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Abstract By splitting idempotent morphisms in the total and base categories of fibra-
tions we provide an explicit elementary description of the Cauchy completion of
objects in the categories Fib(B) of fibrations with a fixed base category B and Fib
of fibrations with any base category. Two universal constructions are at issue, corre-
sponding to two fibered reflections involving the fibration of fibrations Fib → Cat.

Keywords Category · Idempotent · Cauchy completion · Fibration

Mathematics Subject Classification 1802 · 18A15 · 18A05 · 18B99

1 Introduction

In any category, an idempotent is an endomorphism a such that aa = a. An idem-
potent is said to split if there exist morphisms r, s such that a = sr and rs is an
identity. A pair r, s as above is a splitting of a. A category in which the idempo-
tents belonging to a certain class split, is said to be Cauchy complete with respect to
that class of idempotents. There is a well-known construction, see [6,7], producing a
Cauchy complete category with respect to a class of idempotents, from any category,
see Sect. 2.1. In such Cauchy complete category the idempotents in the class under
consideration acquire a canonical, that is choice independent, splitting; moreover, that
category is universal among the categories in which the idempotents in question split,
in the sense of Proposition 1. Although the splitting of idempotent morphisms in a
fibered setting is maybe a folklore matter, we felt the need to provide a systematic

B Ruggero Pagnan
pagnan@dima.unige.it

1 DIMA, University of Genova, Via Dodecaneso 35, 16146 Genoa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-018-0616-5&domain=pdf
http://orcid.org/0000-0002-2816-933X


918 R. Pagnan

description of constructions that we have not been able to find elsewhere. Beyond these
special need, general motivations for pursueing the investigation which is the matter
of this paper come from the will to adopt the foundational attitude that characterizes
the employment of fibrational tools in approaching fundamental subjects in category
theory, see [1], as Cauchy completion certainly is, see [2]. More to the point, we pro-
vide an explicit elementary description of the Cauchy completion of fibrations with
a fixed base category B as objects of the category Fib(B) and of fibrations with any
base category as objects of the category Fib. The first construction arises by splitting
reindexing stable vertical idempotent morphisms in the total category of fibrations and
is described in Sect. 3.1, Proposition 2. About this construction we hasten to say that
we encountered the description of a particular case of it in [9], but also to say that
we described it independently and in more general hypothesis. The case described in
loc. cit. is the one obtained by splitting every vertical idempotent in the total category
of a fibration, thus making the mentioned stability condition automatically satisfied,
as observed in Remark 5. Furthermore, we use Proposition 2 in Sect. 3.2 to provide
a description of the fiberwise exact completion of a fiberwise regular fibration. As
far as we know, this construction has not been described yet. Splitting all the vertical
idempotents in the total categories of fibrations is a functorial process that gives rise to
a fibered reflection from the fibration of fibrations Fib → Cat, see Proposition 3. The
ordinary reflection at the terminal category 1 of the fibered reflection at issue provides
the functorialization of the process of Cauchy-completing a category with respect to
the class of all of its idempotents, see Remark 6. The second construction that we
referred to above arises by simultaneously splitting idempotents in the total and base
categories of fibrations, and is described in Sect. 3.3, Proposition 4, which, as far as we
know, is new. For a given fibration, it provides the description of the Cauchy complete
one out of it in Fib, with respect to a class of idempotents in the base category and
a class of idempotents in the total category of the original fibration. This process is
functorial too and gives rise to a fibered reflection from the fibration of fibrations, see
Proposition 5. The first construction, dealing specially with the splitting of vertical
idempotents, is a particular case of this second, see Remark 8.

2 Categorical preliminaries

We assume that the reader is already familiar with the basics of ordinary and fibered
category theory, but see [1,10,13–15]. In any case, in this section we recall some of
the relevant notions that will be useful in the sequel of this paper, also to establish
terminology and notations.

2.1 The Cauchy completion of a category

Let C be a category. In C an idempotent is an endomorphism, say a : A → A, such
that aa = a; think of identity morphisms, in particular. In C, idempotents split if
for every idempotent a : A → A there are an object X and a pair of morphisms
r : A → X, s : X → A such that a = sr and idX = rs. For an idempotent
a : A → A, a triple (X, r : A → X, s : X → S) with r, s as above, is a splitting
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Splitting idempotents in a fibered setting 919

of a. The splittings of an idempotent are determined up to a unique isomorphism, in
the sense that if (Y, r ′ : A → Y, s′ : Y → A) is another splitting of a, then there
exists a unique mediating isomorphism m : X → Y making the diagram

A

r ′

r

a
A

X

m

s

Y

s′

commute.

Remark 1 In any category, for every object A, the identity morphism idA has a canon-
ical, that is choice independent, splitting, which is (A, idA, idA). Henceforth, by
referring to a splitting of an identity morphism we will assume to be the canonical
one, if not differently and explicitly intended.

In the sequel of the paper, whenever confusion is not likely to arise, rather than pro-
viding the whole data for the components of a splitting of an idempotent a, we will
more briefly write that a = sr is a splitting of a, or even that a splits as a = sr . IfA is
a class of idempotent morphisms of C, henceforth always assumed to contain all the
identity morphisms, then C is said to be Cauchy complete with respect to A if every
idempotent in A splits in C and Cauchy complete without any further specification
if it is Cauchy complete with respect to the class of all of its idempotent morphisms.
The Definition 1 below introduces the Cauchy completion of a category with respect
to a class of its idempotent morphisms, but see also [2,6,7,11].

Definition 1 Let C be a category and A be a class of idempotent morphisms of C.
The Cauchy completion ofC with respect toA is the categoryC[Ǎ] identified by the
following data:

Objects: pairs (A, a) with a : A → A an idempotent in A.
Morphisms: f : (A, a) → (B, b) is f : A → B in C such that b f a = f or,

equivalently, such that b f = f and f a = f .
Composition: inherited from C.

Identities: for every object (A, a), id(A,a)
.= a : (A, a) → (A, a).

TheCauchy completion of a categoryCwith respect to the class of all of its idempotent
morphisms will be henceforth denoted Č.

Proposition 1 below provides a list of well-known facts which are worth to be recalled.

Proposition 1 Let C be a category and A be a class of idempotent morphisms of C.
The following facts hold.
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920 R. Pagnan

1. In C[Ǎ], every idempotent morphism, say f : (A, a) → (A, a), with f in A,
splits canonically as

(A, a)

f

f

(A, a)

(A, f )
f

2. For every object A and morphism f : A → B of C, the assignments A �→
(A, idA) and f �→ f : (A, idA) → (B, idB) identify a full and faithful functor
IC : C → C[Ǎ].

3. The functor ICmaps every idempotent inA to an idempotent that splits canonically
in C[Ǎ]: for a : A → A in A, a canonical splitting of IC(a) = a : (A, idA) →
(A, idA) is

(A, idA)

a

a

(A, idA)

(A, a)
a

4. The functor IC is universal with the property described in 3: for every category
D and functor F : C → D, if F maps every idempotent in A to an idempotent
that splits inD, then F extends, up to a unique natural isomorphism, to a functor
F : C[Ǎ] → D.

Proof Points 1, 2, 3 are straightforward. For point 4: for every object (A, a), let

FA

r

Fa

FA

F(A, a)

s

be a chosen splitting of Fa inD. The assigment (A, a) �→ F(A, a) uniquely extends
tomorphisms: for every f : (A, a) → (B, b) inC[Ǎ], let F f be the uniquely induced
dashed morphism in the commutative diagram

FA

F f

r

Fa FA
F f

FB

r ′

Fb FB

F(A, a)
F f

s

F(B, b)
s′

that is F f = r ′(F f )s. ��
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Splitting idempotents in a fibered setting 921

Corollary 1 Let C be a category and A a class of idempotent morphisms of C. The
full and faithful functor IC : C → C[Ǎ] is an equivalence of categories if and only
if every idempotent in A already splits in C.

Proof We suppose that every idempotent inA already splits inC and show that IC is
essentially surjective on objects. Let (X, x) be an object inC[Ǎ] and let (A, r : X →
A, s : A → X) be a splitting of x : X → X in C. The objects (X, x), (A, idA) are
isomorphic in C[Ǎ], as shown by the commutative diagram

(X, x)

x

r
(A, idA)

s

idA

The converse is obvious by virtue of Proposition 1. ��
Remark 2 As a further consequence of Proposition 1 and of Corollary 1, one has
that the Cauchy completion of a category with respect to a class of its idempotent
morphisms is an idempotent construction up to equivalence of categories, which fact
provides the reason why it is referred to as a completion.

Remark 3 Let Cat be the category of categories and functors between them. Let
CatCc be the full subcategory of Cat identified by the Cauchy complete categories.
The universal property described in Proposition 1 amounts to say that the assignment
C �→ Č extends to a functor which is left adjoint to the inclusion of CatCc in Cat.
That is, one has a reflection

CatCc
⊥ Cat (1)

whose unit, for every categoryC, is the functor IC : C → Č, whose counit, for every
Cauchy complete category C is the equivalence between C and Č from Corollary 1.

2.2 Fibered category theory

In this subsection we briefly recall some basics of fibered category theory.

Definition 2 Let P : X → B be a functor. A morphism ϕ : X → Y of X is P-
cartesian if for every morphism v : K → PX of B, for every morphism g : Z → Y
with Pg = (Pϕ)v, there exists a unique morphism h : Z → X such that ϕh = g and
Ph = v. The functor P is a fibration if for every object Y of X, for every morphism
u : I → PY , there exists a cartesian morphism ϕ : X → Y such that Pϕ = u.
The domain of a fibration is its total category. The codomain of a fibration is its base
category.

The notion of fibration axiomatically captures how to deal with the reindexing of
internally indexed families of objects and morphisms of a category. For P : X → B
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922 R. Pagnan

a fibration, the cartesian morphism ϕ : X → Y which is required to exist and fit in a
situation like

X
ϕ

Y

I u PY

with Pϕ = u, for an arbitrary object Y ofX and morphism u ofB, is a P-reindexing
of Y along u. We will also say that a fibration has enough reindexings. The morphisms
of X whose image via P is an identity of B are said to be P-vertical. For every
object I of B, the subcategory of X which is completely identified by the P-vertical
morphisms whose image via P is idI will be referred to as the fiber category of P at
I and henceforth denoted PI . In the total category of a fibration every morphism f
factors as a vertical morphism f followed by a cartesianmorphism ϕ, that is f = ϕ◦ f
with ϕ a cartesian morphism such that Pϕ = P f and f uniquely induced by virtue of
the P-cartesianness of ϕ. By means of the axiom of choice for classes, P-reindexings
can be chosen. For every morphism u : I → J in B, for every object Y in PJ a
chosen P-reindexing of Y along u will be henceforth denoted as yu : u∗Y → Y . A
fibration with chosen reindexings is said to be cloven. If P is a cloven fibration, then
the assignment Y �→ u∗Y extends to a reindexing functor u∗ : PJ → PI which,
in case P is fiberwise structured, is required to be coherently structure-preserving.
For instance, if P is a cloven and fiberwise finitely complete fibration then u∗ is
required to preserve finite limits. For P : X → B a cloven fibration and I an object
of B, the reindexing functors (idI )∗, idPI : PI → PI are naturally isomorphic.
Without any employment of the axiom of choice for classes it can be assumed that
they actually coincide. Henceforth, we will communicate this assumption by saying
that P is normally cloven. Moreover, for morphisms u : I → J , v : J → K of B,
the reindexing functors u∗v∗, (vu)∗ : PK → PI are naturally isomorphic by means
of a natural isomorphism that we will henceforth denote μu,v : u∗v∗ ⇒ (vu)∗. For
fibrations P : X → B and Q : Y → B, a fibered functor F : P → Q is a
functor F : X → Y such that QF = P and mapping P-cartesian morphisms to Q-
cartesian morphisms. For F,G : P → Q a pair of parallel fibered functors, a fibered
natural transformation from F to G is a natural transformation α : F ⇒ G whose
components are Q-verticalmorphisms. Fibrationswith afixed base categoryB, fibered
functors and fibered natural transformations form a 2-category Fib(B). For fibrations
P : X → B and Q : Y → C, a morphism of fibrations (F,G) : P → Q is a pair of
functors F : X → Y, G : B → C such that QF = GP with F mapping P-cartesian
morphisms toQ-cartesianmorphisms. For (F,G), (F ′,G ′) : P → Q a pair of parallel
morphisms of fibrations, a fibered natural transformation from (F,G) to (F ′,G ′) is a
pair (α, β)withα : F ⇒ F ′ ,β : G ⇒ G ′ with, for every object X ofX, QαX = βPX .
Fibrations, morphisms of fibrations and fibered natural transformations between them
form a 2-category Fib. It is well-known that for every fibration P : X → B, the
assignment P �→ B extends to a functor Fib → Cat which is a fibration thanks to
the stability of fibrations under change of base, which is the operation of pulling back
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Splitting idempotents in a fibered setting 923

a fibration along a functor, see point (iii) of examples 2.3 below. For every category
B, Fib(B) occurs as the fiber at B of Fib → Cat. For further details on Fib as a
2-category fibered over Cat see [8].

2.3 Examples of fibrations

(i) Let Sets be the category of sets and functions between them. For every category
C, let Fam(C) be the category of set-indexed families of objects of C and
set-indexed families of morphisms ofC between them. Explicitly, the objects of
Fam(C) are families (Ai )i∈I with I a set and, for every i ∈ I , Ai an object ofC,
whereas its morphisms are pairs (u, f ) : (Ai )i∈I → (Bj ) j∈J , with u : I → J
a function and f = ( fi : Ai → Bu(i))i∈I an I -indexed familiy of morphisms of
C. For every object (Ai )i∈I , the assignment (Ai )i∈I �→ I extends to a fibration
PC : Fam(C) → Sets. For every object (Bj ) j∈J of Fam(C) and for every
function u : I → J , it can be verified that

(Bu(i))i∈I
(u,id)

(Bj ) j∈J

I u J

with id = (idBu(i) )i∈I , is a PC-reindexing of (Bj ) j∈J along u. PC is often
referred to as the “naive” indexing of C; PC is the fibration which is very often
implicitly involved in the categorial arguments that more or less hiddenly rely
on set-theory. For I a set, the fiber category of PC at I is CI , essentially.

(ii) For every category B, let B→ be the category identified by the following data:
Objects: the morphisms of B.

Morphisms: a morphisms from a : A → I to b : B → J is (u, f ) : a → b,
with u : I → J and f : A → B in B, such that b f = ua.

Composition: inherited from B, componentwise.
Identities: inherited from B, componentwise.

For every object a : A → I of B→, the assignment a �→ I extends to a functor
codB : B→ → Bwhich is a fibration if and onlyB is a category with pullbacks.
In this case, codB is often referred to as “the fundamental fibration over B”
because, by thinking of B as a sort of category-theoretic base universe, codB
provides the categorial universe of internally indexed families of objects and
morphisms ofB itself; that is, as it is usually said, codB allows to considerB as
indexed over itself. For I an object of B, the fiber category of codB at I is the
slice category B/I .

(iii) We previously observed that Fib is fibered overCat because fibrations are stable
under change of base. Explicitly, this means that for every fibration P : X → B
and functor F : A → B, if
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924 R. Pagnan

A ×B X

PF

G
X

P

A
F

B

(2)

is a pullback diagram inCat, then PF is a fibration. HereA×BX is the category
identified by the following data:

Objects: are pairs (A, X) with A an object from A and X an object from
X, such that FA = PX .

Morphisms: are pairs (u, f ) with u a morphism from A and f a morphism
fromX, such that P f = Fu.

Composition: inherited fromA in the first component and fromX in the second
component.

Identities: inherited fromA in the first component and fromX in the second
component.

In diagram (2) PF is the first projection functor and G the second projection
functor. For every object A ofA, the fiber category of PF at A is essentially the
fiber category of P at FA, more precisely (PF )A is isomorphic to PFA.

2.4 Fibered adjunctions

For fibrations P : X → B and Q : Y → B, a fibered adjunction between P and Q
in Fib(B) is an adjunction

X
F

⊥ Y
G

with P-vertical unit, Q-vertical counit and F : P → Q,G : Q → P fibered functors.
For fibrations P : X → B and Q : Y → C, a fibered adjunction between P and Q
in Fib is a pair of adjunctions

X ⊥
F

Y
G

B
H

⊥ C
K

with Pη = ηP , Qε = εQ and (F, H) : P → Q, (G, K ) : Q → P morphisms of
fibrations.

123



Splitting idempotents in a fibered setting 925

3 Splitting idempotents in a fibered setting

In Sect. 3.1 we prove Proposition 2 about the splitting of vertical idempotents in the
total category of a fibration. As a result, a description of the Cauchy completion of an
object of Fib(B), forB a fixed base category, is provided together with an application
of such construction in Sect. 3.2: the obtainment of the fiberwise exact completion of a
fibration out of a fiberwise regular fibration. Section 3.3 generalizes Sect. 3.1. In it we
prove Proposition 4 about the splitting of whatever idempotents in the total category
of a fibration. As a result a description of the Cauchy completion of an object of Fib
is provided.

Remark 4 Let P : X → B be a fibration and let x : X → X be a P-vertical idem-
potent. We assume that Px = idPX splits canonically, in accordance with Remark 1.
As a consequence, if x splits as x = sr , then Ps = Pr = idPX . That is, vertical
idempotents split in the fiber category of which they are morphisms.

3.1 Splitting vertical idempotents

Let P : X → B be a fibration and E be a class of P-vertical idempotents of X. For
every object I of B let EI be the subclass of E consisting of the members of E which
are in the fiber PI . Suppose that idempotents in E are stable under P-reindexing, as
follows: in every diagram like

X

x

ϕ
Y

y

X
ϕ

Y

(3)

in which y is in EPY and ϕ is P-cartesian, the uniquely induced P-vertical idempotent
x which makes the whole diagram commute is in EPX .

Remark 5 If E is the class of all the P-vertical idempotents, then the previous stability
condition is automatically satisfied.

Proposition 2 Under the hypothesis on P and E described above, the following facts
hold.

1. By virtue of the universal property described in Proposition 1 there exists a unique
functor P : X[Ě] → B.

2. The functor P is a fibration and IX : X → X[Ě] identifies a full and faithful
fibered functor IX : P → P.

3. Up to equivalence, for every object I of B, P I is the Cauchy completion of PI
with respect to EI .

4. The fibered functor IX : P → P maps every idempotent in E to an idempotent that
splits inX[Ě] and is universal with this property: for every fibration Q : Y → B
and fibered functor F : P → Q, if F maps every idempotent in E to an idempotent
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926 R. Pagnan

that splits inY, then F extends, up to a unique fibered natural isomorphism, to a
fibered functor F : P → Q.

Proof 1. Since the idempotents in E are P-vertical morphisms, P maps them to
idempotent morphisms that split in B. Thus, by virtue of the universal property
described in Proposition 1 there exists a unique up to natural isomorphism functor
that makes the diagram

X

P

IX
X[Ě]

P

B

commute but, by virtue of the fact that identity morphisms split canonically, the
functor P can be uniquely identified by the assignments

(X, x) �→ PX

on objects, and

f : (X, x) → (Y, y) �→ P f : PX → PY

on morphisms.
2. We prove that the functor P has enough reindexings, in the sense explained in

Sect. 2.2. Let (Y, y) be an object of X[Ě] and u : I → PY be a morphism of B.
Let ϕ : X → Y be a P-cartesian lifting of Y along u and x be uniquely induced
as in diagram (3), so that yϕ = ϕx . We claim that

(X, x)
ϕx

(Y, y)

I u PY

(4)

is a P-cartesian lifting of (Y, y) along u. For every v : K → I and for every
g : (Z , z) → (Y, y) in X[Ě] with Pg = uv, let g : Z → X be the unique
morphism such that ϕg = g and Pg = v, by virtue of the P-cartesianness of ϕ.
One has

P(x(gz)z) = v = P(gz)

and

ϕ(x(gz)z) = yϕgz = ygz = g = ϕ(gz)

123



Splitting idempotents in a fibered setting 927

so that gz : (Z , z) → (X, x). Also one has

(ϕx)(gz) = (yϕ)(gz) = ygz = g

and uniqueness of gz can be proved as follows: if f : (Z , z) → (X, x) is such that
P f = v and (ϕx) f = g, then ϕ(x f ) = g, consequently f = x f = g but g = gz
because P(gz) = v and ϕ(gz) = gz = g. Finally, to verify that IX : X → X[Ě]
identifies a full and faithful fibered functor from P to P is straightforward.

3. Let I be an object of B. It is immediate to see that P I is isomorphic to PI [ĚI ].
Now, if f : (X, x) → (X, x) is an idempotent in X[Ě], with f : X → X in E ,
then it splits as an idempotent in PPX [ ˇEPX ].

4. In the way just explained, every idempotent in E , say x : X → X , acquires, via IX,
a splitting inX[Ě]. Under the stated hypothesis the functor F extends to a functor
F : X[Ě] → Y as shown in Proposition 1 and it is immediate to verify that
QF = P . It remains to show that F maps P-cartesian morphism to Q-cartesian
morphism. For this, we observe that if f : (X, x) → (Y, y) is a morphism in
X[Ě], then it factors as in the commutative diagram

(X, x)

a f x

f
(Y, y)

(A, a)

ϕa

where ϕ : A → Y is a P-cartesian morphism over P f , ϕ f = f with f a P-
vertical morphism and a : A → A a P-vertical idempotent in E obtained by
P-reindexing of y, in a diagram such as (3). Now, if f is a P-cartesian morphism,
then there exists a P-vertical morphism g : (A, a) → (X, x) such that f g = ϕa,
and it can be easily verified that (a f x)g = a and that g(a f x) = x , so that g and
a f x are each other inverses in X[Ě], vertically over PX . As a consequence of
all this, a P-cartesian morphism can be assumed to be as in diagram (4). For one
such P-cartesian morphism, F(ϕx) is the unique dashed morphism that makes the
diagram

FX

F(ϕx)

r

Fx F X
F(ϕx)

FY

r ′

Fy FY

F(X, x)
F(ϕx)

s

F(Y, y)
s′

that is F(ϕx) = r ′F(ϕx)s. Now, commute for every morphism u : I → PX and
g : Z → F(Y, y) with

Qg = Q(F(ϕx))u = (Pϕ)u
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928 R. Pagnan

let g : Z → FX be the uniquely induced morphism such that Qg = u and
(Fϕ)g = s′g, by virtue of the Q-cartesianness of Fϕ. One has, Q(rg) = u and

(F(ϕx))rg = r ′(F(ϕx))g = r ′F(yϕ)g = r ′s′r ′Fϕg = r ′s′g = g

Finally, if h : Z → F(X, x) is such that Qh = u and F(ϕx)h = g, then

s′g=s′F(ϕx)h = s′r ′F(ϕx)sh=F(yϕ)sh=F(ϕx)sh = F(ϕ)srsh = F(ϕ)sh

Thus, by virtue of the Q-cartesianness of F(ϕ), sh = g, so h = rg. ��
Corollary 2 Under the hypothesis of Proposition 2, the fibrations P and P are equiv-
alent if and only if every idempotent in E already splits in P.

Proof The result follows from Proposition 2 and Corollary 1. ��
On the base of Proposition 2, Corollary 2 and Remark 2 we give the following

Definition 3 Under the hypothesis assumed at the beginning of Sect. 3.1, the fibration
P described in Proposition 2 is the fiberwise Cauchy completion of P as an object of
Fib(B), with respect to E .
Proposition 3 Let FibfCc be the full subcategory of Fib identified by the fiberwise
Cauchy complete fibrations. The following facts hold:

1. There is a fibration FibfCc → Cat.
2. There is a fibered reflection

FibfCc
⊥

Fib

Cat

(5)

Proof 1. The fibrations in FibfCc are stable under change of base, so they identify
a full subfibration FibfCc → Cat of Fib → Cat.

2. For every fibration P : X → B, let VertId(P) be the class of all P-vertical
idempotents in X. By virtue of the universal property described in Proposition 2,
for every fibration P : X → B, the assignment

P �→ P : X[ ˇVertId(P)] → B

extends to a fibered functor from Fib → Cat to FibfCc → Cat and, moreover,
the fibered functor

X

P

IX
X[ ˇVertId(P)]

P
B

behaves like a unit for the seeked fibered reflection. ��
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Splitting idempotents in a fibered setting 929

Remark 6 The fibered reflection (5) amounts to the “continuos glueing” of a family
of reflections

FibfCc(B)
⊥ Fib(B)

with B a category in Cat and FibfCc(B) the fiber of FibfCc → Cat at B. The
reflection 1 is obtained when B is the terminal category 1.

3.2 An application: the fiberwise ex/reg completion of a fibration

In this section we briefly describe a straightforward application of Proposition 2: a
generalization to fibrations of the construction of an exact category out of a regular
category. The construction at issue is also known as ex/reg completion. About regular
categories, exact categories and the ex/reg completion we will recall just the main
facts and refer the reader to suitable bibliographic references for more details. A
regular category is a category with finite limits, in which every morphism factors
as a regular epi followed by a monomorphism and with pulback-stable regular epis.
In a regular category every kernel pair has a coequalizer and an exact category is a
regular category in which every equivalence relation (see below) has a coequalizer.
A regular functor between regular categories is one which preserves finite limits
and regular epis. For C a category, for A, B any objects of C, a relation r from
A to B, often indicated as r : A | B , is represented by a jointly monic span

A R
r0 r1

B ; that is, one such that if r0u = r0v and r1u = r1v, then u = v,
whenever the composites make sense. Two jointly monic spans represent the same
relation from an object to another if and only if they factor through each other. IfC is
a category with binary products, then a span such as the previous is jointlymonic if and
only if themorphism< r0, r1 >: R → A×B ismonic. Coherently, relations should be
thought of as subobjects. For A an object ofC, the diagonal relation on A is the relation
δA represented by the span (idA, idA). In any category with pullbacks, an equivalence

relation on A is a relation e : A | A , say represented by A E
e0 e1

A ,
satisfying the following conditions:

Reflexivity: there exists a morphism ρ : A → E such that e0ρ = idA and
e1ρ = idA.

Symmetry: there exists a morphism σ : E → E such that e0σ = e1 and e1σ =
e0.

Transitivity: construct a pullback of e0 against e1, such as

E 
 E
π1

π0

E

e0

E e1
A
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930 R. Pagnan

Transitivity of e means that there exists a morphism τ : E 
 E → E
such that e0τ = e0π0 and e1τ = e1π1.

Diagonal relations are equivalence relations and, in any categorywith pullbacks, kernel
pairs are equivalence relations. In a suitable sense, the structure of a regular category is
precisely what is needed in order to implement a calculus of relations, see [12]. ForC
a regular category it is possibile to consider the category Rel(C)with the same objects
asC and relations between them as morphisms; given that relations r : A | B ,
s : B | C compose like this: first construct a pullback diagram of s0 against r1
such as

S 
 R
π1

π0

S

s0

R r1
B

and then let the composite relation s • r : A | C be the one represented by the
jointlymonic span provided by themonicmorphism< t0, t1 > in the regular epi-mono
factorization

S 
 R

q

<r0π0,s1π1>
A × C

T
<t0,t1>

Now, as already observed at the beginning of this subsection, in a regular category
every kernel pair has a coequalizer or, in other words, a quotient. An exact category
is a regular category in which every equivalence relation is a kernel pair. Thus, in
an exact category every equivalence relation has a quotient. The ex/reg completion
of a regular category C is the process of freely adding quotients to the equivalence
relations in it, and is achieved in two steps: first, consider the Cauchy completion of
Rel(C)with respect to the classQ of equivalence relations (these are idempotent with
respect to the law of composition described above), that is the category Rel(C)[Q̌],
then take the subcategory of maps of this category (see below for a reference to an
explicit description of that subcategory). The category Map(Rel(C)[Q̌]) is exact and
provides the ex/reg completion of C. It is usually more briefly denoted Cex/reg. An
explicit description of Cex/reg and a thourough discussion of the universal property
it enjoys as a free category can be found in [3,5]. For the sake of completeness, we
observe that more in general any category with (weak) finite limits can be freely
completed to an exact category, see [4,5]. At last, thanks to Proposition 2 the ex/reg
completion of a regular category generalizes to fiberwise regular fibrations. By these
we mean fibrations with fibers which are regular categories whose structure is stable
by reindexing. For P : X → B a fiberwise regular fibration, it means in particular
that in every diagram like
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Splitting idempotents in a fibered setting 931

A

x

ϕ
B

y

X
ψ

Y

in which y is a P-vertical regular epi in the regular category PPY and ϕ,ψ are P-
cartesian and such that Pϕ = Pψ , the uniquely induced P-vertical morphism x which
makes the whole diagram commute is a regular epi in the regular category PPX . For
instance, if B is a regular category, then codB : B→ → B is fiberwise regular. Now,
let P : X → B be a fiberwise regular fibration which we suppose to be normally
cloven. The fiberwise ex/reg completion of P can be achieved in three steps:

1. Construct the fibration of relations out of P . This is Rel(P) : Y → B, where Y
is the category identified by the following data:

Objects: are pairs (I, A) with I an object of B and A an object of PI .
Morphisms: amorphism from (I, A) o (J, B) is a pair (u, r)with u : I → J a

morphism of B and r : A | u∗B a morphism of Rel(PI ).
Composition: for (u, r) : (I, A) → (J, B), (v, s) : (J, B) → (K ,C) as

above, their composite is (vu, s • r) : (I, A) → (K ,C), where
s • r is now the relation in Rel(PI ) obtained as follows: if

B S
s1s0

v∗C is a jointly monic span representing the
relation s, then consider a reindexing of it along u, say

u∗B u∗S u∗s1u∗s0
u∗(v∗C)

then compose u∗s1 with the isomorphismμu,v(C) : u∗(v∗C) →
(vu)∗C to obtain the jointly monic span

u∗B u∗S
μu,v(C)u∗s1u∗s0

(vu)∗C

and finally compose the relation represented by this span with r .
Identities: for every object (I, A) the morphism (idI , δA) acts as identical

with respect to the law of composition just described.
For every object (I, A) of Y, the assignment (I, A) �→ I extends to a functor
Rel(P) : Y → B which is a fibration, because, for every morphism v : J → K
and object (K ,C), it can be verified that a Rel(P)-reindexing of (K ,C) along v

is given by the morphism (v, δv∗C ) : (J, v∗C) → (K ,C). Moreover, there is a
fibered functor

X

P

�
Y

Rel(P)

B
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932 R. Pagnan

that to every morphism f : X → Y of X assigns the morphism

(P f, γ f ) : (PX, X) → (PY,Y )

of Y, with f : X → (P f )∗Y the vertical component of a vertical-cartesian
factorization of f in P , and γ f : X | (P f )∗Y the relation represented by

the graph of f , that is the jointly monic span (idX , f ).
2. For Q the class of Rel(P)-vertical equivalence relations construct the fiberwise

Cauchy completion of Rel(P)with respect toQ in accordance with Proposition 2.
This is the fibration Rel(P) : Y[Q̌] → B whose fiber at an object I of B is
Rel(PI )[Q̌I ], essentially.

3. Consider the subfibration of Rel(P) identified by the subcategories

(PI )ex/reg
.= Map(Rel(PI )[Q̌I ]) ↪→ Rel(PI )[Q̌I ]

with I varying among the objects of B. Let it be Pex/reg : Z → B.

As a whole the situation appears like this: there are fibered functors

X

P

�
Y

Rel(P)

B

Z

Pex/reg

Y[Q̌]
Rel(P)

B

Y

Rel(P)

IY
Y[Q̌]

Rel(P)

B

and it can be verified that the fibered functor IY ◦� takes values in Pex/reg, is fiberwise
regular and, for every fiberwise exact fibration Q with base category B, it induces
an equivalence between the category of fibered and fiberwise regular functors from
P to Q and the category of fibered and fiberwise regular functors from Pex/reg to Q.
Finally, again for the sake of completeness, we point out that the construction of the
free fiberwise exact fibration out of a fiberwise finitely complete one is considered
in [16], thus generalizing the constructions described in the already cited papers [4]
and [5].

3.3 Splitting whatever idempotents

In this section we generalize the results in Sect. 3.1. Let P : X → B be a fibration,
E a class of idempotent morphisms of X, F a class of idempotent morphisms of
B. Suppose that every idempotent in E is mapped by P to an idempotent in F .
Furthermore, suppose that the idempotents in E are stable under P-reindexing as
follows: for every idempotent in E , say y : Y → Y , for every commutative square
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Splitting idempotents in a fibered setting 933

A

a

u
PY

Py

A u PY

in B, with a an idempotent in F , the uniquely induced idempotent x with Px = a
that makes the diagram

X

x

ϕ
Y

y

X
ϕ

Y

(6)

commute, with ϕ a P-cartesian lifting of Y along u, is an idempotent in E .

Remark 7 If E is the class of all idempotent morphisms ofX and if every idempotent
in E is mapped by P to an idempotent in F , then the previous stability condition is
automatically satisfied.

Proposition 4 Under the hypothesis on P, E and F described above, the following
facts hold.

1. By virtue of the universal property described in Proposition 1 there exists a unique
functor P : X[Ě] → B[F̌].

2. The functor P is a fibration and IX : X → X[Ě], IB : B → B[F̌] identify a full
and faithful morphism of fibrations (IX, IB) : P → P.

3. Every idempotent f : (X, x) → (X, x) ofX[Ě] with f in E splits canonically and
every idempotent u : (A, a) → (A, a) of B[F̌] with u in F splits canonically.
Furthermore, P maps canonical splittings to canonical splittings.

4. The morphism of fibrations (IX, IB) : P → P maps every idempotent in E to an
idempotent that splits in X[Ě] and every idempotent in F to an idempotent that
splits inB[F̌], and is universal with this property: for every fibration Q : Y → C
and morphism of fibrations (F,G) : P → Q if F maps every idempotent in E to
an idempotent that splits in Y, G maps every idempotent in F to an idempotent
that splits in C, and Q maps chosen splittings to chosen splittings, then (F,G)

extends, up to a unique fibered natural isomorphism, to a morphism of fibrations
(F,G) : P → Q.

Proof 1. P maps idempotent morphisms in E to idempotent morphisms in F , which
in turn are mapped by IB to idempotent morphisms that split in B[F̌]. So, by
virtue of the universal property described in Proposition 1, there exists a unique
up to natural isomorphism functor that makes the diagram
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934 R. Pagnan

X

P

IX
X[Ě]

P

B
IB

B[F̌]

commute but, by virtue of the fact that idempotent moprhisms inF have canonical
splittings in B[F̌], the functor P can be identified by the assignments

(X, x) �→ (PX, Px)

on objects, and

f : (X, x) → (Y, y) �→ P f : (PX, Px) → (PY, Py)

onmorphisms. This is like that because, on the base of Proposition 1, to every object
(X, x) of X[Ě], the functor P must assign the object arising in a chosen splitting
of IBPx , or better in the canonical splitting of Px : (PX, idPX ) → (PX, idPX )

inB[F̌]; that object is precisely (PX, Px). On the other hand, to every morphism
f : (X, x) → (Y, y), the functor P must assign the unique dashed morphism that
makes the diagram

(PX, id)

P f

Px

P f (PX, id)
P f

(PY, id)

Py

Py (PY, id)

(PX, Px)
Px

(PY, Py)
Py

commute, that is P f = PyP f Px .
2. We prove that the functor P has enough reindexings. Let be (Y, y) be an object

of X[Ě] and u : (A, a) → (PY, Py) be a morphism of B[F̌]. Let ϕ : X → Y
be a P-cartesian lifting of Y along u : A → PY and x uniquely induced as in
diagram (6), so that yϕ = ϕx and Px = a. We claim that

(X, x)
ϕx

(Y, y)

(A, a) u (PY, Py)

(7)

is a P-cartesian lifting of (Y, y) along u. For every v : (B, b) → (A, a) in B[F̌]
and for every g : (Z , z) → (Y, y) in X[Ě] with Pg = uv, let g : Z → X be the
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unique morphism such that Pg = v and ϕg = g, by virtue of the P-cartesianness
of ϕ. Now, one has

P(x(gz)z) = avbb = v = P(gz)

and

ϕ(x(gz)z) = yϕgzz = ygz = g = gz = ϕ(gz)

so that gz : (Z , z) → (X, x) and also one has

(ϕx)(gz) = yϕgz = ygz = g

and uniqueness of gz can be proved as follows: if f : (Z , z) → (X, x) is such that
P f = v and (ϕx) f = g, then ϕ(x f ) = g, consequently f = x f = g but g = gz
because P(gz) = vb = v and ϕ(gz) = gz = g.
To verify that IX and IB identify a full and faithful morphism of fibrations
(IX, IB) : P → P is straightforward.

3. The first statement is just point 1 of Proposition 1 applied to the total and base
categories of P . The verification of the second statement is straightforward.

4. The first statement is straightforward. It is just point 2 of Proposition 1 applied to
the total and base categories of P . Forwhat concern the stated universal properywe
observe that under the assumed hypothesis the functors F ,G extend to functors F :
X[Ě] → Y and G : B[F̌] → C as described in Proposition 1, respectively, and it
is immediate to verify that QF = G P . It remains to show that F maps P-cartesian
morphisms to Q-cartesian morphisms. So, for ϕx : (X, x) → (Y, y) a P-cartesian
morphism, F(ϕx) is the uniquely induced morphism in the commutative diagram

FX

r

Fx

F(ϕx)
FY

r ′

FyF(X, x)
F(ϕx)

s

F(Y, y)

s′

FX
F(ϕx)

FY

that is F(ϕx) = r ′F(ϕx)s. Now, for every morphism v : K → QF(X, x) and
g : Z → F(Y, y) such that Qg = Q(F(ϕx))v, let g : Z → FX be the uniquely
induced morphism such that Qg = (Qs)v and (Fϕ)g = s′g, by virtue of the
Q-cartesianness of Fϕ. Now, Q(rg) = QrQg = (Qr)(Qs)v = v and

(F(ϕx))rg = (r ′F(ϕx)s)(rg) = r ′F(ϕx)Fxg = r ′F(ϕx)g = r ′F(yϕ)g

= r ′s′r ′(Fϕ)g = r ′s′g = g
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936 R. Pagnan

Finally, if h : Z → F(X, x) is such that Qh = v and (F(ϕx))h = g one has

Q(sh) = QsQh(Qs)v = Qg

and

s′g = s′(F(ϕx))h = s′(r ′F(ϕx)s)h = FyF(yϕ)(sh) = F(yϕ)(sh)

= F(ϕx)sh = F(ϕ)srsh = F(ϕ)(sh)

so that, by the Q-cartesianness of F(ϕ), sh = g, and h = rg in turn. ��
Corollary 3 Let P, E , F and P be as in Proposition 4. The fibrations P and P are
equivalent if and only if idempotent morphisms in E already split inX and idempotent
morphisms in F already split in B.

Proof The result follows from Proposition 4 and Corollary 1. ��
Remark 8 Proposition 2 is Proposition 4 in the special case in which every idempotent
morphism in F splits in B and every idempotent morphism in E is P-vertical.

Remark 9 Assume the hypothesis of Proposition 4, and moreover assume that every
idempotent morphism inF splits inB. LetV(E) be the class of P-vertical idempotents
in E . Under these assumptions, because of the universal property described in Propo-
sition 2, there is a uniquely induced comparison fibered functorX[ ˇV(E)] → X[Ě] as
in the commutative diagram

X

P

X[ ˇV(E)]

P

X[Ě]

PB

which is nothing but the inclusion functor of the category X[ ˇV(E)] in the category
X[Ě]. That functor is full and faithful; it is an equivalence if and only if every idempo-
tent morphism in E is P-vertical. The previous considerations hold in particular when
B is Cauchy complete and E is the class of all the idempotent morphisms inX.

On the base of Proposition 4, Corollary 3 and Remark 2 we give the following

Definition 4 Under the hypothesis assumed at the beginning of Sect. 3.3, the fibration
P described in Proposition 4 is the Cauchy completion of P as an object of Fib with
respect to a class E of idempotent morphisms in its total category and a class F of
idempotent morphisms in its base category.

Proposition 5 Let FibCcCc be the full subcategory of Fib identified by the fibrations
which have a Cauchy complete total category and a Cauchy complete base category.
The following facts hold:
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1. There is a fibration FibCcCc → CatCc.
2. There is a fibered reflection

FibCcCc
⊥ Fib

CatCc
⊥ Cat

(8)

Proof 1. The fibrations in FibCcCc are stable under change of base along functors
between Cauchy complete categories.

2. For every fibration P : X → B in Fib let P : X̌ → B̌ be its Cauchy comple-
tion in the sense of Proposition 4, with E , resp. F , the class of all the idempotent
morphisms inX, resp.B. By virtue of the universal property described in Propo-
sition 4, for every fibration P , the assignment P �→ P extends to a morphism of
fibrations from Fib → Cat to FibCcCc → CatCc and the morphism of fibrations

X

P

IX
X̌

P

B
IB

B̌

(9)

behaves like a unit for the seeked reflection. ��
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