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Abstract We provide a game theoretical proof of the fact that if f is a function from
a zero-dimensional Polish space to N

N that has a point of continuity when restricted
to any non-empty compact subset, then f is of Baire class 1. We use this property of
the restrictions to compact sets to give a generalisation of Baire’s grand theorem for
functions of any Baire class.
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1 Introduction and generalities

The first formulation of Baire’s grand theorem appeared in 1904, in the written version
of the Cours Peccot, taught by Baire in 1903-04. The original formulation stated that,
given a function f : Rn → R, then f is a pointwise limit of continuous functions if
and only if for every non-empty closed set F ⊆ R

n the restriction f |F has at least one
point of continuity.

B Riccardo Camerlo
riccardo.camerlo@polito.it

Jacques Duparc
Jacques.Duparc@unil.ch

1 Department of Mathematical Sciences Joseph-Louis Lagrange, Politecnico di Torino, Corso
Duca degli Abruzzi 24, 10129 Torino, Italy

2 Département des systèmes d’information, Université de Lausanne, Quartier UNIL-Dorigny,
Bâtiment Internef, Lausanne 1015, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-017-0563-6&domain=pdf
http://orcid.org/0000-0001-8362-4393


196 R. Camerlo, J. Duparc

The notions involved in this statement are related to theBaire hierarchy of functions
(see also [3, §24]). Here and in the sequel we follow the standard descriptive set
theoretic notations; in particular, we use Σ0

ξ ,Π
0
ξ to denote the levels of the Borel

hierarchy, and Δ0
ξ for the ambiguous classes.

Definition 1 Given topological spaces X,Y and a function f : X → Y , say that f
is of Baire class 1 if ∀V ∈ Σ0

1(Y ) f −1(V ) ∈ Σ0
2(X). Inductively, given an ordinal

ξ ≥ 2, say that f is of Baire class ξ if f is the pointwise limit of functions fn , where
fn is of Baire class ξn < ξ .

The connection is clarified by the following facts.

Theorem 1 1. Let X,Y be separable metrisable spaces and f : X → Y . Suppose
that either X is zero-dimensional or that Y is homeomorphic to someRm (m > 0).
Then f is of Baire class 1 if and only if f is the pointwise limit of a sequence of
continuous functions.

2. If X,Y are metrisable spaces and Y is separable, then for 1 ≤ ξ < ω1 the function
f : X → Y is Baire class ξ if and only if ∀V ∈ Σ0

1(Y ) f −1(V ) ∈ Σ0
ξ+1(X).

Nowadays, Baire’s grand theorem is usually stated with more generality than the
original formulation, as follows (see for example [3, Theorem 24.15]).

Theorem 2 Let X be a Polish space, Y be a separable metrisable space, and let
f : X → Y . Then the following are equivalent:

1. f is of Baire class 1
2. for every non-empty closed F ⊆ X, the restriction f |F has a point of continuity
3. for every non-empty compact K ⊆ X, the restriction f |K has a point of continuity

The purpose of this note is first to point out a game theoretic argument to prove
the implication (3) ⇒ (1) for functions f : X → N

N, where X is a zero-dimensional
Polish space; secondly, to show how condition (3) can be used to generalise Baire’s
grand theorem to higher Baire classes.

2 Games for continuous and Baire class 1 functions

Given a function f : NN → N
N, we shall consider two games associated with f . The

first one is the classical Wadge game GW ( f ): players I and II alternate their rounds,
playing elements of N; Player II can skip her turn. If x, y are the sequences of moves
played by I, II, respectively, let II win this run of the game if and only if f (x) = y
(in particular, y ∈ N

N). Then f is continuous if and only if player II has a winning
strategy in GW ( f ).

To deal with Baire class 1 functions, we shall use the so-called eraser game intro-
duced in [2] (for a different presentation, see [1] and the references contained there).
We recall here the details, since we need them for our proof.

If f : NN → N
N, let the game GB1( f ) be defined as follows. Players I and II

alternate their rounds. Player I plays elements of N; Player II can skip her turn, or
play elements from N ∪ {�}, where � is a new symbol, called an eraser. When
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player II plays �, we say that she is erasing. Indeed, given z ∈ (N ∪ {�})N, let
z� = lim(z|n)� = {

(i, j) ∈ N × N | ∃m∀n > m (i, j) ∈ (z|n)�
}
, where ∅� = ∅

and, for any s such that s� ∈ N
k and a ∈ N,

(sa)� = s�a

(s �)� =
{
s�|k−1 if k > 0
∅ if k = 0

If x, y are the sequences played by I, II, respectively, let II win this run of the game
if and only if f (x) = y� (in particular, y� ∈ N

N).

Lemma 1 If f is of Baire class 1, then Player II has a winning strategy in GB1( f ).

Proof Suppose f is of Baire class 1, so that there exists a sequence { fn}n∈N of con-
tinuous functions that converges pointwise to f . Let σn be a winning strategy for II
in GW ( fn) – the Wadge game for fn .

Define a strategy σ for II in GB1( f ) as follows:

- σ coincides with σ0 until, and including, when σ0 plays some y00 ∈ N

- then σ passes until σ1 has produced two replies y10 , y
1
1 ∈ N; if y00 = y10 then player

II plays y11 , otherwise she plays consecutively �, y10 , y
1
1

- in general, suppose σ has produced a sequence s such that s� = (b0, . . . , bn)
using σn . Then σ passes until σn+1 has played a sequence of integers s′ =
(yn+1

0 , . . . , yn+1
n+1) of length n + 2; letting k ≤ n + 1 be the length of s� ∩ s′,

strategy σ makes Player II play consecutively

�, . . . ,�︸ ︷︷ ︸
n+1−k

, yn+1
k , . . . , yn+1

n+1

Given any x ∈ N
N, let y ∈ (N ∪ {�})N be the element produced by σ in response to

x , and let y� = (y0, y1, . . .). Since
(
fn(x)

)
n∈N converges pointwise to f (x), given

N ∈ N for large enough n all ynN will coincide with f (x)(N ). Consequently, the play
ynN according to σ will eventually remain unchanged, that is, it will not be erased by
the effect of subsequent plays of the symbol �. So σ is winning. ��
Lemma 2 If f is not of Baire class 1, then Player I has a winning strategy in GB1( f ).

Proof Given s ∈ N
<ω, let Ns = {x ∈ N

N | s ⊆ x}. The sets Ns form a basis of the
Baire space.

By the direction (2) ⇒ (1) of Baire’s grand theorem, let C be a non-empty closed
subset of NN such that f |C has no continuity point. So for every x ∈ C there is a least
o(x) ∈ N such that in each neighbourhood, relative to C , of x there is a point x ′ with
f (x)(o(x)) �= f (x ′)(o(x)). By the minimality of o(x), there exists a least p(x) ∈ N

such that f (Nx |p(x) ∩ C) ⊆ N f (x)|o(x) .
Define a strategy τ for I in GB1( f ) as follows. Pick any x0 ∈ C . The strat-

egy τ begins by enumerating x0|p(x0); after that, it continues the enumeration of
x0 until Player II produces, if ever, a position b0 ∈ (N ∪ {�})<ω such that
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length(b�
0 ) ≥ o(x0) + 1 and such that f (x0)|o(x0)+1 = b�

0 |o(x0)+1. In general,
assume that τ has enumerated an initial segment s of xn of length at least p(xn), and
Player II is producing a position bn ∈ (N∪{�})<ω such that length(b�

n ) ≥ o(xn)+1
and such that f (xn)|o(xn)+1 = b�

n |o(xn)+1. Pick an element xn+1 ∈ Ns ∩ C such that
f (xn+1)(o(xn)) �= f (xn)(o(xn)) (we apply dependent choices, here). Then τ con-
tinues by enumerating xn+1. Note that o(xn) ≤ o(xn+1) and p(xn) ≤ p(xn+1) both
hold.

Let x ∈ N
N, y ∈ (N∪{�})≤ω be the elements played by players I, II, respectively,

with I following τ . Suppose, towards a contradiction, that y� ∈ N
N and that f (x) =

y�. Then the sequence xn is defined for all n ∈ N, and x = limn→∞ xn . There are
two cases to consider.

Assume first limn→∞ o(xn) = +∞. Since ∀n ∈ N f (C ∩ Nx |p(xn )
) = f (C ∩

Nxn |p(xn )
) ⊆ N f (xn)|o(xn )

, the infimum of the diameters of the images of the neighbour-
hoods of x , the so-called oscillation of f |C at x , is null. So x is a point of continuity
of f |C , a contradiction.

Otherwise there is some o ∈ N such that eventually o(xn) = o. But this means that
at infinitely many of II’s positions z, the sequence z� has length o, so that y� ∈ N

<ω,
a contradiction again. ��

From Lemmas 1 and 2, one obtains once again the result of [1, Theorem 4.1].

Corollary 1 For any f : NN → N
N, the game GB1( f ) is determined.

For later use, we denote by S the set of all x ∈ N
N that in the proof of Lemma 2 are

of the form xn , that is those elements used to define strategy τ by enumerating their
initial segments.

3 Extensions of Baire’s grand theorem

In this section we give in Theorem 3 the announced proof of Baire’s grand theorem
for compact sets, and in Theorem 4 the extension to functions of higher Baire classes.

Theorem 3 Let X be a zero-dimensional Polish space. A function f : X → N
N is

Baire class 1 if and only if, for any non-empty compact subset K ⊆ X, the restriction
f |K has a point of continuity.

Proof Assume first X = N
N. We present only the portion of the proof that is new,

which is the backward direction.
Assume f is not Baire class 1, and let τ be the winning strategy for I in GB1( f )

constructed in the proof of Lemma 2. Let T be the tree of I’s positions according to τ .
Then, using the notation introduced at the end of section 2, [T ] = S̄. Indeed, following
the argument of the proof of Lemma 2, ∀s ∈ T ∃x ∈ S s ⊆ x , showing [T ] ⊆ S̄.
Conversely, given x ∈ S, let s ∈ T be a position built by τ while enumerating x ; if we
suppose that, as soon as s is produced, player II skips until the end of the game, then
τ continues by enumerating all of x , so that x ∈ [T ]; consequently S ⊆ [T ] holds,
and subsequently the claim.
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Consider now any s ∈ T . Then Player I played s while enumerating an initial
segment of some x ∈ S. Notice that, by induction on the length of s, only a finite
subset Ss ⊆ S of such x could lead to s, since whenever a position t ∈ T is reached
while enumerating an initial segment of some y, there are at most two possible next
moves for I according to τ : either he continues enumerating y, or he plays the next
value of some y′ that depends only on y and the position t . The same argument
applied to s shows that, for any x ∈ Ss , there are at most two possible next moves
for I, depending on whether or not II’s reply to s leads to a position z for II such that
f (x)|o(x)+1 ⊆ z�. Consequently, tree T is finitely branching, so [T ] is compact.
It remains to prove that f |[T ] has no continuity point. So let x ∈ [T ]. Assume first

that x ∈ S (so that, in the notation of the proof of Lemma 2, x is of the form xn) and
fix any N ≥ p(x). Suppose that, when Player I is enumerating x , Player II passes a
sufficient number of times so that I reaches as his position a prefix of x of length some
M ≥ N . Then, let II play in order to reach a position z such that z� = f (x)|o(x)+1
and then pass for the rest of the game. Then I will finally produce an element y ∈ [T ]
extending x |M and such that f (y)(o(x)) �= f (x)(o(x)) (y = xn+1 in the notation of
Lemma 2). By the arbitrary choice of N , this shows that x is a point of discontinuity
of f |[T ].

If x /∈ S then, once again by the argument in the proof of Lemma 2, the initial
segments of x are initial segments of the terms of a sequence of elements of S that
were denoted xn , so that x = limn→∞ xn . Recall that ∀n ∈ N o(xn) ≤ o(xn+1). If
infinitely many of the o(xn) coincide, then the sequence of the xn witnesses that f |[T ]
is discontinuous at x . Finally, if limn→∞ o(xn) = +∞, we show how II can win
against τ , which contradicts the fact that τ is winning. The element x is the sequence
played by I following τ in an actual run of the game GB1( f ) where, for n ∈ N, he
switched from enumerating xn to enumerating xn+1 when he was in position sn ⊆ xn ,
of length length(sn) ≥ p(xn), and player II was in position qn (so that, in particular,
q�
n |o(xn)+1 = f (xn)|o(xn)+1). The corresponding run of player II, though guessing
longer and longer initial segments of f (x), may not be winning as she could have
erased too much, leading to infinitely many of II’s positions ui such that all u�

i
have the same length. To fix this, we describe by induction a new, winning run for
player II. Let first II reach position b0 = q0 as above. So I is in position s0, trying
to enumerate x0, and starting from his next move he will switch to x1 (that may still
have some values in common with x0). In general, suppose that, following τ , player
I is in position sn , while player II has reached a position bn such that b�

n = q�
n , so

that from his next move player I will continue with the enumeration of xn+1 (that may
still have some values in common with xn). It is enough to show that player II can
play to make I, following strategy τ , reach position sn+1, while II arrives in a position
bn+1 such that b�

n+1 = q�
n+1 and such that for every intermediate position t (that is,

bn ⊆ t ⊆ bn+1), length(t�) ≥ o(xn). For this, it is enough for II to play as in the run
that led from qn to qn+1 except that every time this run produced a position t such that
length(t�) < o(xn), player II now skips her turn.

In the general case of X a zero-dimensional Polish space, one can assume that
X is a closed subspace of NN. Let f̂ : N

N → N
N extend f and be constant on

N
N \ X ; then f̂ is Baire class 1 if and only if f is Baire class 1. So if f is Baire class

1, for any non-empty compact K ⊆ X , the function f̂ |K has a point of continuity,
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and consequently the same holds for f |K . If f |K has a point of continuity for every
non-empty K compact in X , let H be non-empty compact in N

N. If H ⊆ X , then
f̂ |H = f |H has a point of continuity; otherwise, any point of H \ X is a point of
continuity of f̂ |H . In any case, f̂ is Baire class 1, and the same holds for f . ��

We can now point out yet another equivalence condition for Baire class 1 functions.

Corollary 2 Let X be a zero-dimensional Polish space. A function f : X → N
N is

Baire class 1 if and only if for any compact subspace K ⊆ X the restriction f |K is
Baire class 1.

Proof It is enough to prove the backward implication. For this, observe that if every
restriction f |K to a compact subspace K of X is Baire class 1, then each such restriction
has a point of continuity. Then apply Theorem 3. ��

We conclude the paper with the generalisation of Baire’s grand theorem to higher
Baire classes.

Theorem 4 Let f : NN → N
N and let2 ≤ ξ < ω1. Then the followingare equivalent:

1. f is Baire class ξ

2. there is a sequence of sets Am ∈ ⋃
1≤ρ<ξ Π0

ρ(NN) such that f |C has a point of

continuity for every non-empty C ∈ Π0
1(N

N) such that C ∩ Am is clopen in C for
all m ∈ N

3. there is a sequence of sets Am ∈ ⋃
1≤ρ<ξ Π0

ρ(NN) such that f |K has a point of

continuity for every non-empty compact subset K ⊆ N
N such that K ∩ Am is

clopen in K for all m ∈ N

By using the complements of the sets Am, in statements 2 and 3 one can replace Π0
ρ

with Σ0
ρ .

Proof (1) ⇒ (2). Assume f is a Baire class ξ function with respect to the usual Baire
space topology T , so that the preimage of any Δ0

1 set is Δ0
ξ+1. For any s ∈ N

<ω,

let Ms = f −1(Ns) ∈ Δ0
ξ+1(T ). So, by [3, Theorem 22.27], Ms = Dθ (Csα) is a θ

difference of theΣ0
ξ setsCsα , for some θ ∈ ω1. LetCsα = ⋃

h∈N Dsαh , where Dsαh ∈
⋃

1≤ρ<ξ Π0
ρ(T ). Let τ be a zero-dimensional Polish topology refining T and making

all Dsαh clopen. Notice that, by the constructions of [3, §13.A], one can assume that τ
has a basis of clopen setsB = {Vm}m∈N ⊆ ⋃

1≤ρ<ξ (Σ
0
ρ(T )∪Π0

ρ(T )) ⊆ Δ0
ξ (T ), that

can be assumed to be closed under complementation. In particular, Δ0
1(τ ) ⊆ Δ0

ξ (T ).

Let {Am}m∈N enumerate B ∩ ⋃
1≤ρ<ξ Π0

ρ .

Since, ∀s ∈ N
<ω Ms ∈ Δ0

2(τ ), the function f : (NN, τ ) → (NN, T ) is Baire class
1. By Baire’s grand theorem, for every non-empty C ∈ Π0

1(τ ), the function f |C has
a point of (τ |C , T )-continuity, where τ |C is the topology induced by τ on C . Now, if
C ∈ Π0

1(N
N) is such that C ∩ Am is clopen in T |C for every m ∈ N, then τ |C = T |C .

MoreoverC is also τ -closed, and any point of (τ |C , T )-continuity witnesses condition
2.

(2) ⇒ (3) is immediate.
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(3) ⇒ (1). Assume condition 3. As above, let T be the usual Baire space topology,
and τ be a zero-dimensional Polish topology refining T and such that all sets Am

are clopen. Again, we may assume that τ has a countable basis of clopen sets B ⊆⋃
1≤ρ<ξ (Σ

0
ρ(T ) ∪ Π0

ρ(T )). Let K be τ -compact, so T -compact as well. Since the

identity id : (NN, τ ) → (NN, T ) is continuous, it induces a homeomorphism id :
(K , τ |K ) → (K , T |K ). This implies that K ∩ Am is T |K clopen, for everym ∈ N. By
the assumption, f has a (τ |K , T ) point of continuity. It follows that f : (NN, τ ) →
(NN, T ) is Baire class 1. As Δ0

1(τ ) ⊆ Δ0
ξ (T ), so that Δ0

2(τ ) ⊆ Δ0
ξ+1(T ), one can

conclude that f : (NN, T ) → (NN, T ) is Baire class ξ . ��
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