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Abstract We examine the differences between three standard classes of forcing
notions relative to the way they collapse the continuum. It turns out that proper and
semi-proper posets behave differently in that respect from the class of posets that
preserve stationary subsets of ω1.
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1 Introduction

The classes of proper, semi-proper, and stationary preserving forcing notions are well
established and the corresponding forcing axioms PFA, SPFA and MM are important
set-theoretic principles withmany applications (see, for example, [14]).While it is still
open if these forcing axioms are of different consistency strengths analysis of their
consequence reveals that while SPFA and MM are equivalent forcing axioms (see
[8]) some of their consequences are not consequences of PFA. For example, while
SPFA implies the strong reflection of stationary subsets of [θ ]ℵ0 (see [12,15]) the
corresponding axiom PFA for proper forcing notions does not even imply reflection of
stationary subsets of {α < ω2 : cf(α) = ω} (see [2]). In this note we shall show that
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there is also a difference between the classes of semi-proper and stationary preserving
forcing notions but not at the level of the corresponding forcing axioms but on the way
they could collapse the cardinal ℵ2. More precisely, we show that one may collapse
ω2 with a forcing notion that preserves stationary subsets of ω1 without collapsing the
continuum to ℵ1 and that on the other hand if a semi-proper forcing notion collapses
ℵ2 then it also forces |Ř| = ℵ1. This improves a bit a result from [7] who proved
this statement for proper forcing notions. However, the purpose of this paper is also
to expose an old oscillation theory for closed and unbounded subsets of [ω2]ℵ0 which
plays an important role in the proofs of these results, an oscillation theory that is of
independent interest and that could have some other applications.

We shall follow standard notation and terminology about forcing and stationary
subsets of the structures of the form [θ ]ℵ0 that could be found in standard sources
such as, for example, [5]. In Sect. 2 we show that there is a poset that collapses ω2 but
preserves all other cardinals and all stationary subset of ω1. This poset shows up first
in our note [10] as an example of application of the side condition method introduced
there. In Sect. 3 we show that in general with semi-proper poset one can’t collapse
ω2 without collapsing the continuum. In the final section we summarize results of
the oscillation theory used in the proof from Sect. 3 as we think that it might be of
independent interest.

2 Collapsing ω2 with stationary preserving forcing

In this section we recall the following result from [10].

Theorem 2.1 There is a forcing notionP of cardinalityℵ2 which preserves stationary
subsets of ω1 but collapses ω2.

The proof of this result is based on the following standard fact.

Lemma 2.2 There is a set S ⊆ [ω2]ℵ0 of cardinality ℵ2 such that S(E) = {A ∈ S :
A ∩ ω1 ∈ E} is stationary for all stationary E ⊆ ω1.

Proof For each δ < ω2 pick a countable-to-one mapping eδ : δ → |δ| and define

S = {A ∈ [ω2]ℵ0 : (∃ν < ω1)(∃δ < ω2) A = {γ < δ : eδ(γ ) ∈ ν}}.

Given a stationary subset E of ω1 and closed and unbounded C ⊆ [ω2]ℵ0 , find δ < ω2
such that C ∩ [δ]ℵ0 contains a closed and unbounded subset of [δ]ℵ0 . It follows that if
for ν < ω1, we set

Aν(δ) = {γ < δ : eδ(γ ) ∈ ν},

then D = {ν < ω1 : Aν(δ)∩ω1 = ν and Aν(δ) ∈ C} contains a closed and unbounded
subset ofω1.Pick ν ∈ D∩E .Then Aν(δ) ∈ S(E)∩C.This shows thatS(E) intersects
all closed and unbounded subsets of [ω2]ℵ0 , and so it is stationary. �	
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We can now give the proof of Theorem 2.1. Fix a stationary set S as in Lemma 2.2.
Fix a one-to-one map i : S → ω2. Let P the collection of all finite subsets p of S
such that for all A 
= B in P either A∪{i(A)} ⊆ B or vice versa B ∪{i(B)} ⊆ A. We
order P by the inclusion. To show that P reserves stationary subsets of ω1 fix such a
subset E of ω1. To show that E remains stationary in any forcing extension ofP, pick
p0 ∈ P and aP-name Ċ for a closed and unbounded subset ofω1.Choose a countable
elementary submodel M of Hℵ3 containing p0, Ċ, S and i such that M ∩ ω2 ∈ S(E).

Let p = p0 ∪ {M ∩ ω2}. We claim that p forces that δ = M ∩ ω1 belongs to Ċ which
will finish the proof since this ordinal by definition belongs to E . It suffices to show
that p forces that Ċ ∩ δ is unbounded in δ. To see this pick an extension q of p and
γ < δ. Then since i ∈ M, we know that q0 = {A ∈ q : A ⊂ M ∩ ω2} belongs to
P ∩ M. Using elementarily of M, we can find ordinal α > γ in M ∩ ω1 = δ and
r ∈ P ∩ M which forces α ∈ Ċ . Then again since i ∈ M, we conclude that r ∪ q is a
condition of P extending q and forcing that Ċ ∩ [γ, δ) 
= ∅.

To finish the proof of Theorem 2.1 it remains to show that ω2 is collapsed in the
forcing extension of P . To see this note that the generic object of P is an ⊆-chain
of order type ω1 of countable subset of (ω2)

V that cover (ω2)
V since clearly every

p ∈ P can be extended to a q ∈ P such that
⋃

q includes any given ordinal α < ω2.

Corollary 2.3 If the continuum is bigger thanℵ2 then a stationary-preserving forcing
notion may collapse ω2 without forcing |Ř| = ℵ1.

3 Collapsing ω2 with semi-proper forcing

In this section we prove the following result which, according to Theorem 2.1, extends
a result from [7] to the optimal class of forcing notions.

Theorem 3.1 If a semi-proper forcing notion P collapses ω2 then it forces |Ř| = ℵ1.

Note that the conclusion of the theorem is immediate if the continuum is not bigger
than ℵ2. So we concentrate to proving this theorem assuming 2ℵ0 > ℵ2. We shall
apply the tools from the oscillation theory over a club-guessing sequences (see [3])
and a particular sequence of stationary subsets of [ω2]ℵ0 indexed by reals (see Lemma
43 of [12]). Recall, that a sequence of the form {Cα : α < ω2, cf(α) = ω} is a club-
guessing onω2 if for every α < ω2 with cf(α) = ω, the setCα is an unbounded subset
of α such that every closed and unbounded subset C of ω2 contains one of Cα’s (see
[9]). So from now one we fix a club guessing sequence {Cα : α < ω2, cf(α) = ω}
and let {Cα(n) : n < ω} be the increasing enumeration of Cα for every α < ω2 such
that cf(α) = ω. For a set A ∈ [ω2]ℵ0 of limit order type, set

osc(A,Csup(A)) = {n < ω : A ∩ [Csup(A)(n),Csup(A)(n + 1)) 
= ∅}.

We shorten the notation and write osc(A) instead of osc(A,Csup(A)) and implicitly
consider only countable subsets A of ω2 of limit order type, i.e., subsets for which this
definition makes sense. For a real r ∈ [ω]ω, set

Sr = {A ∈ [ω2]ℵ0 : osc(A) = r}.
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It is known (see [3,12]) that for every r ∈ [ω]ω and stationary E ⊆ ω1, the set

Sr (E) = {A ∈ S : A ∩ ω1 ∈ E}

is stationary in [ω2]ℵ0 .

Theorem 3.1 will follow from the following result.

Proposition 3.2 If 2ℵ0 > ℵ2 then for every semi-proper forcing notion P and every
real r ∈ [ω]ω, the set Sr remains stationary after forcing by P.

The proof of this results requires a finer analysis of the proof that the sets Sr are
stationary. Recall that the main combinatorial tool in that proof is a lemma about
Namba trees, downwards closed subtrees T of the tree of all finite sets ordinals in ω2
ordered by the relation � of end-extension such that T has a stem, st(T ), the maximal
node that is comparable to all elements of T , and such that for every t ∈ T, t � st(T ),

the set

IT (t) = {α < ω2 : t ∪ {α} ∈ T }

of immediate successors is stationary subset of ω2.We shall actually restrict ourselves
to Namba subtrees of the tree of all finite subsets of the set {α < ω2 : cf(α) = ω1}.
We shall use the following basic lemma about these trees from [6].

Lemma 3.3 If the collection [T ] of all infinite branches of a Namba tree T is coloured
into at most ℵ1 Borel colors then there is a Namba subtree U of T such that [U ] is
monochromatic.

It will also be useful to have some notation about Namba trees. Given a Namba tree
T and integer n < ω, the nth level of T is the set T (n) of all nodes of T of length n.

For Two Namba trees T and U set and n < ω, set U ⊆n T if U is a subtree of T , if
st(U ) = st(T ), and ifU (n) = T (n). A fusion sequence of Namba trees is a sequence
Tn (n < ω) of Namba trees such that Tn+1 ⊆n Tn for all n. Note that if Tn (n < ω)

is a fusion sequence of Namba trees then its fusion
⋂

n<ω Tn is a Namba tree as well.
Finally, for a Namba tree T and a t ∈ T, set

T t = {s ∈ T : s � t or t � s}.

Note that if t � st(T ) then T t = T and that otherwise T t is a Namba subtree of T
with stem equal to t.

Recall that for every closed andunbounded subsetC of [ω2]ℵ0 there is f : [ω2]<ω →
ω2 such that for every countable subset X of ω2, the f -closure of X

CL f (X) = { f (s) : s ∈ [X ]<ω}

belongs to C (see [5]) . It is also well-known that we can choose such an f such that
CL f (CL f (X)) = CL f (X) for every countable subset X of ω2, or in other words sets
Y of the form CL f (X) are all f -closed, i.e., have the property that CL f (Y ) = Y. So
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we shall always implicitly choose such f with this extra property and will put some
additional information into f such as, for example, particular functions of the form
e : [ω2]2 → ω1.

Lemma 3.4 For every f : [ω2]<ω → ω2 there is a Namba tree T with stem ∅ and
functions A : T → [ω2]≤ℵ0 and a : T → ω2 such that1

(1) A(∅) = ∅,

(2) max(t) < a(t) < α for t ∈ T and α < ω2 such that α ∈ IT (t),
(3) A(t ∪ {α}) ⊆ [max(t), a(t)) for all t ∈ T all α < ω2 such that α ∈ IT (t),
(4) for every infinite branch b of T, the set A(b) = ⋃

n<ω A(b � n) is f -closed.

Proof Let T0 be the Namba tree of all finite subsets of the set {α < ω2 : cf(α) = ω1}
ordered by the relation � of end-extension. For an infinite branch b of T0 which we
identify with its union, the infinite set of order type ω whose finite initial segments
form the branch b. Let A(b) = CL f (b). As explained above we are assuming that
we have modified our given mapping f so that the sets A(b) are all f -closed. In fact,
we assume that f is expanded so that it incorporates a map e : [ω2]2 → ω1 such that
for all α < ω2, the section e(·, α) is a one-to-one mapping from α into |α|. This in
particular means that for all b ∈ [T0], the intersection νb = A(b) ∩ ω1 is a countable
ordinal and that for every α ∈ A(b),

A(b) ∩ α = {ξ < α : e(ξ, α) < νb}.

Starting from T0 we build a fusion sequence Tn of Namba trees in order that the
fusion T = ⋂

n<ω Tn satisfies the conclusion of the Lemma.
To find the subtree T1 ⊆ T0, for every α ∈ IT0(∅), using the assumption that α has

uncountable cofinality, we apply Lemma 3.3 and find a Namba subtree Uα of T {α}
0

with stem {α} and ordinals να < ω1 and ξα < α such that β > ξα for all β ∈ IUα ({α})
and

A(b) ∩ ω1 = να and sup(A(b)) ∩ α < ξα for all b ∈ [Uα].

Find a stationary subset E∅ ⊆ IT0(∅) and ordinals ν < ω1 and a(∅) < ω2 such that
να = ν and ξα = a(∅) for all α ∈ E∅. Let

T1 =
⋃

α∈E∅
Uα.

Then T1 is a Namba subtree of T0 with the same root ∅ such that IT1(∅) = E∅ and
such that for all α ∈ IT1(∅), we have that T {α}

1 = Uα and therefore

A(b) ∩ α = {ξ < α : e(ξ, α) < ν} for all b ∈ [T {α}
1 ].

1 Here, we let max(∅) = 0.
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It follows that b �→ A(b)∩α is a constant function on [T {α}
1 ], so we denote its constant

value by A({α}). This completes the initial step of the recursive construction.
The recursive step from the tree Tn to Tn+1 is done similarly. Fix t ∈ Tn of length

n. Working as above we can find an ordinal a(t) < ω2 and a stationary subset Et of
ITn (t) and for each α ∈ Et a Namba subtree Utα of T t∪{α}

n such that

sup(A(b) ∩ α) < a(t) for all b ∈ [Utα].

Then as before we know that the function b �→ A(b) ∩ α has the constant value
{ξ < α : e(ξ, α) < ν} on [Utα]. For α ∈ Et , let

A(t ∪ {α}) = {ξ ∈ [max(t), α) : e(ξ, α) < ν}.

Note that A(t ∪ {α}) ⊆ [max(t), a(t)) for all α ∈ Et . Let

Tn+1 =
⋃

t∈Tn(n),α∈Et

Utα.

Then Tn+1 is a Namba tree such that Tn+1 ⊆n Tn and such that for every t ∪ {α} ∈
Tn+1(n + 1),

A(b) ∩ [max(t), α) = A(t ∪ {α}) ⊆ [max(t), a(t)) for all b ∈ [T t∪{α}
n+1 ].

This finishes the inductive step. It is clear that the fusion T = ⋂
n<ω Tn satisfies the

conclusion of the Lemma. �	
Fix a map e : [ω2]2 → ω1 such that for all α < ω2, the section e(·, α) is a one-

to-one mapping from α into |α|. The definition below would feel more natural if we
assume that e satisfies the two subadditivity condition of a 
-fuction, or equivalently,
that for every ν < ω1 the relation α <ν β iff α < β and e(α, β) < ν defines a tree
ordering on ω2 (see [13]). Given such e : [ω2]2 → ω1, we recall the corresponding
notation

Aν(α) = {ξ < α : e(ξ, α) < ν} for ν < ω1 and α < ω2.

Finally, we are ready to define sets that will be relevant to completing the proof of
Proposition 3.2. For a real r ∈ [ω]ω, we consider the following subset of Sr ,

S∗
r = {A ∈ Sr : A ∩ ω1 ∈ ω1 implies (∀α < ω2) A 
= AA∩ω1(α)}.

Let us prove the following version of Proposition 3.2.

Proposition 3.5 If for some real r ∈ [ω]ω the set S∗
r is stationary then S∗

r remains
stationary after forcing by any semi-proper forcing notion P.
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Collapsing ω2 with semi-proper forcing 191

Proof Pick a name Ċ for a closed and unbounded set and pick a condition p0 in P.

We need to find an extension of p0 forcing that S∗
r and Ċ intersect. Pick a name ḟ for

a function from [ω̌2]<ω̌ → ω̌1 such that p0 forces that countable sets closed under
ḟ all belong to Ċ and that ḟ incorporates our function ě : [ω̌2]2 → ω̌1. Choose a
countable elementary submodel M of some large-enough Hθ such that M contains all
these objects and such that A = M∩ω2 belongs toS∗

r . Let p be an extension of p0 that
is (M,P)-semigeneric, i.e, that forces that M[Ġ] ∩ ω1 = M̌ ∩ ω1. Let ν = M ∩ ω1.

Note that p forces that M[Ġ] ∩ ω̌2 is ḟ -closed and that therefore it belongs to Ċ. So it
suffices to show that p forces that M[Ġ]∩ ω̌2 = M̌ ∩ ω̌2 = Ǎ.Otherwise, we can find
an extension q of p and an ordinal α < ω2 such that q forces that α̌ is the minimal
ordinal of M[Ġ] ∩ ω̌2 which does not belong to the set Ǎ. Note that since q forces
that M[Ġ] is an elementary submodel of H

θ̌
[Ġ] it must force that its intersection with

ω̌2 end-extends Ǎ and that, therefore, forces that Ǎ = α̌ ∩ M[Ġ]. Since q forces that
M[Ġ] ∩ ω̌2 is an ḟ -closed set and that ḟ incorporates ě, we have that q forces the
equality Ǎ = Aν̌ (α̌) = ˇAν(α). It follows that A = Aν(α), a contradiction. �	

The proof of Theorem 3.1 is based on the following result that is of independent
interest.

Proposition 3.6 If 2ℵ0 > ℵ2 then every real r ∈ [ω]ω, the set S∗
r is a stationary

subset of [ω2]ℵ0 .

Proof This really follows from the standard proof, using Lemma 3.4, that the sets Sr
are stationary. To see this, fix a real r ∈ [ω]ω and a closed and unbounded subset C of
[ω2]ℵ0 .We identify r with the strictly increasingmap fromω intoω that enumerates it.
Thus r(n) is the nth element of r in that enumeration. Choose f : [ω2]<ω → ω2 such
that f -closed countable subsets ofω2 are all elements ofC.ApplyingLemma3.4 to this
f we get a Namba tree T and mappings A : T → [ω2]≤ℵ0 and a : T → ω2 satisfying
the conditions (1) to (4) from the conclusion of this lemma. Let θ = (2ℵ0)+. Choose
a continuous ∈-chain Mξ (ξ < ω2) of elementary submodel of Hθ of cardinality ℵ1
containing ω1 and all these object such that δξ = Mξ ∩ ω2 ∈ ω2. Let

C = {ξ < ω2 : δξ = ξ}.
Then C is a closed and unbounded subset of ω2. Since {Cγ : γ < ω2, cf(γ ) = ω} is
club-guessing, we can choose γ < ω2 of cofinality ω such that Cγ ⊆ C. It follows
that

MCγ (n) ∩ ω2 = Cγ (n) for all n < ω.

Using elementarity of the model MCγ (r(0)+1) we can choose α0 ∈ IT (∅) belonging to
that submodel such that α0 ≥ Cγ (r(0)). Note that by the elementarily of MCγ (0) and
MCγ (r(0)+1),we know that a(∅) < Cγ (0)while a({α0}) < Cγ (r(0)+1).Choose now
α1 in IT ({α0}) ∩ MCγ (r(1)+1) such that α1 ≥ Cγ (r(1)). Then again by elementarity
a({α0, α1}) < Cγ (r(1) + 1), and so on. It is clear that going this way we can choose
an infinite branch b = {α0, α1, . . . , αn, . . .} of T such that for all n < ω

Cγ (r(n)) ≤ αn < a({α0, . . . , αn}) < Cγ (r(n) + 1)
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It follows that

A(b) =
⋃

n<ω

A(b � n) ⊆ [0,Cγ (0)) ∪
⋃

n<ω

[Cγ (r(n),Cγ (r(n) + 1))

and therefore osc(A(b)) = r and so A(b) ∈ C ∩ Sr . Note that that we can in fact
obtain continuum many such sets A(b), i.e., that we have established that

|C ∩ Sr | ≥ 2ℵ0 > ℵ2.

Since the difference Sr\S∗
r has cardinality at most ℵ2, this shows that C ∩ S∗

r 
= ∅,

finishing the proof. �	
To see how Theorem 3.1 follows from Proposition 3.2, consider a semiproper poset

P that forces that the ordinalωV
2 has cardinality ℵ1. It follows that there is aP-name Ċ

for a closed and unbounded subset of [ωV
2 ]ℵ0 of cardinality ℵ1. From Propositions 3.5

and 3.6 it follows that P forces that the pairwise disjoint sets S∗
r (r ∈ ([ω]ω)V ) all

intersect Ċ. It follows that P forces |Ř| = ℵ1, as required.

4 More of the oscillation theory of [ω2]ℵ0

Let us recall that the oscillation theory (in dimension 2) for [ω]ω was developed by the
author in the early 1980’s (see [11]). The 3-dimensional oscillation theory for subsets
of [θ ]ℵ0 for regular θ ≥ ω2 was first introduced by Gitik in [4]. Around the same
time, motivated by the result of Baumgartner and Taylor [1] that [ω2]ℵ0 can be split
into 2ℵ0 pairwise disjoint stationary sets, the author was studying the 2-dimensional
oscillation theory for such [θ ]ℵ0 . The 2-dimensional oscillation theory at that time
used an arbitrary sequence {Cα : α < θ, cf(α) = ω} with the property sup(Cα) = α

and otp(Cα) = ω rather than a club-guessing one. Soon after Shelah’s discovery of
the club-guessing sequence the 2-dimensional oscillation theory came to its present
form.2

Fix a surjection c : [ω]ω → [ω1]≤ℵ0 . We shall say that a real r ∈ [ω]ω codes
a countable subset A of ω1 whenever c(r) = A. This gives us a way to extend the
functor r �→ Sr to the power-set of ω1. For X ⊆ ω1, set

SX = {A ∈ [ω2]ℵ0 : osc(A) codes X ∩ A ∩ ω1}.

The following statement about this set appears explicitly in the proof of Lemma 43 of
[12].3

Proposition 4.1 For every stationary subset E of ω1 and every subset X of ω1, the
restriction SX (E) is a stationary subset of [ω2]ℵ0 .

2 The original 2-dimensional oscillation theory over an arbitrary C-sequence is, however, of independent
interest and we shall present it in a separate paper.
3 Recall that for S ⊆ [ω2]ℵ0 and E ⊆ ω1, we let S(E) = {A ∈ S : A ∩ ω1 ∈ E}.
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Proof This is really what the proof of Proposition 3.2 above shows. The Namba tree
T given by Lemma 3.4 has the property that b �→ A(b)∩ω1 is constant on [T ]. So if ν
is the constant value (which we can also make sure that it belongs to the stationary set
E) and if r ∈ [ω]ω is a real that codes X∩ν, the branch b of T such that osc(A(b)) = r
gives us the set in the intersection C ∩ SX (E). �	

It is also clear that the functor r �→ Sr extend to the power-set of ω2 as well. To
see this, for every countable ordinal δ we fix an onto map

�δ : 2ω → P(δ)

that takes the same value on reals that have only finitely many disagreements. For
X ⊆ ω2, set

SX = {A ∈ [ω2]ℵ0 : osc(A) codes X ∩ A inside A}.

It is rest to specify what we mean when we say that a real4 r ∈ [ω]ω is coding a subset
of a given set A ∈ [ω2]ℵ0 so that we can rely on the proof of Proposition 3.2 and show
that the coding can indeed be realized. We assume that A is of a limit order type so
we have a natural decomposition of A into its initial parts An = A ∩ Csup(A)(n). Let
πAn : An → νn(A) be the corresponding maps that collapse these sets to countable
ordinals. We shall say that a map r from ω into 2 codes a subset X of the set A if for
every n < ω,

�νn(A)((r)n) = πAn [X ∩ An],

where the section (x)n of an x ∈ 2ω is defined by

(x)n(k) = x(2n(2k + 1)).

Proposition 4.2 For every stationary subset E of ω1 and every subset X of ω2, the
restriction SX (E) is a stationary subset of [ω2]ℵ0 .

Proof To see that the proof of Proposition 3.2 shows this, fixing the Namba tree T
satisfying Lemma 3.4 with the additional property that b �→ A(b) ∩ ω1 is constant
on [T ] with the constant value in the set E , we show that we can choose its branch
b = {α0, α1, . . . , αn, . . .} so that r = osc(A(b)) codes X ∩ A(b) inside A(b). We start
with choosing α0 in MCγ (1) ∩ IT (∅) such that α0 ≥ Cγ (0). This implies that r(0) = 1
and will give us opportunity to fix the section (r)0 as any real such that�νA(∅)

((r)0) =
πA(∅)[X ∩ A(∅)] and such that (r)0(k) = 1 for some k. Let k1 be the minimal k
such that r(2k + 1) = (r)0(k) = 1, we can choose α1 in IT ({α0}) ∩ MCγ (2k1+2)
such that α1 ≥ Cγ (2k1 + 1). Now we can choose the section (r)1 as any real such
that �A(b)1((r)1) = πA(b)1[X ∩ A(b)1], where A(b)1 = (A(∅) ∪ A({α0})) ∩ Cγ (1).
Moreover, we assume that (r)1(k) = 1 for some k but that (r)1(k) = 0 for all k such

4 identified with its characteristic function, an element of 2ω .
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194 S. Todorcevic

that 2(2k + 1) ≤ 2k1 + 1. Knowing the sections (r)0 and (r)1 we now know n2, the
minimal integer n > 2k1 + 1 such that (r)0(n) = 1 or (r)1(n) = 1. This integer n2
will therefore have the form 2k2 + 1 or 2(2k2 + 1) for some k2, so we can proceed to
picking α2 ∈ IT ({α0, α1}) ∩ MCγ (n2+1), and so on. It is clear that this recursion will
give us the desired branch b finishing the proof. �	

It should be clear that similar results hold for [θ ]ℵ0 where θ is any regular cardinal
greater or equal to ω2. In fact one can have similar oscillation results for many regular
cardinals simultaneously (see [3]).
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