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Abstract For a set M , let seq(M) denote the set of all finite sequences which can be
formed with elements of M , and let [M]2 denote the set of all 2-element subsets of M .

Furthermore, for a set A, let A denote the cardinality of A. It will be shown that the
following statement is consistent with Zermelo–Fraenkel Set Theory ZF: There exists

a set M such that seq(M)< [M]2 and no function f : [M]2 → seq(M) is finite-to-
one.
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1 Introduction

Let M be a set. Then fin(M) denotes the set of all finite subsets of M , [M]2 denotes the
set of all 2-element subsets of M , and seq(M) denotes the set of all finite sequences
which can be formed with elements of M .

For a set A, let A denote the cardinality of A. We write A = B, if there exists a
bijection between A and B, and we write A ≤ B, if there exists a bijection between
A and a subset B ′ ⊆ B (i.e., A ≤ B if and only if there exists an injection from A
into B). Finally, we write A < B if A≤ B and A �= B. By the Cantor- Bernstein
Theorem, which is provable in ZF only (i.e., without using the Axiom of Choice), we
get that A≤ B and A≥ B implies A= B.
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594 L. Halbeisen

In [1], Shelah constructed a permutation model in which there exists an infinite set
M , such that seq(M) < fin(M) (see [1, Theorem 2] or [3, Proposition 7.17]). Later
in [2] itwas shown that amodification of that permutationmodel gives amodel inwhich
there exists an infinite setM , such thatM × M < [M]2 (see [2, Proposition 7.3.1] or [3,
Proposition 7.18]). In this note we shall see that a further modification of that model
gives a model in which there is an infinite set M , such that seq(M) < [M]2. Notice
that seq(M) < [M]2 implies seq(M) < fin(M) as well as M × M < [M]2.

2 Permutation models

In order to make the paper self-contained, we give a brief introduction to permutation
models (see also [3] or [4]). First we introduce models of ZFA, which is set theory
with atoms. Set theory with atoms is characterized by the fact that it admits objects
other than sets, namely atoms. Atoms are objects which do not have any elements
but which are distinct from the empty-set. The development of the theory ZFA is
essentially the same as that of ZF (except for the definition of ordinals, where we have
to require that an ordinal does not have atoms among its elements). Let A be a set.
Then by transfinite recursion on α ∈ �we can definePα(S) as follows:P∅(S) := S,
Pα+1(S) := Pα(S) ∪ P(Pα(S)) and Pα(S) := ⋃

β∈α P
α(S) when α is a limit

ordinal. Further letP∞(S) := ⋃
α∈� Pα(S). IfM is a model of ZFA and A is the set

of atoms of M, then we have M := P∞(A). The class M0 := P∞(∅) is a model
of ZF and is called the kernel. Notice that all ordinals belong to the kernel.

The underlying idea of permutation models, which are models of ZFA, is the fact
that the axioms of ZFA do not distinguish between the atoms, and so a permutation of
the set of atoms induces an automorphism of the universe. The method of permutation
models was introduced by Adolf Fraenkel and, in a precise version (with supports),
by Andrzej Mostowski. The version with filters is due to Ernst Specker.

In order to construct a permutationmodel, we usually start with a set of atoms A and
then define a group G of permutations or automorphisms of A (where a permutation
of A is a one-to-one mapping from A onto A). However, we can also build the set
of atoms A and the permutation group G simultaneously step by step, as in Shelah’s
construction.

We say that a setF of subgroups of G is a normal filter on G if for all subgroups
H, K of G we have:

(A) G ∈ F
(B) if H ∈ F and H ⊆ K , then K ∈ F
(C) if H ∈ F and K ∈ F , then H ∩ K ∈ F
(D) if π ∈ G and H ∈ F , then πHπ−1 ∈ F
(E) for each a ∈ A, {π ∈ G : πa = a} ∈ F

Let F be a normal filter on G. We say that x is symmetric (with respect to G) if
the group

symG(x) := {π ∈ G : πx = x}

belongs toF . By (E) we have that every a ∈ A is symmetric.
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LetV be the class of all hereditarily symmetric objects; thenV is a transitive model
of ZFA. We call V a permutation model. Because every a ∈ A is symmetric, we get
that the set of atoms A belongs to V .

Now, every π ∈ G induces an ∈-automorphism of the universe V . Because ∅ is
hereditarily symmetric and for all ordinals α the setPα(∅) is hereditarily symmetric
too, the class V := P∞(∅) is a class in V which is equal to the kernel M0. In
particular, for every π ∈ G and every ordinal α ∈ � we have πα = α.

Since the atoms x ∈ A do not contain any elements, but are distinct from the empty-
set, the permutation models are not models of ZF. However, with the Jech- Sochor
Embedding Theorem (see for example [4] or [3]) one can embed arbitrarily large
fragments of a permutation model in a well-founded model of ZF. In particular, if we
can prove that in a permutation model a certain relation between two cardinalities
holds, then this relation is consistent with ZF.

Most of the well-known permutation models are of the following simple type: Let
G be a group of permutations of A. For each finite set E ∈ fin(A), let

FixG(E) := {
π ∈ G : ∀a ∈ E (πa = a)

}
,

and let F be the filter on G generated by the subgroups {FixG(E) : E ∈ fin(A)}.
ThenF is a normal filter and x is symmetric if and only if there exists a set of atoms
Ex ∈ fin(A) such that

FixG(Ex ) ⊆ symG(x).

We say that Ex is a support of x . So, a set x belongs to the permutation model V
(with respect to G and F ), if and only if x has a finite support Ex ∈ fin(A).

3 A Shelah-type permutation model

As mentioned above, Shelah construced in [1] a permutation model in which there is a
set M with seq(M) < fin(M). We give now a modified version of this model and show
that for its set of atoms A we have seq(A) < [A]2 and no function f : [A]2 → seq(A)

is finite-to-one.
The set of atoms of this Shelah-type permutation model is built by induction, where

every atom encodes a finite sequences of atoms on lower levels.
The atoms of the model are constructed as follows:

(α) Let A0 be an arbitrary infinite set.
(β) G0 is the group of all permutations of A0.
(γ ) An+1 := An ∪ {

(n + 1, p, ε) : p ∈ ⋃n+1
k=0 Ak

n ∧ ε ∈ {0, 1}}.
(δ) Gn+1 is the subgroup of the permutation group of An+1 containing all

permutations σ for which there are πσ ∈ Gn and εσ ∈ {0, 1} such that

σ(x) =
{

πσ (x) if x ∈ An,

(n + 1, πσ (p), εσ +2 ε) if x = (n + 1, p, ε),

where for p = 〈p0, . . . , pl−1〉 ∈ ⋃
0≤k≤n+1 A

k
n , πσ (p) := 〈πσ (p0), . . . ,

πσ (pl)〉 and +2 denotes addition modulo 2.

123



596 L. Halbeisen

Let A := ⋃{An : n ∈ ω} be the set of atoms and let Aut(A) be the group of all
permutations of A. Then

G := {
H ∈ Aut(A) : ∀n ∈ ω (H |An ∈ Gn)

}

is a group of permutations of A. Let F be the normal filter on G generated by
{FixG(E) : E ∈ fin(A)}, and let V S be the class of all hereditarily symmetric sets.

Remark In the construction of the permutation model V S , we can equally well start
with an infinite set of atoms A, partitioned into countably many infinite sets An for
n ∈ ω. Then, we define for every n ∈ ω a bijection between the set of finite sequences
of length at most n + 1 which can be formed with elements of

⋃
i≤n Ai and a set

Pn+1 ⊆ [An+1]2 of pairwise disjoint 2-element subsets of An+1. Finally, we define
the group G as the group of permutations which swap the elements of Pn+1 and which
respect the bijections.

As an immediate consequence of the definitions we get that for each n ∈ ω, the set
An belongs to V S . In particular, the function

f : ω → P(A)

n �−→ An

is an injective function which belongs to V S . Moreover, for each atom a ∈ A there
exists a least number n ∈ ω such that a ∈ An . In particular, there exists a surjection
f : A → ω which belongs to V S .
Now, we are ready to prove our main result.

Theorem Let A be the set of atoms of V S. Then

V S |� seq(A) < [A]2

and no function F : [A]2 → seq(A) in V S is finite-to-one.

Proof First we show that V S |� seq(A) ≤ [A]2. For this it is sufficient to find an
injective function f ∈ V S from seq(A) into [A]2. We define such a function as
follows. For a finite sequence s = 〈a0, . . . , al−1〉 ∈ seq(A) let

f (s) := {
(m + l, s, 0

)
,
(
m + l, s, 1)

}
,

where m is the smallest number such that {a0, . . . , al−1} ⊆ Am . For any π ∈ G and
s = 〈a0, . . . , al−1〉 ∈ seq(A) we have π f (s) = f

(
π(s)

)
and therefore, the function

f is as desired and belongs to V S .
Now, let g ∈ V S be a function from [A]2 to seq(A) and let Eg be a finite support

of g. We show that g is not injective. Since Eg is finite, there is an integer ng ∈ ω

such that Eg ⊆ Ang . By extending Eg if necessary, we may assume that if (n +
1, 〈a0, . . . , al−1〉, ε) ∈ Eg , then also a0, . . . , al−1 belong to Eg as well as the atom
(n + 1, 〈a0, . . . , al−1〉, 1 − ε) (this assumption will be needed later).
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Choose two distinct elements x, y ∈ A0 \ Eg such that g({x, y}) �= 〈 〉. If there are
no such elements, then g is not injective and we are done. So, we may assume that for
some positive integer l ∈ ω:

g({x, y}) = 〈a0, . . . , al−1〉

Now, we are in at least one of the following four cases:

(1) ∀i ∈ l
(
ai ∈ Eg

)

(2) ∃i ∈ l
(
ai ∈ {x, y})

(3) ∃i ∈ l
(
ai ∈ A0 \ (Eg ∪ {x, y}))

(4) ∃i ∈ l
(
ai ∈ A \ (Eg ∪ A0)

)

If we are in Case (1), then letπ ∈ Fix(Eg) be such thatπx /∈ {x, y}. To see that such
a π ∈ Fix(Eg) exists, recall that by our assumption, Eg has the property that whenever
(n+1, 〈a0, . . . , al−1〉, ε) ∈ Eg , also a0, . . . , al−1 ∈ Eg . Now,πg({x, y}) = g({x, y})
(since π ∈ Fix(Eg)), but π{x, y} �= {x, y}. Hence, g is not a injective function.

If we are in Case (2), then let π ∈ Fix(Eg) be such that πx = y and πy = x . Notice
that since {x, y} ⊆ A0 and {x, y} ∩ Eg = ∅, by condition (β) in the construction of
V S , such a permutation π exists. Now, by the choice of π , on the one hand we have
π{x, y} = {x, y}, i.e., g({x, y}) = g(π{x, y}), but on the other hand, for some i ∈ l
we have ai ∈ {x, y}, which implies ai �= πai . To see this, notice that for example
ai = x implies πai = y. Therefore, Eg is not a support of g, which contradicts the
choice of Eg .

If we are in Case (3), then there is an i ∈ l such that

ai ∈ A0 \ (Eg ∪ {x, y}) .

Now, take an arbitrary bi ∈ A0 \ (Eg ∪ {x, y}) which is distinct from ai and let
π ∈ Fix(Eg∪{x, y}) be such thatπai = bi andπbi = ai . Notice that by condition (β)
in the construction ofV S , such a permutation π exists. By the choice of π , on the one
hand we have π{x, y} = {x, y}, i.e., g({x, y}) = g(π{x, y}), but on the other hand,
πai = bi and bi �= ai , i.e., g({x, y}) �= πg({x, y}). Therefore, Eg is not a support of
g, which contradicts the choice of Eg .

If we are in Case (4), then there is an i ∈ l such that

ai ∈ A \ (Eg ∪ A0) .

In particular, ai = (n + 1, p, ε) for some n ∈ ω, p ∈ seq(A), and ε ∈ {0, 1}.
Furthermore, let π ∈ Fix(Eg ∪ {x, y}) be such that

π(n + 1, p, ε) = (n + 1, p, 1 − ε) .

To see that such a π exists, recall that by our assumption, Eg has the property that
whenever (n + 1, s, ε) ∈ Eg for some s ∈ seq(A), also (n + 1, s, 1 − ε) ∈ Eg . Now
we have π{x, y} = {x, y} but πg({x, y}) �= g({x, y}). Therefore, Eg is not a support
of g, which contradicts the choice of Eg .
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So, in all four cases, either g is not injective or Eg is not a support of g. In particular,
there is no injection in V S from [A]2 into seq(A). Hence,

V S |� seq(A) < [A]2 .

It remains to show that no function from [A]2 to seq(A) is finite-to-one. For this,
let F : [A]2 → seq(A) be a function inV S with support EF . Since EF is a support of
F , for any {x, y} ∈ [A0 \ EF ]2, either F({x, y}) = 〈 〉 or F({x, y}) = 〈a0, . . . , al−1〉
for some positive integer l. We consider the following two cases:

(I) There exists an {x, y} ∈ [A0 \ EF ]2 such that F({x, y}) �= 〈 〉: First, let

F({x, y}) = 〈a0, . . . , al−1〉

for some positive integer l. Since F is a function in V S with support EF , we must
have that for all i ∈ l, ai ∈ EF (which corresponds to Case (1) above), otherwise, EF

would not be a support of F . Furthermore, for each π ∈ Fix(EF ) we have

π〈a0, . . . , al−1〉 = 〈a0, . . . , al−1〉,

and since EF is a support of F , we have

F
(
π{x, y}) = F

({x, y}) = 〈a0, . . . , al−1〉.

Since A0 is infinite and EF is finite, the set A0 \ EF is infinite. So, by condition (β) in
the construction ofV S , there are infinitelymany x ′ ∈ A0\(EF∪{x, y}) forwhich there
exists a π ∈ Fix(EF ) such that πy = y and πx �= x . In particular, if π, π ′ ∈ Fix(EF )

are such that πy = y = π ′y and πx �= π ′x , then π{x, y} �= π ′{x, y}, but

F
(
π{x, y}) = F

(
π ′{x, y}),

which shows that F is not a finite-to-one function.
(II) For all {x, y} ∈ [A0 \ EF ]2 we have F({x, y}) = 〈 〉: Since A0 is infinite and

EF is finite, there are infinitely many pairs mapped to the empty sequence, therefore,
F is not a finite-to-one function. ��

4 Odds and ends

For sets A and B we write A≤∗ B if A = ∅ or if there exists a surjective function
g : B → A (i.e., g is a function from B onto A).

Aswe have seen above, in themodelV S there is an injective function f : seq(A) →
[A]2,where A is the set of atoms.Now, by taking the pre-images of f weget an injective
function from a subset of [A]2 onto seq(M), which can be extended to a surjective
function g : [A]2 → seq(M). Hence, in V S we have seq(A) ≤∗ [A]2. On the other
hand, it is easy to see that for any set M we have [M]2 ≤∗ seq(M). Furthermore, using
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again the pre-images of the injective function f : seq(A) → [A]2 in V S , we can
construct a surjective function g : A → seq(M). To see this, define

g(a) =
{

p if a = (n + 1, p, ε) for some n ∈ ω and ε ∈ {0, 1},
〈 〉 otherwise.

Hence, inV S we have seq(A) ≤∗ A. On the other hand, it is easy to see that for any set
M we have M ≤ seq(M) and M ≤∗ seq(M). Finally, in V S we have A< seq(A). To
see this, assume towards a contradiction that there exists an injection h : seq(A) → A.
Let a ∈ A and consider the sequences p0 := 〈 〉, p1 := 〈a〉, p2 := 〈a, a〉, and so on.
Then

〈
h(pn) : n ∈ ω

〉
would be an infinite sequence of pairwise distinct elements of

A, which is obviously not a set in V S .
So, by the Jech- Sochor Embedding Theorem, the existence of an infinite set

M for which the following relations hold is consistent with ZF:

M < seq(M), seq(M) < [M]2 ,
M ≤∗ seq(M) ≤∗ M , seq(M) ≤∗ [M]2 ≤∗ seq(M).

Let us now replace seq(M) withP(M). By the Cantor Theorem, for all sets M
we have M < P(M)andP(M) �∗ M. Furthermore, we have [M]2 < P(M), which
follows from fin(M) < P(M) for infinite sets M (see [1] or [3]).

So, for arbitrary sets M , the following relations are provable in ZF:

M < P(M), [M]2 < P(M),

M ≤∗ P(M) �∗ M , [M]2 ≤∗ P(M).

However, it is not known whether P(M) �∗ [M]2 is also provable in ZF. In other
words, it is not known whether there exists a model of ZF in which there is a set M
such that P(M)

∗[M]2 (see [3, Related Result 21] for a similar open problem).
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