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Abstract Superstrong cardinals are never Laver indestructible. Similarly, almost
huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals,
extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly super-
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20 J. Bagaria et al.

strong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly un-
foldable cardinals, �n-reflecting cardinals, �n-correct cardinals and �n-extendible
cardinals (all for n ≥ 3) are never Laver indestructible. In fact, all these large cardinal
properties are superdestructible: if κ exhibits any of them, with corresponding target
θ , then in any forcing extension arising from nontrivial strategically <κ-closed forcing
Q ∈ Vθ , the cardinal κ will exhibit none of the large cardinal properties with target θ
or larger.

Keywords Large cardinals · Forcing · Indestructible cardinals

Mathematics Subject Classification 03E55 · 03E40

1 Introduction

The large cardinal indestructibility phenomenon, occurring when certain preparatory
forcing makes a given large cardinal become necessarily preserved by any subsequent
forcing from a large class of forcing notions, is pervasive in the large cardinal hier-
archy. The phenomenon arose in Laver’s seminal result [23] that any supercompact
cardinal κ can be made indestructible by <κ-directed closed forcing. It continued with
the Gitik-Shelah [7] treatment of strong cardinals; the universal indestructibility of
Apter and Hamkins [2], which produced simultaneous indestructibility for all weakly
compact, measurable, strongly compact, supercompact cardinals and others; the lot-
tery preparation of Hamkins [12], which applies generally to diverse large cardinals;
work of Apter, Gitik and Sargsyan on indestructibility and the large-cardinal iden-
tity crises [1,3,4,28]; the indestructibility of strongly unfoldable cardinals [21,22];
the indestructibility of Vopěnka’s principle [5]; and diverse other treatments of large
cardinal indestructibility. Based on these results, one might be tempted to the general
conclusion that all the usual large cardinals can be made indestructible. (Meanwhile,
results in [8–11,13,14,20] show the dual result that large cardinal properties can in
contrast be made destructible, and furthermore that small forcing quite generally ruins
indestructibility.)

In this article, we temper that temptation by proving that certain kinds of large
cardinals cannot be made nontrivially indestructible. Superstrong cardinals, we prove,
are never Laver indestructible. Consequently, neither are almost huge cardinals, huge
cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals and 1-
extendible cardinals, to name a few. Even the 0-extendible cardinals are never inde-
structible, and neither are weakly superstrong cardinals, uplifting cardinals, pseudo-
uplifting cardinals, strongly uplifting cardinals, superstrongly unfoldable cardinals,
�n-reflecting cardinals, �n-correct cardinals and �n-extendible cardinals, when n ≥
3. (A cardinal κ is �n-extendible—or more precisely, (�n, 0)-extendible, since it is a
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Superstrong cardinals are never indestructible 21

weakening of 0-extendibility—if there is some θ > κ with Vκ ≺�n Vθ ; see Sect. 2)
In fact, all these large cardinal properties are superdestructible, in the sense that if
κ exhibits any of them, with corresponding target θ , then in any forcing extension
arising from nontrivial strategically <κ-closed forcing Q ∈ Vθ , the cardinal κ will
exhibit none of the large cardinal properties with target θ or larger. Our strongest re-
sult in this line is expressed by Main Theorem 2, asserting that if κ is �2-extendible
to target θ or higher in V , then it is not �3-extendible to target θ or higher in any
nontrivial forcing extension by strategically <κ-closed forcing Q ∈ Vθ . We can drop
the assumption that κ has any large cardinal property in V by restricting the class of
forcing somewhat, as in Theorem 8. Corollary 9 shows as a consequence that many
quite ordinary forcing notions, which one might otherwise have expected to fall under
the scope of an indestructibility result, will definitely ruin all these large cardinal prop-
erties. For example, adding a Cohen subset to any cardinal κ will definitely prevent
it from being superstrong—as well as preventing it from being uplifting, �3-correct,
�3-extendible and so on with all the large cardinal properties mentioned above—in
the forcing extension.

Main Theorem 1 (1) Superstrong cardinals are never Laver indestructible.
(2) Consequently, almost huge, huge, superhuge and rank-into-rank cardinals are

never Laver indestructible.
(3) Similarly, extendible cardinals, 1-extendible and even 0-extendible cardinals are

never Laver indestructible.
(4) Uplifting cardinals, pseudo-uplifting cardinals, weakly superstrong cardinals,

superstrongly unfoldable cardinals and strongly uplifting cardinals are never
Laver indestructible.

(5) �n-reflecting and indeed �n-correct cardinals, for each finite n ≥ 3, are never
Laver indestructible.

(6) Indeed—the strongest result here, because it is the weakest notion—�3-extendible
cardinals are never Laver indestructible.

In fact, each of these large cardinal properties is superdestructible. Namely, if κ

exhibits any of them, with corresponding target θ , then in any forcing extension arising
fromnontrivial strategically<κ-closed forcingQ ∈ Vθ , the cardinal κ will exhibit none
of the mentioned large cardinal properties with target θ or larger.

Precise definitions of the large cardinal properties appear at the end of Sect. 2.
Statement (5) ofMainTheorem1 is technically a theorem scheme, a separate statement
for each finite n in the meta-theory.

We shall proveMain Theorem 1 as a corollary to the following strengthened version
of statement (6), which we state here separately since it is the focal case and may be
understood without any special terminology.

Main Theorem 2 Suppose that Vκ ≺�2 Vλ for some λ ≥ η and that G ⊆ Q is
V -generic for nontrivial strategically <κ-closed forcing Q ∈ Vη. Then for all θ ≥ η,

Vκ = V [G]κ �≺�3 V [G]θ .
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22 J. Bagaria et al.

In other words, if κ is �2-extendible with target above η in V , then after any
nontrivial strategically <κ-closed forcing in Vη, it is not �3-extendible with target
above η.

Before continuing, we should like to express how very pleased and honored we are
to be a part of this special volume in thememory of Richard Laver, whosemathematics
has inspired and informed so much of our own work and, indeed, of the entire field.
We are especially pleased to participate with this particular article, as it happens to
make its progress specifically by building connections between two of Laver’s most
fundamental contributions, namely, the large-cardinal indestructibility phenomenon
he pioneered in [23] and the ground-model definability phenomenon he discovered in
[24]. Our main theorem explains how ground-model definability places limits on the
extent of indestructibility.

2 Some geological background and definitions

Our proof will make use of recent results on the definability of ground models in the
emerging topic known as set-theoretic geology, the study of the collection of ground
models over which the universe V was obtained by forcing. Theorem 3 summarizes the
basic situation, and is closely related to Laver’s theorem [24], proved independently by
Woodin, on the definability of grounds, namely, the fact that if V ⊆ V [G] is a forcing
extension via V -generic filter G ⊆ Q ∈ V , then V is a definable class in V [G]; it is
also closely related to Hamkins’s strengthening of that theorem to the pseudo-grounds,
namely, if W ⊆ V has the δ-approximation and cover properties (defined below) and
(δ+)W = δ+, then W is definable in V using parameter r = (<δ2)W . A transitive
class model W of ZFC is a ground of V if V = W [G] is a forcing extension via some
W -generic G ⊆ Q ∈ W .

Theorem 3 ([6]) There is a parameterized family {Wr | r ∈ V } of transitive classes
such that:

(1) Every Wr is a ground of V .
(2) Every ground of V is Wr for some r.
(3) The family is uniformly definable in that the relation “x ∈ Wr” is definable

without parameters.

An immediate consequence of Theorem 3 is that many second-order-seeming as-
sertions about how the set-theoretic universe V might have been obtained by forcing
are actually first-order expressible in the language of set theory. For example, the as-
sertion that V is not a set-forcing extension of any inner model, an assertion known as
the ground axiom, introduced by Hamkins and Reitz [15,26,27], is expressed simply
as “∀r V = Wr .” Similarly, it follows from Theorem 3 that the assertion that the
universe is obtained by forcing of this or that special kind over some ground model is
first-order expressible in the language of set theory.

Our argument will rely not only on the statement of Theorem 3, but also on some
of the ideas and finer details of the proof, for we aim to give special attention to
the complexity of the assertions that the universe was obtained in a particular way by
forcing.We shall furthermorewant to apply Theorem3 not only in the full set-theoretic
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Superstrong cardinals are never indestructible 23

universe V , but also in Vθ , whenever θ is a limit of �-fixed points of arbitrarily large
cofinality below θ . (It will suffice, for example, that θ is a fixed point of the enumeration
of �-fixed points.) So let us now explain some of those ideas and finer details.

The proof makes use of the following central definition of [14], concerning exten-
sions W ⊆ U of transitive models of set theory, where δ is a cardinal in U .

(1) The extension W ⊆ U satisfies the δ-approximation property if whenever A ⊆
W is a set in U and A ∩ a ∈ W for any a ∈ W of size less than δ in W , then
A ∈ W .

(2) The extension W ⊆ U satisfies the δ-cover property if whenever A ⊆ W is a
set of size less than δ inU , then there is a covering set B ∈ W with A ⊆ B and
|B|W < δ.

The core fact is that every inner modelW ⊆ V of ZFC exhibiting the δ-approximation
and cover properties and with the right δ+ is uniquely characterized by those facts
and its power set P(δ). A level-by-level analogue of this is stated in Theorem 4. Since
Lemma 5 shows that every set-forcing extension exhibits the δ-approximation and
cover properties for some δ (note that Q̇ can be trivial there), and since P(δ)W is
determined via the δ-approximation property by (<δ2)W , it follows that every ground
W will be definable from the parameter r = (<δ2)W for such a δ, and in Theorem 3,
we will accordingly have W = Wr for r = (<δ2)W . Reitz [26,27] isolated the con-
venient and economical theory ZFCδ , making for an easy statement of Theorem 4.
Specifically, ZFCδ has the axioms of Zermelo set theory, the axiom of choice, the ≤δ-
replacement axiom (meaning instances of the replacement axiom for functions with
domain δ, a fixed regular cardinal), together with the axiom asserting that every set
is coded by a set of ordinals. The theory ZFCδ can be formalized in the language of
set theory augmented by a constant symbol for δ, or it can be viewed as making as-
sertions about a particular regular cardinal δ that has already been fixed. For example,
assuming ZFC in the background, then for any regular cardinal δ and �-fixed point
θ with cofinality larger than δ, it is an easy exercise to verify that Vθ |
 ZFCδ using
that δ.

A forcing notion Q is <κ-closed, if any descending sequence of conditions in Q

of length less than κ has a lower bound in Q. More generally, Q is strategically <κ-
closed, if there is a strategy τ enabling player II to continue legal play in the game of
length κ , where the players take turns in specifying the next element in a descending
sequence 〈pα | α < κ〉 from Q, with player II going first at limit stages (so player I
wins if during play a descending sequence of length less than κ is constructed that has
no lower bound for player II to play).

Theorem 4 (Hamkins, see [27, lemma 7.2]) Suppose that M, N and U are transitive
models of ZFCδ , where δ is a fixed regular cardinal, that M ⊆ U and N ⊆ U
have the δ-approximation and δ-cover properties, and that P(δ)M = P(δ)N and
(δ+)M = (δ+)N = (δ+)U . Then M = N.

Hamkins and Johnstone [17] observed that we may easily weaken the assumption
that P(δ)M = P(δ)N to the assumptionmerely that (<δ2)M = (<δ2)N , since under the
δ-approximation property these are equivalent: if A ⊆ δ and A ∈ M , then every initial
segment of A is in (<δ2)M and hencewould also be in N under that assumption,making
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24 J. Bagaria et al.

A ∈ N by the δ-approximation property; and similarly in the other direction for A ∈ N ,
leading to P(δ)M = P(δ)N . In the case that δ = λ+, it suffices merely that P(λ)M =
P(λ)N , since P(λ) determines <λ+

2, which as we said ensures P(λ+)M = P(λ+)N

via the δ-approximation property. We shall henceforth regard these improvements as
a part of Theorem 4.

Lemma 5 ([14, lemma 13], see [18, lemma 12] for an improved proof, following [25])
Suppose that V [g][G] is the forcing extension via g∗G ⊆ P∗Q̇, whereP is nontrivial,
has cardinality less than a regular cardinal δ for which Q̇ is forced to be strategically
<δ-closed. Then the extension V ⊆ V [g][G] satisfies the δ-approximation and δ-cover
properties.

These results are very near to establishing the ground model definability theorem,
as well as Theorem 3.We say that a parameter r succeeds in defining a pseudo-ground,
if there is a regular cardinal δ, such that for every �-fixed point γ of cofinality larger
than δ, there is a transitive M ⊆ Vγ , with the δ-approximation and δ-cover properties,
such that M |
 ZFCδ , (δ+)M = δ+ and r = (<δ2)M . By Theorem 4, this M is unique,
and if r succeeds in this way, then we letUr be the union of all such M as γ increases
without bound. It follows that Ur |
 ZFC and Ur ⊆ V has the δ-approximation
and cover properties, the correct δ+ and r = (<δ2)Ur . Conversely, if U ⊆ V is any
pseudo-ground, meaning that it is a model of ZFCwith the δ-approximation and cover
properties to V for some regular cardinal δ, with (δ+)U = δ+, then U = Ur for
r = (<δ2)U .

Similarly, we say that a parameter r succeeds in defining a ground, if there is some
poset Q and filter G ⊆ Q, such that for every �-fixed point γ of cofinality larger
than δ, there is a transitive M ⊆ Vγ with the δ-approximation and cover properties,
such that M |
 ZFCδ , (δ+)M = δ+, r = (<δ2)M and G is M-generic for Q with
M[G] = Vγ . In other words, r defines a ground if it defines a pseudo-ground that is a
ground. Again, by Theorem 4, for each such γ the set M is unique when it exists, and
when r succeeds in this way we denote by Wr the union of all such M as γ increases
without bound. It follows that Wr |
 ZFC is a ground of V via V = Wr [G], and
conversely, every ground of V by set forcing arises as some suchWr . This establishes
Theorem 3, as well as the ground definability theorem, as consequences of Theorem 4.
(Note, for convenience, when r does not succeed in these definitions, we may define
Ur = V and Wr = V , respectively, to arrive at a total indexing of all pseudo-grounds
and grounds, as stated in Theorem 3.)

In this article, we should like to apply these definitions not only in V , where we
have ZFC as a background theory, but also in Vθ , when θ is merely a limit of �-fixed
points γ of cofinality larger than δ. Inside such a model Vθ , Theorem 4 still implies
the uniqueness of M ⊆ Vγ for each of those γ below θ , and so the definition of Wr

still makes sense. Further, if V = W [G] is actually a forcing extension by W -generic
G ⊆ Q ∈ W , and θ is above the rank of Q, then it will see suitable �-fixed points γ

of cofinality larger than δ = |Q|+, for which M = Wγ ⊆ Vγ will witness the desired

δ-approximation and cover properties, so that Wθ = WVθ
r . And conversely, any such

WVθ
r with Vθ = Wr [G] for some WVθ

r -generic G ⊆ Q ∈ WVθ
r will serve our purpose

as a “ground” with respect to Vθ in this weak theory context, even though WVθ
r may
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Superstrong cardinals are never indestructible 25

not satisfy all of ZFC. Any suchWVθ
r will at least be a union of a nested tower of ZFCδ

models.
We briefly illustrate one of the complexity calculations. Consider for a fixed posetQ

and filterG ⊆ Q the assertion that parameter r succeeds in defining a groundWr using
Q and G, in other words the assertion, “the universe is Wr [G], obtained by forcing
over Wr with the Wr -generic filter G ⊆ Q ∈ Wr .” This assertion has complexity
�2(Q,G, r), because the failure of this assertion is observable inside any sufficiently
large Vξ , which will see a �-fixed point γ < ξ of cofinality larger than δ, and larger
than the rank of Q, for which there is no M ⊆ Vγ satisfying ZFCδ and having the δ-
approximation and cover properties and the correct value of δ+, for which r = (<δ2)M

and G ⊆ Q ∈ M is M-generic, with Vγ = M[G]. The point now is that an assertion
of the form, “∃ξ such that Vξ satisfies ψ ,” for an assertion ψ of any complexity, has
complexity �2, and so our statement has complexity �2 in the parameters Q, G and
r . Similar such analysis will arise in the proof of Main Theorem 2.

Let us conclude this section by providing definitions of all the large cardinal prop-
erties appearing in Main Theorem 1. These are mostly standard notions. A cardinal κ
is superstrong if it is the critical point of an elementary embedding j : V → M from
the set-theoretic universe V to a transitive class M , for which Vj (κ) ⊆ M . The cardinal
κ is almost huge, if it is the critical point of an elementary embedding j : V → M ,
for which M< j (κ) ⊆ M ; it is fully huge, if also M j (κ) ⊆ M . In each case, the target is
simply the ordinal j (κ). The cardinal κ is superhuge if it is huge with arbitrarily large
targets. The cardinal κ is a rank-into-rank cardinal if it is the critical point of an em-
bedding j : Vλ → Vλ, and here again j (κ) is the target (although λ, which is strictly
larger than j (κ), may be even more relevant). A cardinal κ is extendible, if for every
η it is η-extendible, meaning that it is the critical point of an elementary embedding
j : Vκ+η → Vθ for some ordinal θ , and again j (κ) is the target. In particular, κ is
1-extendible if there is an elementary embedding j : Vκ+1 → Vθ+1 with critical point
κ; and it is 0-extendible if it is inaccessible and Vκ ≺ Vθ for some θ > κ , called the
target.

Somewhat lesser known (see [17,19]), an inaccessible cardinal κ is uplifting, if
Vκ ≺ Vθ for arbitrarily large inaccessible cardinals θ , and it is pseudo-uplifting if
Vκ ≺ Vθ for arbitrary large ordinals θ , without insisting that θ is inaccessible. Hamkins
and Johnstone define that an inaccessible cardinal κ is weakly superstrong if for every
transitive set M of size κ with κ ∈ M and M<κ ⊆ M , there is a transitive set N and
an elementary embedding j : M → N with critical point κ , for which Vj (κ) ⊆ N ;
and it is weakly almost huge if for every such M there is such j : M → N for which
N< j (κ) ⊆ N ; and as usual j (κ) is referred to as the target. A cardinal κ is superstrongly
unfoldable if it is weakly superstrong with arbitrarily large targets, and it is almost
hugely unfoldable if it isweakly almost hugewith arbitrarily large targets. Remarkably,
these concepts are equivalent (see full details in [17]), and both are equivalent to κ

being strongly uplifting, which means that for every A ⊆ κ , there are arbitrarily large
θ and A∗ ⊆ θ for which 〈Vκ ,∈, A〉 ≺ 〈Vθ ,∈, A∗〉. One may assume without loss of
generality that θ is inaccessible, weakly compact, totally indescribable or more here
and similarly with the targets j (κ) of the superstrong and almost huge unfoldability
embbeddings, respectively.
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26 J. Bagaria et al.

For two transitive sets M and N , we shall write M ≺n N or sometimes M ≺�n N
to mean that 〈M,∈〉 is a �n-elementary substructure of 〈N ,∈〉, meaning that M ⊆ N
and they agree on the truth of �n assertions having parameters in M . An ordinal η is
�n-correct if Vη ≺n V . (This is trivial when n = 0, so we shall consider the concept
only when n ≥ 1.) The class of all �n-correct cardinals, denoted C (n), is closed and
unbounded in Ord by an application of the reflection theorem. It is easy to see that
every�1-correct ordinal η must in fact be a strong limit cardinal, and indeed a �-fixed
point, as well as a fixed point of the enumeration of �-fixed points (and consequently
a limit of �-fixed points of arbitrarily large cofinality below η). The least �n-correct
ordinal has cofinality ω, so these cardinals themselves can be singular. Meanwhile, a
cardinal κ is�n-reflecting if it is regular and�n-correct (or, equivalently, inaccessible
and �n-correct). An unusual meta-mathematical subtlety of these notions is that we
have no uniform-in-n concept of the �n-correct or �n-reflecting cardinals, but rather
a separate notion for each natural number n in the meta-theory. For example, although
we can prove in ZFC the existence of the club C (n) of �n-correct cardinals for each
finite n in the meta-theory, we cannot prove or even express the universal assertion
“∀n ∃ �n-correct κ .”1 Similarly, the situation Vκ ≺ V occurring when κ is fully
correct, that is, �n-correct for all n, is not expressible by a single first-order formula,
although one can express the theory “Vκ ≺ V ” as a scheme in the first-order language
of set theory augmented by a constant symbol for κ , asserting that κ is �n-correct for
every n. Although some find it surprising, this theory is equiconsistent with ZFC by
a simple compactness argument: every finite subset of this scheme is realized in any
model of ZFC by the reflection theorem. In particular, from Vκ ≺ V |
 ZFC we may
not conclude that V |
 Con(ZFC), since the situation is that V knows only of each
axiom of ZFC separately that it holds in Vκ—the assumption Vκ ≺ V is a scheme
about each axiom separately—and in general we may not put these together to deduce
that V satisfies the assertion “Vκ |
 ZFC.”

Let us define next that a cardinal κ is (�n, 0)-extendible—for readability we shall
shorten this to just �n-extendible in this paper—with target θ , if Vκ ≺n Vθ . More
generally, κ is (�n, η)-extendible if there is a �n-elementary embedding j : Vκ+η →
Vθ , with critical point κ , for someordinal θ ; this is aweakening of κ beingη-extendible.
Note that any �n-correct cardinal is �n-extendible with arbitrarily large targets (one
might say, therefore, that it is super�n-extendible). As with�n-reflection, the concept
is trivial when n = 0, so we consider it only when n ≥ 1. It is an elementary exercise
to see that if κ is �1-extendible, witnessed by Vκ ≺1 Vθ , then κ must be a cardinal,
a strong limit cardinal, a �-fixed point, a fixed point of the enumeration of �-fixed
points and consequently a limit of�-fixed points of arbitrarily large cofinality below κ .
Note also that if Vκ ≺n Vθ and n ≥ 1, then both of these sets satisfy a robust fragment

1 To see this, let M |
 ZFC be ω-nonstandard and consider the cut determined by the supremum of the
least �n -correct cardinal, for standard n only. This cut is a first-order elementary substructure of M , with
the same nonstandard ω, but the collection of n for which it has a �n -correct cardinal has standard n only,
and so does not exist in M . Meanwhile, in GBCmodels having a satisfaction class for first-order truth, such
as in any KM model, we do have a concept of �n -correct that is uniform in n, and every model of KM,
even those that are ω-nonstandard, satisfies “∀n ∃�n -correct κ .” Indeed, KM proves that V is the union of
a closed unbounded chain of elementary rank initial segments Vκ ≺ V , and this notion of fully reflecting
is expressible in KM, using the definable truth predicate for first-order truth.
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Superstrong cardinals are never indestructible 27

of ZFC. For example, in addition to extensionality, foundation, pairing, union, power
set and choice, we also have the full separation axiom—making for the full Zermelo
theory ZC—simply because these models have the true power set operation of V ;
we also get the collection axiom for �n relations in Vκ , since Vκ ∈ Vθ serves as a
collecting set in Vθ for any �n property. So these are robust models of set theory, even
if they don’t necessarily satisfy all of ZFC. And while the cardinals κ and θ might
be singular—so we must be on our guard—the �n-collection axiom exactly ensures
that they are �n-regular, in the sense that there are no �n-definable singularizing
class functions. The meta-mathematical difficulties that we mentioned earlier with
the �n-correct cardinals do not arise with �n-extendible cardinals, since we make no
reference here to truth in V , but rather only truth in Vκ and Vθ , where we do have a
uniform-in-n account.

Finally, for definiteness we say officially that a large cardinal κ is Laver inde-
structible for a given large cardinal notion, if it retains that large cardinal property in
every <κ-directed closed forcing extension. Although this class of forcing notions—
<κ-directed closed forcing—is the class considered by Laver in his supercompactness
indestructibility result [23], in fact our results here do not dependmuch on the directed-
closed aspect. In particular, because the main theorems establish a superdestructibility
result, for which the large cardinal property is destroyed by any forcing notion from
a wide class, the numbered claims of Main Theorem 1 will remain true if one has
a modified understanding of Laver indestuctibility, provided only that some of those
strategically <κ-closed forcing notions remain in the new class. For this reason, it
is not actually important for us to be very precise about what we mean by Laver
indestructibility, although for definiteness, we have been.

3 Proving the main theorems

We are now ready to prove the main theorems, beginning with Main Theorem 2 and
the case of�3-extendible cardinals, and then deducingMain Theorem 1 as a corollary.
We are unsure whether the assumption that κ is �2-extendible in the ground model
can be dropped or weakened, although it can be if one makes further assumptions on
the forcing Q, as we explain in Sect. 4.

Theorem 6 (Main Theorem 2) Suppose that Vκ ≺2 Vλ for some λ ≥ η and that
G ⊆ Q is V -generic for nontrivial strategically <κ-closed forcing Q ∈ Vη. Then for
all θ ≥ η,

Vκ = V [G]κ �≺3 V [G]θ .

Proof Suppose that Vκ ≺2 Vλ for some λ ≥ η, which is to say, that κ is�2-extendible
in V with target λ ≥ η and that Q ∈ Vη is a nontrivial strategically <κ-closed
notion of forcing. Suppose toward contradiction that V [G]κ ≺3 V [G]θ for some
θ ≥ η, or in other words, that κ is �3-extendible with target θ in the corresponding
forcing extension V [G]. Since κ is a �-fixed point, as well as a fixed point of the
enumeration of�-fixed points (and a fixed point of the enumeration of those cardinals),
and furthermore can only �3-extend to such cardinals, we may assume without loss
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of generality, by increasing η if necessary, that η also is a �-fixed point and fixed point
of the enumeration of �-fixed points; we may furthermore assume that cof(η) > κ ,
simply by taking the (κ+)th next such fixed point, and this is still below λ and θ . Since
Q is strategically <κ-closed, it follows that V [G]κ = Vκ , and so the two extendibility
hypotheses amount to

Vκ ≺2 Vλ and Vκ ≺3 V [G]θ .

By elementarity, λ and θ are also �-fixed points and fixed points of the enumeration
of �-fixed points. In particular, each of these cardinals is a limit of �-fixed points
of arbitrarily large cofinality below κ . Since Q is small relative to η, it follows that
V [G]η = Vη[G], as well as V [G]λ = Vλ[G] and V [G]θ = Vθ [G]. In particular,
V [G]θ is a nontrivial forcing extension of Vθ viaG ⊆ Q ∈ Vθ . It follows by theorem 3
applied in V [G]θ that Vθ = WV [G]θ

r for some parameter r , and so V [G]θ satisfies the
following assertion,

“For some parameter r and nontrivial poset Q,
the universe is Wr [G] for some Wr -generic filter G ⊆ Q ∈ Wr .”

We claim that this assertion is�3-expressible in themodels in which we are interested,
namely, in V [G]θ , Vλ and Vκ . As in our example complexity calculation in Sect. 2, we
can verify in V [G]θ that the universe is Wr [G] by inspecting higher and higher rank
initial segments of the universe V [G]θ . Specifically, the displayed assertion above is
equivalent to the assertion, “for some cardinal δ, parameter r ⊆ (<δ2), nontrivial poset
Q and filter G ⊆ Q, for every Z , if Z = Vγ+2 for some ordinal γ (that is, Z is the
Vγ+2 of the universe in which we interpret the statement, as in V [G]γ+2, etc.) and
Z thinks that γ is a �-fixed point of cofinality larger than δ for which V Z

γ |
 ZFCδ ,

then Z thinks that there is an M ⊆ V Z
γ satisfying ZFCδ such that M ⊆ V Z

γ has the

δ-approximation and cover property, such that r = (<δ2)M and (δ+)M = δ+, and such
that Z = M[G] is the forcing extension of M via M-generic filter G ⊆ Q ∈ M .” This
assertion has complexity �3, since the part of the assertion about what Z satisfies has
all quantifiers bounded by Z , and the assertion that “Z = Vγ+2 for some ordinal γ ”
is �1 in Z , since the important part is to say that Z computes its power sets correctly.

It follows now from Vκ ≺3 V [G]θ that Vκ must also satisfy the assertion, and
so Vκ = WVκ

r0 [G0] for some r0 ∈ Vκ and Vκ -generic filter G0 ⊆ Q0 ∈ Vκ . In
particular, Vκ satisfies the assertion “the universe is obtained by forcing over Wr0 via
G0 ⊆ Q0,” an assertion with complexity �2(r0,G0, Q0), as we explained in Sect. 2,
by asserting that it holds in all the suitable rank initial segments (this is one quantifier
rank less complex because we have fixed the parameters r0, G0 and Q0, rather than
quantifying to get them). Since Vκ ≺2 Vλ, it follows that Vλ = WVλ

r0 [G0], using
the same small parameter r0 and small forcing G0 ⊆ Q0. By cutting down to η, we

also have Vη = W
Vη
r0 [G0]. By the details of the indices for ground models, we may

assume that r0 = (<δ2)W
Vη
r0 , where δ = |Q0|+ in V . Combining this with the forcing

Vη ⊆ Vη[G], we conclude that V [G]η = W
Vη
r0 [G0][G] is a forcing extension of W

Vη
r0

by a nontrivial forcing notion Q0 of size less than δ followed by strategically <κ-
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closed forcing Q. By Lemma 5, it follows that V [G]η has the δ-approximation and

cover properties over W
Vη
r0 .

Similarly, because Vκ ≺2 V [G]θ , we know that V [G]θ also thinks that it is obtained
by forcing over WV [G]θ

r0 with G0 ⊆ Q0, and so V [G]θ = WV [G]θ
r0 [G0]. By again cut-

ting down to η, we also know V [G]η = W
V [G]η
r0 [G0], and furthermore we know again

that r0 = (<δ2)W
V [G]η
r0 . Since this is forcing of size less than δ, it follows that V [G]η

also has the δ-approximation and cover properties overW
V [G]η
r0 . So the situation is that

W
Vη
r0 andW

V [G]η
r0 are both grounds of V [G]η by forcing with the δ-approximation and

cover properties and they have the same binary δ-tree (<δ2)W
Vη
r0 = r0 = (<δ2)W

V [G]η
r0

and the correct δ+. It therefore follows by Theorem 4 that W
Vη
r0 = W

V [G]η
r0 . This

immediately implies

V [G]η = W
V [G]η
r0 [G0] = W

Vη
r0 [G0].

Note that G0 ∈ Vη, since it is in V [G] and has rank less than κ and therefore could
not have been added by the strategically <κ-closed forcing Q. Since furthermore

W
Vη
r0 ⊆ Vη, we conclude from the displayed equation above that V [G]η ⊆ Vη. This

contradicts the nontriviality of Q, thereby proving the theorem. ��

We may now deduce the rest of Main Theorem 1 as a consequence.

Proof of Main Theorem 1 Main Theorem 2 amounts to (a strengthening of) Main
Theorem 1 statement (6), and the point now is that the rest of Main Theorem 1 is
immediately implied by it, for the simple reason that all the other large cardinal prop-
erties mentioned in the main theorem imply �3-extendibility with the same target.

If κ is superstrong, for example, witnessed by superstrongness embedding j :
V → M with target θ = j (κ) and Vθ = Mθ , then it follows that Vκ ≺ Mj (κ) = Vθ ,
thereby showing that κ is �n-extendible with target θ for all n. Since every almost
huge, huge, superhuge, rank-into-rank, extendible and 1-extendible cardinal is also
superstrongwith the same target, the same conclusion applies to these cardinals. Every
0-extendible cardinal is explicitly �n-extendible for every n, and similarly with the
uplifting cardinals and the pseudo-uplifting cardinals. If κ is weakly superstrong, then
there will be embeddings j : M → N with critical point κ and Vj (κ) ⊆ N , which
consequently show that Vκ ≺ Vθ for θ = j (κ), witnessing that κ is 0-extendible
and thus �n-extendible for every n. And the same reasoning applies to superstrongly
unfoldable cardinals, which are weakly superstrong.We alreadymentioned earlier that
every �n-correct cardinal is �n-extendible to any θ ∈ C (n), and therefore similarly
with every �n-reflecting cardinal.

So if κ has any of the large cardinal properties mentioned in Main Theorem 1, then
it is�3-extendible with the same target θ , and this is destroyed by the forcing Q ∈ Vθ ,
showing that all the other large cardinal properties are also destroyed for target θ or
higher. ��

123



30 J. Bagaria et al.

4 Improvements, alternative proofs, and questions

Since supercompact cardinals and many other large cardinals can be made Laver inde-
structible, and these cardinals in particular are necessarily�2-reflecting and hence also
�2-extendible, it follows (assuming the consistency of those large cardinal notions)
that Main Theorem 2 cannot be improved from �3-extendibility to �2-extendibility.
That is, we already know of these situations where �2-extendible cardinals are Laver
indestructible.

Nevertheless, it is conceivable that the main theorems could be improved by weak-
ening the hypotheses that κ exhibits the large cardinal property in the groundmodel V .
That is, in the main theorems we needed to assume that κ was (at least) �2-extendible
in the ground model V , in order to know that forcing with Q would destroy �3-
extendibility. Can we omit this assumption? We’re not sure. Perhaps this assumption
is simply redundant, for it is conceivable that the �3-extendibility of κ in V [G] might
imply the required �2-extendibility of κ in the ground model V .

Question 7 If κ is �3-extendible with target θ in a forcing extension V [G] obtained
via strategically <κ-closed forcing G ⊆ Q ∈ Vθ , then must κ be �2-extendible with
a target above the rank of Q in V ?

If so, then the main theorems could be improved by dropping the assumption on
κ in the ground model V , making instead the plain assertion that after any nontrivial
strategically <κ-closed forcing Q ∈ Vθ , the cardinal κ is no longer �3-extendible
with target θ or higher, and so similarly neither is it superstrong, extendible, almost
huge, uplifting, and so on, with such a target. Thus, we would be able to make the
same conclusion of the main theorems, while assuming nothing about κ in the ground
model V .

The next theorem shows that in many instances, for particular forcing notions Q,
we are able to omit the hypothesis that κ is �2-extendible in the ground model.

Theorem 8 Suppose thatQ ∈ Vθ is almost-homogeneous nontrivial strategically <κ-
closed forcing and thatQ ∼= Q×Q. Then forcing withQ destroys the�3-extendibility
of κ with target θ or higher. In particular, after any such forcing Q, the cardinal κ is
not superstrong, extendible, almost huge, uplifting, pseudo-uplifting and so on with
target θ or higher.

Proof Suppose that V [G] is a forcing extension by such a Q, and that κ is �3-
extendible to θ in V [G]. Since Q ∼= Q × Q, we may view V [G] = V [G0][G1]
as a two-step forcing extension, using Q each time, where G ∼= G0 × G1. Since we
assumed that Q was almost homogeneous, it follows that all forcing extensions of V
by Q have the same theory about ground model objects, and in particular, κ must be
�3-extendible in V [G0]. Since Q remains strategically <κ-closed in V [G0], we may
apply Main Theorem 2 to the extension V [G0] ⊆ V [G0][G1] to see that κ cannot be
�3-extendible to θ in V [G] after all, a contradiction. ��
Corollary 9 After forcing with any of the following forcing notions,

Add(κ, 1), Add
(
κ, κ++)

, Add
(
κ+, 1

)
, Coll

(
κ++, κ(+)ω

2+5
)
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or with any of many other similar forcing notions, a regular cardinal κ is not �3-
extendible in the forcing extension. Consequently, κ is also not superstrong, extendible,
1-extendible, 0-extendible, almost huge, huge, uplifting, pseudo-uplifting, or �3-
correct, etc. in the extension.

Proof All these forcing notions satisfy the hypothesis of Theorem 8. Note that any
�3-extendibility target for κ must be above these particular forcing notions. ��

We believe that much of the phenomenon of the main theorems is explained by an
affirmative answer to the following question, asked by the second author on Math-
Overflow (and there are many similar questions arising generally with other forcing
notions). Here, by adding a Cohen subset to κ over a ground model M , we mean to
force over M with Add(κ, 1)M , whose conditions are bounded subsets of κ ordered
by end-extension.

Question 10 ([16]) Does a regular cardinal κ necessarily become definable after
forcing to add aCohen subset to it? In particular, if M and N aremodels ofZFC having
a common forcing extension M[G] = N [H ], where G is M-generic for Add(κ, 1)M

and H is N-generic for Add(γ, 1)N , then must κ = γ ?

Theorem 11 provides an affirmative answer to the first part of this question, as well
as to the second part in the case of inaccessible cardinals. In general, we show that
there are at most two regular cardinals of the type mentioned in the question, which
nearly answers the question, although we do not know if the case of two cardinals can
actually occur; so this part of Question 10 remains open. These facts, however, can
be used to provide an alternative proof of the main claims of Main Theorem 1, as we
explain after the proof of Theorem 11.

Let C(κ) assert that κ is a regular cardinal and the universe was obtained by forcing
over some groundW to add a Cohen subset to κ , that is, “V = W [G] for some ground
W and some W -generic G ⊆ Add(κ, 1)W .”

Theorem 11 If C(γ ) and C(κ) hold, where γ < κ , then 2γ = κ . Consequently,

(1) There are at most two regular cardinals satisfying property C.
(2) There is at most one inaccessible cardinal satisfying property C.
(3) If C(κ) holds, then κ is �3-definable either as

“the smallest regular cardinal with property C,”

or as

“the largest regular cardinal with property C.”

(4) If C(κ) holds and κ is inaccessible, then κ is �2-definable as

“the inaccessible cardinal with property C.”

Furthermore, these definitions work also in Vθ , whenever θ is a �-fixed point of
cofinality larger than 22

κ
or for which Vθ satisfies �2-collection.
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In other words, if you force over V to add a Cohen subset G to κ , then κ becomes
definable in the specified manner in the forcing extension V [G], and this definition
works there in the corresponding V [G]θ . The proof will proceed via two lemmas.

Lemma 11.1 Suppose that κ is a regular cardinal, that M and N are transitive class
models of ZFC, and that V = M[G] = N [H ] for some M-generic G ⊆ Q ∈ M and
N-generic H ⊆ P ∈ N, where Q is nontrivial, almost homogeneous, strategically
<κ-closed and Q ∼= Q × Q in M and P is nontrivial. Then κ ≤ (2|P|)N .

Proof Let γ = |P|N and suppose toward contradiction that (2γ )N < κ . Assume P has
domain γ . Let δ = γ +, which has the samemeaning in N ,M and V . Force over V with
Q again, to add V -generic G1 ⊆ Q, and form the extension V [G1] = N [H ][G1],
which is a forcing extension of N by P followed by Q. Since γ < κ and Q is
strategically <κ-closed in N [H ], it follows by Lemma 5, choosing a suitable P-name
for Q in N , that N ⊆ N [H ][G1] has the δ-approximation and cover properties. Note
also that δ+ is the same in all the models mentioned here. Thus, N = WV [G1]

r , where
r = (<δ2)N , and so V [G1] = N [H ][G1] satisfies the assertion,

“The universe is a forcing extension of the ground Wr defined by parameter
r , using forcing P followed by some further nontrivial strategically <κ-closed
forcing.”

The parameters of this assertion are r , P and κ , which we claim are all in M : of
course κ is in M , and P ∈ M[G] is small, so it cannot have been added by G,
and so P ∈ M ; for r , observe that because r ∈ N ⊆ M[G] and r ⊆ M by the
closure of Q, it follows from |r |N = (2γ )N < κ and the closure of Q again that
r ∈ M . Since V [G1] = M[G][G1] and Q ∼= Q × Q in M , the two-step generic
filter G ∗ G1 is isomorphic to a single M-generic filter over Q. Since Q is almost
homogeneous, it follows that every forcing extension of M via Q must satisfy all the
same assertions about parameters in M . In particular, the displayed assertion above
must also be true inM[G] itself, that is to say, in V . So V = M[G] = WV

r [H0][G0] for
some WV

r -generic H0 ⊆ P ∈ WV
r and some WV

r [H0]-generic G0 ⊆ Q0 ∈ WV
r [H0],

where Q0 is nontrivial and strategically <κ-closed there. Furthermore, WV
r ⊆ M[G]

has the δ-approximation and cover properties, the correct δ+, and r = (<δ2)W
V
r .

Since N ⊆ N [H ] = M[G] also has the δ-approximation and cover properties, the
correct δ+, and r = (<δ2)N , it follows by Theorem 4 that WV

r = N . Note that
H ∈ N [H ] = M[G] = WV

r [H0][G0], but it could not have been added by G0, and so
H ∈ WV

r [H0] = N [H0]. Thus, N [H ] ⊆ N [H0] and consequently M[G] ⊆ N [H0],
which means in particular that G0 ∈ N [H0], contradicting that Q0 was nontrivial. ��
Lemma 11.2 Suppose that γ ≤ κ are regular cardinals, that M and N are transitive
class models of ZFC, and that V = M[G] = N [H ] for some M-generic G ⊆
Add(κ, 1)M and some N-generic H ⊆ Add(γ, 1)N . Then either γ = κ or 2γ = κ .

Proof Assume γ < κ . Since Add(γ, 1) forces 2<γ = γ in N [H ], it follows that
2<γ = γ in M , and similarly 2<κ = κ in M[G]. Both Add(γ, 1)N and Add(κ, 1)M

are nontrivial, and the latter is <κ-closed in M . Thus, using Lemma 11.1 for the first
step, we observe that
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κ ≤
(
2|Add(γ,1)|)N ≤ (

2γ
)N = 2γ ≤ 2<κ = κ,

and so 2γ = κ , as desired. ��

Proof of Theorem 11 It follows directly from Lemma 11.2 that if C(γ ) and C(κ) and
γ < κ , then 2γ = κ . So there cannot be three regular cardinals satisfying C, since any
larger instance is determined in this way by the smallest instance, and consequently
any regular cardinal satisfying C will either be the first or the second regular cardinal
satisfying C. Thus, any such cardinal is definable by this description in the forcing
extension. Similarly, since 2γ is never inaccessible, there cannot be two inaccessible
cardinals with property C.

Let us now analyze the complexity of these definitions. First, one may easily see
that the assertion C(κ) has complexity atmost�3 in the extension, since it is equivalent
to the assertion that “there is some parameter r and some G, such that in any Vλ+2

which sees that λ is a�-fixed point of cofinality larger than κ , thenG ⊆ Add(κ, 1)W
Vλ
r

is WVλ
r -generic and Vλ = WVλ

r [G].” But actually, we can improve this, and we claim
that C(κ) has complexity �2. Specifically, we claim that C(κ) in V is equivalent to
the statement “for every structure of the form Vλ+2, where λ is a �-fixed point of

cofinality above κ , there is r,G ∈ Vλ such that G ⊆ Add(κ, 1)W
Vλ
r is Wr -generic and

Vλ = WVλ
r [G].” This statement has complexity �2, since we are essentially saying

“∀Z , if Z = Vλ+2 for some λ and…,” where the rest of the assertion is all taking
place inside Z with all quantifiers bounded by Z , and “Z = Vλ+2 for some λ” has
complexity �1, since one can say that Z is transitive and satisfies a certain theory
and contains all subsets of its members. The point is that even though the assertion
allows different λ to make use of different r and G, it follows from the fact that r and
G are bounded in size—we have r ⊆ <κ+

2 and G ⊆ Hκ—that there must be some
particular r and G that are repeated unboundedly often with increasingly large λ. Any
such unboundedly occurring pair r and G will ensure V = Wr [G], as desired.

Since C(κ) is �2 expressible, it follows easily that the assertions “κ is least with
property C” and “κ is second with property C” have complexity at worst �3, and
the assertion “κ is inaccessible and C(κ)” has complexity �2. Furthermore, these
definitions work inside any Vθ , provided that θ is a �-fixed point limit of cofinality at
least 22

κ
, which is the number of possible r ’s and G’s that might arise. And indeed,

one may use �2-collection in place of this cofinality argument to ensure that some r
and G are used with unboundedly many λ below θ . ��

One may use Theorem 11 to provide an alternative proof of the main non-
indestructibility claims of the main theorems. The idea is that after forcing with
Add(κ, 1), a regular cardinal κ cannot be �3-extendible in the forcing extension,
witnessed by Vκ ≺3 V [G]θ , since V [G]θ would satisfy �2-collection and so κ is
�3-definable in V [G]θ , which is impossible, as the existence of such a cardinal would
have to reflect below κ in light of Vκ ≺3 V [G]θ . Consequently, after forcing to add
a Cohen subset to κ , the cardinal κ cannot be �3-reflecting, superstrong, extendible,
uplifting and so on with all the other large cardinal notions we have mentioned in the
main theorem. And the same argument works with many other forcing notions.
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Let us conclude the paper by pointing out that one may not strengthen the su-
perdestructibility claim of the main theorem from strategically <κ-closed forcing to
(κ,∞)-distributive forcing (and thanks to the referee for this suggestion). Suppose,
for example, that κ is superstrong in V with target θ , and for simplicity, let us suppose
also that θ itself is inaccessible. Let P = �δ<θ Add(δ+, 1) be the Easton-support
product up to θ of the partial orders Add(δ+, 1) to add a Cohen subset to δ+, when-
ever δ < θ is inaccessible. If G ⊆ P is V -generic, then the standard arguments show
that κ remains superstrong in V [G]. Namely, fix any superstrongness extender em-
bedding j : V → M , and then lift the embedding through the forcing Gκ ⊆ P � κ

up to stage κ , resulting in j : V [Gκ ] → M[ j (Gκ)], using j (Gκ) = G; next, use
the fact that the rest of the forcing Gκ,θ at coordinates in the interval [κ, θ) is ≤κ-
distributive over V [Gκ ], and so being an extender embedding, j lifts uniquely to
j : V [Gκ ][Gκ,θ ] → M[ j (Gκ)][ j (Gκ,θ )], where j (Gκ,θ ) is the filter generated by
j ′′Gκ,θ . The lifted embedding j : V [G] → M[ j (G)] has V [G] j (κ) ⊆ M[ j (G)],
because we used the generic filter G below θ , and so κ remains superstrong in V [G].
Now, let g ⊆ κ+ be V [G]-generic for Add(κ+, 1)V , that is, adding a second generic
filter for the forcing at coordinate κ . Since adding two subsets of κ+ is isomorphic to
adding only one, we see that κ is superstrong in V [G][g], since this can be viewed
as V [G∗], where G∗ is the same as G, except that G∗(κ) ∼= G(κ) ∗ g at coordinate
κ incorporates the two generic filters together at that stage into one. So the situation
here is that a superstrong cardinal κ in V [G] remains superstrong after the forcing
Add(κ+, 1)V over V [G], even though this forcing is (κ,∞)-distributive in V [G],
which is the residue in V [G] of the fact that it is ≤κ-closed in V . So we cannot expect
to prove that superstrongness is always destroyed by such forcing.
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