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Abstract We introduce a new typed combinatory calculuswith a type constructor that,
to each type σ , associates the star type σ ∗ of the nonempty finite subsets of elements
of type σ . We prove that this calculus enjoys the properties of strong normalization
and confluence. With the aid of this star combinatory calculus, we define a functional
interpretation of first-order predicate logic and prove a corresponding soundness theo-
rem. It is seen that each theorem of classical first-order logic is connected with certain
formulas which are tautological in character. As a corollary, we reprove Herbrand’s
theorem on the extraction of terms from classically provable existential statements.
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1 Introduction

Benno van den Berg, Eyvind Briseid and Pavol Safarik introduced and studied in [16]
a cluster of herbrandized functional interpretations of (semi) intuitionistic theories of
nonstandard arithmetic. The functional interpretations are classified as herbrandized
because the witnesses of the existential quantifiers of the interpreting formulas are
accumulated intofinite sets. Despite the nonstandard setting of [16], the interpretations
make perfect sense for theories of standard arithmetic and even, as we shall see in this
paper, for pure logic.

There are also other interpretations in the literature that accumulate existential wit-
nesses. The earlier one seems to be the bounded functional interpretation of PauloOliva
and the first author of this paper [7], where witnesses are accumulated below certain
majorants. A realizability version was studied in [6]. Another one is the functional
interpretation of Avigad and Towsner [2] of the arithmetical theory ID1 of non-iterated
inductive definitions. In this case, witnesses are accumulated into denumerable sets.
A feature common to these so-called cumulative interpretations is a monotonicity
property to the effect that the existential quantifications of the interpreting formulas
are upward closed in the sense that if a certain existential functional is fit to work then
a “bigger” functional is also fit (the notion of “bigger” varies from interpretation to
interpretation).

In this paper, we consider classical first-order predicate logic without equality.
This is also the calculus analyzed by Gerhardy and Kohlenbach [8]. Their paper
presents an interpretation of classical logic based on the original (functional) dialec-
tica interpretation of Kurt Gödel (cf. [9]). It actually follows a direct interpretation
of classical first-order arithmetic (Peano arithmetic) due to Shoenfield [11]. The
Gerhardy–Kohlenbach interpretation is able to cope with the well-known contrac-
tion problem of functional interpretations (see [1,4] for a discussion of this issue) by
means of conditional functionals. In 1974, Justus Diller andWerner Nahm had already
found a way around the contraction problem. Their solution in [5] was proposed in the
framework of intuitionistic arithmetic and, instead of conditional functionals, it uses
finite sets in the interpretation of implication. Cumulative interpretations use the same
blueprint in the interpretation of implication and, as a consequence, they are also able
to cope with the contraction problem. The Diller–Nahm interpretation is not, however,
a cumulative interpretation in our sense because it does not accumulate existential wit-
nesses. In fact, accumulation is not needed for analyzing intuitionistic logic. However,
if one goes to certain semi-intuitionistic systems (or to classical theories), we are led
naturally to cumulative interpretations.

At first appearance there is an obvious difficulty with herbrandized functional inter-
pretations in the context of logic (as opposed to arithmetic) because we have to speak
of finite sets, and finiteness is not a logical notion. The way out of this situation is to
separate the interpreted theory (classical first-order logic) from the interpreting lan-
guage. The verification of the interpreting formulas can be done semantically, i.e., seen
to be true in a certain structure or, alternatively, verified in a certain theory (see the
comments in Sect. 4). It can also be done, as we do here, in a purely logical way (mod-
ulo a certain combinatory calculus). In Sect. 2, we present and study the combinatory
calculus that will be used in the paper. We prove that this calculus is strongly normal-
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izable and satisfies the Church–Rosser property, and establish some consequences of
these facts. These consequences are instrumental in defining the notion of a formula
(of the interpreting language) being tautological in character. This is discussed in
Sect. 3. The functional interpretation is defined in Sect. 4, and a soundness theorem is
formulated and proved. Some examples are discussed. We finish the paper with a new
proof of Herbrand’s theorem concerning existential first-order sentences provable in
classical first-order logic.

2 The star combinatory calculus

Let us fix a language L of pure first-order logic (equality is not present) with at least
one constant symbol. In this section we study a combinatory calculus based on L: the
star combinatory calculus of L.

Definition 1 The types of the star combinatory calculus of L are constructed from an
atomic type (the ground type G) by means of two type-forming operations, → and ∗,
in the following way:

(i) The ground type is a type.
(ii) If σ and τ are types then σ → τ is a type.
(iii) If σ is a type, then σ ∗ is a type (a so-called star type).

The novelty are the star types. The intended meaning of σ ∗ is to give the type of
all nonempty finite subsets of elements of type σ . It is clear that types have the form
σ1 → · · · → σn → ρ (n ≥ 0) with ρ either the ground type or a star type (i.e., ρ is
G or ρ is σ ∗, for a certain type σ ).

The star calculus has three kinds of constants:

L-constants For each constant c of L, we have a ground constant of the type
calculus, also denoted by c. For each function symbol f of L, we have a constant
of the type calculus, also denoted by f , of type G → · · · → G → G (the number
of arrows is the arity of f ).
Logical constants or combinators A combinator Πσ,τ of type σ → τ → σ for
each pair of types σ , τ . A combinator Σρ,σ,τ of type (ρ → σ → τ) → (ρ →
σ) → ρ → τ , for each triple of types ρ, σ , τ .
Star constants A constant sσ of type σ → σ ∗ for each type σ . A constant ∪σ of
type σ ∗ → (σ ∗ → σ ∗) for each type σ . A constant

⋃
σ,τ of type σ ∗ → (σ →

τ ∗) → τ ∗ for each pair of types σ , τ .

The combinators above are as usual, and the L-constants are a natural thing to
consider. The intended meaning of sσ is to map each element tσ to the singleton set
constituted by t . The intended meaning of ∪σ is to map elements c and d of type
σ ∗ to their union c ∪ d. Finally, the intended meaning of

⋃
σ,τ is to map c : σ ∗ and

f : σ → τ ∗ to the indexed union
⋃

w∈c f w.

Definition 2 The terms of the star combinatory calculus of L are generated by the
following clauses:
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(i) Constants are terms.
(ii) For each type σ there are denumerably many variables of type σ : xσ , yσ , zσ , etc.

Variables are terms.
(iii) If tσ→τ and qσ are terms, then tq is a term of type τ .

The calculus has the following conversions:

Σ tqr � tr(qr) and Π tq � t . These are as usual.
⋃

(st)q � qt . This conversion corresponds to the set-theoretical equality⋃
w∈{t} qw = qt .

⋃
(∪tq)r � ∪(

⋃
tr)(

⋃
qr). This conversion corresponds to the set-theoretical

equality
⋃

w∈t∪q rw = (
⋃

w∈t rw) ∪ (
⋃

w∈q rw).

We use the standard terminology of redexes and contracta, and have the usual
definitions of reduction in one step and reduction (from one term t to another term
q of the same type). We write t �1 q and t � q for these reductions, respectively.
A term is normal if it has no redexes and so we can no longer apply a conversion.
A term t is strongly normalizable if all the reduction sequences starting with t have
finite length, i.e., t has a finite reduction tree. If a term t is strongly normalizable, we
denote by ν(t) the maximum of the lengths of the reduction sequences starting with t .

The next order of business is to show that every term of the star calculus is strongly
normalizable. We use the technique of reducibility introduced by Tait [13] (see, also,
[15]). We need the following technical definitions:

Definition 3 Given a term t of type σ ∗, we define a finite set of terms of type σ ,
the surface members of t , denoted by SM(t). The definition is by induction on the
complexity of t according to the following specification: unless t is of the form sr or
∪qr , SM(t) is the empty set; otherwise, SM(sr) is {r} and SM(∪qr) is SM(q) ∪
SM(r).

Notice that the surface members of a term are not invariant with respect to reduc-
tions. I.e., if t � q then SM(t) and SM(q) need not be the same set.

Definition 4 We say that a term tσ is reducible if t ∈ Redσ , where Redσ is defined
by recursion on the complexity of the type σ as follows:

t ∈ RedG :≡ t is strongly normalizable.

t ∈ Redσ→τ :≡ for all q, if q ∈ Redσ then tq ∈ Redτ .

t ∈ Redσ ∗ :≡ t is strongly normalizable and, given any term in the reduction tree
of t , its surface members are reducible.

The third clause in the definition above is new. Note that every term in the reduction
tree of t has type σ ∗ and so its surface members have type σ . Therefore, the clause is
well-defined.

Lemma 1 Let x be a variable of type σ1 → · · · → σn → ρ, with ρ the ground
type or a star type. If t1, . . . , tn are strongly normalizable terms of types σ1, . . . , σn
(respectively), then xt1 . . . tn ∈ Redρ .
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Proof Since t1, . . . , tn are strongly normalizable, it is clear that xt1 . . . tn is strongly
normalizable. Thus, when ρ is G we are done. For the case when ρ is σ ∗, we need
to check that the surface members of the terms in the reduction tree of xt1 . . . tn are
reducible. Let q be a term in the reduction tree of xt1 . . . tn . Then q has the form
xt ′1 . . . t ′n with ti � t ′i (1 ≤ i ≤ n) and, therefore, SM(q) = ∅. Thus, xt1 . . . tn ∈
Redσ ∗ . �
Lemma 2 We have the following:

(a) If tσ ∈ Redσ then tσ is strongly normalizable.
(b) xσ ∈ Redσ .

Proof We prove (a) and (b), simultaneously, by induction on the complexity of the
type σ . The case when σ is G is immediate. Let us analyse the case when σ is of the
form τ → θ . Take tτ→θ ∈ Redτ→θ . We want to prove that t is strongly normalizable.
By induction hypothesis (b) for type τ , we know that xτ ∈ Redτ . Thus t x ∈ Redθ . By
induction hypothesis (a) for θ , we have that t x is strongly normalizable. Therefore,
t is strongly normalizable. For (b), we need to show that xτ→θ ∈ Redτ→θ . Let
t ∈ Redτ . We need to prove that xt ∈ Redθ . Suppose that θ is σ1 → · · · → σn → ρ,
with ρ either the ground type or a star type. Let t1, . . . , tn be reducible terms of
types σ1, . . . , σn respectively. By induction hypothesis (a) for types τ, σ1, . . . , σn , we
know that t, t1, . . . , tn are strongly normalizable. Thus, by Lemma 1, we have that
xtt1 . . . tn ∈ Redρ . Therefore xt ∈ Redθ .

Finally, let us turn to the case when σ is of the form ρ∗. Property (a) is immediate.
Regarding (b), note that the reduction tree of xρ∗

has a single term, the variable itself,
and that SM(xρ∗

) = ∅. Thus xρ∗ ∈ Redρ∗ . �
Lemma 3 If tσ ∈ Redσ and tσ � qσ then qσ ∈ Redσ .

Proof The proof is done by induction on the complexity of the type σ . The base typeG
is clear. The arrow case is immediate by definition of reducibility. Let us study the case
when σ is τ ∗. So, assume that t ∈ Redτ∗ and t � q. Wewant to prove that q ∈ Redτ∗ .
By definition, t is strongly normalizable. Therefore, q is strong normalizable as well.
Note also that any term in the reduction tree of q is a term in the reduction tree of t .
Thus (because t ∈ Redτ∗ ) the surface members of any term in the reduction tree of q
are reducible. Hence, q ∈ Redτ∗ . �
Lemma 4 We have the following:

(a) Let t be a term of ground type. If all terms that result from t via a one step reduction
are reducible then t is also reducible.

(b) Let t be a term of star type. If all the surface members of t are reducible and
all terms that result from t via a one step reduction are reducible, then t is also
reducible.

Proof Part (a) is obvious. To prove part (b), take a term t of type τ ∗ in the conditions
of the hypothesis. Clearly, t is strongly normalizable. A term in the reduction tree of
t is either the term t itself or it is a term in the reduction tree of t ′, with t ′ such that
t �1 t ′. Since, by hypothesis, t ′ ∈ Redτ∗ we know that given any term in the reduction
tree of t ′ its surface members are reducible. Also, by hypothesis, the surface members
of t are reducible. Therefore t ∈ Redτ∗ . �
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Proposition 1 All the terms of the star combinatory calculus are reducible.

Proof The proof is by induction on the complexity of the term. By Definition 4 we
know that if t ∈ Redσ→τ and q ∈ Redσ then tq ∈ Redτ . Thus it suffices to
prove that the constants of the calculus are reducible. (Note that we already know, by
Lemma 2(b), that the variables are reducible.)

It is clear that cG ∈ RedG , where cG is a constant of the calculus that results from
a constant c in the language L. Let f be a constant of type G → · · · → G → G
that results from a n-ary function symbol f in the language L. In order to prove that
f is reducible, we need to show that if s1, . . . , sn are reducible terms of type G (i.e.,
strongly normalizable) then f s1 . . . sn is also reducible of type RedG (i.e., strongly
normalizable). This is obvious.

After having discussed the L-constants, we study the logical constants (combina-
tors). Let us argue that Πσ,τ ∈ Redσ→τ→σ . Take t ∈ Redσ and q ∈ Redτ in order
to show that Πσ,τ tq ∈ Redσ . Suppose that σ has the form σ1 → · · · → σn → ρ

(n ≥ 0 and ρ is either G or a star type). Let s1, . . . , sn be reducible terms of types
σ1, . . . , σn . We need to prove that Π tqs1 . . . sn ∈ Redρ . The reasoning is as in p. 107
of [15], and we do not repeat it here. We just notice that it relies on Lemma 4 and that
the new case when ρ is of star type does not present any problem. The case of the
combinators Σρ,σ,τ is similar.

The really new cases to consider are the star constants. Let us start by showing that
sσ ∈ Redσ→σ ∗ . Take t ∈ Redσ in order to show that st ∈ Redσ ∗ . Since t ∈ Redσ ,
by Lemma 2(a) we know that t is strongly normalizable. Therefore, st is strongly
normalizable because any reduction in st results from a reduction in t . In fact, any
term in the reduction tree of st has the form st ′ with t � t ′. Well, SM(st ′) = {t ′}.
So, the surface members of every term in the reduction tree of st are reducible (use
Lemma 3). We have proved that st ∈ Redσ ∗ .

Let us prove that ∪σ ∈ Redσ ∗→(σ ∗→σ ∗). Take t, q ∈ Redσ ∗ in order to show
that ∪tq ∈ Redσ ∗ . The proof is done by induction on ν(t) + ν(q) (this is possible
because t and q are strongly normalizable). The one step reductions from ∪tq are of
the form ∪t ′q or ∪tq ′ with t �1 t ′ and q �1 q ′. Since ν(t ′) + ν(q) < ν(t) + ν(q),
ν(t) + ν(q ′) < ν(t) + ν(q) and t ′ and q ′ are reducible (by Lemma 3), by induction
hypothesis we have that ∪t ′q and ∪tq ′ are reducible. On the other hand, SM(∪tq) =
SM(t) ∪ SM(q). Well, the elements of SM(t) and of SM(q) are reducible because
t, q ∈ Redσ ∗ . Hence, the surface members of ∪tq are reducible. By Lemma 4(b), we
conclude that ∪tq ∈ Redσ ∗ .

Let us finally prove that
⋃

σ,τ ∈ Redσ ∗→(σ→τ∗)→τ∗ . We need to show that
⋃

tq ∈
Redτ∗ , for t ∈ Redσ ∗ and q ∈ Redσ→τ∗ . Since SM(

⋃
tq) = ∅, by Lemma 4(b) it

is enough to show that every one step reduction of
⋃

tq leads to a reducible term. The
proof is done by main induction on ν(t) + ν(q) and sub-induction on c(t), where
c(t) measures the complexity of the term t in the following way: c(constant) =
c(variable) = 1; c(tq) = c(t) + c(q). The one step reductions from

⋃
tq are of

the form:

(i)
⋃

t ′q with t �1 t ′
(ii)

⋃
tq ′ with q �1 q ′

(iii) qr , if t is sr
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(iv) ∪(
⋃

rq)(
⋃

sq), if t is ∪rs.
In cases (i) and (ii), ν(t ′)+ν(q) and ν(t)+ν(q ′) are stricty less than ν(t)+ν(q).We

can apply the induction hypothesis (usingLemma3) and conclude that
⋃

t ′q and
⋃

tq ′
are reducible. Let us analyse case (iii). By hypothesis, sr ∈ Redσ ∗ (note that t is sr ).
By Definition 4, r ∈ Redσ . Since we also have q ∈ Redσ→τ∗ , we get qr ∈ Redτ∗ , as
wished. In case (iv), by hypothesis, ∪rs ∈ Redσ ∗ (note that t is ∪rs). We first argue
that r ∈ Redσ ∗ and s ∈ Redσ ∗ . It is clear that both r and s are strongly normalizable
(an infinite reduction sequence starting in one of them would entail the existence of an
infinite reduction sequence in∪rs). Let r ′ be a term in the reduction tree of r . Then∪r ′s
is a term in the reduction tree of t . Since SM(∪r ′s) = SM(r ′)∪SM(s) and t ∈ Redσ ∗ ,
we can conclude that the surface members of r ′ are reducible. Thus, given a term in
the reduction tree of r (similarly for s), its surface members are reducible. Therefore
r, s ∈ Redσ ∗ . Since ν(r) ≤ ν(t) and c(r) < c(t), we have by induction hypothesis that⋃

rq ∈ Redτ∗ . Similarly
⋃

sq ∈ Redτ∗ . By definition of reducibility, both
⋃

rq and⋃
sq are strongly normalizable, and this easily entails that∪(

⋃
rq)(

⋃
sq) is strongly

normalizable. It remains to show that the surfacemembers of the terms in the reduction
tree of∪(

⋃
rq)(

⋃
sq) are reducible. The root of the reduction tree is∪(

⋃
rq)(

⋃
sq).

Well, SM(∪(
⋃

rq)(
⋃

sq)) = SM(
⋃

rq) ∪ SM(
⋃

rs) = ∅ ∪ ∅ = ∅. Any other
term of the reduction tree of ∪(

⋃
rq)(

⋃
sq) is of the form ∪uv, where

⋃
rq � u

and
⋃

sq � v. Since SM(∪uv) is SM(u) ∪ SM(v), the elements of SM(∪uv) are
reducible (because

⋃
rq,

⋃
sq ∈ Redτ∗ ). Therefore, ∪(

⋃
rq)(

⋃
sq) ∈ Redτ∗ . �

By the above proposition and Lemma 2(a), we have the following important result:

Theorem 1 (Strong normalization)The star combinatory calculus enjoys the property
of strong normalization.

We also have the Church–Rosser property:

Theorem 2 (Church–Rosser property) The star combinatory calculus is confluent,
i.e. it enjoys the Church–Rosser property.

Proof We have already shown that the star calculus enjoys the property of strong
normalization. So, by Newman’s Lemma (see [14] for a proof and the reference to the
original work of Maxwell Newman), it is enough to prove that the calculus is weakly
confluent, i.e., if t �1 t ′ and t �1 t ′′ then there is a term t ′′′ such that t ′ � t ′′′ and
t ′′ � t ′′′.

Of course, if the conversions leading from t to t ′ and from t to t ′′ concern disjoint
redexes, then t ′′′ is simply obtained by converting both redexes. Let us analyse the
situation where the redexes are nested. There are various cases to consider, depending
on the conversions. The cases regarding the combinators are dealt as usual (cf. [15]).
So, let us focus on the cases that concern the new conversions.

If t ≡ . . .
⋃

(sr)q . . ., t ′ ≡ . . . qr . . . and t ′′ ≡ . . .
⋃

(sr ′)q . . . with r �1 r ′ then
t ′′′ ≡ . . . qr ′ . . . and t ′ � t ′′′ in a single step via r �1 r ′ and t ′′ � t ′′′ in a single step
via

⋃
(sr ′)q �1 qr ′.

If t ≡ . . .
⋃

(sr)q . . ., t ′ ≡ . . . qr . . . and t ′′ ≡ . . .
⋃

(sr)q ′ . . . with q �1 q ′ then
t ′′′ ≡ . . . q ′r . . . and t ′ � t ′′′ in a single step via q �1 q ′ and t ′′ � t ′′′ in a single step
via

⋃
(sr)q ′ �1 q ′r .
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If t ≡ . . .
⋃

(∪sq)r . . ., t ′ ≡ . . . ∪ (
⋃

sr)(
⋃

qr) . . . and t ′′ ≡ . . .
⋃

(∪s′q)r . . .

with s �1 s′ then t ′′′ ≡ . . .∪(
⋃

s′r)(
⋃

qr) . . . and t ′ � t ′′′ in a single step via s �1 s′
and t ′′ � t ′′′ in a single step via

⋃
(∪s′q)r �1 ∪(

⋃
s′r)(

⋃
qr).

If t ≡ . . .
⋃

(∪sq)r . . ., t ′ ≡ . . . ∪ (
⋃

sr)(
⋃

qr) . . . and t ′′ ≡ . . .
⋃

(∪sq ′)r . . .

with q �1 q ′ then t ′′′ ≡ . . . ∪ (
⋃

sr)(
⋃

q ′r) . . . and t ′ � t ′′′ in a single step via
q �1 q ′ and t ′′ � t ′′′ in a single step via

⋃
(∪sq ′)r �1 ∪(

⋃
sr)(

⋃
q ′r).

If t ≡ . . .
⋃

(∪sq)r . . ., t ′ ≡ . . . ∪ (
⋃

sr)(
⋃

qr) . . . and t ′′ ≡ . . .
⋃

(∪sq)r ′ . . .
with r �1 r ′ then t ′′′ ≡ . . . ∪ (

⋃
sr ′)(

⋃
qr ′) . . . and t ′ � t ′′′ with two applications of

r �1 r ′ and t ′′ � t ′′′ in a single step via
⋃

(∪sq)r ′ �1 ∪(
⋃

sr ′)(
⋃

qr ′). �
It is clear that first-order terms of the language L have natural analogues in the star

combinatory calculus. We identify these pairs of terms.

Proposition 2 (Ground normal form) If t is a closed normal term of ground type, then
t is a (closed) first-order term of the language L.
Proof It is clear that closed terms are of the form at1 . . . tm with m ≥ 0, where a is
a constant and t1, . . . , tm are closed terms. Therefore, a normal closed term must be
of one of the forms: c, f , f r1, f r1r2, …, f r1 . . . rn , Σ , Σ t , Σ tv, Π , Πq, s, sq, ∪,
∪u1, ∪u1u2, ⋃,

⋃
s or

⋃
sp, for c a constant in the language L, f a n-ary function

symbol in the language L and r1, r2, . . . , rn, t, v, q, u1, u2, s, p closed normal terms
of appropriate types. If, further, the closed normal term is of ground type then it must
be c or of the form f r1 . . . rn , as above. By an inductive argument, we may suppose
that r1, . . . , rn are first-order terms. We are done. �

We finish this section with a simple, but important, proposition.

Definition 5 A term t of star type is called set-like if it is built from terms of the form
sqσ and the binary union operator ∪σ .

Proposition 3 (Star normal form) If t is a closed normal term of star type σ ∗, then t
is set-like and SM(t) is a nonempty finite set of closed normal terms of type σ .

Proof Looking at the proof of Proposition 2 and taking into account that this time the
closed normal term t is of star type σ ∗ (and not of ground type), then t must fall into
one of the following cases: (i) t is sσ→σ ∗

qσ , (ii) t is ∪σ ∗→(σ ∗→σ ∗)uσ ∗
1 uσ ∗

2 or (iii) t is
⋃θ∗→(θ→σ ∗)→σ ∗

sθ∗
pθ→σ ∗

.
Let us prove the result by induction on the complexity of t . Case (i) is immediate,

because it is obviously set-like with SM(t) = {q}. For case (ii) we have, by induction
hypothesis, that u1 and u2 are set-like. So, t is also set-like.

We finish the proof by arguing that case (iii) cannot hold. Take
⋃

sp a closed normal
term of type σ ∗ as above. Since s is a closed normal term of star type, by induction
hypothesis it is set-like. Hence s is either of the form sr or of the form ∪s1s2. In either
case,

⋃
sp would not be normal. �

3 Bounded mixed formulas and the propositional calculus

In this section we introduce a language Lmix which is a combination of the proposi-
tional part of the first-order language L and the terms of the combinatory star calculus
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based on L. Moreover, this mixed language has also a new sort of quantification: a
particular kind of bounded quantification. The atomic formulas of the bounded mixed
language Lmix are formulas of the form P(t1, . . . , tn), where P is a n-ary predicate
symbol of the language L and t1, . . . , tn are ground terms of the combinatory star cal-
culus. Note that these ground terms include the first-order terms of L but go beyond
them (for instance, it also includes terms likeΠxG yρ). Therefore, the atomic formulas
of the bounded mixed language include, but are not restricted to, the atomic formu-
las of L. The formulas of Lmix (the bounded mixed formulas) are obtained from the
atomic formulas by means of propositional connectives (we use negation, conjunction
and disjunction as primitives; sometimes we also use implication, seen as the usual
abbreviation) and bounded quantifiers of the form ∀xσ ∈ tσ

∗
(. . .) and ∃xσ ∈ tσ

∗
(. . .),

where t is a term (of star type σ ∗) in which the variable x (of type σ ) does not occur.
There is certainly an underlying intended meaning in our use of the membership sign
in the quantifications but in this work the bounded set quantifiers should be seen as a
mere syntactic matter. We will use below the membership sign both as a syntactic sign
of the mixed language Lmix and naively as it is usual in mathematics, but the intended
use will always be clear from the context.

As it is well-known, there is a propositional calculus associated with the first-order
languageL, where the atomic propositional formulas are the closed atomic formulas of
L. In the next definition we are going to associate to each sentence ofLmix a formula of
the propositional calculus of L. In order to do this, we need the results of the previous
section. In particular, if t is a term of the star combinatory calculus, we denote by nf(t)
the (unique) normal form of t . If t is a closed term of type σ ∗, we denote by t s the set
SM(nf(t)). By Proposition 3, this is a nonempty finite set of closed normal terms of
type σ . Clearly, if t and q have the same normal form, then t s = qs.

The following lemma is crucial:

Lemma 5 Let t be a closed normal term of type σ .

(a) t ∈ (st)s.
(b) Let q and r be closed terms of type σ ∗. If t ∈ qs or t ∈ r s, then t ∈ (∪qr)s.
(c) Let q be a closed term of type τ ∗ and r be a closed term of type τ → σ ∗. Suppose

that u is a closed term of type τ , and assume that u ∈ qs and t ∈ (ru)s. Then
t ∈ (

⋃
qr)s.

Proof For (a), note that (st)s = SM(nf(st)) = SM(s(nf(t))) = SM(st) = {t}. For
(b), just observe that

(∪qr)s = SM(nf(∪qr)) = SM(∪nf(q)nf(r))= SM(nf(q)) ∪ SM(nf(r))=qs ∪ r s.

In order to show (c) we may assume, without loss of generality, that q is normal.
This is clear because qs = (nf(q))s and (

⋃
qr)s = (

⋃
nf(q)r)s. The proof is by

induction on the complexity of the closed normal term q. By Proposition 3, q is set-
like. Suppose that q is sv for a given term v of type τ . We have qs = SM(nf(q)) =
SM(q) = SM(sv) = {v}. Since, by hypothesis, u ∈ qs, we conclude that u and v are
the same term. But,

(⋃
qr

)s =
(⋃

(sv) r
)s = SM

(
nf

(⋃
(sv)r

))
= SM(nf(rv)) = (rv)s.
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Also by hypothesis, t ∈ (ru)s. Hence, t ∈ (rv)s and, therefore, t ∈ (
⋃

qr)s.
It remains to see the case when q = ∪q1q2, for given terms q1 and q2 (necessarily

closed and normal) of type τ ∗. It is easy to see that qs = qs1 ∪ qs2. Moreover

(⋃
qr

)s = SM
(
nf

(⋃
qr

))
= SM

(
nf

(
∪

(⋃
q1r

) (⋃
q2r

)))

= SM
(
∪ nf

(⋃
q1r

)
nf

(⋃
q2r

))

= SM
(
nf

(⋃
q1r

))
∪ SM

(
nf

(⋃
q2r

))

=
(⋃

q1r
)s ∪

(⋃
q2r

)s

By hypothesis, u ∈ qs. Without loss of generality, we assume that u ∈ qs1. Since
t ∈ (ru)s we get, by induction hypothesis, that t ∈ (

⋃
q1r)s . By the above equality,

t ∈ (
⋃

qr)s . �
Let us finish this section with the definitions of two important notions.

Definition 6 We define a map φ �→ φp from sentences φ of the bounded mixed
language Lmix to formulas φp of the propositional calculus of L according to the
following clauses:

(a) (P(t1, . . . , tn))p is P(nf(t1), . . . , nf(tn)), where P is a n-ary predicate symbol of
L and t1, . . . , tn are closed terms of ground type of the star combinatory calculus.

(b) (¬φ)p is ¬(φp), (φ ∧ ψ)p is φp ∧ ψp, and (φ ∨ ψ)p is φp ∨ ψp.
(c) (∀x ∈ t φ(x))p is

∧
q∈t s φ(q)p and (∃x ∈ t φ(x))p is

∨
q∈t s φ(q)p, where t is a

closed term of star type.

The following lemma is straightforward:

Lemma 6 Let φ(x1, . . . , xn) be a formula of Lmix with its free variables among
x1, . . . , xn. Let t1, . . . , tn and q1, . . . , qn be closed terms of appropriate types. If,
for each i with 1 ≤ i ≤ n, the terms ti and qi have the same normal form, then
φ(t1, . . . , tn)p is the same propositional formula as φ(q1, . . . , qn)p.

In the next section, we will need to work with open formulas ofLmix. The following
definition is important:

Definition 7 Let φ(x1, . . . , xn) be a formula of Lmix with its free variables among
x1, . . . , xn . We say that φ(x1, . . . , xn) is tautological in character if, for all closed
normal terms t1, . . . , tn (of appropriate types) of the combinatory star calculus,
φ(t1, . . . , tn)p is a tautology.

4 The herbrandized interpretation

We present in this section a herbrandized functional interpretation of pure classical
logic. We work with the primitives ¬, ∨ and ∀. The other connectives are defined
(classically) as usual.
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Definition 8 To each formula φ of the first-order language Lwe assign formulas φSH

and φSH so that φSH is of the form ∀a∃b φSH(a, b), with φSH(a, b) a bounded mixed
formula, according to the following clauses:

1. φSH and φSH are φ, for quantifier-free formulas φ of L.
For the remaining cases, if we have already interpretations for φ and ψ given

(respectively) by ∀a∃b φSH(a, b) and ∀d∃eψSH(d, e) then we define:

2. (φ ∨ ψ)SH is ∀a, d ∃b, e [φSH(a, b) ∨ ψSH(d, e)],
3. (¬φ)SH is ∀ f ∃a′ [∃a ∈ a′ ¬φSH(a, f a)],
4. (∀x φ(x))SH is ∀x, a∃b [φSH(x, a, b)],
where the bounded mixed formulas between square brackets are the corresponding
lower SH-formulas.

In the above, the letters a, b, d and e stand for (possibly empty) tuples of vari-
ables of the star combinatory calculus, but we speak of them as if they were only a
single variable. The formulas φSH(a, b) also have the free first-order variables of the
interpreted formula φ (note that first-order variables can be considered ground type
variables of the star combinatory calculus). We omit showing them unless it is conve-
nient or necessary. In these cases, we often use a single (first-order) variable to stand
for a tuple.

We have used unbounded quantifications with respect to variables of the star com-
binatory calculus. Our languageLmix does not have such quantifications, but the use is
incidental. It is customary in functional interpretations to use such expressions because
they help convey the meaning of the lower SH-formulas. These bounded mixed for-
mulas are the ones that have real meaning (together with the information saying which
variables are in universal or existential positions). When φ(x) is a quantifier-free first-
order formula of L, it is worth noting that (∃xφ(x))SH is ∃aG∗∃x ∈ a φ(x), modulo
classical logic in the lower SH-formulas. This is seen by computing the interpretation
of ¬∀x¬φ(x) according to the clauses (1), (3) and (4) of Definition 8.

We now turn to the soundness theorem. The original plan of the paper was to state
soundness with a semantical verification of the interpreting formulas. The verification
would say that certain formulas of Lmix are true in the finite-order set-theoretical
structure naturally arising from a given first-order structure for L (see definition 6 of
[8]). Actually, in [8], the verifications are done within a finite-order logical theory (of
which the set-theoretical finite-order structures are models). When writing this paper,
it dawned on the first author that the verification can be done in a particularly nice
way, via the notion of tautology in character of Sect. 3. This is how we will state the
soundness theorem below.

As it is usual with functional interpretations which accumulate witnesses, we have
a monotonicity property. For the next lemma, the reader should notice that the types
of the existential variables b in φSH(a, b) are necessarily of star type (the universal
variables a need not be of star type).

Lemma 7 (Monotonicity) Let t and q be closed terms of star type σ ∗, and let φ(x) be
a first-order formula of L. Suppose that t s ⊆ qs. Then the implication φSH(x, a, t) →
φSH(x, a, q) is tautological in character.
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Proof Under the hypothesis of the lemma, we must show that the bounded mixed
formula¬φSH(x, a, t)∨φSH(x, a, q) is tautological in character. The proof is straight-
forward by induction on the complexity of φ, but the negation case is proved
directly. In the negation case, we must show that the bounded mixed formula
¬∃a ∈ t ¬φSH(x, a, f a) ∨ ∃a ∈ q ¬φSH(x, a, f a) is tautological in character. Let s
be a closed first-order term and r closed normal terms of appropriate types. We must
argue that

(¬∃a ∈ t ¬φSH(s, a, ra) ∨ ∃a ∈ q ¬φSH(s, a, ra))p

is a tautology. By definition, this propositional formula of L is

¬
∨

u∈ts
¬φSH(s, u, ru)p ∨

∨

u∈qs
¬φSH(s, u, ru)p

The above is clearly a tautology because the last disjunction includes the disjuncts of
the first disjunction. �

It is this monotonicity property that distinguishes our interpretation as a cumulative
interpretation in the sense discussed in the introduction. The accumulation is, of course,
done into finite sets. The semi-intuitionistic interpretations of nonstandard arithmetic
of Berg et al. [16] also enjoy a similar monotonicity property (curiously, their classical
interpretation is not cumulative). Of course, there is an extra ingredient in [16] that is
totally absent in our interpretation. Since Berg et al. have to deal with nonstandardness,
they have a “compactness” feature incorporated in their interpretation in order to
deal with the unrestricted quantifiers (by the way, this feature is also present in the
bounded functional interpretation [7] in the interpretation of the bounded quantifiers).
With respect to the logical part, the manner in which the existential witnesses are
accumulated in our interpretation and in the functional interpretations of [16] differs
slightly. In the treatment of [16] there is an identification of elements of (σ → ρ∗)∗
with elements of σ → ρ∗, whereas in our treatment no such identification takes place.
The reader can consult [3] for the modification of the interpretations of [16] along the
lines underlying the interpretation of the present paper.

Theorem 3 (Soundness) Let φ be a sentence of L and suppose that φ is provable in
classical first-order predicate logic without equality. Then there are closed terms t
(of appropriate types) of the star combinatory language such that the bounded mixed
formula φSH(a, ta) is tautological in character.

Proof Let φ(x) be a first-order formula of L whose free variables are among x (this
letter may stand for a tuple of variables). We show that if φ(x) is provable in classical
first-order predicate logic, then there are terms t , whose free variables are among x ,
such that the bounded mixed formula φSH(x, a, ta) is tautological in character. We
consider a suitable logical calculus and prove the result by induction on the number
of inferences of the derivation. We use a calculus due to Shoenfield, as described in
sections 2.6 and 8.3 of [11]. The calculus consists of two axiom schemas

– Excluded middle: ¬φ ∨ φ
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– Substitution: ∀xφ(x) → φ(t)

and five rules

– Expansion: from φ infer ψ ∨ φ

– Contraction: from φ ∨ φ infer φ

– Associativity: from φ ∨ (ψ ∨ γ ) infer (φ ∨ ψ) ∨ γ

– Cut: from φ ∨ ψ and ¬φ ∨ γ infer ψ ∨ γ

– ∀-introduction: from φ(x) ∨ ψ infer ∀xφ(x) ∨ ψ , provided that x does not occur
free in ψ

We will present the witnessing terms that do the job. The verification that these
terms work (i.e., that they yield formulas tautological in character) is straightforward
using Lemmas 5, 6 and the monotonicity lemma (Lemma 7). We will, nevertheless,
present the details of this verification for the cut rule (this is the most involved case).

Suppose φ is a first-order formula and that φSH is ∀a∃b φSH(a, b). It is easy to see
that (¬φ∨φ)SH is ∀ f, d∃a′, e[∃a ∈ a′¬φSH(a, f a)∨φSH(d, e)]. Wemust find terms
t and q such that

∃a ∈ t f d ¬φSH(a, f a) ∨ φSH(d, q f d)

is tautological in character. It is easy to see that t :≡ λ f, d.sd and q :≡ λ f, d. f d
work.

The SH-interpretation of the substitution axiom for the formula φ is (modulo clas-
sical logic in the lower SH-formulas)

∀ f, ã∃cG∗∃a′, b
[∀x ∈ c∀a ∈ a′ φSH(x, a, f xa) → φSH(t, ã, b)

]
.

We must present terms p, q and r such that

∀x ∈ p f ã ∀a ∈ q f ã φSH(x, a, f xa) → φSH(t, ã, r f ã)

is tautological in character. The terms p :≡ λ f, ã.st , q :≡ λ f, ã.sã and r :≡
λ f, ã. f t ã do the job.

Expansion is immediate provided that we show that every type is inhabited by a
closed term. Given a starting constant symbol c of L (by hypothesis, L has at least a
constant symbol), we can build systematically an inhabitant cσ for every type σ : cG

is just c; cτ→ρ is λxτ .cρ ; and cτ∗
is scτ . Associativity is trivial.

Let us look at the contraction rule. Suppose that, by induction hypothesis, there are
terms t and q such that

φSH(a, tad) ∨ φSH(d, qad)

is tautological in character. Then, φSH(a,∪(taa)(qaa)) is tautological in character.
For the verification, we use the monotonicity lemma [and (b) of Lemma 5].

The ∀-introduction rule does not present any trouble (the terms that witness the
consequent are essentially the same that witness the antecedent).
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We now discuss the cut rule. Suppose that ψSH is ∀d∃eψSH(d, e) and that γ SH is
∀u∃v γ SH(u, v). By induction hypothesis, there are terms t , q, r and s such that

(I) φSH(a, tad) ∨ ψSH(d, qad)

and

(II) ∃a ∈ r f u ¬φSH(a, f a) ∨ γ SH(u, s f u)

are tautological in character. Take the terms k :≡ λd, u.
⋃

(r(λa.tad)u)(λw.qwd)

and l :≡ λd, u.s(λa.tad)u. We claim that the bounded mixed formula

ψSH(d, kdu) ∨ γ SH(u, ldu)

is tautological in character. To see this, we must show that, for all closed normal terms
d̃ and ũ of appropriate types, (ψSH(d̃, kd̃ũ) ∨ γ SH(ũ, ld̃ũ))p is a tautology (we are
ignoring first-order parameters). By (II), the propositional formula

⎛

⎝
∨

ã∈(r(λa.tad̃)ũ)s

¬φSH(ã, t ãd̃)p

⎞

⎠ ∨ γ SH(ũ, s(λa.tad̃)ũ)p

is a tautology. By (I), we know that for each of the finitely-many closed (normal) terms
ã such that ã ∈ (r(λa.tad̃)ũ)s,

φSH(ã, t ãd̃)p ∨ ψSH(d̃, qãd̃)p

is a tautology. It is clear that all these tautologies (tautologically) imply the proposi-
tional formula

⎛

⎝
∨

ã∈(r(λa.tad̃)ũ)s

ψSH(d̃, qãd̃)p

⎞

⎠ ∨ γ SH(ũ, s(λa.tad̃)ũ)p

Therefore, the above formula is a tautology. Let us study each one of the disjuncts
above. The last one is (by Lemma 6) the formula γ SH(ũ, ld̃ũ)p. For each of the finitely-
many terms ã in (r(λa.tad̃)ũ)s, we have (qãd̃)s ⊆ (

⋃
(r(λa.tad̃)ũ)(λw.qwd̃))s. This

is a consequence of (c) of Lemma 5: just notice that if a closed normal term p is in
(qãd̃)s then p ∈ ((λw.qwd̃)ã)s. Hence, by the monotonicity lemma,

ψSH(d̃, qãd̃)p → ψSH(d̃, kd̃ũ)p

is a tautology. It now follows that ψSH(d̃, kd̃ũ)p ∨ γ SH(ũ, ld̃ũ)p is a tautology, as
wanted. �
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Example 1 Consider the first-order validity φ :≡ ∃x∀y (Px ∨ ¬Py), where P is a
unary predicate. The SH-translation of φ is ∀ f ∃a [∃x ∈ a∀y ∈ f x (Px ∨ ¬Py)],
modulo classical logic in the lower SH-formulas. By the above theorem, it is possible
to extract from a proof of φ a closed term Φ : (G → G∗) → G∗ that “realizes” a in
f . The closed term Φ :≡ λ f. ∪ (sc)( f c) does the job (here c is some constant of the
language). So, we are claiming that

∃x ∈ ∪(sc)( f c)∀y ∈ f x (Px ∨ ¬Py)

is tautological in character. This means that, for every closed normal term q of type
G → G∗,

∨

t∈(∪(sc)(qc))s

∧

r∈(qt)s
(Pt ∨ ¬Pr)

is a tautology. If (qc)s is the finite set {t1, . . . , tk} of closed first-order terms, then
(∪(sc)(qc))s = {c, t1, . . . , tk} and the above formula is

k∧

i=1

(Pc ∨ ¬Pti ) ∨
k∨

j=1

∧

r∈(qt j )s
(Pt j ∨ ¬Pr)

This is classically equivalent to

Pc ∨
k∧

i=1

¬Pti ∨
k∨

j=1

Pt j ∨
k∨

j=1

∧

r∈(qt j )s
¬Pr

which is obviously a tautology.
The way our interpretation works for this example is somewhat different from the

Gerhardy–Kohlenbach analysis in [8]. Compare also with Example 3 below.

Example 2 Let us now consider the first-order validity

φ := ∃x∀w∃y∃z ((Q(c, y) ∨ Q(d, z)) → Q(x, w))

where c and d are constants and Q is a binary predicate. The SH-translation is
∀Φ∃X, F, H φSH(Φ, X, F, H), where φSH(Φ, X, F, H) is (modulo classical logic)
the following bounded mixed formula:

∃x ∈ X, f ∈F, h∈H ∀w∈Φx f h ∃y∈ f w, z∈hw ((Q(c, y) ∨ Q(d, z)) → Q(x, w))

Let σ be the type ofΦ, i.e., σ isG → (G → G∗) → (G → G∗) → G∗. By the above
theorem, there are closed terms t : σ → G∗ and q and r of type σ → (G → G∗)∗
which “realize” X , F and H in Φ (respectively). The following terms do the job: t =
λΦ.∪(sc)(sd), q = λΦ.∪(sp)(s(λwG .Φcpp)) and r = λΦ.∪(sp)(s(λwG .Φdpp)).
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Here p can be any closed term of appropriate type. For definiteness, we can take
p = λwG .(sw).

The verification that the above terms do the job hinges (informally) on a discussion
by cases, by considering whether (or not) there are y0 ∈ Φ(cpp) and z0 ∈ Φ(dpp)
such that ¬Q(c, y0) and ¬Q(d, z0).

We finish the paper with a new proof of Herbrand’s theorem:

Corollary 1 (Herbrand’s theorem) Let φ(x) be a quantifier-free formula of the first-
order language L, with x as the only free variable. Suppose that ∃x φ(x) is a theorem
of classical logic. Then there are closed first-order terms r1, . . . , rn such that φ(r1) ∨
. . . ∨ φ(rn) is a tautology.

Proof We remarked that (∃x φ(x))
SH

is ∃a∃x ∈ a φ(x). By the soundness theorem,
there is a closed term t of type G∗ such that (∃x ∈ t φ(x))p is a tautology. This means
that

∨

r∈ts
φ(r)

is a tautology. We are done. �
Example 3 Let φ be the first-order validity ∃x (P(x) ∨ ¬P( f (x))), where P is a
unary predicate symbol and f is a unary function symbol. From a proof of φ it is
possible to extract a closed term t of type G∗ that “realizes” the bounded mixed
formula ∃x ∈ t (P(x) ∨ ¬P( f (x))). It is clear that we can take t to be ∪(sc)(s( f c)),
where c is a constant of the language.

The procedure underlying the construction of the terms in the proof of the sound-
ness theorem is of low complexity. The terms extracted need not be in normal form,
though. The well-known super-exponential feature on the number of terms in Her-
brand’s theorem (cf. [12]) is due to the fact that they are obtained by carrying out the
normalization of the extracted term t of type G∗.

References

1. Avigad, J., Feferman, S.:Gödel’s functional (“Dialectica”) interpretation. In:Buss, S.R. (ed.)Handbook
of Proof Theory, Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. North
Holland, Amsterdam (1998)

2. Avigad, J., Towsner, H.: Functional interpretation and inductive definitions. J. Symb. Log. 74(4),
1100–1120 (2009)

3. Borges, A.: On the herbrandised interpretation for nonstandard arithmetic. Master’s thesis, Universi-
dade de Lisboa (2016)

4. Diller, J.: Logical problems of functional interpretations. Ann. Pure Appl. Log. 114, 27–42 (2002)
5. Diller, J., Nahm, W.: Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher

Typen. Archive für mathematische Logik und Grundlagenforschung 16, 49–66 (1974)
6. Ferreira, F., Nunes, A.: Bounded modified realizability. J. Symb. Log. 71, 329–346 (2006)
7. Ferreira, F., Oliva, P.: Bounded functional interpretation. Ann. Pure Appl. Log. 135, 73–112 (2005)
8. Gerhardy, P., Kohlenbach, U.: Extracting Herbrand disjunctions by functional interpretation. Arch.

Math. Log. 44, 633–644 (2005)

123



A herbrandized functional interpretation of classical… 539

9. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. dialectica 12,
280–287 (1958). Reprinted with an English translation in [10], pp. 240–251

10. Gödel, K.: On a hitherto unutilized extension of the finitary standpoint. In: Feferman, S., et al. (eds.)
Collected Works, vol. II. Oxford University Press, Oxford (1990)

11. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley Publishing Company, Boston (1967). Repub-
lished in 2001 by AK Peters

12. Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75(1), 104–107 (1979)
13. Tait, W.: Intentional interpretations of functionals of finite type I. J. Symb. Log. 32, 198–212 (1967)
14. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cambridge

(1996)
15. Troelstra,A.S. (ed.):Metamathematical Investigation of IntuitionisticArithmetic andAnalysis. Lecture

Notes in Mathematics, vol. 344. Springer, Berlin (1973)
16. van den Berg, B., Briseid, E., Safarik, P.: A functional interpretation for nonstandard arithmetic. Ann.

Pure Appl. Log. 163(12), 1962–1994 (2012)

123


	A herbrandized functional interpretation of classical first-order logic
	Abstract
	1 Introduction
	2 The star combinatory calculus
	3 Bounded mixed formulas and the propositional calculus
	4 The herbrandized interpretation
	References




