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Abstract In an earlier paper, we introduced the following pre-order on the subgroups
of a given Polish group: if G is a Polish group and H, L ⊆ G are subgroups, we say
H is homomorphism reducible to L iff there is a continuous group homomorphism
ϕ : G → G such that H = ϕ−1(L).We previously showed that there is a Kσ subgroup
L of the countable power of any locally compact Polish group G such that every Kσ

subgroup of Gω is homomorphism reducible to L . In the present work, we show that
this fails in the countable power of the group of increasing homeomorphisms of the
unit interval.
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1 Introduction

In the study of definable equivalence relations, the equivalence relations arising as
coset equivalence relations on Polish groups have played a key role. For instance,
consider the equivalence relation E0 on 2ω where

xE0y ⇐⇒ x(n) = y(n) for all but finitely many n

This equivalence relation may be regarded as the coset equivalence relation of the
subgroup
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796 K. A. Beros

Fin = {x ∈ 2ω : x(n) = 0 for all but finitely many n}

of the Polish group 2ω with bitwise addition modulo 2. Many other important equiv-
alence relations arise in this way, e.g., E1, E2, E3, and �∞.

The most important means of comparing equivalence relations is the quasiorder of
Borel reducibility. That is, if E and F are equivalence relations on Polish spaces X
and Y , respectively, one says that E is Borel reducible to F iff there is a Borel map
ϕ : X → Y such that, for all x, y ∈ X ,

xEy ⇐⇒ ϕ(x)Fϕ(y).

Themap ϕ is called aBorel reduction of E to F . The present work and our earlier paper
[1] aremotivated by the observation that inmany cases, Borel reductions between coset
equivalence relations can be witnessed by continuous group homomorphisms between
appropriate groups. For instance, let

H1 = {y ∈ 2ω×ω : (∀∞m)(∀n)(y(m, n) = 0)},

and let E1 be the coset relation of H1. It is well-known that E0 is Borel reducible to
E1. A Borel map witnessing this reduction is ϕ : 2ω → 2ω×ω given by

ϕ(x)(m, n) = x(m)

for x ∈ Z
ω
2 and m, n ∈ ω. In fact, Fin = ϕ−1(H1), i.e., ϕ is a continuous reduction of

the subgroup Fin to H1. Furthermore, the map ϕ induces an injective homomorphism

ϕ̃ : 2ω/Fin → 2ω×ω/H1

such that the diagram

2ω ϕ−→ 2ω×ω
⏐
⏐
�p

⏐
⏐
�q

2ω/Fin
ϕ̃−−→ Z

ω×ω
2 /H1

commutes. Here p and q denote the appropriate factor maps.
Abstracting fromsuch specific examples leads to the followingdefinition introduced

in our paper [1].

Definition 1.1 Let G be a Polish group. For subgroups H and L of G, we say that H
is group homomorphism reducible to L iff there is a continuous group homomorphism
ϕ : G → G such that H = ϕ−1(L). As a shorthand, we write H ≤g L .

As an alternative formulation, observe that H ≤g L iff there is an embedding of
G/H intoG/L with a liftingwhich is a continuous endomorphismofG. Viewed in this
light, our definition is not without precedent. For instance, Farah [2] considers maps
between factors of Boolean algebras with liftings which are algebra homomorphisms.
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Homomorphism reductions on Polish groups 797

The Kσ equivalence relations play an important role in the general theory of equiv-
alence relations, e.g., E0, E1 and �∞ are all Kσ . (Recall that a relation is Kσ if it is the
countable union of compact sets). In fact, much study has been done of such relations.
See for instance Rosendal [4]. In light of this, we directed much of our attention to the
Kσ subgroups of Polish groups in [1]. For a large class of groups G, we showed that
there are ≤g-maximal Kσ subgroups of Gω and referred to such subgroups as univer-
sal Kσ subgroups of Gω. The equivalence relation analog is that of a Borel-complete
Kσ equivalence relation, though the requirement of universality is much stronger. For
instance, �∞ is a Borel-complete Kσ equivalence relation, but it is not universal in our
sense.

As a counterpoint, we showed that there are no universal Kσ subgroups of S∞.
That is, for any Kσ subgroup H of S∞, there is a Kσ subgroup L ⊆ S∞ such
that L 
= ϕ−1(H) for every continuous homomorphism ϕ : S∞ → S∞. Since S∞
continuously embeds its own countable power, it followed immediately that Sω∞ has
no universal Kσ subgroup.

The cases in which universal Kσ subgroups do not exist are interesting in that they
indicate a degree of rigidity of the group in question. That is, if G does not have a
universal Kσ subgroup, there must be (in some sense) a shortage of continuous endo-
morphisms of G. It is worth remarking upon the fact that S∞ does have ≤g-maximal
analytic subgroups. Thus, the rigidity which precludes universal Kσ subgroups of S∞
is not sufficient to rule out universal analytic subgroups.

In the vein of our earlier results, we prove here an analogous theorem for the
transformation group H+([0, 1]) of increasing homeomorphisms of the unit interval.

Theorem 1.2 There is no universal Kσ subgroup of H+([0, 1]).
The proof of this result is in Sect. 3. As an aside, it follows from our earlier paper [1,

Theorem1.7] that there is an Fσ subgroup of H+([0, 1]) ofwhich every Kσ subgroup is
a continuous homomorphic pre-image.ByTheorem1.2, such a “universal Fσ subgroup
for Kσ ” cannot be Kσ itself.

A direct corollary of Theorem 1.2 is

Corollary 1.3 There is no universal Kσ subgroup of H+([0, 1])N.
Proof Assume Theorem 1.2 holds. Observe that H+([0, 1])N is isomorphic to the
closed subgroup

C = { f ∈ H+([0, 1]) : (∀n)( f (1/n) = 1/n)}

of H+([0, 1]). Let ϕ : H+([0, 1])N → C be an isomorphism and let ψ be an iso-
morphism between H+([0, 1]) and a closed subgroup of H+([0, 1])N. Towards a
contradiction, suppose that H+([0, 1])N has a universal Kσ subgroup H . Let H̃ be the
Kσ sugbroup ϕ(H) of H+([0, 1]). Fix an arbitrary Kσ subgroup L of H+([0, 1]). Note
that ψ(L) is a Kσ subgroup of H+([0, 1])N and hence, by the universality of H , there
is a continuous endomorphism ρ of H+([0, 1])N such that ψ(L) = ρ−1(H). This
implies that L = (ϕ ◦ ρ ◦ ψ)−1(H̃). As L was arbitrary, this shows that H̃ = ϕ(H)

is a universal Kσ subgroup of H+([0, 1]), contradicting Theorem 1.2. �
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798 K. A. Beros

In our study of Kσ subgroups from [1], we also considered situations in which
every Kσ subgroup of a given Polish group is compactly generated. This is true in
Z

ω for instance. In the final section of this paper, we expand upon these ideas and
describe a large class of groups in which every Kσ subgroup is group homomorphism
reducible to a compactly generated subgroup, i.e., the compactly generated subgroups
are ≤g-cofinal in the Kσ subgroups.

2 Preliminaries and notation

The group H+([0, 1]) of increasing homeomorphisms of [0, 1] is a Polish group when
equippedwith the topologyof uniformconvergence, i.e., the relative topology inherited
from C([0, 1]). It is a peculiarity of H+([0, 1]) that this topology coincides with the
topology of pointwise convergence. In the present setting, the latter is much easier to
manipulate. The basic open sets in H+([0, 1]) are thus of the form

U = { f ∈ H+([0, 1]) : (∀i ≤ k)( f (ri ) ∈ Ii )}

where r0, . . . , rk ∈ [0, 1] and I0, . . . , Ik ⊆ [0, 1] are open intervals.
For f ∈ H+([0, 1]), let supp( f ) = {x ∈ [0, 1] : f (x) 
= x} be the support of f .
LetN denote the Baire space, i.e., NN with the product topology. For α ∈ N and a

finite sequence s of natural numbers, α ⊃ s indicates that s is an initial segment of α.

Definition 2.1 Given f ∈ H+([0, 1]) and α ∈ N , define f to be α-continuous iff,
for each k ∈ N with k ≥ 1, if x, y ∈ [0, 1] are such that |x − y| < 1/α(k), then
| f (x) − f (y)| < 1/k.

Recall that a family F ⊆ H+([0, 1]) is equicontinuous iff there is an α ∈ N such
that each f ∈ F is α-continuous. For each α ∈ N , let

Kα = { f ∈ H+([0, 1]) : f, f −1 are α-continuous}.

By definition, each Kα is equicontinuous.

Lemma 2.2 Suppose f0, f1, . . . ∈ H+([0, 1]) and each fn is α-continuous. If fn →
f pointwise, then f is also α-continuous.

Proof Fix k ∈ N and x, y ∈ [0, 1] such that |x − y| < 1/α(k). Assume that k, α(k) >

1, as otherwise the desired conclusion is automatic. Assume that x < y and, since
1/α(k) ≤ 1/2, we may assume that x 
= 0 or y 
= 1. These two cases are analogous,
so assume y 
= 1. Let y′ > y be such that |x − y′| < 1/α(k). For each n, | fn(x) −
fn(y′)| < 1/k and hence

| f (x) − f (y′)| = lim
n

| fn(x) − fn(y
′)| ≤ 1/k.

Since f is a strictly increasing function,

| f (x) − f (y)| < | f (x) − f (y′)| ≤ 1/k.
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Homomorphism reductions on Polish groups 799

This completes the proof. �
Each Kα is thus closed and, since the Kα are also equicontinuous, it follows from

the Arzelà-Ascoli Theorem (see [5, §7.10]) that each Kα is compact. Conversely,

Lemma 2.3 If K ⊆ H+([0, 1]) is compact, then there exists α ∈ N such that each
f ∈ K is α-continuous.

Proof Fix k ∈ N, it suffices to determine a value for α(k) which is sufficiently large
that | f (x) − f (y)| < 1/k whenever f ∈ K and |x − y| < 1/α(k). Indeed, fix open
intervals I0, . . . , In ⊆ (0, 1) which cover (0, 1) and such that, if each Ii = (ai , bi ),
then

ai < ai+1 < bi

for i ≤ n−1. Moreover, choose the Ii such that |bi+2 −ai | < 1/k for each i ≤ n−2.
For each increasing tuple r = 〈r(0), r(1), . . . , r(n)〉 ∈ (0, 1)n+1, define the open set

Ur = { f ∈ H+([0, 1]) : (∀i ≤ n)( f (r(i)) ∈ Ii )}

and observe that the Ur cover H+([0, 1]). Since K is compact, there exist r0 < r1 <

· · · < rp such that Ur0 , . . . ,Urp cover K . Let

εk = min({|r j (i) − r j (i + 1)| : i < n & j ≤ p})

and note that, for each f ∈ K and x, y ∈ [0, 1], if |x − y| < εk , then | f (x)− f (y)| <

1/k. Choose α(k) ≥ 1/εk . This completes the proof. �
If K ⊆ H+([0, 1]) is compact, then so is { f −1 : f ∈ K }. It thus follows from the

last lemma that K ⊆ Kα for some α ∈ N .
In the interest of clarity, if f, g are functions, f g throughout denotes the composite

function f ◦ g and f n denotes the n-fold iterate of f (for n ∈ N). Regarding elements
of N as functions on N, this notation applies equally to members of the Baire space.
Similarly, if f ∈ H+([0, 1]) and ϕ : H+([0, 1]) → H+([0, 1]) is an endomorphism,
ϕ f denotes the image of f under ϕ, i.e., ϕ( f ).

The following facts are direct consequences of the definitions of α-continuity and
the Kα .

(1) If f is α-continuous and g is β-continuous, f g is βα-continuous.
(2) If f ∈ Kα and g ∈ Kβ , then f g ∈ Kmax(αβ,βα), where max(αβ, βα) ∈ N is

such that max(αβ, βα)(k) = max(αβ(k), βα(k)) for each k ∈ N.
(3) If f ∈ Kα and |x − y| ≥ 1/k, for some k, then | f (x) − f (y)| ≥ 1/α(k).

Finally, for A ⊆ H+([0, 1]), let 〈A〉 designate the subgroup generated by A.

3 Proof of Theorem 1.2

Lemma 3.1 There is an increasing homeomorphism σ : [0, 1] → [0, 1] such that σ

is supported on [1/2, 3/4] and the conjugacy class of σ is dense.
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800 K. A. Beros

Proof Glasner-Weiss [3] have shown that H+([0, 1]) contains a dense conjugacy class.
Therefore, fixσ ∈ H+([0, 1]) such that the conjugacy class ofσ is dense. The objective
of the proof is to modify σ and produce τ which is supported on [1/2, 3/4] and still
has dense conjugacy class.

Let h : [0, 1] → [1/2, 3/4] be a linear bijection. Define τ ∈ H+([0, 1]) by

τ(x) =
{

hσh−1(x) if x ∈ [1/2, 3/4],
x otherwise.

It remains to show that the conjugacy class of τ is dense in H+([0, 1]). To this end,
fix a nonempty basic open set U ⊆ H+([0, 1]). Shrinking U if necessary, choose
0 < r0 < · · · < rk < 1 and nonempty open intervals I0, . . . , Ik ⊆ (0, 1) such that

sup(I0) < sup(I1) < · · · < sup(Ik)

and

U = { f ∈ H+([0, 1]) : (∀i ≤ k)( f (ri ) ∈ Ii )} .

With no loss of generality, sup(Ii ) < 1 and inf(Ii ) > 0 for each i ≤ k as this again
only shrinks the open set U . Fix a, b ∈ (0, 1) such that 0 < a < r0, rk < b < 1,
a < mini≤k(inf(Ii )) and b > maxi≤k(sup(Ii )). Let g be the piecewise linear map
defined such that the graph of g has vertices (0, 0), (1/2, a), (3/4, b), (1, 1). Note that
g ∈ H+([0, 1]).

For each i ≤ k, let si = h−1g−1(ri ) and Ji = h−1g−1(Ii ). Since the conjugacy
class of σ is dense, there exists f ∈ H+([0, 1]) such that f σ f −1(si ) ∈ Ji for each
i ≤ k. Define f1 ∈ H+([0, 1]) by

f1(x) =
{

h f h−1(x) if x ∈ [1/2, 3/4],
x otherwise.

To complete the proof, it suffices to show that g f1τ f
−1
1 g−1 ∈ U . Fix i ≤ k and

observe that

g f1τ f
−1
1 g−1(ri ) = g f1τ f

−1
1 h(si )

= gh f h−1hσh−1h f −1h−1h(si )

= gh f σ f −1(si )

∈ gh(Ji )

= Ii .

This completes the proof. �
Let σ1 be as in the previous lemma, with dense conjugacy class and supp(σ1) ⊆

[1/2, 3/4]. Define h ∈ H+([0, 1]) such that the graph of h is polygonal and the vertices
of h are the elements of the set
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Homomorphism reductions on Polish groups 801

{(1 − 2−n, 1 − 2−n−1) : n ∈ N, n ≥ 1}

of points in [0, 1]2, i.e., h has vertices (1/2, 3/4), (3/4, 7/8), . . .. To simplify notation,
let In denote the interval [1 − 2−n, 1 − 2−n−1]. In other words, I0 = [0, 1/2], I1 =
[1/2, 3/4] and so forth. For n ≥ 1, define σn = hn−1 σ1 h1−n and observe that σn is
supported on the interval In .

Given α ∈ N , define Lα ⊆ H+([0, 1]) to be the set of those f ∈ H+([0, 1]) such
that f � I0 = id � I0 and, for each n ≥ 1, there is an i ≤ α(n) with f � In = σ i

n � In .

If f ∈ Lα is the (unique) member of Lα such that f � In = σ
δ(n)
n � In for a given

δ ≤ α, denote f by fδ . Observe that Lα is the continuous image of the compact space

Xα =
∏

n

{0, . . . , α(n)}

under the map δ �→ fδ . Each Lα is therefore compact.
In fact, the map δ �→ fδ is a homeomorphism between Xα and Lα with its subspace

topology. It follows that the sets

Us = { fδ : δ ≤ α and δ ⊃ s},

with s a finite sequence bounded by α, form a basis for the relative topology on Lα .
Given a Kσ subgroup H ⊆ H+([0, 1]), the objective of the proof is to show that H

is not a universal subgroup. For this it is sufficient to show that there exists a compact
set L ⊆ H+([0, 1]) such that, for every non-trivial continuous endomorphism ϕ of
H+([0, 1]), the image of 〈L〉 under ϕ is not contained in H and hence ϕ is not a homo-
morphism reduction of 〈L〉 to H . Note that restricting to non-trivial endomorphisms
of H+([0, 1]) is appropriate since if 〈L〉 = ϕ−1(H), then ker(ϕ) ⊆ 〈L〉 and hence
ker(ϕ) 
= H+([0, 1]) because H+([0, 1]) is not itself Kσ .

To further simplify the argument, assume that H is of the form
⋃

m Kβm where
Kβm is defined as in Sect. 2. It is possible to make this assumption as H is contained
in a set of the form

⋃

m Kβm . In addition, assume that {βm : m ∈ N} is closed under
composition and taking pointwise maxima, i.e., for each m, n there exist p, q such
that βmβn = βp and max(βm, βn) = βq . The only purpose of these assumptions is to
guarantee that, for any m, n, there exists p such that, if f ∈ Kβm and g ∈ Kβn , then
f g, g f ∈ Kβp .
Observe that these simplifying assumptions introduce no loss of generality since

they only enlarge the set
⋃

m Kβm .
Henceforth, fix β0, β1, . . . ∈ N as above. Choose α ∈ N such that, for each n ∈ N,

α(n) = max({β j
i (k) : i, j, k ≤ n}) + 1.

To complete the proof, it suffices to show that there is no continuous endomorphism of
H+([0, 1]) which maps the compactly generated subgroup 〈{h} ∪ Lα〉 into ⋃

m Kβm .
(Here h is the map described above such that σn+1 = hσnh−1.) Indeed, suppose
that, on the contrary, there exists an endomorphism ϕ of H+([0, 1]) such that ϕ maps
〈{h} ∪ Lα〉 into ⋃

m Kβm .
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802 K. A. Beros

Lemma 3.2 There exists m such that ϕ({h} ∪ Lα) ⊆ Kβm .

Proof As a compact subset of a Polish space, ϕ(Lα) is Polish in its relative topology
and thus, by the Baire Category Theorem, there exists an open set V ⊆ H+([0, 1])
and m0 ∈ N such that ϕ(Lα) ∩ V is nonempty and Kβm0

is comeager on ϕ(Lα) ∩ V .

Since Kβm0
is a closed set, Kβm0

must in fact contain ϕ(Lα)∩ V . LetU = ϕ−1(V ). It
follows that U ∩ Lα is nonempty and hence ϕ(Us) ⊆ Kβm0

for some finite sequence
s which is bitwise bounded by α. Observe that any f ∈ Lα is of the form

σ
i1
1 σ

i2
2 . . . σ

i|s|
|s| g (3.1)

for some g ∈ Us and i1, . . . , i|s| ∈ Z with each |i p| ≤ 2α(p). Note that

σ
i1
1 , σ

i2
2 , . . . σ

i|s|
|s| ∈ 〈Lα〉

for all such i1, . . . , i|s|. Since ϕ(〈Lα〉) ⊆ ⋃

m Kβm , it now follows from the properties
of β0, β1, . . . that there existsm1 ∈ N such that Kβm1

contains all ϕ f where f is of the
form (3.1). In other words, Kβm1

contains ϕ(Lα). Recall that ϕ f denotes the image
ϕ( f ) of f under ϕ.

Finally, since ϕh ∈ ⋃

m Kβm , there exists m2 with ϕh ∈ Kβm2
. It follows from the

closure properties of the βi that ϕ({h} ∪ Lα) ⊆ Kβm3
for some m3 ∈ N. This proves

the lemma. �
Let βm be as in the previous lemma, with ϕ({h}∪ Lα) ⊆ Kβm . For simplicity, write

β = βm .
Since the conjugacy class of σ1 is dense, if ϕσ1 = id, then ϕ f = id for each

f ∈ H+([0, 1]). Indeed, ifσ1 ∈ ker(ϕ), then ker(ϕ) contains the entire conjugacy class
of σ1, as it is a normal subgroup of H+([0, 1]). This implies that ker(ϕ) = H+([0, 1]),
since ker(ϕ) is also closed. On the other hand, this violates the assumption that ϕ is
non-trivial. Therefore, choose x1 ∈ [0, 1] and k ∈ N such that

|x1 − ϕσ1(x1)| ≥ 1/k.

Define xn+1 = ϕh(xn) for each n ≥ 1 where h is again as above. Observe that

|x2 − ϕσ2(x2)| = |ϕh(x1) − (ϕσ2) (ϕh)(x1)|
= |ϕh(x1) − (ϕh) (ϕσ1) (ϕh−1) (ϕh)(x1)|
= |ϕh(x1) − (ϕh) (ϕσ1)(x1)|
≥ 1/β(k),

since ϕh ∈ Kβ and hence ϕh−1 is β-continuous. Iterating this argument, it follows
that

|xn − ϕσn(xn)| ≥ 1/βn−1(k) (3.2)

for each n ≥ 1.
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Homomorphism reductions on Polish groups 803

Let n ≥ k,m and let p = α(n). Recall that, by the choice of α,

p > βn(k).

Consider the points xn, ϕσn(xn), ϕσ 2
n (xn), . . . , ϕσ

p
n (xn) where p ≥ 1. Because ϕσn

is an increasing homeomorphism of [0, 1] and ϕσn(xn) 
= xn , either

xn < ϕσn(xn) < ϕσ 2
n (xn) < · · · < ϕσ

p
n (xn)

or

xn > ϕσn(xn) > ϕσ 2
n (xn) > · · · > ϕσ

p
n (xn).

In either case, there must exist i < p such that

∣
∣
∣ϕσ i

n(xn) − ϕσ i+1
n (xn)

∣
∣
∣ ≤ 1/p

since the length of [0, 1] is 1. Since 1/p < 1/βn(k), it follows that ϕσ−i
n is not

β-continuous since

∣
∣
∣ϕσ i

n(xn) − ϕσ i+1
n (xn)

∣
∣
∣ ≤ 1/p < 1/βn(k),

but
∣
∣
∣(ϕσ−i

n ) (ϕσ i
n)(xn) − (ϕσ−i

n ) (ϕσ i+1
n )(xn)

∣
∣
∣ = |xn − ϕσn(xn)| 
< 1/βn−1(k)

by (3.2). Thus, ϕσ i
n /∈ Kβ . This is a contradiction since the choice of α implies that

σ i
n ∈ Lα and ϕ maps Lα into Kβ . �

4 Compactly generated subgroups

We consider a criterion on a group G which guarantees that the compactly generated
subgroups of Gω are ≤g-cofinal in the Kσ subgroups. We begin with a couple of
motivating examples.

Example 4.1 We showed in [1] that every Kσ subgroup ofZω is compactly generated.
The argument was similar in character to the proof that Z is a principal ideal domain.
For instance, the countable dense subgroup {x ∈ Z

ω : (∀∞n)(x(n) = 0)} is generated
by the compact set

{0n�1�0̄ : n ∈ ω} ∪ {0̄}.

For the sake of the next example, we say that x is divisible in H (where H is a
group) iff, for each n, there exists y ∈ H such that yn = x .
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804 K. A. Beros

Example 4.2 Consider the Polish group Q
ω, where Q is equipped with the discrete

topology. There are Kσ subgroups, e.g.,

H = {x ∈ Q
ω : (∀n)(n ≥ 1 �⇒ x(n) = 0)},

which are Kσ , but not compactly generated. In fact, the subgroup H is not≤g-reducible
to any compactly generated subgroup of Qω. To see this, suppose that ϕ : Qω → Q

ω

is a group homomorphism with H = ϕ−1(〈K 〉) for some compact set K ⊆ Q
ω. Note

that, since H is a divisible subgroup of Qω, the subgroup 〈K 〉 must contain elements
which are divisible in 〈K 〉. This, however, is impossible since it would imply that there
is some n ∈ ω such that {x(n) : x ∈ K } is infinite.

The results in this section were motivated by the observation that the last example
hinges on the fact that there are no compactly generated subgroups H of Qω such
that some element of H is divisible in H . There are groups where this is not the case.
For instance, in the permutation group of the natural numbers, there are compactly
generated subgroups which have divisible elements. Consider the following example.

Example 4.3 Let a0, a1, . . . , b0, b1, . . . ∈ ω be distinct. Let πi ∈ S∞ be the product

π1 =
∏

i∈ω

[ai , bi ]

of transpositions. For each n > 1, let

πn =
∏

i∈ω

[ani , ani+1, . . . , ani+(n−1), bni , bni+1, . . . , bni+(n−1)].

Notice that πn is a product of countably many disjoint 2n-cycles and (πn)
n = π1 for

each n > 1. It follows that π1 is divisible in the subgroup generated by the πn . If we let
H be the subgroup generated by the πn together with the finite support permutations,
we obtain a compactly generated subgroup with a divisible element. Indeed, H is
compactly generated since it is generated by the compact set

{[n, n + 1] : n ∈ ω} ∪ {π ′
n : n ∈ ω} ∪ {id}

where

π ′
n =

∏

i≥n

[ani , ani+1, . . . , ani+(n−1), bni , bni+1, . . . , bni+(n−1)].

In turns out that while there are non-compactly generated Kσ subgroups of S∞,
every Kσ subgroup of S∞ is in fact ≤g-reducible to a compactly generated subgroup.
This is a consequence of Theorem 4.5 below.

Definition 4.4 A subgroup H of a topological groupG is almost compactly generated
iff there is a a compact set K ⊆ G and a continuous, injective group homomorphism
ϕ : G → G such that H = ϕ−1(〈K 〉).
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The following theorem and remark together characterize those Polish groups of the
form Gω in which every Kσ subgroup is almost compactly generated.

Theorem 4.5 Let G be a Polish group. If G has a dense subgroup which is a one-
to-one continuous homomorphic pre-image of some compactly generated subgroup of
Gω, then every Kσ subgroup of Gω is almost compactly generated.

Remark Suppose that the hypothesis of Theorem 4.5 fails, i.e., there is no dense
subgroup of G which is an injective homomorphic pre-image of some compactly
generated subgroup of Gω. One can define a Kσ subgroup of Gω which is not almost
compactly generated by taking a dense Kσ subgroup D ⊆ G and letting

D̃ = {ξ ∈ Gω : (∀i)(ξ(i) = ξ(0) ∈ D)}.

It follows that D̃ is not almost compactly generated. Otherwise, there would exist an
injective continuous endomorphism ϕ : Gω → Gω and a compact set K ⊆ Gω such
that D̃ = ϕ−1(〈K 〉). Let ψ : G → Gω be given by ψ(x)(i) = x , for all i . Then,
contrary to assumption, D = (ϕ ◦ ψ)−1(〈K 〉).

Theorem 4.5 yields the following immediate corollary.

Corollary 4.6 If G is a Polish group with a dense compactly generated subgroup,
then every Kσ subgroup of Gω is almost compactly generated.

In general, we can consider other groups besides those of the form Gω.

Corollary 4.7 Suppose that G is a Polish group such that Gω is isomorphic to a
subgroup of G. If G has a dense almost compactly generated subgroup, then every
Kσ subgroup of G is almost compactly generated.

Proof Let ϕ1 : G → Gω and ϕ2 : Gω → G be isomorphic embeddings. Fix a
Kσ subgroup H ⊆ G. By Theorem 4.5, there exists a compact set K ⊆ Gω and a
continuous injective homomorphism ϕ : Gω → Gω such that ϕ1(H) = ϕ−1(〈K 〉). It
now follows from the injectivity of ϕ2 that

H = (ϕ2 ◦ ϕ ◦ ϕ1)
−1(〈ϕ2(K )〉).

In other words, H is almost compactly generated. �
Proof of Theorem 4.5 We start with a special case. Assume there is a dense subgroup
D ⊆ G and a continuous, injective homomorphism ψ : G → G such that D =
ψ−1(〈K 〉), for some compact set K ⊆ G.

Let e denote the identity element of G. By a theorem of Birkhoff and Kakutani,
assume that G is equipped with a left-invariant metric (which need not be complete).
For ε > 0 and x ∈ G, let Bε(x) denote the ε-ball centered at x with respect to this
metric.

Wewill show that every Kσ subgroup ofG is a one-to-one continuous homomorphic
preimage of some compactly generated subgroup ofGω. To this end, fix a Kσ subgroup
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806 K. A. Beros

H = ⋃

n Hn ⊆ G, with each Hn compact. For each n, let Fn ⊆ D be a finite 1
n -net

for Hn . Let

H̃n =
⋃

y∈Fn
y−1 · cl(B 1

n
(y) ∩ Hn)

and define Cn ⊆ Gω to be the set of ξ ∈ Gω such that

(1) (∀i < n)(ξ(i) ∈ ψ(H̃n)) and
(2) (∀i ≥ n)(ξ(i) ∈ ψ(Hn)).

As a product of compact sets, each Cn is a compact subset of Gω. In fact,
⋃

n Cn is
itself compact. To see this, suppose that ξ0, ξ1, . . . ∈ ⋃

n Cn . In the first place, suppose
that there is anm such that infinitely many ξn ∈ Cm . In this case, there is a convergent
subsequence of (ξn), since each Cm is compact. On the other hand, suppose that,
for each m, there are only finitely many n such that ξn ∈ Cm . Extract subsequences
n0 < n1 < · · · and s0 < s1 < · · · such that ξn p ∈ Csp , for each p ∈ ω. For each p,
let ηp ∈ Gω be such that

ξn p (i) = ψ(ηp(i)),

for each i ∈ ω. By the injectivity of ψ , we must have

ηp(i) ∈ H̃sp ⊆ B 1
sp

(e)

for each p and i < p. It follows that ηp → e as p → ∞. Hence, ξn p → e since ψ is
a continuous homomorphism.

Now define a compact set K ∗ ⊆ Gω by

K ∗ = {ξ ∈ Kω : (∃≤1i)(ξ(i) 
= e)}

and let ϕ : G → Gω be given by ϕ(x) = ψ(x). Note that ϕ is injective since ψ is.
We check that

H = ϕ−1

(〈

K ∗ ∪
⋃

n

Cn

〉)

.

In the first place, suppose that x ∈ H , say x ∈ Hn . Let y ∈ Fn and z ∈ H̃n be such
that y−1x = z. It follows that

ϕ(x) = ψ(x)

=
(

(ψ(y))n�e
)

︸ ︷︷ ︸

∈〈K ∗〉

·
(

(ψ(z))n�ψ(x)
)

.
︸ ︷︷ ︸

∈Cn

Hence, ϕ(x) ∈ 〈K ∗ ∪ ⋃

n Cn〉.
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On the other hand, suppose that ϕ(x) ∈ 〈K ∗ ∪ ⋃

n Cn〉. Let n0 ∈ ω and w be a
group word, with ξ0, . . . ξk ∈ ⋃

n≤n0 Cn and η0 . . . , ηp ∈ K ∗ such that

ϕ(x) = w(ξ0, . . . , ξk, η0, . . . , ηp).

Let i ≥ n0 be large enough that

η0(i) = · · · = ηp(i) = e.

It follows that

ψ(x) = ϕ(x)(i)

= w(ξ0(i), . . . , ξk(i), η0(i), . . . , ηp(i))

= w(ξ0(i), . . . , ξk(i), e, . . . , e) ∈ 〈⋃

n≤n0 ψ(Hn)
〉

.

Since ψ is injective, it follows that x ∈ 〈⋃

n≤n0 Hn
〉

.
We now turn to the general case in which there is a dense subgroup D ⊆ G, a

compact set K ⊆ Gω, and an injective homomorphism ψ : G → Gω such that
D = ψ−1(〈K 〉).

Consider the subgroup

D∗ = {ξ ∈ Dω : (∀∞i)(ξ(i) = e)}

and observe that D∗ is dense in Gω. Define ψ∗ : Gω → (Gω)ω by

ψ∗(ξ)(n)(i) = ψ(ξ(i)).

Now let

K ∗ = {η ∈ Kω : (∃≤1n)(η(n) 
= e)}.

Note that K ∗ is compact and D∗ = (ψ∗)−1(〈K ∗〉).Wemay therefore apply the special
case above to the group Gω and use the fact that Gω ∼= (Gω)ω to complete the proof.

�

References

1. Beros, K.A.: Universal subgroups of Polish groups. J. Symb. Log. 79(4), 1148–1183 (2014)
2. Farah, I.: Completely additive liftings. Bull. Symb. Log. 4(1), 37–54 (1998)
3. Glasner, E., Weiss, B.: The topological Rohlin property and topological entropy. Am. J. Math. 123(6),

1055–1070 (2001)
4. Rosendal, C.: Cofinal families of Borel equivalence relations and quasiorders. J. Symb. Log. 70(4),

1325–1340 (2005)
5. Royden, H.L.: Real Analysis, 3rd edn. Prentice-Hall, Englewood Cliffs (1988)

123


	Homomorphism reductions on Polish groups
	Abstract
	1 Introduction
	2 Preliminaries and notation
	3 Proof of Theorem 1.2
	4 Compactly generated subgroups
	References




