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Abstract We prove a version of a small index property theorem for strong amalga-
mation classes. Our result builds on an earlier theorem by Lascar and Shelah (in their
case, for saturated models of uncountable first-order theories). We then study versions
of the small index property for various non-elementary classes. In particular, we obtain
the small index property for quasiminimal pregeometry structures.
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1 Introduction

The role of automorphism groups of mathematical structures and their connections to
their theories and bi-interpretation classes has been an active research area in model
theory in the past two decades. The main theme has been to investigate what kind
of information from the structure can be recovered from its group of automorphisms
(the reconstruction problem). The automorphism groups are also topological groups,
in a natural way (pointwise convergence topology). The reconstruction problem is
therefore linked to both the purely algebraic aspects of the groups Aut(M), as well
as to their topological aspects. The crucial property linking these two aspects is the
“small index property”, the center of study of this paper. A structure M of cardinality
κ has the small index property (SIP) if every subgroup H � Aut(M) of small index
(that is, such that [Aut (M) : H] < |Aut (M)|) is open in Aut(M).

Although in principle the SIP is posed in terms of a (first-order) structure M, previ-
ous results have relied heavily on the first order theory of M and its bi-interpretability
class. The structural properties revealed by Aut(M) depend somehow more on the
theory of M, on the structural properties around M, than on M taken in isolation. In
this article, we look for the first time at the situation of a structure M that may fail to
be saturated yet still have a good reconstruction problem, provided by other structural
properties:

• homogeneity,
• being inside an abstract elementary class (AEC) and
• having a strong amalgamation property (for strong embeddings in the abstract

elementary class, and for automorphisms).

These properties are isolated by carefully checking the case studied before by Lascar
and Shelah [7], where they prove the SIP for uncountable, saturated structures, relying
on their first order theories. In this paper we show that their techniques may be adapted
to our more general setup: saturation is weakened to homogeneity, and we isolate a
strong notion of amalgamation in AECs that suffices to replace the technical aspects
of the proof from [7] that depend on the first order theory of the structure. So, our
result shows that the SIP may be obtained for homogeneous structures, provided they
are placed in an AEC that has enough structural properties1.

1 Classical model theory deals with mathematical structures using tools of first-order logic; the first-order
setting provides many technical tools to study them. However, the first-order setting has some limitations:
many classes of mathematical structures are not first-order axiomatizable, and even when they are, there

123



The small index property for homogeneous models in AEC’s 143

An important step in reconstruction problems is therefore determining whether
a structure has the SIP: this property is a key piece in the recovery of the topo-
logical structure of the automorphism group from its pure group structure. The SIP
has been proved for a number of countable first-order structures. With the pointwise
convergence topology, in the first-order case, the automorphism groups of countable
structures are actually Polish groups (see [4] for more details). Indeed, the automor-
phism groups of countable structures being Polish is a very useful fact that can provide
many technical tools to prove properties like SIP. For the uncountable first-order struc-
tures, we do not have access to such tools, however still nice properties can be proven:
In the uncountable case, with some cardinal restrictions, Lascar and Shelah in [7]
proved that the automorphism group of an uncountable saturated model has SIP.

In this paper, we prove the following theorem (Theorem 4.1 in this paper, see
Sect. 4):

Theorem Let M be a homogeneous model in an abstract elementary class (K, �K)
such that |M| = κ > LS (K) and κ<κ = κ. Furthermore, assume that K< (M) is
a strong amalgamation class. Consider the group Aut(M) with the topology given

by Tcl, and let H � Aut (M) be such that [Aut (M) : H] � κ. Then, H is an open
subgroup of Aut(M); i.e., there exists A ∈ K< (M) such that AutA (M) � H.

In other words,
(

Aut (M) ,Tcl
)
has the small index property.

This theorem provides a purely algebraic framework for a model to have the small
index property; we thereby transfer in a rather sharp way the Lascar–Shelah setting
[7], where a similar result is proved for saturated uncountable models of a first order
theory.

In the last two sections, we study some examples and applications: we prove the
SIP for the Zilber field (see [2,6,12]), we study the SIP for the j-mapping (modular
invariant) under the light of recent results in its model theory, and for various other
Lω1,ω-axiomatizable structures.

The authors thank the referee for several questions and remarks that have helped
improve the presentation of our results.

2 Setting

We fix two infinite cardinals λ, κ such that λ < κ and κ<κ = κ. We work within
a fixed AEC K = (K, ≺K) with LS (K) � λ. We now provide some notation and
definitions.

Footnote 1 continued
are situations in which a “non-elementary” model theoretical analysis results in better regularity properties.
Shelah in [9] introduced the notion of Abstract Elementary Classes (AECs), where logic and syntax are set
aside and the elements of the class are axiomatized using an abstract notion of “strong” embedding (important
examples of these classes include Zilber’s pseudo-exponentiation, various pseudo-analytic expansions of the
complex numbers and several instances of covers—more recently, modular functions have been successfully
analyzed using these tools—see [5]). In this general setting, we do not necessarily need to consider the
elements of the class in the framework of the first-order logic and work with formulas. However, many
important concepts of model theory such as types, forking and other independence notions have been
successfully studied in the AEC context.

123



144 Z. Ghadernezhad, A. Villaveces

2.1 Notation

• Iso (N1IN2) denotes the set of all isomorphisms from N1 onto N2, for N1, N2 ∈
K.

• K< (M) := {N : N �K M, |N| < κ}. Clearly, this is not empty, as LS(K) � λ <

κ.
• For N1, N2 ∈ K< (M) and f ∈ Iso (N1IN2) we define OM

f := {g ∈ Aut (M) :

f � g}, the set of all automorphisms of M extending f. Note that OM
f �= ∅ means

that f can be extended to an automorphism of M.
• As usual, we denote by gα the map α−1 ◦ g ◦ α.
• Also, AutN(M) denotes the pointwise stabilizer of N (the subgroup of automor-

phisms of M that fix N pointwise) and Aut{N}(M) denotes the setwise stabilizer
of N, the subgroup of automorphisms of M that fix N setwise.

For the rest of the paper we fix a homogeneous model M ∈ K of size κ (we use
“homogeneous” in the following precise sense: all isomorphisms between small strong
substructures of M, f : N1 → N2 for N1, N2 ∈ K<(M), can be extended to auto-
morphisms of M). All our results from here on refer to properties of M within the
AEC K.

In our context, “small” (subset or submodel) means “of cardinality < κ”.
We may even say that our focus of study is the part of K “below M”, i.e. the class

of small K-elementary submodels of M. In this sense the actual arena of our results
is the class (K<(M), ≺K). This is almost an AEC; the only property of an AEC this
fails to satisfy is the unions axiom. In recent years, weak AECs have been studied;
this class is one of them.

Our notion of homogeneity means precisely that OM
f �= ∅ for all f ∈ Iso (N1IN2)

with N1, N2 ∈ K< (M) when we translate the concept to this notation.

Remark 2.1 Let N ∈ K< (M). Then the restriction map πN : Aut{N} (M) →
Aut (N) is surjective: if f ∈ Aut(N) then there is f ′ ∈ Aut(M) such that
f = f ′ � N = N.

Definition 2.2 For A ⊆ M, let clM (A) :=
⋂

{N ∈ K | A ⊆ N �K M}.

Remark 2.3 This notion of closure appeared in [1] in connection with the study of the
failure of tameness. It is worth noting here that with this notion of closure, unlike in
other related constructions, closures do not necessarily belong to the class K. More-
over, note that if A ⊆ M and clM (A) �= M, then for every m ∈ M\clM (A) there
is N �K M such that m /∈ N and clM (A) ⊆ N.

It is easy to see that the following holds.

(1) clM (N) = N for all N ∈ K with N �K M.
(2) clM

(
clM (A)

)
= clM (A) for all A ⊆ M.

Remark 2.4 The definition above of clM generalizes the first order definition of the
algebraic closure acl with �K as elementary submodel.

Let C :=
{

clM (A) : A ⊆ M such that |A| < κ
}

.
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The small index property for homogeneous models in AEC’s 145

Fact 2.5 (1) Suppose A ⊂ M, then
∣∣clM (A)

∣∣ � |A| + LS (K).
(2) Small strong submodels of M are closed i.e. K< (M) ⊆ C.
(3) If A, B ∈ C, then A ∩ B ∈ C.
(4) If A, B ∈ C, then there exists N ∈ K< (M) such that A ∪ B ⊆ N.

Proof (1) and (3) are immediate. (2) and (4) follow from the fact that |M| = κ >

LS (K). �

We extend the two notations that we have defined before from elements of K<(M)
to all closed sets.

Definition 2.6 Let X, Y ∈ C. Define

Iso (XIY) := {f � X : f ∈ Iso (N1, N2)

where N1, N2 ∈ K< (M) , X ⊆ N1, Y ⊆ N2 and f [X] = Y
}

and Aut (X) := Iso (XIX).

Corollary 2.7 The set {AutX (M) : X ∈ C} forms a basis of open neighborhoods of
identity.

Let Tcl be the topology that is generated by the cosets of stabilizers AutX(M) for

X ∈ C. It is clear that
(

Aut (M) ,Tcl
)

is a topological group. This is the setup for the

proof of our main theorem (see Sect. 4).

Remark 2.8 Similarly to the countable case in first-order logic we have the following
property: Suppose M and N are two models of the same uncountable cardinality
and we topologize them in the same way. Suppose α : Aut (M) → Aut (N) is an
embedding as abstract groups. Then the SIP for M implies that α is continuous.

2.2 Some properties of the class of closed sets C

In this subsection we do not require the assumption that M is homogeneous.

Lemma 2.9 Let X, Y ∈ C and f ∈ Iso (XIY) be such thatOM
f �= ∅. Then, there exists

Z ∈ C and f ′ ∈ Aut (Z) such that X ∪ Y ⊆ Z , f � f ′ and OM
f ′ �= ∅.

Proof Let σ ∈ OM
f ; then σ ∈ Aut(M) and σ � X = f. Since LS (K) < κ, there exists

N ∈ K< (M) such that X∪Y ⊆ N. Let X1 := N∪σ [N]∪σ−1 [N] and let λ = |X1|. It is
clear that λ < κ, hence there exists N1 ∈ K< (M) of cardinality λ such that X1 ⊆ N1.
Inductively, define Xn := Nn−1 ∪σ [Nn−1]∪σ−1 [Nn−1] and Nn ∈ K< (M) such
that Xn ⊆ Nn and |Nn| = λ for all n ∈ N (always possible since LS (K) < κ). We
then have a chain Ni ≺K Nj for i � j ∈ N. Let N∗ :=

⋃
n∈N

Nn. Then clearly
|N∗| = λ and N∗ ∈ K< (M). Note that σ � N∗ ∈ Aut (N∗). Let Z := N∗ and
f ′ := σ � N∗. �

Corollary 2.10 Let σ ∈ Aut (M) and assume λ is a cardinal with LS (K) � λ < κ,
then there exists N ∈ K< (M) with |N| = λ such that σ � N ∈ Aut (N).
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146 Z. Ghadernezhad, A. Villaveces

Proof We use the same argument as the proof of Lemma 2.9: start with N0 and build
up a ≺K-increasing chain of models Nn such that Nn ⊇ Xn := Nn−1 ∪σ [Nn−1]∪
σ−1 [Nn−1]. �

Remark 2.11 So far, no special properties of κ as a cardinality have been used. For
the next corollary we use κ<ω = κ.

Corollary 2.12 Let I be an index set with |I| < κ. Assume fi ∈ Iso (XiIYi) with
Xi, Yi ∈ C are such that OM

fi
�= ∅, for i ∈ I. Then there exists Z ∈ C and f ′

i ∈
Aut{Z} (M) such that

⋃
i∈I Xi ∪ ⋃

i∈I Yi ⊆ Z, fi � f ′
i and OM

f ′
i

�= ∅ for all i ∈ I.

Proof Use the facts that LS (K) < κ and κ<κ = κ and repeat the argument in the
proof of Lemma 2.9, by closing the sets under all the f ′

i and f ′−1
i s for some f ′

i ∈ OM
f

with i ∈ I in each step. �

Corollary 2.13 Let I be an index set with |I| = λ such that LS (K) � λ < κ. Assume
σi ∈ Aut (M) with i ∈ I. Then there exists N ∈ K< (M) with |N| = λ such that
σi � N ∈ Aut (N) for all i ∈ I.

Proof As in the proof of Lemma 2.9. �


3 Generic sequences of automorphisms

This section sets up the tools for the main proof: generic sequences of automorphisms
and strong amalgamation bases. We provide the basic notions (the first one is adapted
from [7] to our context, the second one is new) and then derive the existence of large
families of generic sequences of automorphisms.

Definition 3.1 Suppose M0, M1, M2 ∈ K< (M) and M0 ≺K Mi for i = 1, 2.
Let γ0 be a sequence of automorphisms of M0. Assume γ1 and γ2 are sequences of
automorphisms of M1 and M2; respectively, both extending γ0. We say γ¹ and γ² are
compatible over M0 if there exist M3 ∈ K< (M) and α1, α2 ∈ AutM0 (M) such that
α1 [M1] , α2 [M2] ≺K M3 and γ3 ∈ Aut (M3) extends both α1 ◦γ1 ◦α−1

1 � α1 [M1]

and α2◦γ2◦α−1
2 � α2 [M2] (this is equivalent to requiring that γ3◦α1 � N1 = α1◦γ1

and γ3 ◦ α2 � N2 = α2 ◦ γ2).

Notice that in the definition above for a sequence of automorphisms we allow
repetitions of automorphisms.

We now define a central notion in the proof of the main theorem: generic sequences
of automorphisms (and the particular case of a generic automorphism).

Definition 3.2 Suppose I is an index set with |I| < κ and let γ = (gi : i ∈ I) be a
sequence of automorphisms of M. We say γ is a generic sequence of automorphisms
if whenever N ∈ K< (M) is such that γ � N is a sequence of automorphisms of
N and N1 ∈ K< (M) is such that N ≺K N1 and θ = (ti : i ∈ I) is a sequence of
automorphisms of N1 extending γ � N (i.e. gi � N � ti for all i ∈ I), then if γ � N ′
and θ are compatible over N for some N ′ ∈ K< (M), there exists α ∈ AutN (M)
such that γ extends α ◦ θ ◦ α−1 (or equivalently γα :=

(
gα

i : i ∈ I
)

extends θ).
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The small index property for homogeneous models in AEC’s 147

We abuse language by saying that “g is a generic automorphism” when γ = (g) is
a constant generic sequence of automorphisms.

Remark 3.3 Suppose I is an index set with |I| < κ and let γ = (gi : i ∈ I) be generic.
Then γα is generic for α ∈ Aut (M).

Lemma 3.4 LetM0 ∈ K< (M)and I be an index setwith cardinality less thanκ. Sup-
pose γ = (gi : i ∈ I) and θ = (ti : i ∈ I) are two generic families of automorphisms
of M such that γ � M0 = θ � M0 ∈ Aut (M0). Then there exists α ∈ AutM0 (M)
such that θα = γ.

Proof Similar to the argument in [7], we use back and forth. Since θ and γ are cofinal
in K< (M) (see Corollary 2.13), we claim that we can build a chain of models Nθ

j ∈
K< (M) and N

γ
j ∈ K< (M) for j < κ, such that

⋃
j<κ Nθ

j =
⋃

j<κ N
γ
j = M; and

θ � Nθ
j ∈ Aut

(
Nθ

j

)
and γ � N

γ
j ∈ Aut

(
N

γ
j

)
and build partial isomorphisms αi for

i < κ using the back and forth such that α :=
⋃

j<κ αj is the desired automorphism.

Let α0 = idM0 and Nθ
0 = N

γ
0 = M0. If i is limit ordinal, let Nθ

i :=
⋃

j<i Nθ
j ,

N
γ
i :=

⋃
j<i N

γ
j and αi :=

⋃
j<i αj. Suppose i = j + 1, without loss of generality

we do the “forth” step. Let Nθ
i be an element in K< (M) such that Nθ

j �K Nθ
i and

θ � Nθ
i ∈ Aut

(
Nθ

i

)
; note that existence of such a model follows from Corollary 2.13

or proof of Lemma 2.9. Since γ is generic, then there exists β ∈ Aut
α ′

j

[
Nθ

j

] (M)

such that γ extends β ◦ θ ◦ β−1 and α ′
j ∈ OM

αj
. Let αi := α ′

j ◦ β � Nθ
i . Let then

α :=
⋃

αj. �

It is an interesting question to determine sufficient conditions for a generic sequence

of automorphisms to exist. We now provide one condition that will guarantee precisely
that.

Definition 3.5 Assume I is an index set with cardinality less than κ. Suppose
N0 ∈ K< (M) and γ0 =

(
g0

i : i ∈ I
)

is a sequence of automorphisms of N0. We
say

(
N0, γ0

)
is a strong amalgamation base if for all N1, N2 ∈ K< (M) with

N0 ≺K N1, N2; all γ1 and γ2 sequences of automorphisms of N1 and N2 that
extend γ0; respectively, are compatible over N0. We say K< (M) is a strong amal-
gamation class if (N, γ) is a strong amalgamation base for every N ∈ K< (M) and
γ = (gi : i ∈ I) a sequence of automorphisms of N.

Remark As we see next, this notion guarantees the existence of generic sequences of
automorphisms. Its importance lies in the fact of being able to “amalgamate coher-
ently” sequences of isomorphisms, while also doing an amalgam of the domains!

Lemma 3.6 Suppose K< (M) is a strong amalgamation class. Then generic
sequences of automorphisms with index set of arbitrary cardinality less than κ exist.

Proof We write the proof for the case when I is a singleton. The proof for the general
case (arbitrary I) is not essentially different, but is more cumbersome; therefore we
address here only the case when the sequence consists of a single automorphism.
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148 Z. Ghadernezhad, A. Villaveces

We will build a generic automorphism f as the union of a tower of automor-
phisms of some elements of K<(M). Let M0 ∈ K< (M) and f0 be an arbitrary
automorphism of M0. Since M is homogeneous, we know that OM

f0
�= ∅. Now let

E := {(N, e) : M0 ≺K N ∈ K< (M) and e ∈ Aut (N) with f0 � e}. Since κ<κ =
κ, using Lemma 2.9, we have that |E| � κ. We enumerate E as {(Ni, ei) |i < κ }. We
now build a sequence of pairs (Mi, fi) for i < κ such that (Mi, fi) ∈ E, Mi ≺K Mj

and fi � fj for i � j < κ. Moreover, we build the sequence (Mi) in such a way that
M =

⋃
i∈κ Mi (for this, we enumerate M as {ai | i < κ} and demand that ai ∈ Mi+1

for every i < κ).

• If i is a limit ordinal then let Mi =
⋃

β<i Mβ and fi =
⋃

β<i fβ; note that the
cardinal assumption κ<κ = κ implies that Mi ∈ K< (M).

• Suppose i is successor and i = j+ 1. Consider
(
Nj, ej

) ∈ E. Since K< (M) is a
strong amalgamation class, there exist Mi ∈ K< (M) and fi ∈ Aut (Mi) such
that Mj ≺K Mi, fj � fi, α ∈ AutMj

(M) and eα
j := α◦ej◦α−1 � α

[
Nj

]
� fi.

Then let f :=
⋃

i∈κ fi .
We claim f is a generic automorphism. There are two cases:

(1) Suppose M0 ⊆ N1,N ∈ K< (M) and g ∈ Aut (M) such that N1 ≺K N,
g � N ∈ Aut (N) and g � N1 = f � N1. Note that because of the coherence axiom
of AECs M0 ≺K N1. Moreover, by Lemma 2.9 there is N ′ ∈ K< (M) such that
N1 ≺K N ′ and f ′ := f � N ′ ∈ Aut (N ′). Let i be the smallest index < κ such
that N ′ ⊆ Mi. Since N1 is an strong amalgamation base, there is N2 ∈ K< (M)
and e2 ∈ Aut (N2) such that Mi, α [N] ≺K N2, f ′ � e2, α ∈ AutN1 (M) and
α◦g◦α−1 � e2. It is clear that (N2, e2) ∈ E , then the construction of f guarantees
that there is j > i such that (N2, e2) embeds into

(
Mj, fj

)
that fixes Mi. Hence,

and there exists N∗ ∈ K< (M) and α ∈ AutN1 (M) such that α [N] = N∗ and f

extends α ◦ g ◦ α−1 � N∗.
(2) Suppose N, N ′ ∈ K< (M) and g ∈ Aut (M) are such that N ′ ≺K N, g � N ∈

Aut (N) , g � N ′ = f � N ′ and N ′ ∩ M0 �= M0. Using Lemma 2.9, there is
N1 ∈ K< (M) such that N ∪ M0 ⊆ N1 and f � N1 ∈ Aut (N1). Again from
the coherence axiom of AECs it follows that N, M0 ≺K N1. Since K< (M) is a
strong amalgamation class and (N, f � N) is a strong amalgamation base, f � N1
and g � N ′ are compatible over N. Let α ∈ AutN (M), N2 ∈ K< (M) and
h ∈ Aut (N2) such that N1 ≺K N2 and h extends f � N1 ∪ gα � N ′. Note
that α [N1] (and hence α [N]) is strongly embedded in N2 (again follows from
coherence axiom in AEC’s). Now (N2, h) is an element of E. Then we can again
reason as in Case 1.

�

Lemma 3.7 Fix an index set I with |I| < κ and let F be the set of all I-sequences
of generic automorphisms. Then F is a dense subset of Aut (M)I, with the product
topology.

Proof For the sake of readability, we write the proof again for the case |I| = 1. Let
AutA (M) be a basic open set with A ∈ C. Let g ∈ AutA (M); then, just as in the
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The small index property for homogeneous models in AEC’s 149

proof of Lemma 3.6 (choosing f0 := g � A) we can find a generic automorphism f

such that f0 � f. Therefore f ∈ AutA (M) and F ∩ AutA (M) is non-empty. �

Remark 3.8 In Definitions 3.1, 3.2 and 3.5 we considered the very natural case where
the elements are from K< (M) and it is enough for us to prove the results of next
sections. However, these notions can be considered for the elements from the bigger
set C; the required definitions for elements of C have already been provided in Sect. 2.

3.1 Many generic sequences of automorphisms

We now prove that there are many different generic sequences of automorphisms
relative to the size of Aut (M), in the following specific sense:

• If |Aut (M)| � κ, then for any family (Mi)i∈I of (� κ)-many models in K< (M)
where K< (M) is a strong amalgamation base, we obtain a corresponding family
(hi)i∈I of automorphisms of M, each hi fixing pointwise Mi, and such that
the family (hi)i∈I can be used to build a generic sequence of automorphisms in
2κ-many different ways (the technical details of this are the content of the next
lemma).

• We therefore obtain 2κ-many generic sequences of automorphisms of length κ.
Moreover, this implies that if |Aut (M)| � κ then |Aut (M)| = 2κ. Our approach
in this part has the general structure of Lascar–Shelah [7, Lemma 9] but making
explicit the use of strong amalgamation bases.

• Of course, in the other extreme case when the model M is rigid2, all generic
sequences of automorphisms must consist of the identity.

Lemma 3.9 Suppose
(
gi,j : i ∈ I, j ∈ J

)
is a matrix of automorphisms of M and

|I| = |J| � κ. Fix (Mi : i ∈ I) a sequence of elements of K< (M) where K< (M) is
a strong amalgamation base. Then there exists (hi : i ∈ I) such that

(1) hi ∈ AutMi
(M) for all i ∈ I;

(2)
(
hi ◦ gi,δ(i) : i ∈ I

)
is a generic sequence, for all injective functions δ : I → J.

Proof Consider the following set

Y = {(I0, N0, N1, δ, (ki : i ∈ I0)) : I0 ⊆ I, |I0|

< κ, δ is an injective function from I0 into J with

N0 � N1 ∈ K< (M) , ki ∈ Aut (N1) and ki � N0 ∈ Aut (N0)}.

Note that |Y| = κ. Fix an enumeration (yα : α < κ) for Y. We define by induction
on α < κ a family

(
Mi

α : i ∈ I
)

of elements of K< (M) and a family
(
hi

α : i ∈ I
)
,

where hi
α ∈ Aut

(
Mi

α

)
such that

(1) Mi
0 = Mi and hi

0 = idMi
for all i ∈ I;

2 For instance, in the case where the model M is a cardinal and strong elementary submodels of M are
just initial segments.
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(2) The functions
(
α �→ Mi

α

)
and

(
α �→ hi

α

)
are increasing and continuous, for all

i ∈ I;
(3)

⋃
α<κ Mi

α = M and hi :=
⋃

α<κ hi
α ∈ Aut (M) for each i ∈ I;

(4)
(
hi ◦ gi,δ(i) : i ∈ I

)
is a generic sequence for all injective functions δ from I to

J.

Assume yα = (I0, N0, N1, δ, (ki : i ∈ I0)) ∈ Y. Using Lemma 2.9 and Corollary
2.12 one can show that there is a model M ′ ∈ K< (M) such that N0 ≺K M ′

• Mi
α ≺K M ′ for all i ∈ I0;

• gi,δ(i) � M ′ ∈ Aut (M ′) for all i ∈ I0;

• hi
α extends to an automorphism mi

α∈ Aut (M ′) for each i ∈ I0.

If
(
mi

α ◦ gi,δ(i) : i ∈ I0
)

and (ki : i ∈ I0) are not compatible over any ≺K-submodel
of N0 (i.e. there is no model and no ≺K-embedding to that model such that we can
amalgamate the automorphisms over any ≺K-submodel of N0), then define Mi

α+1 :=

M ′ and hi
α+1 := mi

α for all i ∈ I0. Define Mi
α+1 = Mi

α and hi
α+1 = hi

α for i /∈ I0.
Suppose, without loss of generality,

(
mi

α ◦ gi,δ(i) : i ∈ I0
)

and (ki : i ∈ I0) are
compatible over N0. Since K< (M) is a strong amalgamation class we can find
Mi

α+1 �K M ′ and hi
α+1 ∈ Aut

(
Mi

α+1

)
such that there exists an ≺K-elementary

map f from N1 into Mi
α+1 which extends the identity on N0 in such a way that

hi
α+1 ◦gi,δ(i) � Mi

α+1 extends f ◦ki ◦ f−1. If i /∈ I0, then define Mi
α+1 = Mi

α and

hi
α+1 = hi

α. �

Now for the case where |Aut (M)| � κ we choose

(
gi,j : i ∈ I, j ∈ J

)
to be a κ × κ-

matrix of distinct automorphisms of M. Then we get 2κ-many generic sequences of
automorphisms of length κ.

4 Proof of SIP for strong amalgamation classes

In this section we prove our main theorem.

Theorem 4.1 Let M be a homogeneous model in an abstract elementary class
(K, �K) such that |M| = κ > LS (K) and κ<κ = κ. Furthermore, assume that
K< (M) is a strong amalgamation class. Consider the groupAut(M)with the topol-

ogy given byTcl, and letH � Aut (M) be such that [Aut (M) : H] � κ. Then,H is an
open subgroup of Aut(M); i.e., there exists A ∈ K< (M) such that AutA (M) � H.

In other words,
(

Aut (M) ,Tcl
)
has the small index property.

We need only deal with the case Aut (M) is rich3, that is |Aut (M)| = 2κ (oth-
erwise, the identity would be isolated and therefore the automorphism group would
automatically satisfy the theorem, as in that case all subgroups would be open).

Suppose H is a subgroup of Aut (M) with small index (i.e. not bigger that κ).
Toward a contradiction suppose H is not open.

3 With an argument similar to the first order countable case, one can show that if the identity is not isolated,
then Aut (M) is a perfect complete topological space.
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Proposition 4.2 (Similar to Proposition 10 in [7]) There exists a generic sequence
γ = (gi : i ∈ I) such that

(1) the set {i ∈ I : gi � M0 = h and gi /∈ H} has cardinalityκ for allM0 ∈ K< (M)
and h ∈ Aut (M0);

(2) the set {i ∈ I : gi ∈ H} has cardinality κ.

Proof Consider the following set X = {(M0, f) : M0 ∈ K< (M) and f ∈ Aut (M0)}.
It is clear that |X| = κ.

• Consider I0 of cardinality κ and a sequence ((Mi, fi) : i ∈ I0) of elements of X

such that the set {i ∈ I0 : (Mi, fi) = (M0, f)} has cardinality κ for all (M0, f) ∈
X.

• Let I1 be a set of cardinality κ disjoint from I0 and let I = I0 ∪ I1.
• Finally, let J be any set of cardinality κ.

For each i ∈ I and j ∈ J define gi,j ∈ Aut (M) such that the following hold:

(1) gi,j � Mi = fi for all i ∈ I0. Moreover, the set
{
gi,j : j ∈ J

}
where i ∈ I0 meets

at least two classes modulo H. This is always possible since we assumed H is not
open (and hence none of its classes contain a non-empty open set).

(2) The set
{
gi,j ∈ J

}
meets all classes modulo H if i ∈ I1. This is possible because

the index of H in Aut (M) is small (i.e. not bigger that κ).

Now let (Mi : i ∈ I) a sequence of elements of K< (M) where Mi is arbitrary for
i ∈ I1. By Lemma 3.9 there is a family (hi : i ∈ I) such that satisfying conditions (1)
and (2) of this lemma. Then choose a bijective function δ : I → J such that:

• gi,δ(i) is not in the class of h−1
i for i ∈ I0 (i.e. gi,δ(i) /∈ h−1

i H guaranteed by
Condition (1) above);

• gi,δ(i) is in the class of h−1
i for i ∈ I1 [i.e. gi,δ(i) ∈ h−1

i H guaranteed by
Condition (2) above].

Then the sequence γ :=
(
hi ◦ gi,δ(i) : i ∈ I

)
is a generic sequence and satisfies the

requirement. �


4.1 Construction of the tree

Let H be as before: a subgroup of small index and we assume, toward a contradiction,
that H is not open. Let S = 2<κ be the set of sequences of 0 and 1 of length less than
κ, and S∗ = {s ∈ S : the length of s is successor}. Let γ be the generic sequence that
is obtained from Proposition 4.2. Fix an enumeration (aα : α < κ) of elements of M.

We construct by induction on s ∈ S, a model Ms ∈ K< (M), an automorphism
gs ∈ Aut (Ms), and if s ∈ S∗, automorphisms hs and ks in Aut{Ms} (M) in such a
way that the following conditions are satisfied:

(1) hs,0 ∈ H and hs,1 /∈ H for all s ∈ S∗;
(2) ks,0 = ks,1 for all s ∈ S∗;
(3) ht [Ms] = Ms (i.e. ht ∈ Aut{Ms} (M)) for s ∈ S and all t ∈ S∗ with t � s;
(4) gs ◦ (ht � Ms) ◦ g−1

s = kt � Ms for s ∈ S and all t ∈ S∗ with t � s;
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(5) aβ ∈ Ms for s ∈ S and β < length (s);
(6) (ht : t � s, t ∈ S∗) and (kt : t � s, t ∈ S∗) are sequences elements from γ, for

s ∈ S (and they are generic as well).

For s = ∅, define Ms to be an arbitrary element of K< (M) and gs ∈ id (Ms).
For limit step there is no problem. Suppose everything has been defined up to step
s. Write F for the set of all the automorphisms of the generic sequence γ. First
choose hs,0 ∈ F ∩ H not in {ht : t � s, t ∈ S∗}. Extend gs to g ∈ Aut (M) such
that g ◦ ht ◦ g−1 = kt for all t ∈ S∗ with t � s in the following manner: First
extend gs to some g ′ ∈ Aut (M). The two families

{
g ′ ◦ ht ◦ g ′−1 : t � s, t ∈ S∗}

and {kt : t � s, t ∈ S∗} are generic and they agree on Ms. Hence, we can find g ′′ ∈
AutMs (M) such that kt = g ′′ ◦ g ′ ◦ ht ◦ g ′−1 ◦ g ′′−1 for all t ∈ S∗ with t � s.
Then let g = g ′′ ◦ g ′.

Using Lemma Corollary 2.12 we can find Ms,0 ∈ K< (M) in such a way that:

(1) Ms,0 contains Ms and aα, where α = length (s);
(2) ht [Ms,0] = Ms,0 for all t � (s, 0) and g [Ms,0] = Ms,0.

Set Ms,1 = Ms,0, gs,0 = gs,1 = g � Ms,0 and hs,1 an element of F extending
hs,0 � Ms,0, not in H and not in {ht : t � s, t ∈ S∗}, and ks,0 = ks,1 an element of
F extending gs,0 ◦ (hs,0 � Ms,0) ◦ g−1

s,0 not in {kt : t � s, t ∈ S∗}.
For each σ ∈ 2κ, let gσ =

⋃
δ<σ gδ. Then gσ ∈ Aut (M) and moreover for all

t < σ and t ∈ S∗, gσ◦ht◦g−1
σ = kt. Assume τ and σ are two distinct elements of 2κ;

let s be their largest common initial segment and assume, with out loss of generality,
that (s, 0) < σ and (s, 1) < τ. Then gσ ◦hs,0 ◦g−1

σ = ks,0 = ks,1 = gτ ◦hs,1 ◦g−1
τ ;

thus hs,0 = g−1
σ ◦ gτ ◦ hs,1 ◦ g−1

τ ◦ gσ. Since hs,0 ∈ H and hs,1 /∈ H, g−1
σ ◦ gτ /∈ H

hence the index of H in Aut (M) is 2κ; a contradiction.

5 The SIP for the Zilber field, covers and modular invariants

This section consists of applications of Theorem 4.1. We first provide a general set-
ting (quasiminimal pregeometry classes) that both satisfies enough conditions for the
theorem to apply and includes several interesting cases.

5.1 The SIP and quasiminimal pregeometry classes

In order to construct an algebraically closed field with the Schanuel property cate-
gorical in all uncountable cardinals, Zilber introduced the notion of “quasiminimal
excellent” classes (see [13])—a combination of Shelah’s excellent classes with a
weaker variant of strong minimality. Later, the concept was studied in isolation and two
major simplifications were brought about: first of all, a notion of quasiminimal classes
is enough to imply excellence (see [2]) and a similar notion of quasiminimal classes
directly implies categoricity (see [6]). In this chapter we prove, as an application of our
Theorem 4.1 that the SIP for homogeneous models holds in the quasiminimal classes
setting. Then, we conclude that the automorphism group of Zilber field has the small
index property.
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We use the setting from [6]. For the sake of completeness (and clarification) we
restate the axioms here:

Definition 5.1 Let L be a language. A quasiminimal pregeometry class Q is a class
of pairs 〈H, clH〉 where H is an L-structure and clH is a pregeometry operator on H

such that the following conditions hold:

(1) Closure under isomorphisms If 〈H, clH〉 ∈ Q and H ′ is an L-structure and
f : H → H ′ is an isomorphism then 〈H ′, clH ′〉 ∈ Q where clH ′ :=
f
(
clH

(
f−1 (X ′)

))
for X ′ ⊆ H ′.

(2) Quantifier free theory The empty function is a partial embedding between any
two structures of the class Q.

(3) Countable closureFor each 〈H, clH〉 ∈ Q, the closure of any finite set is countable.
(4) Relativization If 〈H, clH〉 ∈ Q and X ⊆ H, then 〈clH (X) , clH � clH (X)〉 ∈ Q.
(5) Closure coherence If 〈H, clH〉 , 〈H ′, clH ′〉 ∈ Q, X ⊆ H, y ∈ H and f : H → H ′

is a partial embedding defined on X ∪ {y}, then y ∈ clH (X) if and only if
f (y) ∈ clH ′ (f (X)).

(6) Homogeneity over countable models/uniqueness of generic types Let 〈H, clH〉 ,
〈 H ′, clH ′〉 ∈ Q and suppose C ⊆ H, C ′ ⊆ H ′ are countable closed sets and
g : C → C ′ is an isomorphism:

(a) If x ∈ H\C and x ′ ∈ H ′\C ′, then g ∪ {(x, x ′)} is a partial embedding.
(b) If g ∪ f : H ⇀ H ′ is a partial embedding such that X = dom (f) is finite and

y ∈ clH (X ∪ C), then there is y ′ ∈ H ′ such that g ∪ f ∪ {(y, y ′)} is a partial
embedding.

Given a structure H ∈ Q and a substructure G ⊆ H also in Q, denote G � H when G

is closed in H.

Proposition 5.2 (Proposition 4 in [6]) Let H, H ′ ∈ Q such that H � H ′ and X ⊆ H.
Then clH (X) = clH ′ (X).

Lemma 5.3 Fix M ∈ Q where Q is a quasiminimal pregeometry class. Then
clM (A) = clM (A) (the intersection of all closed sets containing A) for all A ⊆ M.

Proof Let A ⊆ M then clM (A) ∈ Q (by point 4 of the definition of Q).
Therefore clM (A) ⊆ clM (A). The other direction is also simple: suppose a ∈
clM (A) \clM (A), then there is H ∈ Q such that A ⊆ clM (A) ⊆ H, H � M and
a /∈ H. Note that clH (A) ⊆ H does not contain a; but on the other hand from Propo-
sition 5.2 it follows that clH (A) = clM (A) and a ∈ clM (A) = clH (A) which is a
contradiction. �


Recall that in [6], Haykazyan derives uncountable categoricity from the quasi-
minimal pregeometry axioms. It is worth mentioning that in November 2016, during
corrections to an earlier version of this paper, Sebastien Vasey has posted an article in
ArXiv [10] where he proves that in AECs admitting intersections (i.e. with a notion
of closure defined like our clM), the exchange axiom follows from the other axioms
of a quasiminimal AEC.

Theorem 5.4 Suppose Q is a quasiminimal pregeometry class. Let M ∈ Q be the
model of size ℵ1 and let C := {clM (A) : A ⊆ M, |A| < |M|}. Then the class C is a
strong amalgamation class and hence, Aut (M) has SIP.
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Proof Let N0 ∈ C and γ0 ∈ Aut (N0). We want to show
(
N0, γ0

)
is a strong amalga-

mation basis. Suppose N1, N2 ∈ K< (M) are such that N0 � N1, N2; and let γ1 and
γ2 be sequences of automorphisms of N1 and N2 extending γ0; respectively. We claim
one can find N ′

2 ∈ C such that N ′
2

∼=N0 N2 and N ′
2∩N1 = N0. Let B be a basis for N2

(i.e. clM (B) = N2). Choose B ′ an independent set in M such that there is a bijection
between B ′ and B, and moreover B ′∩N1 = B0 = B∩N2 where clM (B0) = N0. Now
let N ′

2 = clM (B ′). Note that we can choose B ′ in such a way that N ′
2 ∩ N1 = N0.

By Theorem 16 in [6] there is an isomorphism α between N2 and N ′
2 and therefore

N ′
2

∼=N0 N2. Now γ1 ∪ (
α ◦ γ2 ◦ α−1

)
is an isomorphism of N1 ∪ α [N2] to itself.

Then by Proposition 14 in [6] extends γ1 ∪ (
α ◦ γ2 ◦ α−1

)
extends to an automor-

phism of N3 := clM (N1 ∪ α [N2]) and then to an automorphism of M. Therefore it
follows that γ1 ∪ (

α ◦ γ2 ◦ α−1
)

extends to an automorphism of N3 where N3 ∈ C

and N1, α [N2] � N3. Hence,
(
N0, γ0

)
is an amalgamation base. �


Corollary 5.5 Let B be the Zilber field. Then Aut (B) has SIP for the topology where
basic open sets around the identity are given by stabilizers of sets of size less than
continuum.

It is an interesting question to check whether by investigating the automorphism
group of the Zilber field (which has the Schanuel property) we would be able to
detect any difference between the Zilber field and (C,+, ·, exp). From [7] it follows
that the complex numbers (without exp) have the SIP. The construction of the Zilber
field, using the quasiminimal excellence setting, allowed us to prove SIP for its auto-
morphism group. Then the question of whether or not we are able to detect similar
properties about the automorphism group of (C,+, ·, exp) seems plausible.

5.2 More Lω1,ω-sentences and the SIP (other directions)

Now that we have established the SIP for classes arising from quasiminimal prege-
ometry classes (really, for their model of size ℵ1) and we have shown that being a
quasiminimal pregeometry class is enough to obtain that the class of small elemen-
tary submodels satisfies strong amalgamation, a natural question is for which other
classes axiomatizable by Lω1,ω-sentences can we guarantee the SIP (at uncountable
homogeneous models!). A natural class would be excellent Lω1,ω-sentences that are
not necessarily quasiminimal. The study of the exact conditions that would guarantee
that homogeneous models of those classes have strong amalgamation are, however,
the subject of possible future work.

5.3 Covers

The fact that all quasiminimal pregeometry classes satisfy our framework for SIP
(Theorem 5.4) provides a further source of examples. In Sect. 5.1, we analyzed the case
of the “Zilber field” as a quasiminimal pregeometry class. This is indeed one instance
of a much more general phenomenon: some covers and some modular invariants (like
the classical j-function) have been shown to be quasiminimal pregeometry classes and
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therefore their homogeneous models M have automorphism groups Aut(M) that are
SIP, by our results.

Variants of this example have been studied extensively by Zilber and others (Bald-
win, Bays, Caycedo, Kirby, Sustretov, etc.). The general setup arises from a short exact
sequence

0 → K
i→ G

f→ H → 1

whereG, H are groups (typicallyG is an additive abelian group and H is a multiplicative
group) and the map f : G → H is a homomorphism with kernel K. In particular, for
this situation, Bays and Zilber provide in [3] conditions for the quasiminimality of the
structure. Any structure axiomatized in Lω1,ω that satisfies the Bays-Zilber conditions
for quasiminimality will have the SIP.

The “Zilber field” of our previous section has the added complexity that we are
dealing with the field structure and not just with a homomorphism from the additive
group structure into the multiplicative group part. A simplified structure often studied
(see [11]) in connection with complex exponentiation is sometimes presented as a
cover

0 → 2πiZ
i→ (C,+)

exp→ (
C

×, ·) → 1.

5.4 j-Mappings

Harris [8] defines in an Lω1,ω-axiomatization of the classical “modular invariant”,
also called the “j-mapping”, an analytic function from the upper half plane H into the
complex numbers,

j : H → C.

The j-mapping is a crucial component of analytic number theory. It provides surprising
connections between properties of extensions of number fields and analytic properties
of the mapping—the solution to Hilbert’s Twelfth problem for the characteristic zero
and complex case hinges on this.

Harris’s model-theoretic analysis of j, developed in [5], produces a quasiminimal
pregeometry and therefore is a new example of a class with the SIP. We describe briefly
the backbone of Harris’s analysis, and the connection to quasiminimality and the SIP.

Let L be a language for two-sorted structures of the form

A = 〈〈HI {gi}i∈N〉, 〈F,+, ·, 0, 1〉, j : H → F〉

where 〈F,+, ·, 0, 1〉 is an algebraically closed field of characteristic 0, 〈HI {gi}i∈N〉 is
a set together with countably many unary function symbols (representing the action
of a countable group on the upper half plane), and j : H → F. Really, j is a cover from
the action structure into the field C.
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Let then

Thω1,ω(j) := Th(Cj) ∪ ∀x∀y(j(x) = j(y) →
∨

i<ω

x = gi(y))

where Cj is the “standard j-model” (H, 〈C,+, ·, 0, 1〉, j : H → C) and Th(Cj) is its
first order theory.

This captures all the first order theory of j (not the analyticity!) plus the fact that
fibers are “standard” (“fibers are orbits”).

Harris analyzes this structure in order to establish (modulo serious algebraic
geometric results4) the categoricity of Thω1,ω(j) + trdeg(F) � ℵ0 in all infinite
cardinalities. A crucial step in this work consists in proving that the notion of closure
given as

clj(A) := j−1(acl(j(A)))

indeed defines a quasiminimal pregeometry structure.
Now, our main theorem implies (modulo Harris’s quite long analysis) that the

“automorphism group of j”, that is, the set of map-pairs ϕH, ϕF such that

H1

j1

ϕH
H2

j2

F1 ϕF
F2

commutes, has the SIP (for the topology where basic open sets around the identity are
stabilizers of sets of size less than continuum).
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