, . . . , ϕn, ϕ) � ϕ
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Now, the sentential logic Sdn = 〈Fm,�dn〉 is defined as follows: for all Γ ∪ {ϕ} ⊆
Fm,

Γ �dn ϕ ⇐⇒ there is a finte Γ0 ⊆ Γ such that |∼DNΓ0 � ϕ.

It follows directly that the connectivem is a DN-term of Sdn . Indeed, property (A1)
follows from rules (∨ �) and (� ∨); (A2) follows from (m �); property (A3) is a
consequence of (� m); and lastly, (A4) follows from the rule (mn �).

Theorem 4.3 [31, Theorem 4.15] The sentential logic Sdn has the following proper-
ties:

1. Alg(Sdn) = DN;
2. for all ϕ0, . . . , ϕn, ϕ ∈ Fm,

ϕ0, . . . , ϕn �dn ϕ ⇐⇒ DN |� mn(ϕ0, . . . , ϕn, ϕ) ≈ ϕ.

3. for every A ∈ Alg(Sdn), FiSdn (A) = Fi(A) ∪ {∅};
4. Sdn is fully selfextensional.

Therefore, by condition (2) of the previous theorem, we have that the logic Sdn is
DN-based relative to the variety DN. Moreover, since Sdn is non-pseudo axiomatic,
it follows by Proposition 3.12 that Sdn = SDN.

4.2 Modal distributive nearlattices

In [7] the author introduces a notion of a necessity modal operator defined on a dis-
tributive nearlattice, and he studies these structures through a topological duality for
the category of distributive nearlattices.

Let us consider the algebraic language L = {m,�,�} of type (3,1,0).
Definition 4.4 [7] An algebra 〈A,m,�, 1〉 is said to be a �-modal distributive near-
lattice if 〈A,m, 1〉 is a distributive nearlattice with a greatest element 1, and the
following conditions hold:

1. �1 = 1;
2. for all a, b ∈ A such that a ∧ b exists, �(a ∧ b) = �a ∧ �b.

We denote by �DN the collection of all �-modal distributive nearlattices. Let us
show that �DN is a variety.

Proposition 4.5 Let 〈A,m,�, 1〉 be an algebra such that 〈A,m, 1〉 is a distributive
nearlattice with a greatest element 1 and �1 = 1. Then, 〈A,m,�, 1〉 ∈ �DN if and
only if the following identity holds in 〈A,m,�, 1〉:

�m(x, y, z) = m(�(x ∨ z),�(y ∨ z),�z). (M)

Therefore, �DN is the variety defined by identities of distributive nearlattices with a
greatest element, and the identities �1 = 1 and (M).
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Proof First assume that 〈A,m,�, 1〉 ∈ �DN. Let a, b, c ∈ A. Since the operator �
is order-preserving, it follows that�c ≤ �(a∨c) and�c ≤ �(b∨c). Then, we have

�m(a, b, c) = �[(a ∨ c) ∧ (b ∨ c)] = �(a ∨ c) ∧ �(b ∨ c)

= (�(a ∨ c) ∨ �c) ∧ (�(b ∨ c) ∨ �c) = m(�(a ∨ c),�(b ∨ c),�c).

Hence, identity (M) holds in A. Now, conversely, suppose that (M) holds in A. We
need to check that condition (2) in Definition 4.4 is satisfied. First, we show that � is
order-preserving. Let a, b ∈ A be such that a ≤ b. So b = b ∨ a = m(b, b, a). Then,
we have

�b = �m(b, b, a) = m(�(b ∨ a),�(b ∨ a),�a) = m(�b,�b,�a) = �b ∨ �a.

Thus we obtain that �a ≤ �b. Now let a, b ∈ A be such that a∧ b there exists. Since
� is order-preserving, we have �(a ∧ b) ≤ �a,�b. Hence

�(a ∧ b) = �m(a, b, a ∧ b) = m(�a,�b,�(a ∧ b))

= (�a ∨ �(a ∧ b)) ∧ (�b ∨ �(a ∧ b)) = �a ∧ �b.

Therefore 〈A,m,�, 1〉 is a �-modal distributive nearlattice. ��
Consider the DN-based logic S�DN on the algebraic language L = {m,�,�}

defined by (3.4) and (3.5). We already know that S�DN satisfies properties (A1)-(A4).
Moreover, it is straightforward to show directly that the following conditions hold:

(N) �S�DN
ϕ implies �S�DN

�ϕ;
(�m) �m(ϕ, ψ, χ) �S�DN

m(�(ϕ ∨ χ),�(ψ ∨ χ),�χ);
(m�)m(�(ϕ ∨ χ),�(ψ ∨ χ),�χ) �S�DN

�m(ϕ, ψ, χ).

Moreover, notice that KS�DN
= Alg(S�DN) = �DN (see on page 12). Now let us

show that S�DN is the weakest selfextensional non-pseudo axiomatic logic satisfying
conditions (A1)-(A4), (N), (�m) and (m�).

Proposition 4.6 Let S be a selfextensional non-pseudo axiomatic logic satisfying
conditions (B1)-(A4), (N), (�m) and (m�). Then, S is an extension of S�DN.

Proof Let S be a selfextensional non-pseudo axiomatic logic satisfying conditions
(A1)-(A4), (N), (�m) and (m�). Then, by Theorems 3.8 and 3.10, we have that S is
DN-based relative to Alg(S) = KS . Since S satisfies conditions (N), (�m) and (m�),
it is straightforward to show that KS ⊆ �DN. Hence, since KS ⊆ �DN = KS�DN

,
we obtain by Theorem 3.14 that S�DN ≤ S. ��

5 The logic preserving truth and the logic preserving degrees of truth

Let S be a selfextensional logic with a DN-term m. We know that the canonical class
of algebras Alg(S) associated with S is a DN-based variety, that is, Alg(S) is a variety
and for every A ∈ Alg(S), the {m}-reduct 〈A,mA〉 is a distributive nearlattice. Hence,
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every algebra A in Alg(S) has associated a partial order. Thus, a sentential logic can
be defined using this class of algebras as follows: a formula ϕ is a logical consequence
from some premises if and only if for every algebra and every interpretation, whenever
the interpretation of the premises have a common lower bound, the interpretation of
the formula ϕ also has the same lower bound; this logic is the so-called the logic that
preserves degrees of truth.

Let now S be a selfextensional logic with a DN-term m and with theorems. Thus,
for every A ∈ Alg(S), the distributive nearlattice 〈A,mA〉 has a greatest element
hϕ, where ϕ is any theorem of S and h is any interpretation on A. We denote this
element, for every algebra A, by 1A. If for every algebra A we consider that 1A is
the only designated truth-value (the truth), then it can be defined a logic as follows:
a formula ϕ follows logically from some premises if and only if for every algebra
and every interpretation, whenever the interpretation of the premises are true, then the
interpretation of the formula ϕ is true. This logic is known in the literature as the logic
preserving truth (or as the assertional logic) associated with Alg(S).

In this section, given a selfextensional logic S with a DN-term (and with theorems),
we study the connections between this logicS and both the logic that preserves degrees
of truth and the logic preserving truth associated with the class of algebras Alg(S).

5.1 The logic preserving degrees of truth

Logics preserving degrees of truth associated with some particular ordered algebraic
structures are studied and discussed in several articles, for instance see [20,21,24,37].
In particular, [20] is an interesting contribution to the discussion on the role of degrees
of truth in many-valued logics from the point of view of Abstract Algebraic Logic.

Let K be a class of algebras such that every algebra A ∈ K has a partial order ≤
associated with its universe. Thus, the logic preserving degrees of truth with respect
to K is defined as follows: let ϕ1, . . . , ϕn, ϕ ∈ Fm,

ϕ1, . . . , ϕn �≤
K ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

(∀a ∈ A)(if a ≤ hϕi ∀i = 1, . . . , n, then a ≤ hϕ)
(5.1)

and

∅ �≤
K ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))(∀a ∈ A)(a ≤ hϕ). (5.2)

For an arbitrary Γ ⊆ Fm and ϕ ∈ Fm we define

Γ �≤
K ϕ ⇐⇒ there is a finite Γ0 ⊆ Γ such that Γ0 �≤

K ϕ. (5.3)

Definition 5.1 Let K be a DN-based class of algebras. The logic preserving degrees
of truth with respect to K, S≤

K = 〈Fm,�≤
K〉, is defined by (5.1)–(5.3).

Proposition 5.2 The logic S≤
K is an extension of the logic SK. Moreover, SK and S≤

K
have the same theorems, that is, �K ϕ if and only if �≤

K ϕ.
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a b c

1

Fig. 2 The distributive nearlattice of Example 5.4

LetK be aDN-based class of algebras. From (5.1), it is clear that for allϕ,ψ ∈ Fm,

ϕ �≤
K ψ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))(hϕ ≤ hψ).

Thus, the followingproposition is straightforward.Recall that for a logicS, KS denotes
the intrinsic variety of S.

Proposition 5.3 Let K be a DN-based class. Then,

1. the logic S≤
K is selfextensional;

2. V(K) = KS≤
K
;

3. S≤
K satisfies properties (A1)-(A3).

Example 5.4 The logic S≤
K does not necessarily satisfy property (A4), and thus the

logicsS≤
K andSK may be different. Consider the languageL := {m,⊥1,⊥2,�} of type

(3, 0, 0, 0). Let A be the distributive nearlattice given in Fig. 2, and such that⊥A
1 = a,

⊥A
2 = b and �A = 1. Let x be an arbitrary variable. Then, we have ⊥1,⊥2 �≤

A x
butm(⊥1,⊥2, x) �

≤
A x . Hence, S≤

{A} does not satisfy property (A4). Moreover, notice

that S≤
{A} is not a DN-based logic. Otherwise, it would satisfy (A4).

Proposition 5.5 Let K be a DN-based class. Then, the logic S≤
K satisfies property

(A4) if and only if SK = S≤
K .

Proof Assume that S≤
K satisfies property (A4). By Proposition 5.2 we need only to

prove thatS≤
K ≤ SK. Let ϕ0, . . . , ϕn, ϕ be formulas and assume that ϕ0, . . . , ϕn �≤

K ϕ.
Thus, by (A4), mn(ϕ0, . . . , ϕn, ϕ) �≤

K ϕ. Then, it is straightforward to check that
mn(ϕ0, . . . , ϕn, ϕ) �K ϕ. Now, by condition (3) of Proposition 3.2, it follows that
ϕ0, . . . , ϕn �K ϕ. Hence S≤

K ≤ SK. Conversely, if SK = S≤
K , then it is clear that S≤

K
satisfies property (A4). ��
Proposition 5.6 If K is a DN-based variety, then

KS≤
K

= K = KSK = Alg(SK).

Proof It follows from Propositions 5.3 and 3.12, and Theorem 3.10. ��
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For the next results, we need the following concepts. Let P be a partially ordered
set. Let X ⊆ P . We set X� := {a ∈ P : a ≤ x, for all x ∈ X} and Xu := {a ∈ P :
a ≥ x, for all x ∈ X}. A subset F ⊆ P is said to be a Frink filter [28] if for every
finite X ⊆ F , we have X�u ⊆ F . We denote by FiF(P) the collection of all Frink
filters of P . It is easy to check that FiF(P) is an algebraic closure system on P .

Then, condition (5.1) can be written as

ϕ1, . . . , ϕn �≤
K ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

hϕ ∈ {hϕ1, . . . , hϕn}�u .

The next lemma is straightforward, and thus we omit its proof.

Lemma 5.7 For every DN-class of algebras K and every algebra A ∈ K, we have
FiF(A) ⊆ FiS≤

K
(A).

Proposition 5.8 Let K be a DN-based variety. Then, we have

Alg(S≤
K ) = K = Alg(SK).

Proof By Lemma 2.3, we know that Alg(S≤
K ) ⊆ KS≤

K
= K. Recall that A ∈

Alg(S≤
K ) if and only if there is an algebraic closure system C on A such that

〈A, C〉 ∈ GMod∗(S≤
K ). Let A ∈ K. Since FiF(A) is an algebraic closure system

and FiF(A) ⊆ FiS≤
K
(A), it follows that 〈A,FiF(A)〉 ∈ GMod(S≤

K ).
Notice that the upsets [a) = {x ∈ A : a ≤ x} are Frink filters of A. So, we have

〈a, b〉 ∈ ΛA(FiF(A)) if and only if a = b. Then, the Frege relation ΛA(FiF(A)) of
the g-model 〈A,FiF(A)〉 is the identity relation. Hence, 〈A,FiF(A)〉 ∈ GMod∗(S≤

K );
and thus, A ∈ Alg(S≤

K ). Therefore, by Proposition 5.6, Alg(S≤
K ) = K = Alg(SK). ��

The following corollary is a consequence of Lemma 5.7.

Corollary 5.9 LetK be aDN-based variety. Then, the logicS≤
K is fully selfextensional.

Let K be a DN-based class of algebras and A ∈ K. Since FiF(A) is a closure
system, FiF(A) is a lattice. Let us show that the distributivity of the lattices FiF(A) is
a sufficient condition for the logics SK and S≤

K to coincide.

Proposition 5.10 Let K be a DN-based variety. If for every A ∈ K the lattice FiF(A)

is distributive, then SK = S≤
K .

Proof Assume that for each A ∈ K, the lattice FiF(A) is distributive. Since the logic
S≤
K is an extension of the logic SK, we have FiS≤

K
(A) ⊆ FiSK (A) for every algebra A.

Let now A ∈ K. Since the lattice FiF(A) is distributive, it follows that FiF(A) = Fi(A)

(see [30, Proposition 4.3]). Then, by Proposition 3.9 and Lemma 5.7, it follows that

FiSK (A)\{∅} = Fi(A) = FiF(A) ⊆ FiS≤
K
(A). (5.4)
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Hence, since SK and S≤
K have the same theorems, we obtain FiSK (A) = FiS≤

K
(A) for

all A ∈ K. Now, notice that every sentential logic S is complete with respect to the
class of g-models {〈A,FiS(A)〉 : A ∈ Alg(S)}. Thus, by Proposition 5.8, we obtain
that SK = S≤

K . ��
Remark 5.11 Let K be a DN-based variety such that the lattice FiF(A) is distributive
for every A ∈ K. Then, the proof of Proposition 5.10 (see (5.4)) shows that if the logic
SK has theorems, then FiSK (A) = FiF(A) for all A ∈ K.

5.2 The logic preserving truth

We will say that a class of algebras K is DN1-based if it is DN-based and every
algebra A in K has a greatest element, that is, there is 1A ∈ A such that a ≤ 1A for all
a ∈ A. Notice that if S is a selfextensional logic with a DN-term and with theorems,
then Alg(S) is a DN1-based variety and for every A ∈ Alg(S), 1A = hϕ for any
theorem ϕ and any interpretation h on A. Moreover, since S has a theorem, it follows
by Proposition 3.12 that S = SAlg(S). From now on, unless otherwise stated, K will
denote a DN1-based variety.

Definition 5.12 The logic preserving truth associated with K, denoted by S1
K =

〈Fm,�1
K〉, is defined as follows: let Γ ∪ {ϕ} ⊆ Fm be finite,

Γ �1
K ϕ ⇐⇒ (∀A ∈ K)(∀h ∈ Hom(Fm, A))

(hψ = 1A for all ψ ∈ Γ �⇒ hϕ = 1A).
(5.5)

For an arbitrary Γ ⊆ Fm, Γ �1
K ϕ if and only if there is a finite Γ0 ⊆ Γ such that

Γ0 �1
K ϕ.

Proposition 5.13 The logic S1
K is an extension of S≤

K , and hence it is an extension of
the logic SK. Moreover, the logics SK, S≤

K and S1
K have the same theorems.

Example 5.14 Let K be a variety of residuated lattices [29]. Then, it is clear that K
is a DN-based variety. In [6] the authors prove (Theorem 4.12) that �1

K = �≤
K if and

only if K is a variety of generalised Heyting algebras [38].2 Then, by Example 5.4,
we have for a DN-based class of algebras K that the logics SK, S≤

K and S1
K may be

different.

Let A be an algebra and F ⊆ A. The Leibniz congruence of F relative to A,
denoted by Ω AF , is the greatest congruence of A compatible with F , that is, it does
not relate elements in F with elements not in F . The mapping F �→ Ω AF is called the
Leibniz operator of the algebra A and it is denoted byΩ A. This operator is an essential
tool in Abstract Algebraic Logic for classifying sentential logics. The structure of this
classification of sentential logics is called the Leibniz hierarchy. We address the reader
to [17,23,27] for more information on this hierarchy.

2 Generalised Heyting algebras are called relatively pseudo-complemented lattices in [38].
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Proposition 5.15 If for every A ∈ K and every nonempty and finite X ⊆ A we have
FiA(X) = {a ∈ A : 〈a, 1A〉 ∈ Ω AFiA(X)}, then SK = S1

K.

Proof By Proposition 5.13, we only need to prove that for all ϕ0, . . . , ϕn, ϕ ∈ Fm,
ϕ0, . . . , ϕn �1

K ϕ implies ϕ0, . . . , ϕn �K ϕ. So, assume that ϕ0, . . . , ϕn �1
K ϕ. Let

A ∈ K and h ∈ Hom(Fm, A). We set F :=FiA(hϕ0, . . . , hϕn). Since K is a variety
and Ω AF is a congruence on A, it follows that A/Ω AF ∈ K. By hypothesis, we have
that F = 1A/Ω AF = 1A/Ω AF . Let noŵh := π ◦h : Fm → A/Ω AF , whereπ : A →
A/Ω AF is the natural map. Thus, ̂hϕi = hϕi/Ω

AF = 1A/Ω AF = 1A/Ω AF for all
i = 0, 1, . . . , n. Then,̂hϕ = 1A/Ω AF . Hence hϕ ∈ F = FiA(hϕ0, . . . , hϕn). Thus, by
Proposition 2.15, we obtain that hϕ = mn(hϕ0, . . . , hϕn, hϕ). Hence, ϕ0, . . . , ϕn �K
ϕ. ��

One of the most important and large classes of sentential logics under the point
of view of Abstract Algebraic Logic is the class of protoalgebraic logics. This class
of logics was introduced and studied by Blok and Pigozzi [4], and independently it
was considered by Czelakowski [16]. There are several useful characterizations of
the notion of protoalgebraibility. For our purposes, we choose the following as the
definition of protoalgebraic logic.

Definition 5.16 A sentential logic S is said to be protoalgebraic if there is a set of
formulas in two variables Δ(x, y) such that ∅ �S Δ(x, x) and x,Δ(x, y) �S y. A
set with these two properties will be called a set of protoimplication formulas for S.

Since the logics in this paper are considered to be finitary, the sets of protoimpli-
cation formulas can always be chosen to be finite.

Algebraizable logics, finitely algebraizable logics and regularly algebraizable log-
ics are important classes of protoalgebraic logics, see for instance [5,17,23,27].
A sentential logic S is algebraizable if and only if (i) there is a set of formulas
in two variables Δ(x, y) such that for each algebra A and each S-filter F of A,
Ω AF = {〈a, b〉 ∈ A2 : ΔA(a, b) ⊆ F}, and (ii) there is a set of equations τ(x) in
one variable such that for every algebra A and every S-filter F of A with Ω AF being
the identity relation, F = {a ∈ A : A |� τ(x)[a]}. The set Δ(x, y) is called a set of
equivalence formulas for S. It follows that every set of equivalence formulas is a set
of protoimplication formulas.

A logic S is said to be finitely algebraizable when it is algebraizable and the sets
Δ(x, y) and τ(x) are finite. A logic S is said to be regularly algebraizable if it is
finitely algebraizable and for every set of equivalence formulas Δ(x, y) the G-rule
x, y �S Δ(x, y) is satisfied.

A quasivariety K is said to be pointed if there is a term ϕ(x1, . . . , xn) with the
property that ϕ(x1, . . . , xn) ≈ ϕ(y1, . . . , yn) is valid in K for all variables y1, . . . , yn .
Such a term is called a constant term since it behaves like a constant. Once we fix a
constant term, we will denote it by 1; we will say that K is 1-pointed and we will use
1A to refer the interpretation of the constant term 1 in A, for each A ∈ K. Notice that if
S is a selfextensional logic with a DN-term andwith theorems, then the variety Alg(S)

is 1-pointed, where the constant term is any theorem of S, and for each A ∈ Alg(S),
1A is the greatest element of 〈A,mA〉.
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A 1-pointed quasivariety K is said to be relatively point regular when for every
A ∈ K and every θ, θ ′ ∈ ConK(A), if 1A/θ = 1A/θ ′, then θ = θ ′. If K is a variety,
thenwe say simply that K is point regular, since ConK(A) = Con(A) for every A ∈ K.

Theorem 5.17 [19] A logic S is regularly algebraizable if and only if Alg(S) is 1-
pointed and relatively point regular quasivariety and S = S1

Alg(S)
.

Let 〈A,m〉 be a distributive nearlattice. Then, θ is a congruence on A if and only
if (i) if 〈a, b〉, 〈c, d〉 ∈ θ , then 〈a ∨ c, b ∨ d〉 ∈ θ , and (ii) if 〈a, b〉, 〈c, d〉 ∈ θ and
a ∧ c, b ∧ d exist in A, then 〈a ∧ c, b ∧ d〉 ∈ θ , see [32].

Theorem 5.18 Let S be a selfextensional logic with a DN-term and with theorems.
If the logic S is protoalgebraic, then S = S1

Alg(S)
if and only if S is regularly alge-

braizable.

Proof Let S be a selfextensional logic with a DN-term and with theorems, and assume
that S is protoalgebraic. Recall that S = SAlg(S), and by Proposition 5.13 we have
that S ⊆ S1

Alg(S)
. If S is regularly algebraizable, then by the previous theorem we

have that S = S1
Alg(S)

.

Now, conversely, assume that S = S1
Alg(S)

. We already know that Alg(S) is 1-
pointed. To show that the logic S is regularly algebraizable we only need to prove, by
the previous theorem, that the variety Alg(S) is point regular. Let A ∈ Alg(S) and
let θ, θ ′ ∈ Con(A) be such that 1A/θ = 1A/θ ′. As S is finitary and protoalgebraic,
let Δ(x, y) be a finite set of protoimplication formulas for S. Moreover, since the
logic S has theorems, Δ(x, y) can be assumed to be nonempty. We set Δ(x, y) =
{ϕ1(x, y), . . . , ϕn(x, y)}. Let 〈a, b〉 ∈ θ . So,

{〈ϕA(a, a), ϕA(a, b)〉 : ϕ(x, y) ∈ Δ(x, y)} ⊆ θ. (5.6)

Since �S Δ(x, x), it follows that {〈1A, ϕA(a, b)〉 : ϕ(x, y) ∈ Δ(x, y)} ⊆ θ . Thus,
{〈1A, ϕA(a, b)∨ b〉 : ϕ(x, y) ∈ Δ(x, y)} ⊆ θ . Then, by hypothesis, {〈1A, ϕA(a, b)∨
b〉 : ϕ(x, y) ∈ Δ(x, y)} ⊆ θ ′. It follows that

〈1A, (ϕA
1 (a, b) ∨ b) ∧ · · · ∧ (ϕA

n (a, b) ∨ b)〉 ∈ θ ′.

Then, we obtain

〈a ∨ b, (ϕA
1 (a, b) ∨ b) ∧ · · · ∧ (ϕA

n (a, b) ∨ b) ∧ (a ∨ b)〉 ∈ θ ′.

Notice that

(ϕA
1 (a, b) ∨ b) ∧ · · · ∧ (ϕA

n (a, b) ∨ b) ∧ (a ∨ b) = mn(ϕA
1 (a, b), . . . , ϕA

n (a, b), a, b).

Thus,
〈a ∨ b,mn(ϕA

1 (a, b), . . . , ϕA
n (a, b), a, b)〉 ∈ θ ′. (5.7)

123



Selfextensional logics with a distributive nearlattice term 241

Now, since x,Δ(x, y) �S y, it follows by property (A4) that

mn(ϕ1(x, y), . . . , ϕn(x, y), x, y) �S y.

Let h ∈ Hom(Fm, A) be such that h(x) = a and h(y) = b. Then, we obtain that

mn(ϕA
1 (a, b), . . . , ϕA

n (a, b), a, b) = b.

Thus, by (5.7), we have 〈a ∨ b, b〉 ∈ θ ′. With a similar argumentation we can get
〈a ∨ b, a〉 ∈ θ ′. Hence, 〈a, b〉 ∈ θ ′. We have proved that θ ⊆ θ ′. Similarly, we have
θ ′ ⊆ θ . Then θ = θ ′. Hence, Alg(S) is point regular. Therefore, since Alg(S) is
1-pointed and point regular and since S = S1

Alg(S)
, it follows by the previous theorem

that S is regularly algebraizable. ��

Conclusions

Given an algebraic language L with a ternary term m, we have defined when m is a
distributive nearlattice term (DN-term) for a sentential logic S (see Definition 3.1).
The term m is a DN-term for S if it satisfies some syntactical properties ((A1)–(A4));
roughly speaking, these properties (A1)-(A4) mean that whenm is interpreted in every
algebra A of the algebraic counterpart of S the {m}-reduct 〈A,mA〉 is a distributive
nearlattice.

Then, we characterised the selfextensional logics with a DN-term m as those for
which the consequence relation can be defined by the order induced by the ternary term
m interpreted in the algebras of the algebraic counterpart of the logic (see Theorems
3.8 and 3.10).

Given a DN-based variety K, we define the logic SK (see on page 12); this logic
is selfextensional with a DN-term, and K = Alg(SK). Since the algebras of K have
associated a partial order, it can be defined the logic preserving degrees of truth S≤

K
(see Definition 5.1). We have shown some properties of the logic S≤

K . We found some
sufficient conditions for logics SK and S≤

K coincide (see Propositions 5.5 and 5.10).
If S is a selfextensional logic with a DN-term and with theorems, then the algebraic

counterpart Alg(S) of S is 1-pointed. Thus, we can define the logic preserving truth
S1
Alg(S)

associated with Alg(S). We also have found some sufficient conditions for

logics S and S1
Alg(S)

coincide (see Proposition 5.15 and Theorem 5.18).
Selfextensional logics having aDN-term (or equivalently, DN-based logics) include

those sentential logics defined by varieties of distributive lattices. More precisely,
consider an algebraic languageLwith two binary terms∧ and∨ and let K be a variety
of type L such that for each A ∈ K, 〈A,∧A,∨A〉 is a distributive lattice. Then, it is
clear that K is, in particular, a DN-based variety. On the one hand, since the algebras
of K have a conjunction, it can be defined in a natural way a logic S ′

K as in [34, pp.
79] which is the semilattice-based logic associated with K. On the other hand, since
K is a DN-based variety, we can consider the DN-based logic SK associated with K
(see (3.4) and (3.5)). Then, it is straightforward to check that the two logics S ′

K and
SK coincide.
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Let K be a DN1-based variety (see Sect. 5.2). Since distributive nearlattices can
be considered as generalisations both of Tarski algebras and of distributive lattices, it
will be important to carry out studies on the logics SK, S≤

K and S1
K under the point

of view of AAL. In particular, we will study how these logics behave concerning the
classifications in the hierarchy of Leibniz and the hierarchy of Frege. These task will
be pursued elsewhere. The papers [6,22,25,35] will be of great help to carry out these
investigations.
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