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Abstract We introduce and study the first-order Generic Vopěnka’s Principle, which
states that for every definable proper class of structures C of the same type, there
exist B �= A in C such that B elementarily embeds into A in some set-forcing
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2 J. Bagari et al.

extension. We show that, for n ≥ 1, the Generic Vopěnka’s Principle fragment for
�n-definable classes is equiconsistent with a proper class of n-remarkable cardinals.
The n-remarkable cardinals hierarchy for n ∈ ω, which we introduce here, is a nat-
ural generic analogue for the C (n)-extendible cardinals that Bagaria used to calibrate
the strength of the first-order Vopěnka’s Principle in Bagaria (Arch Math Logic 51(3–
4):213–240, 2012). Expanding on the theme of studying set theoretic properties which
assert the existence of elementary embeddings in some set-forcing extension, we intro-
duce and study theweakProper ForcingAxiom, wPFA. The axiomwPFA states that for
every transitive modelM in the language of set theory with some ω1-many additional
relations, if it is forced by a proper forcing P thatM satisfies some �1-property, then
V has a transitive model M̄, satisfying the same �1-property, and in some set-forcing
extension there is an elementary embedding from M̄ intoM. This is a weakening of
a formulation of PFA due to Claverie and Schindler (J Symb Logic 77(2):475–498,
2012), which asserts that the embedding from M̄ to M exists in V . We show that
wPFA is equiconsistent with a remarkable cardinal. Furthermore, the axiom wPFA
implies PFAℵ2 , the Proper Forcing Axiom for antichains of size at most ω2, but it is
consistent with �κ for all κ ≥ ω2, and therefore does not imply PFAℵ3 .

Keywords Large cardinals · Vopěnka’s Principle · Generic Vopěnka’s Principle ·
Remarkable cardinals · Proper Forcing Axiom

Mathematics Subject Classification 03E35 · 03E55 · 03E57

1 Introduction

Vopěnka’sPrinciple is a large cardinal principlewhich states that for every proper class
C of structures of the same type there are B �= A, both in C, such that B elementarily
embeds into A. It can be formalized in first-order set theory1 as a schema, where for
each natural number n in the meta-theory there is a formula expressing that Vopěnka’s
Principle holds for all �n-definable (with parameters) classes. Following [1], we call
VP(�n) the fragment of Vopěnka’s Principle for�n-definable classes and let VP(�n)

be the weaker principle, where parameters are not allowed in the definition of the class
(with analogous definitions for�n). Bagaria introduced in [1] a family ofVopěnka-like
principles VP(κ,�n), where κ is a cardinal, which state that for every proper class C of
structures of the same type that is �n-definable with parameters in Hκ (the collection
of all sets of hereditary size less than κ), C reflects below κ , namely for every A ∈ C
there is B ∈ Hκ ∩C that elementarily embeds into A. Bagaria established a relationship
between Vopěnka’s Principle fragments and his family of principles VP(κ,�n), and
provided a complete characterization of Vopěnka’s Principle fragments VP(�n), as
well as the weaker principles VP(�n), in terms of the existence of supercompact and
C (n)-extendible cardinals [1].

1 The first-order and second-order versions of Vopěnka’s Principle are equiconsistent over the Gödel-
Bernays set theory GBC, but there are models of GBC in which Vopěnka’s Principle holds for all definable
classes, but fails for some class [8].
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Generic Vopěnka’s Principle, remarkable cardinals, and the… 3

Recall thatC (n) denotes the class club of ordinals δ such that Vδ ≺�n V . A cardinal
κ is called C (n)-extendible if for every α > κ , there is an elementary embedding
j : Vα → Vβ with critical point κ and with j (κ) ∈ C (n). Note that every extendible
cardinal is 1-extendible. Bagaria [1] showed that the weaker principle VP(�1) holds
if and only if VP(κ,�2) holds for some κ , and if and only if there is a supercompact
cardinal. For n ≥ 1, VP(�n+1) holds if and only if VP(κ,�n+2) holds for some κ ,
and if and only if there is a C (n)-extendible cardinal. The results generalize to show
that the Vopěnka’s Principle fragment VP(�1) holds if and only if VP(κ,�2) holds
for a proper class of κ , and if and only if there is a proper class of supercompact
cardinals. For n ≥ 1, VP(�n+1) holds if and only if VP(κ,�n+2) holds for a proper
class of κ , and if and only if there is a proper class of C (n)-extendible cardinals. Thus,
Vopěnka’s Principle holds precisely when, for every n ∈ ω, there is a proper class of
C (n)-extendible cardinals.

In this article, we introduce and study generic versions of Vopěnka’s Principle
and its variants. The Generic Vopěnka’s Principle states that for every proper class C
of structures of the same type there are B �= A, both in C, such that B elementarily
embeds into A in some set-forcing extension.We call gVP(�n) the Generic Vopěnka’s
Principle fragment for �n-definable (with parameters) classes and we let gVP(�n) be
the weaker principle where parameters are not allowed in the definition of the class
(with analogous definitions for �n). We also call gVP(κ,�n) the analogous generic
version of VP(κ,�n).

It turns out that an elementary embedding j : B → A between first-order struc-
tures exists in some set-forcing extension if and only if it already exists in VColl(ω,B)

(Proposition 2.7). We show that to every pair of structures B and A of the same type,
we can associate a closed game G(B, A) such that B elementarily embeds into A in
VColl(ω,B) precisely when a particular player has a winning strategy in that game. The
game G(B, A) is a variant of an Ehrenfeucht–Fraïssé game of length ω, where player
I starts out by playing some b0 ∈ B and player II responds by playing a0 ∈ A. Play-
ers I and II continue to alternate, choosing elements bn and an from their respective
structures at stage n of the game. Player II wins if for every formula ϕ(x0, . . . , xn),

B |	 ϕ(b0, . . . , bn) ↔ A |	 ϕ(a0, . . . , an),

and otherwise player I wins. Since if player II loses she must do so at some finite
stage of the game, the game G(B, A) is closed and hence determined by the Gale–
Stewart theorem [5]. Thus, either player I or player II has a winning strategy. We show
that player II has a winning strategy precisely when B elementarily embeds into A
in VColl(ω,B) (Proposition 4.1). It follows that each first-order fragment of Generic
Vopěnka’s Principle is characterized by the existence of certain winning strategies in
its associated class of closed games.

The consistency strength of Generic Vopěnka’s Principle fragments is measured
by a hierarchy of cardinals, the n-remarkable cardinals (Definition 3.1) we introduce
here, which generalize Schindler’s remarkable cardinals analogously to how C (n)-
extendible cardinals generalize extendible cardinals. A remarkable cardinal (which is
1-remarkable by our definition) is a type of generic supercompact cardinal (see Sect. 2)
and, correspondingly, an n-remarkable cardinal (for n > 1) is a type of generic C (n)-
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4 J. Bagari et al.

extendible cardinal (see Sect. 3). The n-remarkable cardinals sit relatively low in
the large cardinal hierarchy. Call a large cardinal completely remarkable if it is n-
remarkable for every n ∈ ω. Completely remarkable cardinals can exist in L and the
consistency of a completely remarkable cardinal follows from a 2-iterable cardinal
(Theorem 3.6). We show that the Generic Vopěnka’s Principle fragment gVP(�n) is
equiconsistent with an n-remarkable cardinal.

Theorem 1.1 The following are equiconsistent.

(1) gVP(�n).
(2) gVP(κ,�n+1) for some κ .
(3) There is an n-remarkable cardinal.

The result generalizes to the bold-face gVP(�n) principles.

Theorem 1.2 The following are equiconsistent.

(1) gVP(�n).
(2) gVP(κ,�n+1) for a proper class of κ .
(3) There is a proper class of n-remarkable cardinals.

See Sect. 5 for proofs.
The notion of a generic embedding existing in some forcing extension leads nat-

urally to a weak version of the Proper Forcing Axiom PFA, which we introduce and
study here. Schindler and Claverie showed in [2] that PFA has the following equivalent
formulation.

Theorem 1.3 The following are equivalent.

(1) PFA
(2) IfM = (M; ∈, (Ri | i < ω1)) is a transitive model, ϕ(x) is a �1-formula, and

Q is a proper forcing such that

�Q ϕ(M),

then there is in V some transitive M̄ = (M̄; ∈, (R̄i | i < ω1)) together with
some elementary embedding

j : M̄ → M

such that ϕ(M̄) holds.

Byweakening this formulation of PFA to say that the embedding j exists in VColl(ω,M̄),
we obtain theweakProperForcingAxiomwPFA.We show thatwPFA is equiconsistent
with a remarkable cardinal.

Theorem 1.4

(1) If κ is remarkable, then there is a forcing extension in which wPFA holds.
(2) If wPFA holds, then ωV

2 is remarkable in L.

The principle wPFA implies PFAℵ2 , the Proper Forcing Axiom for meeting antichains
of size ≤ ℵ2, but it does not imply PFAℵ3 . For proofs see Sect. 6.
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Generic Vopěnka’s Principle, remarkable cardinals, and the… 5

2 Remarkable cardinals

Remarkable cardinals were introduced by Schindler, who showed that the assertion
that the theory of L(R) cannot be changed by proper forcing is equiconsistent with
the existence of a remarkable cardinal [11]. Remarkable cardinals have also found
applications in other settings: recently Cheng and Schindler showed that third-order
arithmetic together with Harrington’s principle is equiconsistent with the existence of
a remarkable cardinal [4].

Definition 2.1 (Schindler [11,12]) A cardinal κ is remarkable if for every regular
cardinal λ > κ , there is a regular cardinal λ̄ < κ such that in V Coll(ω,<κ) there is an
elementary embedding j : HV

λ̄
→ HV

λ with j (crit( j)) = κ .

We can view a remarkable cardinal as a type of generic supercompact cardinal using
the following theorem of Magidor.

Theorem 2.2 (Magidor [10]) A cardinal κ is supercompact if and only if for every
regular cardinalλ > κ there is a regular cardinal λ̄ < κ and an elementary embedding
j : Hλ̄ → Hλ with j (crit( j)) = κ .

Remarkable cardinals are much weaker than supercompact cardinals. Remarkable
cardinals are downward absolute to L and the consistency of a remarkable cardinal
follows from a 2-iterable cardinal, which is much weaker than an ω-Erdős cardinal. It
is not difficult to see that remarkable cardinals are totally indescribable and ineffable.
(See [7,11].)

For the rest of the article, wewill make the convention that structures of the form Hλ

or Vλ always refer to ground model objects, so that we don’t have to use superscripts.
If κ is remarkable, then every set a can be put into the range of some remarkability

embedding j : Hλ̄ → Hλ in V Coll(ω,<κ) with λ arbitrarily large. See Proposition 3.2
for a proof of a more general statement.

Proposition 2.3 (Schindler [12]) If κ is remarkable, then for every set a and regular
λ such that a ∈ Hλ, there is a regular λ̄ < κ such that in V Coll(ω,<κ) there is an
elementary embedding j : Hλ̄ → Hλ with j (crit( j)) = κ and a ∈ range( j).

Recall that C (n) is the �n-definable club proper class of ordinals δ such that
Vδ ≺�n V . In particular, C (1) is the class of uncountable strong limit cardinals δ

such that Vδ = Hδ (see [1] for details). Note, more generally, that for every uncount-
able cardinal δ, Hδ ≺�1 V .

Proposition 2.4 The following are equivalent for a cardinal κ .

(1) κ is remarkable.
(2) For every λ > κ and every a ∈ Vλ, there is λ̄ < κ such that in V Coll(ω,<κ) there is

an elementary embedding j : Vλ̄ → Vλ with j (crit( j)) = κ and a ∈ range( j).
(3) For every λ > κ in C (1) and every a ∈ Vλ, there is λ̄ < κ also in C (1) such that in

VColl(ω,<κ) there is an elementary embedding j : Vλ̄ → Vλ with j (crit( j)) = κ

and a ∈ range( j).
(4) There is a proper class of λ > κ such that for every λ in the class, there is λ̄ < κ

such that in VColl(ω,<κ) there is an elementary embedding j : Vλ̄ → Vλ with
j (crit( j)) = κ .
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6 J. Bagari et al.

Proof Clearly, (3) implies (4).
Let us show (1) implies (2). So, assume κ is remarkable. Fix λ > κ and a ∈ Vλ.

Choose a regular δ large enough so that Vλ ∈ Hδ . By Proposition 2.3, there is a regular
δ̄ < κ such that in V Coll(ω,<κ) there is an elementary embedding j : Hδ̄ → Hδ with
j (crit( j)) = κ and a, λ ∈ range( j). Let j (λ̄) = λ. Suppose x is the pre-image of Vλ

under j . Hδ̄ thinks that x is Vλ̄ by elementarity and it must be correct about this since
“x = Vλ̄” is �1 expressible, with λ̄ as a parameter, and Hδ̄ ≺�1 V . Thus, we can
restrict j to j : Vλ̄ → Vλ and the restriction has all the required properties.

For (2) implies (3), it suffices to observe that if j : Vλ̄ → Vλ is elementary and λ

is in C (1), then λ̄ must be in C (1) as well. Since λ ∈ C (1), λ is an uncountable limit
cardinal and Vλ = Hλ. Thus, by elementarity, λ̄ is a limit of cardinals and hence a
limit cardinal, and then, by elementarity, it must be the case that Vλ̄ = Hλ̄.

It only remains to show that (4) implies (1). So, assume that for every λ in some
proper class C, there is λ̄ such that in V Coll(ω,<κ) there is an elementary embed-
ding j : Vλ̄ → Vλ with j (crit( j)) = κ . Suppose towards a contradiction that κ is
not remarkable and let λ > κ be the least V -regular cardinal witnessing the non-
remarkability of κ . By (4), there is some δ > λ in C and δ̄ < κ such that in V Coll(ω,<κ)

there is an elementary embedding j : Vδ̄ → Vδ with j (crit( j)) = κ . Note that λ is
definable in Vδ as the least regular cardinal witnessing the non-remarkability of κ .
So λ is in the image of j and we can let j (λ̄) = λ, noting that λ̄ must be regular by
elementarity. Nowwe restrict j to j : Hλ̄ → Hλ and note that the restriction has all the
desired properties, thus contradicting our assumption there was no such embedding
for λ. �

Proposition 2.5 Every remarkable cardinal is in C (2).

Proof Suppose κ is remarkable,ϕ(x, y) is a�1-formula, a ∈ Vκ , and ∃x ϕ(x, a) holds
in V . Then V |	 ϕ(a, b) for some witness b. We must find some witness b̄ ∈ Vκ .
Let δ > κ be regular such that b ∈ Hδ and let α < κ be some ordinal above the
rank of a. By Proposition 2.3, there is a regular δ̄ < κ such that in V Coll(ω,<κ) there
is an elementary embedding j : Hδ̄ → Hδ with j (crit( j)) = κ and α ∈ range( j). It
follows that crit( j) is above the rank of a and hence j (a) = a. Since Hδ |	 ϕ(a, b),
there is some b̄ ∈ Hδ̄ such that Hδ̄ |	 ϕ(a, b̄), but then V |	 ϕ(a, b̄) as well and
b̄ ∈ Vκ . �

When working with remarkable cardinals we often appeal to the following folklore
result, which asserts that the existence of an embedding of a countable model into
another fixed model is absolute.

Lemma 2.6 Suppose M is a countable first-order structure and j : M → N is
an elementary embedding. If W ⊆ V is a transitive (set or class) model of (some
sufficiently large fragment of) ZFC such that M is countable in W and N ∈ W, then
W has some elementary embedding j∗ : M → N. Moreover, if both M and N are
transitive ∈-structures, we can additionally assume that crit( j∗) = crit( j). Also, we
can assume that j and j∗ agree on some fixed finite number of values.

The proof proceeds by fixing an enumeration {ai | i < ω} of M inW and constructing
in W the tree of all finite partial isomorphisms between M to N with domain some
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Generic Vopěnka’s Principle, remarkable cardinals, and the… 7

{ai : i < n} for some n. This tree is ill-founded in V , and hence must be ill-founded in
W (for details see Lemma 2.7 in [3]). The absoluteness lemma 2.6 immediately gives
the equivalence between the assertion that an embedding j : B → A exists in some
set-forcing extension and the assertion that such an embedding exists in V Coll(ω,B).

Proposition 2.7 The following are equivalent for structures B and A in the same
language.

(1) There is a complete Boolean algebra B such

VB |	 “There exists an elementary embedding j : B → A.”

(2) In V Coll(ω,B) there is an elementary embedding j : B → A.
(3) For every complete Boolean algebra B,

VB |	 “|B| = ℵ0 → There exists an elementary embedding j : B → A.”

Moreover, if B and A are transitive ∈-structures, we can assume that the embeddings
have the same critical point and agree on finitely many fixed values.

Proof Clearly (2) implies (1) and (3) implies (2).
Let’s show (1) implies (2). So suppose a forcing extension V [G] has an elementary

embedding j : B → A and let |B|V = δ. Let H ⊆ Coll(ω, δ) be V [G]-generic. Since
j exists in V [G][H ] and B is countable in V [H ] ⊆ V [G][H ], by Lemma 2.6, there
is some elementary embedding j∗ : B → A in V [H ] satisfying the “moreover”
conditions.

Finally, let’s show (2) implies (3). So suppose a forcing extension V [G] satisfies
|B| = ℵ0 and let |B|V = δ. Let H ⊆ Coll(ω, δ) be V [G]-generic. Then, by (2),
V [H ] has an elementary embedding j : B → A, and hence so does V [G][H ]. But
then by Lemma 2.6, since B is countable in V [G], it must have some j∗ : B → A as
desired. �

In particular, we can rephrase the definition of a remarkable cardinal κ to say that for
every regular λ > κ , there is some regular λ̄ < κ such that some set-forcing extension
has an elementary embedding j : Hλ̄ → Hλ with j (crit( j)) = κ .

3 n-Remarkable cardinals and virtual large cardinals

We generalize remarkable cardinals to obtain the notion of n-remarkable cardinal, for
n > 0. We show that the n-remarkable cardinals form a hierarchy of strength and, for
n ≥ 2, they can be viewed as a type of a generic C (n−1)-extendible cardinal.

Definition 3.1 A cardinal κ is n-remarkable, for n > 0, if for every λ > κ in C (n),
there is λ̄ < κ also in C (n) such that in V Coll(ω,<κ), there is an elementary embedding
j : Vλ̄ → Vλ with j (crit( j)) = κ . A cardinal κ is completely remarkable if it is
n-remarkable for every n > 0.

By Proposition 2.4, remarkable cardinals are precisely the 1-remarkable cardinals.
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8 J. Bagari et al.

Proposition 3.2 If κ is n-remarkable, then for every λ > κ in C (n) and a ∈ Vλ,
there is λ̄ < κ also in C (n) such that in VColl(ω,<κ) there is an elementary embedding
j : Vλ̄ → Vλ with j (crit( j)) = κ and a ∈ range( j).

Proof Suppose towards a contradiction that there is some λ > κ in C (n) and a ∈ Vλ

for which the apparently stronger notion of n-remarkability of κ fails to hold. Let
δ ∈ C (n) be large enough so that Vδ sees that this is the case. By n-remarkability, there
is δ̄ < κ in C (n) such that in V Coll(ω,<κ) there is j : Vδ̄ → Vδ with j (crit( j)) = κ .
Let crit( j) = κ̄ . By elementarity, Vδ̄ satisfies that the apparently stronger notion
of n-remarkability of κ̄ fails to hold for some η > κ̄ in C (n) and b ∈ Vη. Thus, by
elementarity upward, Vδ satisfies that the apparently stronger notion of n-remarkability
of κ fails to hold for j (η) ∈ C (n) and j (b) ∈ Vj (η). But this is impossible because j
restricts to j : Vη → Vj (η) and obviously j (b) ∈ range( j). �

Next, we give an analogue of Proposition 2.5.

Proposition 3.3 Every n-remarkable cardinal is in C(n+1).

Proof Suppose that κ is n-remarkable. It suffices to show that whenever ϕ(x, y) is a
�n-formula,a ∈ Vκ , and∃x ϕ(x, a) holds, then there is b ∈ Vκ such thatϕ(b, a) holds.
So suppose the hypothesis to be true. Let λ > κ be in C (n+1), so that in particular,
Vλ |	 ∃x ϕ(x, a). By n-remarkability and Proposition 3.2, there is λ̄ < κ in C (n) such
that in V Coll(ω,<κ) there is j : Vλ̄ → Vλ with j (crit( j)) = κ and crit( j) above the
rank of a. It follows, by elementarity, that Vλ̄ |	 ∃x ϕ(x, a). So there is b ∈ Vλ̄ such
that Vλ̄ |	 ϕ(b, a). Since λ̄ ∈ C (n), ϕ(b, a) holds in the universe and b ∈ Vκ . �

Theorem 3.4 Every n + 1-remarkable cardinal is a limit of n-remarkable cardinals.

Proof First, observe that being n-remarkable is a �n+1-property. Suppose that κ is
n + 1-remarkable and fix α < κ . We will show that there is an n-remarkable cardinal
between α and κ . In VColl(ω,<κ) fix some elementary j : Vλ̄ → Vλ with λ > κ , λ̄ < κ

both in C (n+1) and j (crit( j)) = κ . Let j (κ̄) = κ , and note that by putting a large
enough ordinal into the range of j we can assume that κ̄ > α. Since λ ∈ C (n+1),
Vλ satisfies that κ is n-remarkable, and so by elementarity Vλ̄ satisfies that κ̄ is n-
remarkable. But λ̄ is also in C (n+1), and so κ̄ is truly n-remarkable in V . �

It follows that the n-remarkable cardinals form a hierarchy of strength bounded above
by completely remarkable cardinals.

Theorem 3.5 If 0# exists, then every Silver indiscernible is completely remarkable in
L.

Proof Suppose 0# exists and let κ be a Silver indiscernible. Fix α > κ such that
Lα ≺�n L . Let δ > α be a Silver indiscernible and let j : L → L be an elementary
embedding generated by a shift of indiscernibles such that crit( j) = κ and j (κ) = δ.
The embedding j restricts to j : Lα → L j (α). It follows, by Lemma 2.6, that there is
ᾱ < j (κ) (namely ᾱ = α) such that in LColl(ω,< j (κ)) there is an elementary embedding
j∗ : L ᾱ → L j (α) with j∗(crit( j∗)) = j (κ) and L ᾱ ≺�n L . So by elementarity via j , L
satisfies that in LColl(ω,<κ) there is ᾱ < κ and an elementary embedding j∗ : L ᾱ → Lα

such that j∗(crit( j∗)) = κ and L ᾱ ≺�n L . �
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Generic Vopěnka’s Principle, remarkable cardinals, and the… 9

Thus, the consistency of a completely remarkable cardinal follows from 0#, but in
fact the assertion is much weaker, and already follows from a 2-iterable cardinal. A
cardinal κ is said to be α-iterable, for some 1 ≤ α ≤ ω1, if every A ⊆ κ can be put
into a weak κ-model2 M for which there is a weakly amenable M-ultrafilter3 on κ

with α-many well-founded iterated ultrapowers. For a finite n, an n-iterable cardinal
is stronger than a completely ineffable cardinal but weaker than an ω-Erdős cardinal.
If κ is (at least) 2-iterable, it can be shown that every A ⊆ κ can be put into a weak
κ-model M |	 ZFC with an elementary embedding j : M → N such that N is
well-founded, crit( j) = κ , M ≺ N , and M = V N

j (κ). (See [7] for details.)

Theorem 3.6 If κ is 2-iterable, then Vκ is a model of proper class many completely
remarkable cardinals.

Proof Suppose κ is 2-iterable. Fix a weak κ-model M |	 ZFC containing Vκ for
which there is an elementary embedding j : M → N such that N is well-founded,
crit( j) = κ , M ≺ N , and M = V N

j (κ). To show that Vκ is a model of proper class many
completely remarkable cardinals, it suffices to show that κ is completely remarkable
in M = V N

j (κ). So, fix n and fix α > κ in M such that V M
α ≺�n M . Note that,

since M ≺ N and M = V N
j (κ), V

M
α = V N

α ≺�n N as well. Consider the restriction

j : V M
α → V N

j (α). By Lemma 2.6, N satisfies that in VColl(ω,< j (κ)) there is ᾱ < j (κ)

and an elementary embedding j∗ : Vᾱ → Vj (α) such that j∗(crit( j∗)) = j (κ) and
Vᾱ ≺�n N . By elementarity, M satisfies that in V Coll(ω,<κ) there is ᾱ < κ and an
elementary embedding j∗ : Vᾱ → Vα such that j∗(crit( j∗)) = κ and Vᾱ ≺�n M .
Thus, κ is n-remarkable in M , for every n ∈ ω. �

It is also not difficult to see that n-remarkable cardinals are downward absolute to L .

If we assume, for a cardinal κ , that the embeddings characterizing a supercompact
cardinal given by Magidor’s theorem exist in some set-forcing extension, then we get
a remarkable cardinal. In [6], Gitman and Schindler apply this procedure to obtain
generic variants of other large cardinals including extendible, huge, and rank-into-
rank. We will show that 2-remarkable cardinals are precisely the virtually extendible
cardinals defined in this manner and that more generally, the n-remarkable cardinals,
for n > 1 correspond to virtually C (n−1)-extendible cardinals.

Definition 3.7 ([6]) A cardinal κ is virtually extendible if for every α > κ , in some
set-forcing extension (equivalently in VColl(ω,Vα)) there is j : Vα → Vβ such that
crit( j) = κ and j (κ) > α. A cardinal κ is virtually C (n)-extendible if additionally
j (κ) ∈ C (n).

Note that virtually extendible cardinals are C (1)-extendible because j (κ) must be
inaccessible in V .

2 A transitive model M |	 ZFC− is called a weak κ-model if it has size κ and height above κ .
3 Suppose M is a transitive model of ZFC− and κ is a cardinal in M . Then U ⊆ PM (κ) is called an
M-ultrafilter if the structure 〈M, ∈,U 〉 with a predicate for U satisfies that U is a normal ultrafilter. An
M-ultrafilter isweakly amenable if for every A ∈ M with |A|M = κ , A∩U ∈ M . Weak amenability makes
it possible to carry out the iterated ultrapowers construction with an external ultrafilter.
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10 J. Bagari et al.

Theorem 3.8 A cardinal κ is virtually extendible if and only if it is 2-remarkable.
More generally, κ is virtually C (n)-extendible if and only if it is n + 1-remarkable.

Proof Let us first show that if κ is virtually extendible, then it is 2-remarkable. Fix
λ > κ inC (2) and letα > λ also be inC (2). By virtual extendibility, in V Coll(ω,Vα) there
is an elementary embedding j : Vα → Vβ with crit( j) = κ and j (κ) > α. Consider
the restriction of j to j : Vλ → Vj (λ). Let’s argue that Vλ ≺�2 Vj (λ). Since λ ∈ C (1),
and j is elementary, j (λ) ∈ C (1) as well. So suppose Vj (λ) satisfies ∃x ϕ(x, a), where
ϕ is �1 and a ∈ Vλ. Then Vj (λ) satisfies ϕ(b, a) for some witness b. So V satisfies
ϕ(b, a) as well. Hence V satisfies ∃x ϕ(x, a) and Vλ must agree because λ ∈ C (2).

So Vβ satisfies that there is λ̄ < j (κ) such that Vλ̄ ≺�2 Vj (λ), and in VColl(ω,< j (κ))

there is an elementary embedding j∗ : Vλ̄ → Vj (λ) with j∗(crit( j∗)) = j (κ). So
Vα satisfies that there is λ̄ < κ such that Vλ̄ ≺�2 Vλ, and in V Coll(ω,<κ) there is
j∗ : Vλ̄ → Vλ such that j∗(crit( j∗)) = κ . Since λ ∈ C (2), it follows that λ̄ ∈ C (2) as
well, completing the argument.

Let us now show that every 2-remarkable κ is virtually extendible. It follows from
2-remarkability, that there must be some λ̄ < κ in C (2) such that for cofinally many
λ > κ inC (2), in V Coll(ω,<κ) there is jλ : Vλ̄ → Vλ with jλ(crit( jλ)) = κ . We can also
assume that crit( jλ) is some fixed κ̄ for all λ. Let us argue that κ̄ is virtually extendible
in Vλ̄. Fix β < λ̄ above κ̄ . Fix any λ and consider the restriction jλ : Vβ → Vjλ(β).
Thus, in V Coll(ω,Vβ) there is some ξ and an elementary embedding j∗ : Vβ → Vξ such
that crit( j∗) = κ̄ and j∗(κ̄) > β. But this is a �2 fact. So it holds true in Vλ̄. So κ̄ is
virtually extendible in Vλ̄, but then since there are embeddings from Vλ̄ into cofinally
many Vλ, with λ ∈ C (2), we have that κ = jλ(κ̄) is virtually extendible in V .

Now let’s suppose that n > 1 and the equivalence holds for all m < n.
First, suppose that κ is virtually C (n)-extendible. Fix λ > κ in Cn+1 and let α > λ

also be in C (n+1). By virtual C (n)-extendibility, in V Coll(ω,Vα) there is an elementary
embedding j : Vα → Vβ with crit( j) = κ , j (κ) > α, and j (κ) ∈ C (n). Consider the
restriction j : Vλ → Vj (λ). Let’s argue that Vλ ≺�n+1 Vj (λ). If suffices to show that
whenever ϕ(x, y) is a�n-formula, a ∈ Vλ, and ∃x ϕ(x, a) holds in Vj (λ), then there is
a witness in Vλ. So suppose that the hypothesis holds. Since Vα knows that λ ∈ C (n+1),
Vβ satisfies that j (λ) is in C (n+1). Thus, Vβ |	 ∃x ϕ(x, a). By the assumption that
the equivalence holds for n − 1 and Proposition 3.3, κ ∈ C (n+1), and so Vβ satisfies
that j (κ) ∈ C (n+1). It now follows that Vj (κ) |	 ∃x ϕ(x, a), and so Vj (κ) |	 ϕ(b, a)

for some b. Since j (κ) ∈ C (n), ϕ(b, a) holds in V , from which it finally follows that
Vλ |	 ∃x ϕ(x, a). The rest of the argument proceeds identically to the case n = 1
above.

Next, suppose that κ is n + 1-remarkable. As in the case n = 1, we fix λ̄ < κ in
C (n+1) such that for cofinallymanyλ>κ inC (n+1), inVColl(ω,<κ) there is jλ : Vλ̄ →Vλ

with crit( jλ) = κ̄ and jλ(κ̄) = κ . As in that case, we will now argue that κ̄ is virtually
C (n)-extendible in Vλ̄. Fix β < λ̄ above κ̄ . Fix any λ and consider the restriction
jλ : Vβ → Vjλ(β). By our assumption that the equivalence holds for all m < n, it
follows that j (κ̄) = κ ∈ C (n+2), and so in particular, j (κ̄) ∈ C (n). Thus, in VColl(ω,Vβ)

there is some ξ and elementary embedding j∗ : Vβ → Vξ such that crit( j∗) = κ̄ ,
j∗(κ̄) > β, and j∗(κ̄) ∈ C (n), but this is a �n+1 fact, and the rest of the argument
proceeds as before. �
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Generic Vopěnka’s Principle, remarkable cardinals, and the… 11

Another virtual large cardinal which shows up in the context of generic Vopěnka-like
principles is the virtually rank-into-rank cardinal.

Definition 3.9 ([6]) A cardinal κ is virtually rank-into-rank if there is α > κ such
that in V Coll(ω,Vα), there is an elementary embedding j : Vα → Vα with crit( j) = κ .

If an elementary embedding j : Vα → Vα exists in V , then α can be at most λ + 1,
where λ is the supremum of the critical sequence of j , by Kunen’s Inconsistency
[9]. But Kunen’s Inconsistency does not hold for embeddings existing in a forcing
extension of V . If j : Vα → Vα exists in some forcing extension, then we can have
α be as large as desired above the supremum λ of the critical sequence. It is not
difficult to see that virtually rank-into-rank cardinals are consistent with V = L , and
indeed are downward absolute to L . A virtually rank-into-rank cardinal is stronger
than a completely remarkable cardinal. The following proposition follows from the
arguments in [6].

Proposition 3.10 ([6]) If κ is virtually rank-into-rank, then Vκ is a model of proper
class many completely remarkable cardinals.

4 Remarkable games

The main theme of this article is studying assertions of the form that an elementary
embedding between two structures exists in some set-forcing extension. It turns out
that such assertions can be reformulated in terms of the existence of winning strategies
in a class of Ehrenfeucht–Fraïssé-like games.

Let B and A be two structures in the same language. We consider a two-player
game, denoted by G(B, A), where in the n-th move player I chooses bn ∈ B and
player II chooses an ∈ A. Player II wins the game if for every formula ϕ(x0, . . . , xn),

B |	 ϕ(b0, . . . , bn) ↔ A |	 ϕ(a0, . . . , an),

and otherwise player I wins. Since if player II loses she has to lose by some finite
stage, the game is closed and hence determined by the Gale–Stewart Theorem [5].

Proposition 4.1 The following are equivalent for structures B and A in the same
language.

(1) Player II has a winning strategy in G(B, A).
(2) In V Coll(ω,B), there is an elementary embedding j : B → A.
(3) There is a complete Boolean algebra B such that

VB |	 “There exists an elementary embedding j : B → A.”

(4) For every complete Boolean algebra B,

VB |	 “|B| = ℵ0 → There is an elementary embedding j : B → A.”
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12 J. Bagari et al.

Proof By Proposition 2.7, it suffices to show only that (1) and (2) are equivalent.
Let’s show (1) implies (2). So, suppose σ is a winning strategy for player II and

G is Coll(ω, B)-generic over V . In V [G], we fix an enumeration {bi | i < ω} of the
universe of B. Notice that, in V [G], σ is still a winning strategy for player II, because
the game is a closed game and there are no new finite sets in V [G]. So, by playing
according to σ against the moves bn of player I given by the fixed enumeration, player
II obtains the desired elementary embedding j : B → A.

Next, we show (2) implies (1). So, suppose that in VColl(ω,B) there is an elementary
embedding j : B → A. Let τ be a Coll(ω, B)-name for j . The following is a winning
strategy for player II: When player I plays some b0 at stage n = 0, choose some
p〈b0〉 which forces τ(b0) = a0 and play a0. When player I plays b1 at stage n = 1,
choose some p〈b0,b1〉 ≤ p〈b0〉 which forces τ(b1) = a1 and play a1. Continuing in this
manner, at stage n + 1 of the game, to every sequence of plays 〈b0, . . . , bn〉 of player
I, we have associated a condition p〈b0,...,bn〉 which forces τ(bi ) = ai and the ai are the
plays according to the strategy. So when player I plays bn+1 at stage n+ 1, we choose
a condition p〈b0,...,bn ,bn+1〉 ≤ p〈b0,...,bn〉 which forces τ(bn+1) = an+1 and play an+1.

�


5 Generic Vopěnka’s Principle

We introduce theGeneric Vopěnka’s Principlewhich states that for every proper class
C of structures of the same type, there are B �= A, both in C, such that B elementarily
embeds into A in some set-forcing extension; equivalently, by Proposition 4.1, player
II has a winning strategy in G(B, A). We will study fragments of Generic Vopěnka’s
Principle for �n-definable classes, as well as similarly defined generic variants of
other Vopěnka-like principles, such as VP(κ,�n).

Definition 5.1

(1) The principle gVP(�n) asserts that for every �n-definable with parameters
proper class C of structures of the same type, there are B �= A, both in C, such
that B elementarily embeds into A in some set-forcing extension. The principle
gVP(�n) is defined analogously but does not allow parameters in the definition
of the class. The principles gVP(�n) and gVP(�n) are defined analogously.

(1) The principle gVP(κ,�n), where κ is a cardinal, asserts that every�n-definable
with parameters from Hκ class C of structures of the same type τ ∈ Hκ generi-
cally reflects below κ , meaning that for every A ∈ C, there is B ∈ Hκ such that
B elementarily embeds into A in some set-forcing extension.

Theorem 5.2 Suppose κ is n-remarkable. Then gVP(κ,�n+1) holds, and hence
gVP(�n+1) holds.

Proof Let C be a proper class of structures of type τ ∈ Hκ that is�n+1-definable from
a ∈ Hκ . Fix α < κ such that τ, a ∈ Vα . Fix A ∈ C and fix a cardinal λ > κ in C (n+1)

with A ∈ Vλ. By Proposition 3.2, there is λ̄ < κ in C (n) such that in V Coll(ω,<κ) there
is an elementary embedding j : Vλ̄ → Vλ with j (crit( j)) = κ and A ∈ range( j). By
also putting α into the range of j , we can assume that τ is fixed point-wise by j and
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Generic Vopěnka’s Principle, remarkable cardinals, and the… 13

j (a) = a. Let j (B) = A. Since C is �n+1-definable and λ ∈ C (n+1), we have that
Vλ |	 “A ∈ C”. Since j (a) = a by assumption, it follows that Vλ̄ |	 “B ∈ C”, and it
must be correct about because λ̄ ∈ C (n). Thus, truly B ∈ C. Thus, since we made sure
that τ is fixed point-wise by j , the restriction j : B → A is the desired elementary
embedding. �

Corollary 5.3 Geneneric Vopěnka’s Principle can hold in L.

Proof For instance, if 0# exists, then by Theorem 3.5, L has a proper class of
n-remarkable cardinals for every n ∈ ω. �

Theorem 5.4

(1) Suppose gVP(�n) holds. Then either there is an n-remarkable cardinal or there
is a virtually rank-into-rank cardinal.

(2) Suppose gVP(�n) holds. Then either there is a proper class of n-remarkable
remarkable cardinals or there is a proper class of virtually rank-into-rank car-
dinals.

Proof Wewill say that a cardinal κ is n-remarkable up to λ > κ if for every κ < η < λ

in C (n), there is η̄ < κ in C (n) and such that in VColl(ω,<κ) there is an elementary
embedding j : Vη̄ → Vη with j (crit( j)) = κ .

First, we prove (1). If there is an n-remarkable cardinal, we are done. So let’s assume
that there are no n-remarkable cardinals. We follow the proof of Theorem 4.3(1) in
[1]. Let C be the class of structures of the form 〈Vλ+2,∈, α, λ〉 such that α ∈ C (n)

and λ is the least ordinal in C (n) above α such that no κ ≤ α is n-remarkable up to
λ. It is not difficult to see that C is �n-definable without parameters. It follows from
our assumption that there are no n-remarkable cardinals that C is a proper class. By
gVP(�n) applied to C, there exist structures

〈Vλ+2,∈, α, λ〉 �= 〈Vμ+2,∈, β, μ〉

such that in VColl(ω,Vλ+2) there is an elementary embedding

j : 〈Vλ+2,∈, α, λ〉 → 〈Vμ+2,∈, β, μ〉.

If j was the identity, then we would have λ = μ and α = β, which is impossible since
we assumed 〈Vλ+2,∈, α, λ〉 �= 〈Vμ+2,∈, β, μ〉. So j has a critical point, call it κ .

Let’s argue that α < β, and hence κ ≤ α. If λ = μ, then this must be the case
because j is not the identity. If λ < μ, then it must also be the case because no
ξ ≤ α is n-remarkable up to λ (by definition of C) and there is some ξ ≤ β which
is n-remarkable up to λ, by minimality of μ. Let’s argue next that j (κ) < λ. If not,
then we claim κ is n-remarkable up to λ, which is impossible. Fix some δ > κ in C (n)

below λ. Consider the restriction j : Vδ → Vj (δ), which has j (crit( j)) = j (κ). By
Proposition 2.7 and our assumption that δ < j (κ), there is some j∗ : Vδ → Vj (δ) with
j∗(crit( j∗)) = j (κ) in V Coll(ω,< j (κ)) and Vμ+2 sees this. Thus, by elementarity, Vλ+2
satisfies that there is some δ̄ < κ inC (n) such that in V Coll(ω,<κ) there is an elementary
embedding j∗ : Vδ̄ → Vδ with j∗(crit( j∗)) = κ . So we verified that j (κ) < λ. The
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14 J. Bagari et al.

above given argument now shows that κ is n-remarkable up to j (κ), and of course,
Vμ+2 see this. So by elementarity, there is some α < κ which is n-remarkable up to κ .
It follows by elementarity upward that α is n-remarkable up to j (κ) and beyond. So let
ρ be the largest ordinal such that α is n-remarkable up to ρ. Since ρ is definable from
α and α is fixed by j , it follows that j (ρ) = ρ. Thus, the restriction j : Vρ+2 → Vρ+2,
say, witnesses that κ is virtually rank-into-rank.

Next, we prove (2). We follow the proof of Theorem 4.3(2) in [1]. We will show
that above every ordinal ξ , there is either an n-remarkbale cardinal or a virtually rank-
into-rank cardinal. Let C be the class of structures of the form 〈Vλ+2,∈, α, λ, {γ }γ≤ξ 〉
such that α > ξ is in C (n) and λ is the least ordinal in C (n) greater than α such that
no κ ≤ α and above ξ is remarkable up to λ. The class C is �n-definable in the
parameter ξ and if there are no n-remarkable cardinals above ξ , then C is a proper
class. An analogous argument to (1) now shows that, in this case, there is a virtually
rank-into-rank cardinal above ξ . �

Note that the virtually rank-into-rank cardinal arises from the possibility which is
eliminated in the analogous argument aboutVopěnka’s Principle fragments byKunen’s
Inconsistency.

Putting together the above results, we get that the principles gVP(�n) and
gVP(κ,�n+1) are equiconsistent with an n-remarkable cardinal.

Theorem 5.5 The following are equiconsistent.

(1) gVP(�n).
(2) gVP(κ,�n+1) for some κ .
(3) There is an n-remarkable cardinal.

Proof Suppose there is a model with gVP(�n). By Theorem 5.4 (1), either there is an
n-remarkable cardinal or there is a virtually rank-into-rank cardinal, say κ , in which
case Vκ is a model of proper class many n-remarkable cardinals by Proposition 3.10.

Next, suppose that gVP(κ,�n+1) holds for some κ . Then gVP(�n+1) holds, and
so again there is a model with an n-remarkable cardinal.

Finally, by Theorem 5.2, if there is an n-remarkable cardinal, then gVP(κ,�n+1)

holds. �

Theorem 5.6 The following are equiconsistent.

(1) gVP(�n).
(2) gVP(κ,�n+1) for a proper class of κ .
(3) There is a proper class of n-remarkable cardinals.

Proof Suppose there is a model with gVP(�n). By Theorem 5.4 (2), either there is a
proper class of n-remarkable cardinals or there is a virtually rank-into-rank cardinal
(in fact, proper class many of them), say κ , in which case Vκ is a model of proper class
many n-remarkable cardinals by Proposition 3.10.

Next, suppose that gVP(κ,�n+1) holds for a proper class of κ . Then gVP(�n+1)

holds, and so again there is a model with proper class many n-remarkable cardinals.
Finally, by Theorem 5.2, if there is a proper class of n-remarkable cardinals κ , then

gVP(κ,�n+1) holds for each of them. �
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We don’t know whether equiconsistency can be replaced by direct implication in
Theorems 5.5 and 5.6, as in the case of Vopěnka’s Principle fragments and supercom-
pact andC (n)-extendible cardinals. The chief obstacle to obtaining direct implications
seems to be that the “virtual” version of Kunen’s Inconsistency does not hold (as
discussed in Sect. 3).

Question 5.7
(1) If gVP(κ,�n+1) holds for some κ , holds does it follows that there is an

n-remarkable cardinal?
(2) If gVP(�n) holds, does it follow that there is an n-remarkable cardinal?

Bagaria showed in [1] that the least κ for which VP(κ,�2) holds is the least super-
compact and, for n > 1, the least κ for which VP(κ,�n+1) holds is the least
C (n)-extendible. We can obtain analogous results for a potentially stronger variant
of Generic Vopěnka’s Principle and an analogous strengthening of gVP(κ,�n).

Definition 5.8 Suppose B and A are transitive ∈-structures and j : B → A is an
elementary embedding. We say that j is overspilling if j has a critical point and
j (crit( j)) > rank(B).

Definition 5.9 The principle gVP∗(�n) asserts for every�n-definable, without para-
meters, proper class C of transitive ∈-structures, that there are B �= A in C such that
there is an overspilling elementary embedding j : B → A in some set-forcing exten-
sion. The principlesgVP∗(�n),gVP∗(�n), andgVP∗(κ,�n)are defined analogously.

Theorem 5.10 The following are equivalent for a cardinal κ .

(1) κ is the least for which gVP∗(κ,�n+1) holds.
(2) κ is the least n-remarkable cardinal.

Proof Since gVP∗(κ,�n+1) holds for n-remarkable κ by the proof of Theorem 5.2,
it follows that the least κ of (2) is at least as large as the least κ of (1). Thus, it suf-
fices to show that the least κ in (1) is n-remarkable. So suppose now that κ is least
such that gVP∗(κ,�n+1) holds. Let C be the �n-definable proper class of structures
of the form 〈Vα+2,∈〉 with α ∈ C (n). Fix some λ ∈ C (n+1) that is not inaccessible.
By gVP∗(κ,�n+1), there is λ̄ < κ such that in VColl(ω,Vλ̄+2) there is an elementary
embedding j : Vλ̄+2 → Vλ+2 with crit( j) = ᾱ and j (ᾱ) > λ̄. Observe that ᾱ < λ̄

since the critical point of j must be inaccessible and λ̄ is not inaccessible by elementar-
ity. By the argument given in the proof of Theorem 5.4, ᾱ is n-remarkable up to λ̄, and
so by elementarity α = j (ᾱ) is n-remarkable up to λ. But since being n-remarkable is
�n+1 and we chose our λ ∈ C (n+1), it follows that α is actually n-remarkable. Clearly
α cannot be smaller than κ . So it remains to argue that α cannot be larger than κ .

Recall that α ∈ C (n+1) by Proposition 3.3. It follows that Vα satisfies that
gVP(�n+1, κ) holds, and hence by elementarity, there must be some γ < ᾱ such
that Vᾱ satisfies that gVP(�n+1, γ ) holds. So now by elementarity upward, Vα satis-
fies that gVP(�n+1, γ ) holds (since j (γ ) = γ ) and it must be correct about it. But
this is impossible since γ < κ . Thus, α = κ , and so κ is n-remarkable. �

Theorem 5.11
(1) If gVP∗(�n) holds, then there is an n-remarkable cardinal.
(2) If gVP∗(�n) holds, then there is a proper class of n-remarkable cardinals.
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6 A weak version of the Proper Forcing Axiom

In the spirit of investigating principleswhich assert the existence of elementary embed-
dings in a set-forcing extension,we introduce and study aweakeningofPFA, theProper
Forcing Axiom, based on the notion that the embeddings arising from PFA exist in a
set-forcing extension. As we noted in the introduction, the proof of [2, Theorem 1.3]
produces the following characterization of PFA.

Theorem 6.1 The following are equivalent.

(1) PFA
(2) IfM = (M; ∈, (Ri | i < ω1)) is a transitive model, ϕ(x) is a �1-formula, and

Q is a proper forcing such that

�Q ϕ(M),

then there is in V some transitive M̄ = (M̄; ∈, (R̄i | i < ω1)) together with
some elementary embedding

j : M̄ → M

such that ϕ(M̄) holds.

For instance, to see that (2) implies PFA, suppose that Q is a proper poset and
〈Dα | α < ω1〉 is a sequence of dense sets of Q. Let M have the form
〈Hλ,∈,Q, (Dα | α < ω1)〉, where Hλ is sufficiently large that it contains all subsets
ofQ. ClearlyQ forces the�1-assertion aboutM that there is a filter forQmeeting all
the Dα . So by (2), V has an elementary embedding j : M̄ → M for some transitive
model M̄ = (M̄; ∈, Q̄, (D̄α | α < ω1)) and V has a filter Ḡ for Q̄ meeting all the
D̄α . Let G be the point-wise image of Ḡ under j . Clearly G is a filter on Q meeting
all the Dα as required by PFA.

PFA is weakened to the weak Proper Forcing Axiom, wPFA, by asserting that the
embedding j : M̄ → M exists in some set-forcing extension.

Definition 6.2 The weak Proper Forcing Axiom wPFA asserts that if
M = (M; ∈, (Ri | ξ < ω1)) is a transitive model, ϕ(x) is a �1-formula, and Q

is a proper forcing such that

�Q ϕ(M),

then there is in V some transitive M̄ = (M̄; ∈, (R̄i | i < ω1)) such that ϕ(M̄)

holds and inside some set-forcing extension (equivalently in VColl(ω,M̄)) there is an
elementary embedding

j : M̄ → M.

We will show that wPFA is equiconsistent with a remarkable cardinal.
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Let us first show that wPFA is consistent relative to a remarkable cardinal. The
proof uses a remarkable Laver function which is the analogue of a Laver function on
a supercompact cardinal.

Suppose κ is a cardinal and � : κ → Vκ is a partial function. We say that a set
x ∈ Vλ with λ > κ is λ-anticipated by � if there is λ̄ < κ such that in V Coll(ω,<κ)

there is an elementary embedding j : Vλ̄ → Vλ with crit( j) = ξ and j (ξ) = κ so that
� � ξ + 1 ∈ Vλ̄, j (� � ξ) = �, and j (�(ξ)) = x . The function � is called a remarkable
Laver function if whenever x ∈ Vλ with λ > κ , then x is λ-anticipated by �. Gitman
showed in [3] that every remarkable cardinal has a remarkable Laver function.

Theorem 6.3 Let κ be remarkable. Then wPFA holds in a forcing extension by a
proper poset.

Proof We imitate the standard argument which produces PFA in a forcing extension
of a ground model with a supercompact cardinal.

Let � : κ → Vκ be a remarkable Laver function. We define a countable support
κ-length iteration P, where at stage ξ , if �(ξ) = (Q̇, M) for some set M and Pξ -name
Q̇ such that �Pξ

“Q̇ is proper”, then we force with Q̇ξ = Q̇, and with the trivial
forcing otherwise. The iteration P is proper and therefore preserves ω1.

Let G be P-generic over V . We claim that wPFA holds in V [G]. To this end, let
M = (M; ∈, (Ri | i < ω1)) ∈ V [G] be a transitive model, let ϕ(x) be a �1-formula,
and let Q ∈ V [G] be a proper forcing such that, in V [G], �Q ϕ(M) holds.

Let Q̇ be a P-name for Q such that �P “Q̇ is proper”, let τ be a P-name for M,
and let x = (Q̇, τ ). Let λ > κ be sufficiently large such that x ∈ Vλ, Vλ satisfies
that �P “Q̇ is proper′′, and Vλ[G] satisfies that �Q ϕ(M). This is possible because

if λ is large enough, then Vλ[G] has a sufficiently large HV [G]
δ and a club of models

in [HV [G]
δ ]ω witnessing the properness of Q and Vλ[G] has a Q-name witnessing the

�1-formula ϕ(M). By the properties of �, there is some λ̄ < κ such that in V Coll(ω,<κ)

there is an elementary embedding j : Vλ̄ → Vλ with crit( j) = ξ and j (ξ) = κ so that
� � ξ + 1 ∈ Vλ̄, j (� � ξ) = �, and j (�(ξ)) = (Q̇, τ ). It follows by elementarity that
�(ξ) = (Q, τ̄ ) and Vλ̄ satisfies that �Pξ

“Q is proper”. But then it must truly be the
case that�Pξ

“Q is proper” because any Pξ -generic extension of Vλ̄ would provide the

necessary witnessing club of models. By the definition of P, it follows that Q̇ξ = Q.
Note that j fixes all elements of Pξ ⊆ Vξ and, since j (� � ξ) = �, it follows that

j (Pξ ) = P. Thus, inside V [G]Coll(ω,<κ), we may lift j to an elementary embedding
j : Vλ̄[G � ξ ] → Vλ[G] by setting j (σG�ξ ) = j (σ )G for every Pξ -name σ ∈ Vλ̄. In
particular, setting M̄ = (M̄; ∈, (R̄i | i < ω1)) = τ̄G�ξ , M̄ ∈ V [G � ξ ] ⊆ V [G] and

j � M̄ : M̄ → M

is an elementary embedding. By Lemma 2.6 such an embedding then also exists in
V [G]Coll(ω,M̄). Note that we used the preservation of ω1 to conclude that M̄ has
ω1-many relations.

Since Vλ[G] satisfies that �Q ϕ(M), we will now clearly have that

Vλ[Gξ+1] |	 ϕ(M̄),
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so that because ϕ(x) is �1,

V [G] |	 ϕ(M̄).

We have verified that wPFA holds true in V [G]. �

Next, we show that if wPFA holds, then ωV

2 is remarkable in L .

Theorem 6.4 Assume wPFA. Then ωV
2 is remarkable in L.

Proof We may assume without loss of generality that 0# does not exist, as otherwise
all cardinals of V are remarkable in L . We shall exploit an argument of Todorčević
from [15], which shows that�κ fails under PFA for all uncountable κ . In what follows,
we shall make references to the proof of [13, Theorem 11.64].

Let us write κ = ωV
2 . Let α > κ be an L-cardinal. It suffices to find some L-cardinal

β < κ such that in V Coll(ω,β) there is some elementary embedding j : Jβ → Jα with
j (crit( j)) = κ . This suffices by Proposition 2.3, because for any infinite L-cardinal
γ , Jγ = Lγ = HL

γ .
By way of notation, if Jγ is a model of ZFC− with the largest cardinal, say γ ′, then

by (Cγ
ξ : ξ < γ ) we mean the canonical �γ ′ -sequence as being constructed in Jγ as

in the proof of [13, Theorem 11.64]. In particular, if γ is an L-cardinal, then γ ′ will
also be an L-cardinal and (Cγ

ξ : ξ < γ ) is the canonical �γ ′ -sequence of L .

Let us assume that α = (α′)+L . By the Jensen Covering Lemma, cf(α) ≥ |α′| ≥ ω2
in V . There is then by [15] some proper forcing P such that if g is P-generic over V ,
then in V [g], |α| = ℵ1 and there is a pair (C, F) such that

(1) C ⊆ α is a club subset of α of order type ω1,
(2) F : C → ω is such that if η < ξ are both in C and η is a limit point of Cα

ξ , then
F(ξ) �= F(η).

Let M have the form 〈Hλ,∈,P, α, (ξ | ξ < ω1)〉 for a sufficiently large λ > α

and consider the �1-assertion about M that there exists a pair (C, F) as above. By
wPFA, there is in V some transitive model M̄ = 〈M̄,∈, P̄, β, (ξ | ξ < ω1)〉 and a
pair (c, f ) such that

(1) c ⊆ β is a club subset of β of order type ω1,
(2) f : c → ω is such that if η < ξ are both in c and η is a limit point of Cβ

ξ , then
f (ξ) �= f (η),

and inside V Coll(ω,M̄) there is an elementary embedding j : M̄ → M.
We must have j � (ωV

1 ) + 1 = id because we included constants for countable
ordinals of V in our language. Let’s consider the restriction j � Jβ : Jβ → Jα and let
β ′ be the largest cardinal of Jβ , which exists by elementarity, since α′ was the largest
cardinal of Jα .

It remains to verify that β is an L-cardinal. If not, then let γ > β be least such that
ρω(Jγ ) ≤ β ′. Let ρn+1(Jγ ) ≤ β ′ < ρn(Jγ ). Let d ⊂ β be the set of all ξ < β such
that Jξ ≺ Jβ and if ν > ξ is least with ρω(Jν) = β ′, then ρn+1(Jν) = β ′ < ρn(Jν)
and there is a weakly r�n elementary embedding
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σ : Jν → Jγ

with σ � ξ = id and σ(ξ) = ᾱ. By the proof of [13, Theorem 11.64], there is a
club e ⊂ d ∩ c in β such that if ξ ∈ e, then Cβ

ξ ∩ e = e ∩ ξ . Let e′ be the set of
limit points of e. We now have that if η < ξ are both in e′, then η is a limit point of
Cβ

ξ , so that f (η) �= f (ξ). This gives that f � e′ → ω is injective, which contradicts
cf(β) = ω1.

We note that we now must have β < ωV
2 = κ by the Jensen Covering Lemma. It

follows, since j (β) = α, that the critical point of j is belowωV
2 , and hence j (crit( j)) =

ωV
2 = κ as desired. �


For a cardinal κ , let us write PFAκ for the statement that if B is any proper complete
Boolean algebra and if 〈Aξ | ξ < ω1〉 is any family of maximal antichains in B with
|Aξ | ≤ κ for each ξ < ω1, then there is some filter G ⊆ B such that G ∩ Aξ �= ∅ for
all ξ < ω1. PFAℵ1 is then BPFA, the Bounded Proper Forcing Axiom. The proof of
[2, Theorem 1.3] easily shows that PFAκ can be characterized analogously to PFA as
in Theorem 6.1 with the restriction that |M | = κ , where M is the universe of M.

The axiom wPFA implies PFAℵ2 , but it does not imply PFAℵ3 .

Theorem 6.5

(1) wPFA implies PFAℵ2 .
(2) The assertion “wPFA ∧∀κ ≥ ℵ2 �κ” is consistent relative to a remarkable

cardinal.
(3) wPFA does not imply PFAℵ3 .

Proof Let’s prove (1). So assume that P is a proper poset and 〈Aξ | ξ < ω1〉 is a
sequence of maximal antichains of P such that each Aξ has size at most ω2. Let Q
be a subposet of P of size ω2 containing all the Aξ and preserving compatibility from
P, so that if p and q are compatible in P, they remain compatible in Q. By taking
an isomorphic copy, we can assume without loss of generality that Q has universe
ω2. Let M be the structure 〈Hω2 ,Q, (Aξ | ξ < ω1)〉. In any forcing extension by
P there is a filter for Q meeting all the Aξ . Thus, by wPFA, there is a transitive
model M̄ = (M̄; Q̄, ( Āξ | ξ < ω1)〉 and a filter for Q̄ meeting all the Āξ so that in
VColl(ω,M) there is an elementary embedding j : M̄ → M. By including constants
for all countable ordinals inM, we can assume without loss of generality that j fixes
ω1. Since M̄ satisfies by elementarity that all ordinals are bijective with ω1, it follows
that j must be the identity map, and so we have a filter for Q meeting all the Aξ .
Closing this filter downwards gives a filter for P meeting all the Aξ .

Assertion (2) follows from the proof of Theorem 6.3 by starting with a remarkable
κ in L . Recall that κ is the ω2 of the forcing extension, and so because the forcing
iteration does not collapse any cardinals above κ , for δ ≥ κ , the old square sequences
from L witness that �δ holds.

Assertion (3) follows by the proof of [14, Theorem 1], which shows that PFAℵ3

implies the failure of �ω2 , whereas by (2), wPFA is compatible with �ω2 . �


123



20 J. Bagari et al.

References

1. Bagaria, J.: C(n)-cardinals. Arch. Math. Logic 51(3–4), 213–240 (2012)
2. Claverie, B., Schindler, R.: Woodin’s axiom (∗), bounded forcing axioms, and precipitous ideals on

ω1. J. Symb. Logic 77(2), 475–498 (2012)
3. Cheng, Y., Gitman, V.: Indestructibility properties of remarkable cardinals. Arch. Math. Logic 54(7),

961–984 (2015)
4. Cheng, Y., Schindler, R.: Harrington’s principle in higher order arithmetic. J. Symb. Logic 80(2),

477–489 (2015)
5. Gale, D., Stewart, F.M.: Infinite games with perfect information. Ann. Math. Stud. 28, 245–266 (1953)
6. Gitman, V., Schindler, R.: Virtual large cardinals. In preparation
7. Gitman, V., Welch, P.D.: Ramsey-like cardinals II. J. Symb. Logic 76(2), 541–560 (2011)
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