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Abstract We investigate the application of Courcelle’s theorem and the logspace
version of Elberfeld et al. in the context of non-monotonic reasoning. Here we for-
malize the implication problem for propositional sets of formulas, the extension
existence problem for default logic, the expansion existence problem for autoepis-
temic logic, the circumscriptive inference problem, as well as the abduction problem
in monadic second order logic and thereby obtain fixed-parameter time and space
efficient algorithms for these problems. On the other hand, we exhibit, for each of
the above problems, families of instances of a very simple structure that, for a wide
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range of different parameterizations, do not have efficient fixed-parameter algorithms
(even in the sense of the large class XP,,, resp., XLy,) under standard complexity
assumptions.

Keywords Abduction - Autoepistemic logic - Default logic - Circumscription -
Parameterized complexity - Courcelle’s theorem - Monadic second order logic

Mathematics Subject Classification 03D15 - 03B42

1 Introduction

Non-monotonic reasoning formalisms were introduced in the 1970s as a formal model
for human reasoning and have developed into one of the most important topics in com-
putational logic and artificial intelligence. However, as it turns out, most interesting
reasoning tasks are computationally intractable already for propositional versions of
non-monotonic logics [18], in fact presumably much harder than for classical propo-
sitional logic. Because of this, a lot of effort has been spent to identify fragments
of the logical language for which at least some of the algorithmic problems allow
efficient algorithms; a survey of this line of research can be found in [37]. Proba-
bly the most prominent non-monotonic concepts are abduction, autoepistemic logic,
circumscription, and default logic.

The method of abduction has been deeply studied by Peirce [32] and Hartshorne et
al. [33], and fundamentally influenced several areas in and around artificial intelligence
as described by Eiter and Gottlob [12] as well as by Creignou et al. [10]. Informally
the reasoning problem is defined through an observation creating a hypothesis and the
search for an explanation.

Circumscription has been firstly introduced by McCarthy [27]. Initially this logic
was invented as a first order variant but has been formalized for other logics later. The
main idea of this non-monotonic concept is to model the idea of general assumptions,
i.e., when making a statement everything that is not stated explicitly is assumed to be
false.

Nowadays Circumscription has become one of the most developed and well studied
formalisms for non-monotonic reasoning [6,23,31,36]. Lifschitz [24] has proven that
reasoning in Circumscription is equivalent to reasoning under the extended closed
world assumption, i.e., the assumption of —p whenever p € P isnotderivable for some

Table 1 Overview of non-monotonic logics with their different concepts

Logic Concept Introduced by

Abduction Observations and explanations Hartshorne et al. [33] and Peirce [32]
Autoepistemic logic Modal operator L Moore [28]

Circumscription Minimality Semantics McCarthy [27]

Default logic Inference rules % Reiter [35]
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set P [17]. From a computational complexity aspect the circumscriptive inference
problem is well understood. Generally the problem has been classified to be complete
for the second level of the polynomial hierarchy, 172P = coNPNP, by Cadoli and
Lenzerini [6] who showed containment, and by Eiter and Gottlob [11] who proved its
hardness.

In this paper a different approach is chosen to deal with hard problems, namely
the framework of parameterized complexity. Gottlob et al. [19] made it clear that the
treewidth of a (suitable graph theoretic encoding of a) given knowledge base is a useful
parameter in this context: making use of Courcelle’s theorem it was shown that many
reasoning tasks for logical formalisms such as circumscription, abduction, and logic
programming become tractable in the case of bounded treewidth.

As we also focus on two of the logics classified by Gottlob et al. [19] let us briefly
discuss the difference to our approach. Gottlob et al. aim for efficient algorithms which
usually is not a general benefit of exploiting Courcelle’s theorem. They also explain
why this is the case in the sense of state size explosion of the resulting FTAs. However
they use monadic datalog instead to reach their goal. By this approach all proven
results in their paper (which obtain FPT results though Courcelle’s theorem) deal with
formulas in conjunctive normal form, or to be more precise, with the satisfiability
equivalent formulas in conjunctive normal form. Therefore they have to use clause
and literal predicates in their vocabulary to express the problems on this type of
formulas. In particular, their conjunctive normal form approach appears in nearly every
constructed formula wherefore it is simply not possible to plug in our construction
from Lemma 1 and use their other formulas to obtain general results for formulas
out of CNF—circumvention of this problem would yield the modification of several
formulas.

In contrast to their approach, we will work with arbitrary formulas over any
restricted set of allowed Boolean connectives. We do not construct any satisfiabil-
ity equivalent representations in CNF wherefore we also have to embody the more
complex formula structure in the construction of the MSO formulas (which alas have
to be more complex as well).

Although the obtained results of Gottlob et al. in comparison to our results may
convey the impression that they are similar at first sight, the difference is rather fun-
damental. For instance, if one wants to consider as a natural next step in this line
of research the question about counting complexity in this setting, the results from
Gottlob et al. cannot be used as satisfiability equivalent formulas do not maintain the
counting complexity in general. However we admit that such general notions are more
of theoretical interest and may not be used to obtain time or space efficient algorithms
in the sense as Gottlob et al. did. Nevertheless we think that itis good to have a different
and more general point of view on the results as we did than previously existed.

Additionally to our investigation of Circumscription and Abduction, we here exam-
ine a family of non-monotonic logics where the semantics of a given set of formulas
(axioms, knowledge base) is defined in terms of a fixed-point equation. In particular
we turn to default logic [35] and autoepistemic logic [28]. In the first, human reasoning
is mimicked using “default rules” (in the absence of contrary information, assume this
and that); in the second, a modal operator is introduced to model the beliefs of a perfect
rational agent. For both logics the algorithmic tasks of satisfiability and reasoning have
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been shown to be complete in the second level of the polynomial hierarchy [18]. Also
the so to speak Boolean fragments of the important decision problems in these two
logics have been completely classified with respect to its computational complexity
[2,9].

Much in the vein of [19] we here examine the parameterized complexity of all
these non-monotonic problems and, making again use of Courcelle’s theorem [8] and
a recent variant by Elberfeld et al., we obtain time and space efficient algorithms if
the treewidth of the given knowledge base is bounded. This underlines once again
how important this parameter is. Let us shortly sketch the intuition behind Courcelle’s
theorem. Assume we are able to express a problem Q in MSO. If instances x € Q
can be modeled via some relational structure 7, over some finite vocabulary t and
we see Q as a parameterized problem (Q, k) where « is the treewidth of .7, then by
Courcelle’s theorem we immediately obtain that (Q, «) is in FPT.

Previously the parameterized complexity of non-monotonic reasoning has gained
attention by three further publications we do like to mention explicitly. First, Gottlob
et al. [20] have taken an approach via constrained satisfaction problems (CSPs) with
respect to logic programs and model enumeration (here they focus on a version for
circumscription). Second, Zhao and Ding [38] classified disjunction-free default rea-
soning to be fixed-parameter tractable. Last to mention, recently in 2012, Fellows et
al. [15] took a deep look at the parameterized complexity landscape of Abuction. Here
they distinguished between several different kinds of Horn and Krom variants of the
problem and classified fragments also to be complete in the W-hierarchy. Also a good
survey article is available by Gottlob and Szeider [21].

Another non-montonic formalism which received a lot of interest is answer set pro-
gramming [26,30]. This concept is closely related to the declarative language Prolog.
Basically one encodes solutions to a problem into the models of a program such that
solutions are corresponding to terms of rules and constraints. The parameterized com-
plexity has been again investigated by Gottlob et al. [19]. Also the parameterized view
but from a more efficiency focused perspective has been considered by Jakl et al. who
examined counting versions and enumeration tasks of answer set programming [22].

A second contribution of our paper concerns lower bounds: Under the assumption
P # NP we show that, even for certain families of very simple knowledge bases
and for any parameterization taken from a broad variety, no efficient fixed-parameter
algorithms exist, not even in the sense of the quite large parameterized class XPy,.
These simple families of knowledge bases are defined in terms of severe syntactic
restrictions, e.g., using default rules with literals or propositions only. Restricting the
input structure even further we obtain that no fixed-parameter algorithm in the sense of
the space-bounded class XLy, (the logarithmic space analogue of XP,,) exists, unless
L = NL.

Unfortunately, treewidth is not among the parameters for which our lower bound
can be proven—otherwise we would have proven P # NP. In a third part of our
paper, we show that those structurally very simple families of knowledge bases, for
which we gave our lower bounds, already have unbounded treewidth. For this result,
we introduce the notion of pseudo-cliques, stemming from the application of edge
contractions, yielding some kind of topological minors, and show how to embed these
into our graph-theoretic encodings of knowledge bases.
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2 Preliminaries

Complexity Theory In this paper we will make use of several standard notions of
complexity theory such as the complexity classes L, @L, NL, P, NP, coNP, and 25

and their completeness notions under logspace-many-one 5}{? reductions.

A parameterized problem is aset P C ¥* x N, where X is a finite alphabet. Given
an instance (x, k) € * x N, we refer to x as the input and to k as the parameter.
Further we refer to the value of k by using a polynomial-time computable function
k : * — N which maps x to k; we then say « is a parameterization of P. Also we
will use k interchangeably with « (x) for some input x if the context is clear.

Given a problem P and a parameterization «, (P, ) belongs to the class FPT iff
there is a deterministic algorithm solving P in time f(k(x)) - |x|?) where x is an
input of P and f is an arbitrary recursive function; (P, k) is said to be fixed parameter
tractable then. If (P, k) is a parameterized problem, then (P, «), := {x € P | k(x)
= ¢} is the £-th slice of (P, k). Define (P, k) to be a member of XP,, (in words, XP
nonuniform) iff (P, k), € P for all £ € N; similarly the class XLy, is defined over
logspace machines. For background on parameterized complexity we recommend [16].

For along time in parameterized complexity theory the most interesting results were
concerned with the parameterized time classes. Here most of our results in this paper
connected to parameterized space classes deal with the class XL which is defined
as follows similarly to Chen et al. [7]. A given parametrized problem (P, k) over
> is in XL if there exists a deterministic algorithm deciding x € P within space
f(k(x)) - O(log|x]) for an arbitrary function f. The class XL is different to FPT
(under standard assumptions), e.g., there are complete problems in XL which are not
in FPT as shown by Elberfeld et al. [14].

Clones Let B be a finite set of Boolean functions. B is called a clone if it is closed
under superposition (i.e., arbitrary compositions and projections of functions). With
[B] we denote the smallest clone containing B. If B is a set of Boolean functions,
then a B-formula ¢ only uses functions from B. The underlying framework of Post’s
lattice is a fundamental basis here [34].

Propositional logic Let ¢, ¥ be propositional formulas. We say ¢ is implied by ¢ (or
Y is a consequence of ¢), in symbols ¢ = i, if for every assignment 6 such that
0 = ¢ itholds 6 = . Further if A is a set of propositional formulas, then we define
Th(A) :={¥ | ¢ = ¥, ¢ € A} as the set of all consequences of the set A. If B is
a finite set of Boolean functions then we denote with .Z(B) the set of propositional
formulas which only use connectives from B.

Monadic second order logic A vocabulary is a set of relation symbols, where each
relation symbol has a finite arity k > 1; if kK = 1 then we say the relation is unary
(then we also say the relation is a set). A structure </ over a vocabulary t consists
of a universe A which is a non-empty set, and a relation A“ C A* for each relation
symbol R, where k denotes the arity of R. Usually we write R* to denote that relation
R has arity k € N.

Monadic second order logic (or MSO) is the fragment of second order logic in
which only quantification over unary relations is allowed. Further we will use the
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following notion: if M is a set then let M(x) be T if x € M holds and be L
otherwise.

Treewidth A tree decomposition of a structure </ (with universe A) is a pair (T, X),
where X = {By, ..., B,} is a family of subsets of A (the set of bags), and T is a tree
whose nodes are the bags B;, satisfying the following conditions:

(i) U X = A, i.e., every element of the universe appears in at least one bag,
(i) for each tuple (ay, ..., ax) appearing in a relation of o7, there exists a B € X :
{ay, ..., ax} € B, i.e., every tuple is "contained’ in a bag, and
(iii)) Ya € A : {B | a € B} forms a connected subtree 7, i.e., for every element a the
set of bags containing a is connected in 7.

The width of a decomposition (7', X), width(T, X), is the number max{ |B| | B €
X}—1,1i.e., the size of the largest bag minus 1. The treewidth of a structure <7, tw(<7),
is the minimum of the widths of the tree decompositions of .27

3 MSO-Encodings

The aim of this paper is the application of Courcelle’s theorem for obtaining fixed-
parameter algorithms in the context of non-monotonic reasoning. For this, we will
have to describe the relevant decision problems by monadic second-order formulas.
In this section we will explain how to do this and obtain a preliminary result for the
implication problem.

Now fix a finite set B of Boolean functions. Denote by tp the vocabulary {const}- |
f € B,arity(f) = 0} U {conn?i | f € B,1 <i < arity(f)}. With respect to a set
I of propositional B-formulas we associate a Tg p.p-structure &7/ where 1 prop =
tgU{var!, repr'} such that the universe of <7 is the set of subformulas of the formulas
in I, and

. var(x) holds iff x represents a variable,
. repr(x) holds iff x represents a formula from I,
. const;(x) holds iff x represents the constant f, and

AW N =

. conn%‘-ﬁ ;(x, ) holds iff x represents the ith argument of the function f at the root
of the formula tree represented by y.

Lemma 1 Let B be afinite set of Boolean functions. Then there exists an MSO-formula
Osar 0ver T prop such that for any I' C £ (B) it holds that I' is satisfiableiff /- =
GSHI"

Proof The formula 6, defined as follows states that if an element is not representing
a formula ¢ € I', then there must be at least one subformula in which it occurs. If
an element is not a variable, then it represents either a constant or a Boolean function
f € B and needs to have corresponding arity(f) elements.

Ostruc := VYx | —repr(x) — Iy | —var(y) A \/ conng,i(x,y) A Vx (—-var(x) —

feB,
I<i<arity(f)
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\/ const ¢ (x) @ \/ /\ Ely(connf,,-(y, xX) AVz(conny,i(z,x) —> z = y))).
feB, feBl<i<arity(f)
arity(f)=0

Let n denote the maximal arity of B, i.e., n := max{arity(f) | f € B}.

Bussign(M) = Ya¥y1 ---Vy, J\ ( N\ const(x) = (M(x) < f)
feB arity(f)=0

AN comnpiix) > (M@) < MO, MOy ) )-
1<i <arity(f)

Now define

O3assign = EIM(Qassign(M) A Vx (”epr(x) g M(x))

It is easy to verify that 0y; = Ogruc A O3assign satisfies the lemma. O

Let B be a finite set of Boolean functions and F, G be sets of B-formulas.
Answering the implication problem of sets of propositional formulas, i.e., the ques-
tion whether I = G, requires to extend our vocabulary tp pmp O TBimp =
TB, prop Y {reprlljrem, repr!,..} as well as our structure which we will denote by
GF.G * TePT ey (x) is true iff x represents a formula from F, and repr,.(x) is true

iff x represents a formula from G. Now it is straightforward to formalize implication.

Lemma 2 Let B be a finite set of Boolean functions. Then there exists an MSO-
Sformula 6y, over tg iy such that for any I' € £(B) and any F,G C T it holds
that F = G lﬁ‘dF.G = 91’mp~

Proof Define the MSO-formulas 6y emise (M), Oconciusion(M ), and jypiies as follows:

Qpremise(M) =Vx (reprprgm(x) - M(x)) s
Oconclusion(M) :=Vx (l’eprmnc (x) —> M(x))) )
eimplies = VM((eassign(M) A Qpremise(M)) g Qconclusion(M))~

Then, we can define the formula 0y as Oimp = Gsrue A Oimplies, Where gy and
Bussign are defined as above in Lemma 1. |

The application of Courcelle’s Theorem [8] and the logspace version of Elberfeld
et al. [13] directly leads to the following theorem.

Theorem 1 Let B be a finite set of Boolean functions, let k € N be fixed, and let
F, G be sets of B-formulas such that o/r g has treewidth bounded by k. Then the
implication problem for sets of B-formulas is solvable in time O (f (k) - (|F| + |G]))
and space O(log(f (k)) -log(|F| + |G|)), where f is a recursive function.

In other words, the implication problem of sets of formulas parameterized by the
treewidth of o7F ¢ is fixed-parameter tractable, and in XL. In the following sections
we will extend this result to default logic and autoepistemic logic.
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4 Default logic

For a deep introduction into the area of non-monotonic logic we refer to [4,25]. In the
following we will capture only the important parts which are relevant to the investigated
logics and formalisms. Following Reiter [35], a default rule is a triple %P o is called
the prerequisite, B is called the justification, and y is called the conclusion. If B is a
set of Boolean functions, then d = «B s a B-default rule if o, B, y are B-formulas,
i.e., formulas that use only connectors for functions in B. A B-default theory (W, D)
consists of a set of propositional B-formulas W and a set of B-default rules D
Reiter also introduced a very intuitive notion of stable extensions (another around
fix-point semantics can be found in the original paper of Reiter [35]). For a given default
theory (W, D) and a set E of formulas, define Eg = W and E;;+; = Th(E;) U {y |
ﬂ € D,a € E; and =8 ¢ E}. Then E is a stable extension of (W, D) if and only

1fE = Ujey Ei» and the set G = {ayﬂ €D |a € EA—-B ¢ E}is called the set of
generating defaults.

The so to speak satisfiability problem for default logic, here called extension exis-
tence problem, EXT, is the problem, given a theory (W, D), to decide if it has a stable
extension. Gottlob [18] proved that this problem is %5 >-complete.

Example 1 The default theory (4, { , Tﬁx }) has exactly two stable extensions,

namely E£; = Th({x}) and E, = Th({—-x}), whereas the theory (¢, {T;}) has no
stable extension. Further consider the default theory (W, D), where

. . football : —snow
W = {football, rain, cold A rain — snow}, and D={] ——————
takesPlace

Then (W, D) has exactly the stable extension Th(W U {takesPlace}). However, if
the considered default theory is (W U {cold}, D) now, then the unique stable extension
is Th(W). Therefore one says that the reasoning in this logic is non-monotonic, i.e.,
having more information (it is cold) lets you deduce less than before.

Let B be a finite set of Boolean functions. Write W W D as a shorthand for the
set of formulas W U {«, 8, y | % € D}. To any B-default theory (W, D), we
associate a T g ‘= TB prop U {kbl, defl, premz, just2, conclz}-structure 2w, p) such
that the universe of #/(w, p) is the union of the set of subformulas of W W D U {—f |
% € D} together with a set corresponding to the defaults in D, the relations from
TB prop are interpreted as in Sect. 3, and kb(x) holds iff x represents a formula from
the knowledge base W, def(x) holds iff x represents a default d € D, prem(x,y)
(resp. just(x, y), concl(x, y)) holds iff x represents the premise « (resp. justification
B, conclusion y) and y represents the rule V’S

Lemma 3 Let B be a finite set of Boolean functions and let (W, D) be a B-default
theory. There exists an MSO-formula Ooxtension such that (W, D) possesses a stable
extension iﬁch{(W,D) ': eextension'

Proof First the formula 0;5,., expresses the fact that one formula is the negation of
another formula: Gigneg (0. @) = Gytue A VM(HaSS,'gn(M) — (M(g) < —|M(¢))).
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Observe that ¢ and @ are not formulas but placeholders for elements. The following
two formulas define the applicability of defaults, i.e., whether a premise « is entailed or
a justification g is violated which uses the shortcut x (C, M, x) := (kb(x) v C(x)) —
M(x):

Bwucia(C, a) i= VM(@amgn(M) > Vx (X(c, M, x) — M(a))),

Owuc-5(C. B) = HBHM(emgn<M) — V(X (C M, x) A M(B) A bisneg (B, B))).

Now we can define the MSO-formulas 6, (a default d is applicable), Oyqpie (a set
of defaults is stable), 0,4 (a set of defaults is generating) as follows.

Oupp(d. G) := Ja3BAC (prem(a, d) A just(B, d)A

Vx(C(x) <> 3y(G(y) A concl(x, y))) A Owucea(C, @) A —=Owuce—p(C, ﬂ)),
Ostaple (G) 1= Vd(def(d) — (G) < Qapp(da G)))v
05d(G) = Ostapie(G) AVG'(G' C G — —Ostapie(G)).

Then Bexrension = Bstruc A 3G (04q(G)) is true under <7, py iff (W, D) has a stable
extension. O

As a consequence of Lemma 3, we obtain from Courcelle’s Theorem [8] and the
logspace version of Elberfeld et al. [13] that, given the treewidth of .&w, p) as a para-
meter, the extension existence problem for default logic is fixed-parameter tractable,
and in XL.

Theorem 2 Let B be a finite set of Boolean functions, let k € N be fixed, and let
(W, D) be a B-default theory such that </w, py has treewidth bounded by k. Then the
extension existence problem for B-default logic is solvable in time O (f (k) - |(W, D)|)
and space O (f (k) -log (W, D)|), where f is a recursive function.

So again and maybe with no big surprise, similar to the study by Gottlob et al.
[19] for different non-monotonic formalisms, we see here that bounding the treewidth
of a default theory yields time and space efficient algorithms for satisfiability. In the
following we want to contrast this with a strong lower bound. We consider knowledge
bases with very simple defaults rules, namely consisting only of literals (and in a
second step even only propositions). Then we consider any parameterization of the
extension existence problem that is bounded for all knowledge bases that obey this
restriction. It follows that even for these very restricted knowledge bases, the parame-
terized extension existence problem is not even in the class XP,,, unless P # NP.

We want to point out that this theorem comprises for example the usual parameter-
izations for SAT (in terms of, e.g., size of backdoor sets or formula treewidth): For all
these, we have FPT-algorithms for propositional satisfiability, but still the extension
existence problem is not in XP,,.
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Theorem 3 Let B be a finite set of Boolean functions such that — € [B U {T}] and
let D be the set of sets D of default rules such that each default d € D is composed of
literals only. Further let k be an arbitrary parameterization function for which there
exists always a ¢ € N such that K(((/}, D)) < ¢ holds whenever D € D. If P # NP,
then the extension existence problem for B-default logic, parameterized by «, is not
contained in XPyy.

Proof The reduction from SAT to default logic restricted to default theories with
W = () and default rules composed of literals only, shown in Lemma 5.6 of [2], proves
that the extension existence problem of default logic restricted to theories of this kind
(which will be denoted by EXT') is NP-hard. Now let « be such a parameterization and
suppose P # NP. For contradiction assume (EXT, k) € XP,,. Hence, by definition of
XPpu, it holds (EXT, k), € P for every £ € N. As also £ < ¢ holds we can compose a
deterministic polynomial time algorithm which solves EXT'. This contradicts P # NP
and concludes the proof. O

Theorem 4 Let B be a finite set of Boolean functions such that L € [B] and let D
be the set of sets D of default rules such that each default d € D is composed of
propositions or the constant 1 only. Further let k be an arbitrary parameterization
function for which there exists always an ¢ € N such that K((W, D)) < ¢ holds
whenever D € D and W consists of at most one proposition. If L # NL, then the
extension existence problem for B-default logic, parameterized by k, is not contained
in XLpy.

Proof The reduction from the graph accessibility problem to default logic restricted
to default theories with |W| < 1 and default rules composed of propositions or the
constant L only, shown in Lemma 5.8 of [2], proves that the extension existence
problem of default logic restricted to theories of this kind (which will be denoted
by EXT') is NL-hard. Following the argumentation in the proof of Theorem 3, we
conclude for L # NL and (EXT/, k) € XLy, that (EXT/, k)¢ € L holds for every £.
This eventually leads to the desired contradiction proving the theorem. O

5 Autoepistemic logic

Moore [28] introduced a new modal operator L stating that its argument is “believed”
as an extension of propositional logic. Further the expression Lg is treated as an
atomic formula with respect to the consequence relation |=. Given a set of Boolean
functions B, we define with %, (B) the set of all autoepistemic B-formulas through
o u=p| fle,...,9) | Ly for f being a Boolean functions in B and a proposition
p.-f X C % (B), then aset A C L (B) is a stable expansion of X if it satisfies
the condition A = Th(Z U L(A) U =L(A)), where L(A) := {Ly | ¢ € A} and
—L(A) :={—Le¢ | ¢ ¢ A}, and L(A), =L(4) S Z4e(B).

Let SF(p) denote the set of subformulas of ¢, let SFX(¢) denote the set of those
subformulas of ¢ that have prefix L, and let us use the shorthand =S = {—¢ | ¢ € S}
for a set of (autoepistemic) formulas S. By abuse of notation given a set of formulas
S we define SF(S) := {SF(¢) | ¢ € S} be the set of subformulas of the formulas in §
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(and analogously for SFL()). Given a set of autoepistemic B-formulas ¥ C % (B),
we say a set A C SFE(X) U =SFL(X) is S-full if for each Ly € SFX(X) it holds
YUAEg@Iiff Lo € A,and X U A = ¢ iff =Ly € A. The connection of X-full sets
and stable expansions of X has been observed by Niemeld [29]:if ¥ C Z,.(B) is aset
of autoepistemic formulas and A is a X-full set, then for every Ly € SFX(X) either
Ly € Aor —Lg € A. The stable expansions of ¥ and X-full sets are in one-to-one
correspondence.

The expansion existence problem, EXP, is the problem, given a set of autoepistemic
formulas ¥, to decide if it has a stable expansion. Again, Gottlob [18] proved that this
problem is complete for the class Eg.

Example 2 (Example 3.2 in [9]) Consider the following set X.,r of autoepistemic
formulas formalizing knowledge about cars.

Ycar .= {car, threeWheeler — rickshaw, car A —LthreeWheeler — fourWheeler,

Lrickshaw — threeWheeler}

The set X¢,r has two stable expansions: one being a superset of {—LthreeWheeler,
—Lrickshaw}, and one being a superset of { LthreeWheeler, Lrickshaw}.

Indeed, if Lrickshaw is contained in a stable expansion A, then threeWheeler
is derivable from the formulas in X, and by definition of stable expansions,
LthreeWheeler € A. On the other hand, if Lrickshaw is not contained in A, then
we cannot derive threeWheeler from Th(Z U L(A) U —=L(A)), which implies —L
threeWheeler € —L(A) C A. Thus, any stable expansion A has to satisfy L
threeWheeler € A iff Lrickshaw € A.

To see that the given sets characterize stable expansions, observe that

{Lrickshaw, LthreeWheeler} C A
implies that rickshaw, threeWheeler € Th(X U L(A) U —=L(A)) = A, whereas
{=Lrickshaw, = LthreeWheeler} C A

implies that neither rickshaw nor threeWheeler can be derived from SUL(A)U—L(A).
Thus both sets can be extended to yield a stable expansion.

Let B be a finite set of Boolean functions. To any set ¥ of autoepistemic B-formulas,
we associate a g 40 = Tp U (L', repr1 }-structure .oy, such that the universe of .oy is
the union of the set of subformulas of ¥ U {—L¢ | Ly € SF(X)}, the relations from
Tp are interpreted as in Sect. 3, and L(x) holds iff the subformulas represented by x
is prefixed by an L, and repr(x) holds iff x represents a formula in X.

Lemma 4 Let B be afinite set of Boolean functions and let X be a set of autoepistemic
B-formulas. There exists an MSO-formula 6 such that ¥ possesses a stable expansion

iff o5 = 6.
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Proof For a set of formulas G and a formula ¢, similar to 6y yucq (C, @) in the proof
of Lemma 3, define be the MSO-formula

OzuAk (A, ) = YM (Bassion (M) — Y (((repr() v A) > M(x)) = M(@))

to test for ¥ U A |= ¢. Now define the MSO-formula 6, as

Brui(A) =V (L(x) > (A0) ® Fy(conn—(x, ) A A1)

AV (L(x) — (AGx) © O50amp(A, x))).

Then 6 := e A JAB1(A)) is true under &5 iff ¥ has a X-full set A, which is
the case iff X has a stable expansion. O

As above we obtain from Lemma 4 that, given the treewidth of <7y, as a parameter,
the expansion existence problem for autoepistemic logic is fixed-parameter tractable,
and in XL.

Theorem 5 Let B be a finite set of Boolean functions, let k € N be fixed, and let ¥ be
a set of autoepistemic B-formulas such that <75, has treewidth bounded by k. Then the
expansion problem is solvable in time O (f (k) -|X1) and space O (log( f (k))-log|X|).

On the other hand, analogues of Theorems 3 and 4 are easily obtained:

Theorem 6 Let B be a finite set of Boolean functions such that v € [B U {L, T}]
and let . be the set of sets X of autoepistemic B-formulas such that all ¢ € X are
disjunctions of propositions or L-prefixed propositions. Further let k be an arbitrary
parameterization function for which there exists always an ¢ € N such that k (X) < ¢
holds whenever ¥ € .. If P # NP, then the expansion existence problem for sets of
autoepistemic B-formulas, parameterized by k, is not contained in XPyy.

Proof Observe that there exists a reduction f from 3- SAT to autoepistemic logic
restricted to B-formulas shown in Lemma 4.5 of [9]. This implies our claim, as mem-
bership in XP,, implies a polynomial-time algorithm for any fixed «. O

Theorem 7 Let B be a finite set of Boolean functions such that ®, T € [B]. Further
let k be an arbitrary parameterization function for which there exists always an c € N
such that k (2) < ¢ holds for all . If L # @®L, then the expansion existence problem
for sets of autoepistemic B-formulas, parameterized by k, is not contained in XLy.

Proof Observe that there exists a reduction f from the implication problem restricted
to B-formulas shown in Lemma 4.8 of [1]. This implies our claim, as membership in
XLy, implies a logspace algorithm for any fixed «. O

We remark that similar lower bounds as given for default logic in the previous
section and for autoepistemic logic here hold for the implication problem as well as
follows.
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Theorem 8 Let B be a finite set of Boolean functions such that x ® y @ z € [B] and
let G be the set of sets I' of formulas such that each formula ¢ € I' is composed of
functions f(x,y, z) = x @y @ z only. Further let k be an arbitrary parameterization
function for which there exists always an ¢ € N such that k (F , G) < ¢ whenever
both F,G € 9. If L # ®L, then the implication problem for sets of B-formulas,
parameterized by «, is not contained in XLy,.

Proof From Lemma 4.4 in [1] it follows that the implication problem IMP" for these
sets of formulas is @L-hard. Suppose L # @L and let k¥ be a parameterization such
that« (F, G) < cforevery F, G € 4. Now following the argumentation of Theorem 3
yields a contradiction to L # @L. O

Theorem 9 Let B be a finite set of Boolean functions such that A,V € [B]. Let 4
be the set of sets I' of formulas in monotone 2-CNF and let % be the set of sets I" of
formulas in DNF. Further let k be an arbitrary parameterization function for which
there exists always an ¢ € N such that K(F, G) < ¢ whenever both F € 4, G € %,.
If P # NP, then the implication problem for sets of B-formulas, parameterized by «,
is not contained in XPyy.

Proof From Lemma 4.2 in [1] it follows that the implication problem IMP’ for these
sets of formulas is coNP-hard. Following an analogue argumentation as in the proof
of Theorem 8 implies this theorem. O

6 Pseudo-Cliques

Looking at Theorems 3 and 4 one might hope that the syntactic restriction imposed
there, namely allowing only defaults that involve literals or propositions, is so severe
that it will bound the treewidth of every such input structure. Combining this with
Theorem 2 would then yield P = NP (or L = NL, resp.). Stated the other way
round, if P # NP then the treewidth of .7 p) is a non-trivial parameterization, i.e.,
a parameterization « for which there exists no ¢ € N such that « ((J, D)) < ¢ holds
for all D consisting of defaults rules involving only literals.

In the following we directly prove the non-triviality of the parameterization by
treewidth (i.e., without any complexity hypothesizes). As a tool we utilize the subse-
quent definition of pseudo-cliques.

Definition 1 Let G = (V, E) be an undirected graph. A pseudo-clique is a set of
vertices V' C V that can be partitioned into the set of main-nodes Vqi, and sets
of edge-nodes V,, for each u # v € Vi such that the following holds: for
Vi,...,Un € V,, the nodes in V, , form a simple path from u to v, i.e., it holds
that (u, v1), (v, v2), ..., (Vm—1, Um), (Um, v) € E and no other edges are present.

The size of a pseudo-clique is | V;,4inl, i.€., the number of main-nodes. The cardi-
nality of a pseudo-clique is max, £yeV,, | Vu,vl, 1.€., the length of the longest simple
path between edge-nodes. A pseudo-clique is said to have exact cardinality k if
Yu, v € Vipain @ |Vl = k.

Observe that a pseudo-clique is a specific kind of topological minor which is a
well-known concept in graph theory. The first four pseudo-cliques of exact cardinality
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T

Vi

n =4,
n=2 n=23 n=4 n=>5 cardinality 3

’1,d12,3,4,...,n‘

|
]d12,2,3,4,m,n\ ]1,d13,3\ ]1,d14,4\ oo ln—1,dp_1n,n
’2,d24,4‘ ’2,(123,3‘ 2,d2n,n

Fig. 1 Pseudo-cliques of exact card. 1 and size € {2, ..., 5}, one of card. 3 and size 4, and a tree decom-
position of a pseudo-clique of exact card. 1 and size n

1, and one of cardinality 3 are visualized in Fig. 1. The thick vertices correspond to
the main-nodes whereas the small dots correspond to the edge-nodes.

The important fact for us is the observation that pseudo-cliques of size n have the
same treewidth as the clique of size n. This observation immediately follows from the
well-known technique of edge contractions, see e.g., [3, Lemma 16].

Whenever one wants to show that a parametrization by treewidth is non-trivial,
the most obvious method is to show that the family of graphs has (sub-) cliques of
arbitrary size. Hence talking about pseudo-cliques suffices. Corollary 1 (1.) shows that,
for families used for the lower bounds in the previous sections, it is not possible to use
cliques in order to prove unbounded treewidth and therefore additionally motivates
the definition and purpose of pseudo-cliques.

Corollary 1 Let B be a finite set of Boolean functions such that 1. € [B] and let

(@, D) be a B-default theory in the sense of Theorem 3, i.e., each default in D is

composed of literals only. Then there exists an MSO formula 6 fulfilling the property

(W, D) € EXT(B) iff /w,py = 0, and

1. 4w, py is neither £-connected nor contains a clique of size { for any £ > 3.

2. There exists a family of default theories (), D)y such that the treewidth of g p),
is not constant.

Proof For (1.) we construct the MSO formula 8 according to Lemma 3. At first observe
that the universe of ./(w, py comprises only literals and defaults. Further, there are no
edges between literals, and no edges between defaults. Every default can be connected
to at most three different literals. Obviously the graph does not contain a clique of
size £ > 3. Furthermore, the graph is not £-connected for any ¢ > 3 by the following
observation. Let x; be some element representing the default d = %8 Then there are
elements xy, Xg, X, to represent the respective parts of d which are all connected to
xq. 1f now x¢, xg and x,, are removed from the graph, then there is no other element
to which x; is connected yielding a contradiction to the connectivity.
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Turning to (2.) observe that (1.) prohibits using £-cliques or £-connectivity for
any ¢ > 3 to measure the treewidth of </(w p),. Now define a default theory (9, D)

complying with Theorem 6, where D := 1d;; = xij_yj ‘ l<i<j< n} ,and x;, y;
are variables for 1 < i < j < n. Consisting only of this kind of default rules implies
that the structure forms a pseudo-clique. O

An analogous result holds for autoepistemic logic.

Corollary 2 Let B be a finite set of Boolean functions. There exists a family of
autoepistemic B-formulas Xy and all ¢ € Xy are disjunctions of propositions or
L-prefixed propositions such that there exists an MSO formula 6 fulfilling the prop-
erty i € EXP(B) iff o5, |= 6 and the treewidth of /s, is not constant.

Proof Define ¥y as X := {x; Vx; | 1 <i < j < k}. Then the structure .«/s;, consist
of cliques of size k, in fact. O

Corollary 3 Let B be a finite set of Boolean functions such that N,V € [B]. Let
Y1 be the set of sets I' of formulas in monotone 2-CNF and let %, be the set of
sets I" of formulas in DNF. There exists a family of sets of B-formulas (F, G)y with
F € 9,G € % such that there exists an MSO formula 6 fulfilling the property
(F, G)r € IMP(B) iff /(F,G), = 0 and the treewidth of /(F,c), is not constant.

7 Circumscription

We will follow the notion of McCarthy [27] and work with propositional Circum-
scription as defined by Lifschitz [24]. In the following the variables of a propositional
formula ¢ are partitioned in three disjoined subsets (P, Q, Z). Those partitioned sub-
sets are defined as follows:

— P is the set of variables to minimize,

— Q is the set of variables with a fixed value, in order to let the minimal models be
comparable, and

— Z is the set of variables allowed to vary.

In the case of Q = Z = ¥ we work with basic propositional Circumscription. Oth-
erwise we will talk about general propositional Circumscription. If Z contains all
variables of the instance then we have usual propositional inference in the sense of
. The guideline in propositional Circumscription is the compliance of the minimal
models to obtain as few exceptions as possible. Informally, a minimal model is a set
Min which contains variables that are necessarily assigned to true. The central idea is
that the variables which can be falsified must be assigned to false. The assignments of
propositional formulas are partially ordered according to the coordinate wise partial
order < on Boolean vectors which obeys the ordering 0 < 1 on {0, 1}.

With respect to a given partition of the variables we define the preorder <(p ¢, 7)
on assignments as follows.

Definition 2 (<(p,¢,z) Preorder) Let o and ¢’ be two assignments of a given formula
@.theno <(p o z) o’ if o and o’ assign the same value to the variables in Q and for
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every p € P,o(p) < o’/(p) (if there exists a variable p € P such that o (p) # o’/ (p),
we write 0 <(p,g,7) o).

Let us emphasize again that an assignment is not necessarily a model wherefore
we denote assignments usually with greek letters 6, o and models with the latin letter
M. When talking about models in Circumscription it will be significant whether the
model is minimal or not. The following definition captures this fact.

Definition 3 (Minimal models) Let ¢ be some formula, (P, Q, Z) be a partition of
its variables, and M be a model of ¢, i.e., M = ¢. We say M is a minimal model of ¢
if there exists no other model M’ of ¢ such that M’ C M holds (and simultaneously
M’ = @). Further we say M isa (P, Q, Z)-minimal model of ¢ if there exists no other
model M’ of ¢ such that M’ <(p .7y M (and also M’ |= ¢ holds).

Now we are able to define the inference relation from the circumscriptive perspec-
tive. Observe that it is possible to set Z as the set of all variables only, in order to
mimic usual propositional inference.

Definition 4 (Circumscriptive inference) Let ¢, ¥ be two formulas and (P, Q, Z) be
a partition of the variables of ¢ and . An assignment o is a (circumscriptive) model

of ¢, in symbols o ‘E}ECQ 7) ¥ if o is a (P, Q, Z)-minimal model of ¢. A formula

Y can be circumscriptively inferred from ¢, in symbols ¢ f}ﬁcg 2 Vs if ¥ holds in
all (P, @, Z)-minimal models of ¢. Whenever we talk about basic Circumscription,
i.e., Q = Z = ) then we just write ="¢,

Analogously we will define models of sets of formulas I" as usual by using the
conjunction over its elements, i.e., a model of A per @ is a model of I". The circum-
scriptive inference problem (or Circumsciption), CIRCINF(B)(p, ¢, 7), is the problem,
given a B-formula ¢, a set I' € Z(B), and a partition (P, Q, Z) of the variables, to
decide if I' =5, ) ¢-

Whenever we simply write CIRCINF(B) we talk about basic Circumscription where
the partition is not relevant.

Now let us consider an example which visualizes the difference between basic and
general Circumscription, and also compares them to usual propositional inference.
Here we show how the minimal models of a given formula can be different with
respect to the partition (P, Q, Z).

Example 3 Given is the set I = {1, Y2, ¥3}, consisting of the three formulas
Y1 =x1Vxs, Yo=x;—>x, and Y3 =—(x3 > x1) Dx2 A x3),

the formula ¢ = (x; A x2) @ x3, and the partition is P = {x1}, O = {x2,x3}, Z = 0.

The assignments are shown in Table 2. The only two satisfying assignments (marked
inlight gray) of I" are M| = {x3} and M> = {x1, x2, x3}. However only M| = ¢ holds
and M» W= ¢. Wherefore for usual propositional inference we can say that I (= ¢.
Nevertheless for basic Circumscription we get I' =" ¢ as M| C M, and therefore
M> is not minimal. Hence we consider M/ only.
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Table 2 Assignment table for

Example 3 Xy X X3 Y Y2 y3 @
0o 0 o0 0 1 0 0
0 O 1 1 1 1 1
0 1 0 0 1 0 0
0 1 1 1 1 0 1
1 0 o0 1 0 0 0
1 0 1 1 0 0 1
1 1 0 1 1 0 1
1 1 1 1 1 1 0

Yet, for general Circumscription together with a given partition we have indeed two
minimal models, namely both M1 is (P, Q, Z)-minimal and M> is (P, Q, Z)-minimal
as well because we are only allowed to remove x; from the current model, whereas x;
and x3 are fixed (as they are in Q) and not allowed to change. Hence I” b&filgf 02)?

because M, lzfgCQ 2 I and My = ¢.
Intuitively speaking by defining the partition it is possible to make (previously)

non-minimal assignments minimal, as happened for M> in the example.

Thomas completely classified the computational complexity with respect to every
set of Boolean functions [36]. There he established five different cases ranging from
172]) -completeness down to containment in AC®. Hence from a computational com-
plexity perspective the problem admits a wide spectrum of complexity degrees.

At first we will start to work with the basic Circumscription inference problem
CIRCINF, i.e., having Q = Z = () for the partition. Afterwards we turn towards the
general case CIRCINF(B)p, g, 7) and show how to extend our result to the unrestricted
inference problem allowing arbitrary partitions. This allows us to stick to the most
introductory vocabulary 75.

7.1 Basic propositional circumscription

Instances of the basic circumscriptive inference problem contain a set I" of formulas,
as well as a formula ¢. Hence we need a slight extension of the vocabulary to be
able to distinguish between ¢- and I'-representatives. We define 1 1 = 73 U
{repr!, repr}, repr;}, where

— repr(x) holds iff x represents a formula from I" U {¢},
— repr(x) holds iff x represents a formula from /", and
— repr,(x) holds iff x represents the formula ¢.

The universe of the associated 7 ,-structure <7, consists of the formulas as well
as subformulas of I U {¢}.

Lemma 5 Let B be set of Boolean functions. Then there exists an MSO-formula O,y
over Tg r,y such that for any set of formulas I' € £ (B) over connectives in B the
following holds I' ="° ¢ iff AT ¢y |= Ocire.

Proof Informally speaking the formula is satisfiable iff for all elements x holds: (i) if
x is not representative of a formula in I" U {¢} then it is a part of a connective, (ii) if
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x is not a variable, then it is either representing a constant or a connective for which
the successors are well-defined.

On our way to express circumscriptive inference we need two formulas stating the
satisfiability of formulas in I", resp., the satisfiability of ¢:

Osar,r (M) := st N (Qassign(M) AVx (Feprr (x) = M(x))),

Bt (M) 2= Ot A (Bussion (M) A Vx (repr, () — M(x).

Now we are able to describe minimality of a given model M of I" by stating that
there is no smaller model M’ C M which still satisfies I".

Omin(M) := —3IM’ (Vy(M’(y) — M()) AIx(M'(x) A =M (x)) A 9mt,r(M’)).
All of this points to the fact that I" =1 ¢ iff .o = Ocire, Where

ecirc = VM((GSat,F(M) A emin (M)) - esat,(p(M))

and satisfies the lemma. O

Applying the results from Courcelle and Elberfeld et al. will immediately lead to
the following theorem which settles an FPT runtime and a XL space requirement if
one parameterizes the problem with treewidth of the underlying structures.

Theorem 10 Let B be a finite set of Boolean functions, k € N be fixed, I" be a set of
B-formulas and ¢ be a B-formula such that < , has a treewidth bounded by k. Then
the basic propositional circumscriptive inference problem for B-formulas is solvable
in time O(f(k) (I + |g0|)) and space O (log(f (k)) -log(|I"'| + |¢|)), where f isa
recursive function.

7.2 General propositional circumscription

In contrast to basic Circumscription additionally to the input I', ¢ we get a partition
of their variables into three disjoined subsets (P, Q, Z) where

— P is the set of variables to minimize,

— Q is the set of variables with a fixed value, in order to let the minimal models be
comparable, and

— Z is the set of variables allowed to vary.

Therefore we need to extend the vocabulary tp, r , with two new unary predicates:
reprp(x), reprg(x) which hold iff an element x represents a variable from P, or O
respectively. We will denote this extension with 7 crc.

The next lemma proves the existence of an MSO-formula 6, with respectto a given
CIRCINF(B)(p, g,7) instance (I, ¢, (P, Q, Z)) which is satisfiable iff I" |:fi}§?Q’Z) Q.
In contrast to basic propositional Circumscription we use an associated extended
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TB,cire-Structure &1 o, (p, 0, z) now. The universe of <71, (p, 0, z) additionally consists
of the predicates for P and Q.

Lemma 6 Let B be set of Boolean functions. Then there exists an MSO-formula
O(p,0,7)-circ OVer T cire such that for any set of formulas I' € £ (B) over connectives
in B, every B-formula @, and every partition (P, Q, Z) of variables from I" U {¢} the
Jollowing holds: I" |=(5° 7 @ iff Dr..(P,0,2) = 0(P.0,2)-circ-

Proof In the following we will build on the formulas from the proof of Lemma 5. We
will start with a formula that describes the ordering on the models with respect to the
partition (P, Q, Z). Let us recapitulate the notion: M <(p o z) M’ holds iff for all
x € Q we have M(x) < M’'(x) and for all x € P we have M(x) < M’(x). The
following formula expresses this behavior and is valid if and only if M <(p ¢, z) M’
holds:

Bord (M, M) 1= Vx (repro (x) — (M(x) & M'(x) )

A Vx (reprp(x) - (M(x) - M/(x))).

The set Z needs no further consideration as the variables are allowed to vary here.
Compared to basic Circumscription we need to extend the formula 6,,;, to obey the
partition ordering as follows:

6 (M) = —3IM' (eord(M’, M) A3x(M'(x) A =M(x)) A Gar F(M/)).

Finally 0(p 0, 7)-circ is defined by transforming 6y, in 6;rc to use the previously
adjusted 6, . :

Op.0.2)-circ = VM((Qsaz,F(M) A G (M) — Qsat,w(M))'
By construction we get that I' =5, ;) ¢ if and only if <y .02 F
Ocp,0,7)-circ- o

Using Courcelle’s theorem and the version from Elberfeld et al. we can show the
following result now.

Theorem 11 Let B be a finite set of Boolean functions, k € N be fixed, I" be a set of
B-formulas, ¢ be a B-formula, and (P, Q, Z) be a partition of the variables in I U{¢}
such that </t o (p,0,z) has a treewidth bounded by k. Then the general propositional
circumscriptive inference problem for B-formulas is solvable in time O ( fk -+
|(p|)) and space O (log(f(k)) -log(|I"| + |¢l)), where f is a recursive function.

Note that Theorem 11 and Lemma 6 especially hold for the case where Q and Z
are empty in CIRCINF(B).

Now we will investigate some restricted versions (in the sense of allowed Boolean
connectives) of the circumscriptive inference problem and show the validity of lower
bounds under reasonable complexity assumptions for a wide range of parameterization
functions.
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Theorem 12 Let B be a finite set of Boolean functions such that either

1. A,V € [B] and k is a parameterization function for which there exists a c € N
such that K((F, o, (P,0, @))) < or

2. V € [B], k is a parameterization function for which there exists a ¢ € N such
that k ((F, z, (P, Q, {z}))) < ¢, whenever I' consists only of formulas which are
disjunctions of two variables and 7 is a single variable.

If NP # P then the circumscriptive inference problem for B-formulas parameter-
ized by K is not in XPyy.

Proof 1. Assume that NP # P holds and denote with CIRCINF(B) the circumscriptive
inference problem for B-formulas. In [36, Lemma 5.3.5] a reduction from 3TAUT
to CIRCINF(B) is shown proving its coNP-hardness. Hence, if (CIRCINF(B), k) €
XPyy holds then (CIRCINF, k), € P for every £ € N by definition of XP,,. Through
£ < ¢ we get CIRCINF € P contradicting the assumption.

2. In [36, Lemma 5.3.6] a similar reduction was shown using only {V}-formulas
for instances of CIRCINF(B) and a form as required in the theorem. We proceed
analogously as in (1.). O

Observe that a possible non-trivial parameterization function as in the sense of
Theorem 12(2.) is the length of formulas in I" (which is fixed as only disjunctions of
two variables are allowed). Also note that (/.) holds for basic Circumscription as well
whereas (2.) does not.

Theorem 13 Let B be a finite set of Boolean functions such that <> € [B]. Further
let k be a parameterization function such that k ((F, 0, (X,0, @))) <c IfeL #L
then the circumscriptive inference problem for B-formulas parameterized by « is not
in XLyy.

Proof Let B a set of Boolean functions such that <> € [B]. A reduction from the
@L-complete propositional inference problem of 1-reproducing affine formulas to
circumscriptive inference of B-formulas has been stated in [36, Lemma 5.3.8]. Again,
the existence of an algorithm settling circumscriptive inference of B-formulas in XLy,
would imply solving propositional inference problem of 1-reproducing affine formulas
in logarithmic space. This contradicts the assumption @L # L. O

This theorem also holds for basic Circumscription as we have Q = Z = ¢} in the
condition of the result.

8 Logic-based abduction

Generally the problem has several similarities with Circumscription but also some
differences. At first the problem is defined over usual implication and does not consider
an ordering or even partition of the variables. One works with a knowledge base I,
a set of variables A and a formula ¢ which contains only variables from "\ A. Now
the question is whether there exists a set of literals E over variables from A such
that E agrees with I, i.e., is satisfiable simultaneously with I", and the conjunction
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of both implies ¢. Hence one goes from an observation I” to a hypothesis A which
needs an explanation E. The problem of interest is the abduction problem ABD(B),
given a set I’ C Z(B), aset A C Vars(I") of variables, and a B-formula ¢ with
Vars(¢p) C Vars(1')\ A, to decide if there exist a set E C Lits(A) such that I" A E is
satisfiable and I" A E = ¢ holds.

One also says that E is an explanation or solution of the Abduction problem,
where A is the set of hypotheses and ¢ is called the manifestation or query. Every
explanation can be extended to the full one, i.e., Vars(E) = A. Let us start with a
motivating example of the problem.

Example 4 This time let I" be defined as follows I = {y1, y»}, where
Y= @1 AX2 AXg) D—(x3 = x), and  y2 = —=((x1 V x3) = (x] D x2)).

Table 3 shows an overview of the assignments. So we get four satisfiable
assignments for I', M1 = {x3}, M> = {x3,x4}, M3 = {x1,x2,x4} and My =
{x1, x2, x3, x4}. The set of hypotheses A is given as A = {x3, x4}. The input for-
mula ¢ with Vars(¢) C Vars(I")\A is ¢ = x1 V x3. So the valid sets E C Lits(A)
are E1 = {—x3} and Ey = {—x3, x4}, which can be seen in Table 3(b). Observe that
although I A (—x3 A —x4) = @ is true, E is not a valid solution as I" A (—x3 A —x4)
is unsatisfiable.

Further Creignou et al. [10] consider restrictions on the manifestations of this prob-
lem. They write
— ABD(B, Q) if ¢ is a single literal,
— ABD(B, C) if ¢ is a clause (disjunction of literals),
— ABD(B, T) if ¢ is a term (conjunction of literals), and

Table 3 (a) Assignment table for Example 4, and (b) Overview of all relevant sets E

Model x; x x3 x4 N L @
0O 0 0 0 0 0 0
0 0 0 1 0 0 0
M 0 0 1 0 1 1 0
M, o 0 1 1 1 1 0 E T AE = ¢?
o I 0 0 0 0 I
o 1 0 1 0 0 1 {x3} M ¢
o 1 1 0 1 0 1 {x:} v
o 1 1 1 1 0 1 {xa} M ¢
I 0 0 0 0 0 1 {7} My ¢
1 0 0 1 0 0 1 {x3,x4} M ¢
1 0o 1 0 0 0 1 {13,343} M ¢
10 1 1 0 0 1 135,34} v
1 1 0 0 0 | I {¥3,X2} I AE unsatisfiable
M 1 1 0 1 1 1 1
1 1 1 0 0 1 1
My 11 1 1 1 1 1
(a) (b)
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— ABD(B, Z(B)) if ¢ is a B-formula.

From a computational complexity point of view the unrestricted version has been
classified by Eiter and Gottlob [12] as Eg -complete whereas a complete classification
of its fragments by the aforementioned restrictions on the manifestation as well as the
allowed Boolean connectives has been achieved by Creignou et al. [10]. They obtained
arather fine grained tractability frontier ranging through the classes L, &L, P, NP, and
IS

2For our approach the different manifestation versions are only relevant at obtaining
lower bounds. The MSO-formulas expressing the problem do not differ between, e.g.,
a single literal as manifestation or a term.

Again, we will consider an extension of the vocabulary tp which contains the
necessary predicates to talk about Abduction: T3 apg = B, U {lit 2, pos-lit }4},
where lit4 (x) holds iff x represents a literal from Lits(A), and pos-lit4 (x) holds iff
X represents a positive literal from Lits(A). The structure %71 4 , of the vocabulary
TB.abd has in its universe formulas and subformulas of I" U{¢} and a set A of variables.

Lemma 7 Let B be set of Boolean functions. Then there exists an MSO-formula 0,pq
over T qabd such that for any set of formulas I' € £ (B) over connectives in B, any
set A C Vars(I') of variables, and every B-formula ¢ with Vars(p) C Vars(I")\ A the
following holds: there exists E C Lits(A) s.t. I’ A E is satisfiable and I' N E = ¢ iff
A A9 = Oaba.

Proof In the following we will use formulas from the proof of Lemma 5. In particular,
the formulas 8y, - (M) and 0y4,, (M) will be used to construct the formula 64
At first we define a formula 04 P Ag (E, M) which holds iff M |=1" A E:

esat,l"/\E(E’ M) = Qsat,F(M) AN Vy(E()’) - (POS‘litA()’) <~ M(y)))

Observe that solely the formula does not ensure that E is a set of representatives of
literals from Lits(A). However in the following formula we ensure that only sets E
with this property are used.

Finally we will utilize this formula to express Abduction as follows

Ouba = JEVx (E(x) — lita(¥) A (IM Ogar, P aE(E, M)

VM Ot i (B, M) = By ).

The formula existentially quantifies the explanation E and forces valid ones (which
are only over literals from Lits(A)) to require a satisfying model for E A I" as well as
that E A I — ¢ holds for all assignments. O

Again the application of Courcelle’s theorem allows us to conclude with the fol-
lowing result.

Theorem 14 Let B be a finite set of Boolean functions, k € N be fixed, I' be a
set of B-formulas, A C Vars(I") be a set of Variables, and ¢ be a B-formula with
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Vars(p) € Vars(I")\A such that </r a., has a treewidth bounded by k. Then the
abduction problem for B-formulas is solvable in time O (f(k) -log(|I"| + |(p|)) and
space O(log(f(k)) -log(|I"| + |¢|)), where f is a recursive function.

Again we take the focus on lower bounds now. Therefore we will consider fragments
of the four mentioned versions of the Abduction problem and show how some of them
deny fixed parameter tractability under reasonable complexity assumptions.

Theorem 15 Let B be a finite set of Boolean functions such that ®(x, y,z) € [B].
Further let k be a parameterization function such that ((F , 0, q)) < ¢ whenever q is
single avariable. If ®L # L then the abduction problem for B-formulas parameterized
by k is not in XLyy.

Proof Creingou et al. [10] show a reduction from the problem to determine whether
a system of linear equations over GF(2) has a solution (which has been proven to be
@L-complete [5]) to ABD(B, Q) where [B] = {®(x, y, z)}. Hence a membership of
the parameterized version of this problem in the sense of the theorem would imply
L = &L if the problem is situated in XLpy,. O

Here any parameterization function which is defined in some respect to the set of
hypotheses obeys the claim of the theorem. Further parameterizations which interfere
with the manifestation are also possible candidates for the required functions.

Theorem 16 Let B be a finite set of Boolean functions such that either

1. A,V € [B] and k is a parameterization function for which there exists a c € N
such that k ((F, A, q)) < ¢ whenever q is a single variable, or

2. V € [B] and « is a parameterization function for which there exists a ¢ € N such
that K((F, A, t)) < ¢ whenever t is a term.

If NP # P then the abductive inference problem for B-formulas parameterized by k
is not in XPyy.

Proof 1. From [10, Prop. 7] we know that ABD(B, Q) is NP-complete for clones
[B] > A, V.

2. In [10, Prop. 10] NP-completeness of ABD(B, T) is shown for clones [B] > V.
Whence in both cases a membership in XP,, for such parameterized problems

would imply P = NP. O

Unfortunately, for the previous theorem the constructed formulas in the investigated
proofs will not immediately yield to parameterization functions as described after
Theorem 15 or Theorem 12 as the inputs are not restricted in any way.

9 Conclusion
In this paper we applied Courcelle’s Theorem [8] and the logspace version of Elberfeld

et al. [13] to the most prominent decision problems in the non-montonic abduction,
autoepistemic logic, circumscription, and default logic. Thereby we showed that the
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Table 4 Overview of established lower bounds

Fragment Instance x Not in* References
ExT([{—, T}D @, D) XPou Theorem 3
Ext([{-L}D (W, D) XLy Theorem 4
Exp([{Vv, T, L}]) (%) XPou Theorem 6
Exp([{®, T}D (%) XLpy Theorem 7
IMP([{x @y Dz} (F,G) XLpu Theorem 8
IMP([{V, A}D) (F,G) XPou Theorem 9
CIRCINE([{V, A}]) (T, ¢, (P,0,0) XPhu Theorem 12(1)
CIRCINF([{V}]) (I, z, (P, Q,{z})) XPau Theorem 12(2)
CIRCINF([{<>}]) (I, 9, (X,0,0)) XLy Theorem 13
ABD([{®(x, y, 2)}], Q) I, 9, q) XLnu Theorem 15
ABD([{V, A}], Q) (I', A, q) XPau Theorem 16(1)
ABD([{V}], T) (I',A,t) XPou Theorem 16(2)

W is a set of formulas, D is a set of default rules, X is a set of autoepistemic formulas, F is a set of monotone
2-CNF formulas, G a set of DNF formulas, z, g are single variables, and ¢ is a term

f parameterization function k (x) < ¢ for some ¢ € N,

* unless P = NP (case not in XPyy), resp., unless @L = L (case not in XLpy).

extension existence problem for a given default theory (W, D) is solvable in time
O(f(k)-|(W, D)|) and space O(f (k) -log|(W, D)|),i.e., FPT time and XL space, if
the treewidth of the corresponding MSO structure is bounded by k; similarly for the
expansion existence problem for a set of autoepistemic formulas, and as well for the
implication problem for sets of formulas F', G. Analogue results have been obtained
for reasoning in circumscription and abduction.

Further we mention that one can achieve similar results for the credulous (resp.
brave) and skeptical (resp. cautious) reasoning problems of the non-montonic logics
from above by slight extensions of the constructed MSO-formulas. We want to men-
tion that obvious modifications of our formulas lead to general results for answer set
programming as well.

Furthermore we consider with pseudo-cliques a weaker notion of cliques in the
sense of edge contractions and topological minors.

If we investigate default theories (W, D) which contain an empty knowledge base
W and only defaults which are composed of propositions or the constant _L only, then
for constant parameterizations we show collapses of P and NP (resp. L and NL) if
the corresponding parameterized problem is in XP,, (resp. XLyy). Thus through the
concept of pseudo-cliques we construct a family of default theories whose treewidth
of its MSO-structures is unbounded. Therefore this parameter cannot be used to prove
such complexity class collapses. Analogue claims can be made for the expansion
existence problem in autoepistemic logic and the implication problem for sets of
formulas. Next we have seen that for a wide range of parameterization functions whose
value is bounded by some constant ¢ € N there are quite restrictive fragments (e.g.,
for basic Circumscription it suffices that A and Vv are present) which are not contained
in the large parameterized class XP,, unless coNP = NP holds. Also we proved that if
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@®L # Lholds basic Circumscription for propositional formulas allowing the existence
of the biimplication <> prohibits XL, algorithms for similar parameterizations as
before.

Most interestingly for the Abduction fragment around ternary exclusive-or
@(x, y, z) with any parameterization function defined around the hypotheses pro-
hibits the existence of an XLy, algorithm unless L = @L.

For subsequent research it would be very interesting to find a parameterization
that is non-trivial in the sense of Theorem 3 but uses many different values. For
Theorem 12(2) we only observed a rather restrictive function asking for the size of
formulas in I", having in mind that only disjunctions of variables are allowed in the
investigated fragment. Also insights on new types of parameterizations, in particular
in the context of the new space parameterized complexity classes, would be very
engaging.

Acknowledgments For helpful hints and discussions we are grateful to Nadia Creignou (Marseille) and
Thomas Schneider (Bremen). We also thank the anonymous referees for helpful comments.

References

1. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of propositional implication. Inf.
Process. Lett. 109(18), 1071-1077 (2009). doi:10.1016/j.ipl.2009.06.015

2. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of
default logic. J. Logic Comput. 22(3), 587-604 (2012). doi:10.1093/logcom/exq061

3. Bodlaender, H.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1-
45 (1998)

4. Brewka, G., Niemeld, I., Truszczynski, M.: Nonmonotonic Reasoning. Elsevier, Amsterdam (2008)

5. Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace mod-
classes. Math. Syst. Theory 25, 223-237 (1992)

6. Cadoli, M., Lenzerini, M.: The complexity of closed world reasoning and circumscription. In: Pro-
ceedings of 8th National Conference on Artificial Intelligence, pp. 550-555. AAAI Press (1990)

7. Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in parameterized complexity
theory. In: Proceedings of the 18th IEEE Annual Conference on Computational Complexity (CCC
2003), pp. 13-29 (2003). doi:10.1109/CCC.2003.1214407

8. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, A Language Theoretic
Approach. Cambridge University Press, Cambridge (2012)

9. Creignou, N., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of
autoepistemic logic. ACM Trans. Comput. Logic 13(2) (2010)

10. Creignou, N., Schmidt, J., Thomas, M.: Complexity of propositional abduction for restricted sets of
boolean functions. In: Proceedings of 12th International Conference on the Principles of Knowledge
Representation and Reasoning. AAAI Press (2010)

11. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are I'IZP -
complete. Theor. Comput. Sci. 114(2), 231-245 (1993)

12. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. JACM 42(1), 3-42 (1995)

13. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Cour-
celle. In: Proceedings of 51th Annual IEEE Symposium on Foundations of Computer Science. IEEE
Computer Society (2010)

14. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space complexity of parameterized problems.
In: Parameterized and Exact Computation, pp. 206-217. Springer, Berlin (2012)

15. Fellows, M. R., Pfandler, A., Rosamond, F. A., Riimmele, S.: The parameterized complexity of abduc-
tion. In: Proceedings of 26th AAAI Conference on Artificial Intelligence (2012)

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

@ Springer


http://dx.doi.org/10.1016/j.ipl.2009.06.015
http://dx.doi.org/10.1093/logcom/exq061
http://dx.doi.org/10.1109/CCC.2003.1214407

710

A. Meier et al.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.
32.
33.
34.
35.
36.

37.
38.

Gelfond, M., Przymusinska, H., Przymusinski, T.C.: On the relationship between circumscription and
negation as failure. Artif. Intell. 38(1), 75-94 (1989)

Gottlob, G.: Complexity results for nonmonotonic logics. J. Logic Comput. 2(3), 397-425 (1992)
Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation
and reasoning. Artif. Intell. 174(1), 105-132 (2010)

Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in ai and nonmonotonic reason-
ing. Artif. Intell. 138(1), 55-86 (2002)

Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction
and database problems. Comput. J. 51(3), 303-325 (2008)

Jakl, M., Pichler, R., Woltran, S.: Answer-Set Programming with Bounded Treewidth. In: Proceedings
of 21st IICAI, pp. 816-822 (2009)

Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability problems. Inf. Comput.
187(1), 20-39 (2003)

Lifschitz, V.: Computing circumscription. In: Proceedings of 9th International Joint Conference on
Artificial Intelligence, pp. 121-127. Morgan Kaufman (1985)

Marek, V., Truszczynski, M.: Nonmonotonic Logic: Context-Dependent Reasoning. Springer,
Berlin (1993)

Marek, V., Truszczynski, M.: Stable models and an alternative logic programming paradigm. In: The
Logic Programming Paradigm—A 25-Year Perspective, pp. 375-398 (1999)

McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artif. Intell. 13(1-2), 27-39
(1980)

Moore, R.C.: Semantical considerations on modal logic. Artif. Intell. 25, 75-94 (1985)

Niemeld, I.: Towards automatic autoepistemic reasoning. In: Proceedings of 2nd European Workshop
on Logics in Artificial Intelligence, LNCS, vol. 478, pp. 428-443. Springer, Berlin (1990)

Niemeld, I.: Logic programming with stable model semantics as a constraint programming para-
digm. Ann. Math. Artif. Intell. 25(3—4), 241-273 (1999)

Nordh, G.: A trichotomy in the complexity of propositional circumscription. In: Proceedings of 11th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, pp. 257—
269. Springer, Berlin (2004)

Peirce, C.S.: Philosophical Writings of Peirce. Courier Dover Publications, New York (1955)

Peirce, C.S., Hartshorne, C., Weiss, P.: The Collected Papers of Charles Sanders Peirce. Cambridge
Press, Cambridge (1932)

Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1-122 (1941)
Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81-132 (1980)

Thomas, M.: On the complexity of fragments of nonmonotonic logics. Ph.D. thesis, Leibniz Universitit
Hannover (2010)

Thomas, M., Vollmer, H.: Complexity of non-monotonic logic. Bull. EATCS 102, 53-82 (2010)
Zaho, X., Ding, D.: Fixed-parameter tractability of disjunction-free default reasoning. JCST 18(1),
118-124 (2003)

@ Springer



	On the parameterized complexity of non-monotonic logics
	Abstract
	1 Introduction
	2 Preliminaries
	3 MSO-Encodings
	4 Default logic
	5 Autoepistemic logic
	6 Pseudo-Cliques
	7 Circumscription
	7.1 Basic propositional circumscription
	7.2 General propositional circumscription

	8 Logic-based abduction
	9 Conclusion
	Acknowledgments
	References




