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Abstract Under the continuum hypothesis we prove that for any tall P-ideal I on
ω and for any ordinal γ ≤ ω1 there is an I-ultrafilter in the sense of Baumgartner,
which belongs to the class Pγ of the P-hierarchy of ultrafilters. Since the class of P2
ultrafilters coincides with the class of P-points, our result generalizes the theorem of
Flašková, which states that there are I-ultrafilters which are not P-points.

Keywords I-ultrafilters · P-hierarchy · CH · P-points · Monotonic sequential
contour
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1 Introduction

Baumgartner in the article Ultrafilters on ω [1] introduced the notion of I-ultrafilters:
Let I be an ideal on ω. An ultrafilter u on ω is an I-ultrafilter, if and only if, for

every function f ∈ ωω, there is a set U ∈ u such that f [U ] ∈ I.
Ultrafilters of this kind have been the subject of research of a large group of mathe-

maticians. Let us mention some of the most important papers in this subject from our
point of view: Błaszczyk [2], Brendle [3], Laflamme [18], Shelah [19,20]. The theory
of I-ultrafilters on ω was developed by Flašková [8–11] in a series of articles, as well
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as in her Ph.D. thesis [12]. Flašková [12] proved, under the continuum hypothesis
(CH), that for every tall P-ideal I that contains all singletons, there is an I-ultrafilter
that is not a P-point. Later she succeeded in replaceing the assumption of the CH by
p = c [8].

The main subject of this article is the P-hierarchy of ultrafilters on ω. The P-
hierarchy can be viewed as one of the ways to classify ultrafilters with respect to their
complicity. It is composed of ω1 disjoint Pα classes, where P-points correspond to
class P2 as was proven by Starosolski in [23] Proposition 2.1:

Proposition 1.1 An ultrafilter u is a P-point if and only if u belongs to class P2 in the
P-hierarchy.

Many important facts about the P-hierarchy are given in [23]. Additional informa-
tion regarding sequential cascades and contours can be found in [5–7,21]. However,
the most crucial definitions and conventions are presented here. Since P-points corre-
spond to P2 ultrafilters in the P-hierarchy of ultrafilters the question arises: to which
classes of the P-hierarchy can I-ultrafilters belong? In this paper we shall show that
it can be any class Pα . Let us introduce all the necessary definitions and tools.

The set of natural numbers (finite ordinal numbers) will be denoted byω. The filters
considered in this paper will be defined on a countable and infinite set (except for one
case indicated later). This will usually be the set max V of maximal elements of a
cascade V (see the definition of cascades below) and we will often identify it with ω

without indication. The following conventions will be of constant use:

Conventions If F is a filter on A and A ⊂ B, then we identify F with the filter on B,
for which F is a filter base. In particular, we identify the principal ultrafilter on {v}
with the principal ultrafilter generated on ω by v. If F is a filter base, then by 〈F〉 we
denote the filter generated by F .

A cascade is a tree V without infinite branches and with the least element ∅V . A
cascade is sequential if, for each non-maximal element of V (v ∈ V \max V ), the
set v+V of immediate successors of v (in V ) is countable and infinite. We write v+
instead of v+V if it is known in which cascade the successors of v are considered. If
v ∈ V \max V , then v+ may be endowed with an order of type ω, and then by (vn)n∈ω

we denote the sequence of elements of v+.
The rank of v ∈ V , which will be denoted by rV (v) or simply by r(v), is defined

inductively as follows: if v ∈ max V , then r(v) = 0; otherwise r(v) is the least ordinal
greater than the ranks of all immediate successors of v. The rank r(V ) of the cascade
V is, by definition, the rank of ∅V . If for v ∈ V \max V the set v+ can be ordered
in type ω so that the sequence (r(vn)n<ω) is non-decreasing, then the cascade V is
monotonic and we fix such orders for V without indication.

For v ∈ V we denote by v↑V the subcascade of V consisting of v and all elements
greater than v. Wewrite v↑ instead of v↑V if it is clear in which cascade the subcascade
is included.

One may assume that the sequential cascade V is a family of subsets of an infinite
and countable set ω and the order of V is the reverse inclusion. Indeed, cascade V is
isomorphic to cascade V̄ such that:
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• ∅V̄ = ω;
• for every v̄ ∈ V̄ , v̄ is the disjoint union of the elements of v̄+:

− v̄ = ⋃{w̄ : w̄ ∈ v̄+},
− for every w, u ∈ v+, w̄ ∩ ū = ∅,

• v̄ is a singleton, for every v̄ ∈ max V̄ .

If one identifies max V with ω, then the map ¯ : V → V̄ given by the formula
v̄ = max v↑ is such an isomorphism.

If F = {Fs : s ∈ S} is a family of filters on X and if G is a filter on S, then the
contour of {Fs} along G is defined by

∫

G
F =

∫

G
{Fs : s ∈ S} =

⋃

G∈G

⋂

s∈G
Fs .

This construction has been used by many authors ([13–15]), and is also known as
a sum and limit of filters. We apply the operation of contour along filter to define
the contour of a cascade: Fix a cascade V . Let G(v) be a filter on v+, for every
v ∈ V \max V . For v ∈ max V , let G(v) be a trivial ultrafilter on the singleton {v},
which we can treat as a principal ultrafilter on max V , according to the convention we
assumed. In this way we obtain the function v �−→ G(v). We define the contour of
every subcascade v↑ inductively with respect to the rank of v:

∫ G
v↑ = {{v}},

for v ∈ max V (i.e.
∫ G

v↑ is just a trivial ultrafilter on the singleton {v});
∫ G

v↑ =
∫

G(v)

{∫ G
w↑ : w ∈ v+

}

for v ∈ V \max v. Eventually

∫ G
V =

∫ G
(∅V )↑.

Usually we shall assume that all the filters G(v) are Fréchet filters (for v ∈ V \max V ).
In this case, we shall write

∫
V instead of

∫ G V .
Filters defined in a similar way were also considered in [4,16,17].
Let V be a monotonic sequential cascade and let u = ∫

V . Then the rank r(u) of
u is, by definition, the rank of V .

It was shown in [7] that, if
∫
V = ∫

W , then r(V ) = r(W ).
We shall say that the set F meshes the contour V (F#V) if and only if V ∪ {F} has

the finite intersection property, i.e., can be extended to a filter. If ω\F ∈ V , then we
say that F is small with respect to V .

For a countable ordinal number α ≥ 1 we define the class Pα of the P-hierarchy
(see [23]) as follows: u ∈ Pα iff
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1. there is no monotonic sequential contour Cα of rank α such that Cα ⊂ u, and
2. for each β < α, β �= 0, there exists a monotonic sequential contour Cβ of rank β

such that Cβ ⊂ u.

If for each α < ω1 there exists a monotonic sequential contour Cα of rank α such that
Cα ⊂ u, then we say that u belongs to the class Pω1 .

Let us consider a monotonic cascade V and a monotonic sequential cascadeW . We
will say that W is a sequential extension of V if:

1. V is a subcascade of the cascade W ,
2. if v+V is infinite, then v+V = v+W ,
3. rV (v) = rW (v) for each v ∈ V .

It is clear that sequential extensions are not uniquely defined.
Note that, if W is a sequential extension of V and U ⊂ max V , then U is small for

V if and only if U is small for W .
It cannot be proven in ZFC that all classesPα are nonempty. The following theorem

is Theorem 2.8 of [23].

Theorem 1.2 The following statements are equivalent:

1. P-points exist,
2. Pα classes are non-empty for all countable successor α,
3. There exists a countable successor α > 1 such that the class Pα is non-empty.

Starosolski showed in [25] Theorem 6.7 that:

Theorem 1.3 Assuming CH every class Pα is non-empty

Themain theorempresented in this paper canbeviewed as an extensionofStarosolski’s
result.

Let us consider another technical notion which can be called a “restriction of a cas-
cade”. Let V be a monotonic sequential cascade and let H be a set such that H#

∫
V .

By V ↓H we denote the biggest monotonic sequential cascade such that V ↓H ⊂ V and
max V ↓H ⊂ H . It is easy to see that H ∈ ∫ V ↓H .

2 Lemmata

The following lemmata will be used in the proof of the main theorem.
The first lemma is given in [24] (see: Lemma 6.3):

Lemma 2.1 Let α < ω1 be a limit ordinal and let (Vn : n < ω) be a sequence
of monotonic sequential contours such that r(Vn) < r(Vn+1) < α for every n, and⋃

n<ω Vn has the finite intersection property. Then there is no monotonic sequential
contour W of rank α such that W ⊂ 〈⋃n<ω Vn〉.
As a corollary we get:

Lemma 2.2 Let α < ω1 be a limit ordinal, let (Vn)n<ω be an increasing (in the sense
of inclusion) sequence of monotonic sequential contours, such that r(Vn) < α and
let F be a countable family of sets such that

⋃
n<ω Vn ∪ F has the finite intersection

property. Then 〈⋃n<ω Vn ∪ F〉 does not contain a monotonic sequential contour of
rank α.
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Proof If F is finite then set

Wn =
{
U ∩

⋂
F : U ∈ Vn

}
.

It is easy to see that Wn is a monotonic sequential contour of the same rank as Vn .
Consider the sequence (Wn : n < ω). By Lemma 2.1 the union

⋃
n<ω Wn does not

contain a contour of rank α.
If F is infinite then we enumerate elements of F by natural numbers obtaining a

sequence (Fn)n<ω. Next, set

Wn =
⎧
⎨

⎩
U ∩

⋂

i≤n

Fi : U ∈ Vn

⎫
⎬

⎭
.

Consider the sequence (Wn : n < ω) and use Lemma 2.1 to show that the union
(Wn : n < ω) does not contain a contour of rank α.

The following lemma is a straightforward extension of the claim contained in the
proof of Theorem 3.2 [8]. We leave a proof to the reader.

Lemma 2.3 Let I be a tall P-ideal that contains all singletons, let {Un : n < ω}
be a pairwise disjoint sequence of subsets of ω, let {un : n < ω} be a sequence of
I-ultrafilters such that Un ∈ un, and let v be an I-ultrafilter. Then ∫

v
{un : n < ω} is

an I-ultrafilter.
As an immediate consequence we get

Lemma 2.4 If V is a monotonic sequential cascade, G(v) is a P-point and an I-
ultrafilter for each v ∈ V \max V and G(v) is a trivial ultrafilter on a singleton {v}
for v ∈ max V , then

∫ G V is an I-ultrafilter.
Lemmata similar to the one above can be formulated for certain classes of the P-
hierarchy instead of I-ultrafilters, see [23] Theorem 2.5:

Theorem 2.5 Let γ be an ordinal. Let V be a monotonic sequential cascade of rank
γ , let G(v) be a principal ultrafilter on {v} for v ∈ max V , and let G(v) be a P-point
on v+ for v ∈ V \max V . Then

∫ G V ∈ Pγ+1.

Let W be a cascade, and let {Vw : w ∈ maxW } be a set of pairwise disjoint
cascades such that Vw ∩W = ∅ for eachw ∈ maxW . The confluence of cascades Vw

with respect to the cascadeW (we writeW � Vw) is defined as a cascade constructed
by the identification of w ∈ maxW with ∅Vw and according to the following rules:
(1) ∅W = ∅W�Vw ; (2) if w ∈ W\maxW , then w+W�Vw = w+W ; (3) if w ∈ Vw0 ,
for a certain w0 ∈ maxW , then w+W�Vw = w+Vw0 ; (4) in each case we also assume
that the order on the set of successors remains unchanged. By (n) � V n we denote
W � Vw where W is a sequential cascade of rank 1.

At the end of this section we shall make a remark concerning bases of countours.

Remark 2.6 Each filter base of the contour of any cascade of rank 2 is uncountable.

Proof Let V be a cascade of rank 2. We may assume that V is obtained by the
confluence of cascades Vn of rank 1 i.e. V = (n) � Vn . Assume that

∫
V has a
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countable base. Thus there is a set A such that A\F is finite for every F ∈ ∫ V . It is
evident that A meshes

∫
V . There are two cases:

Case I: there is n < ω such that A ∩ max Vn is infinite. This cannot happen: it is
sufficient to take F = max V \Vn and observe that F ∈ ∫ V but A\F is not finite.

Case II: for each n < ω the intersection A∩max Vn is finite. This also cannot happen:
it is sufficient to take F = ⋃

n<ω max Vn\A and observe that F ∈ ∫ V (because we
remove only finite many elements from each Vm) but A is disjoint with F .

In both cases we get a contradiction.

In fact one can prove a stronger result than the above: bases of contours of cascades
of rank greater than 1 must have the cardinality greater or equal to the dominating
number d.

3 Main result

In this section we shall present the main result of the paper.

Theorem 3.1 Assume thatCHholds. LetI be a tall P-ideal that contains all singletons
and let γ ≤ ω1 be an ordinal. Then there exists an I-ultrafilter u which belongs to
Pγ .

Proof We shall split the proof into five steps: γ = 1, γ = 2, γ > 2 is a countable
successor ordinal, γ < ω1 is a limit ordinal, and γ = ω1.

Step 0: γ = 1. This is clear, since an image of singleton (P1 is a class of principal
ultrafilters) is a singleton, and thus belongs to I.
Step 1: γ = 2.

Since CH is assumed, we can fix enumerations of length ω1, of contours of rank 2
and of functions ω → ω, say (Wα)α<ω1 , ( fα)α<ω1 respectively. Applying transfinite
induction we build countably generated filtersFα together with their decreasing bases
(Fn

α )n<ω, such that:

(W1) F0 is a Fréchet filter;
(W2) for each α < ω1, (Fn

α )n<ω is a strictly decreasing base of Fα;
(W3) Fα ⊂ Fβ , for α < β;
(W4) Fα = ⋃

β<α Fβ , if α is a limit ordinal;
(W5) for each α < ω1 there is F ∈ Fα+1 such that fα[F] ∈ I;
(W6) for each α < ω1 there is F ∈ Fα+1 such that Fc ∈ Wα .

Assume that Fα is already defined; we shall show how to build Fα+1. Since Fn
α is

strictly decreasing, one can pick any xn ∈ Fn
α \Fn+1

α for every n < ω. Set T = {xn :
n < ω}. The are two possibilities:

If fα[T ] is finite, then set Gα = T .
If fα[T ] is infinite, then sinceI is tall, there is an infinite I ∈ I such that I ⊂ fα[T ].

In this case set Gα = f −1
α [I ].

Note that {Fn
α : n < ω}∪{Gα} has the finite intersection property and is countable.

Subbases of any sequential contour of rank 2 have to be uncountable. Thus none of
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them is contained in {Fn
α : n < ω} ∪ {Gα}. This means that there is a set Aα such that

its complement belongs toWα and the family {Fn
α : n < ω} ∪ {Gα, Aα} has the finite

intersection property. We can order {Fn
α : n < ω} ∪ {Gα, Aα} to obtain a sequence

(F̃n
α+1 : n < ω). Set Fn

α+1 = ⋂
m≤n F̃

m
α+1 to get a decreasing sequence and let

Fα+1 = 〈{Fn
α+1 : n < ω}〉 .

Take an ultrafilter u that extends
⋃

α<ω1
Fα . By (W5) u is an I-ultrafilter and by (W6)

u does not contain a monotonic sequential contour of rank 2. Since by (W1) u contains
a Fréchet filter u cannot be a principal ultrafilter. Thus u is a P-point. Note that in this
step we did not use the assumption that I is a P-ideal.

Step 2: γ > 2 is a countable successor ordinal.
Let V be an arbitrary monotonic sequential cascade of rank γ − 1. Let V � v �−→

G(v) be a function such that:

1. G(v) is a P-point and is an I-ultrafilter, for each v ∈ V \max V (such ultrafilters
exist by step 1);

2. G(v) is a trivial ultrafilter on the singleton {v}, for v ∈ max V .

Theorem 2.5 guarantees that
∫ G V ∈ Pγ , whilst Lemma 2.4 guarantees that

∫ G V is
an I-ultrafilter.
Step 3: γ < ω1 is a limit ordinal. The proof is based on the same idea as in step 1 but
it is more complicated.

Let (Vn)n<ω be an increasing sequence of monotonic sequential contours such that
their ranks r(Vn) are smaller than γ and converging to γ . For each n < ω, denote by Vn
a (fixed) monotonic sequential cascade such that

∫
Vn = Vn . Let {Wα : α < ω1} be an

enumeration of all monotonic sequential contours of rank γ . Letωω = { fα : α < ω1}.
By transfinite induction we build filters Fα together with their decreasing bases

(Fn
α )n<ω such that conditions (W1)-(W6) hold together with the additional condition

(W7) i.e.

(W7)
⋃

i<ω Vi ∪⋃α<ω1
Fα has the finite intersection property.

Assume that Fα is already defined; we shall show how to build Fα+1. This will
be done in five substeps. Firstly, for each Vn and for each Fi

α we shall find Hn,i such
that Vn ∪ {Fi

α, Hn,i } has the finite intersection property and fα[Hn,i ] ∈ I. Next, we
will replace all the sets Hn,i by one set Hn such that Vn ∪ Fα ∪ {Hn} has the finite
intersection property and fα[Hn] ∈ I. In the third step we shall replace all the sets Hn

by one set Gα such that
⋃

n<ω Vn ∪Fα ∪{Gα} has the finite intersection property and
fα[Gα] ∈ I. The set Gα will take care of all the contours Vn . Adding it as a generator
to Fα+1 will guarantee that the conditions (W5) and (W7) will hold true. The fourth
step will deal with the condition (W6) by adding a set Aα to the list of generators of
Fα+1. Finaly we will define a decreasing base of a filter Fα+1 and a filter itself.

Substep (i) Fix n and i . Let us introduce an auxiliary definition.

Definition Fix amonotonic sequential cascade V , a set F that meshes V and a function
f ∈ ωω. For each v ∈ V , we write U ∈ S(v) if
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1. U ⊂ max v↑;
2. (U ∩ F)#

∫
v↑;

3. card ( f [U ∩ F]) = 1.

The following claim is crucial in our argument:

Proposition 3.2 One of the following conditions holds:

(A) S(∅V ) �= ∅;
(B) there is an antichain (with respect to the order of the cascade)A ⊂ V such that:

1. S(v) = ∅, for all v ∈ A,
2.

(⋃{maxw↑ : w ∈ v+,S(w) �= ∅}) # ∫ v↑, for all v ∈ A,
3.

(⋃{max v↑ : v ∈ A}) # ∫ V .

Proof (of the proposition) Firstly note that in the definition of S condition card ( f [U∩
F]) = 1 can by replaced by card ( f [U ∩ F]) < ℵ0, and that this change has no
influence on non-emptiness of S(v).

The proof is by induction on the rank of cascade V .

First step r(V ) = 1. If case A holds, then we are done. Thus without loss of generality
we may assume that the image f (U ∩ F) is infinite, for each U ∩ F ∈ max V , such
that U#

∫
V . However, since r(V ) = 1, card ( f (maxw ∩ F)) ≤ 1, for each w ∈ ∅+

V .
Moreover, since F#

∫
V ,

(⋃{
(maxw ∩ F) : w ∈ v+, card ( f (maxw ∩ F)) = 1

})
#
∫

V .

We set A = {∅V } and see that case (B) holds.

Inductive step: Assume that the proposition holds for each β < α. Let V be a
monotonic sequential cascade of rank r(V ) = α. Again, if case A holds, then we
are done; thus without loss of generality we assume that the image f (U ∩ F) is in-
finite for each U ∩ F ⊂ max V such that U#

∫
V . By the inductive assumption, for

each successor w of ∅V , either case A holds for cascade w↑, or case B holds for the
cascade w↑.

Split the set ∅+
V of immediate successors of ∅V into two subsets:

V A = {w ∈ ∅V : case A holds} , V B = {w ∈ ∅V : case B holds} .

Since F#
∫
V , there are two possibilities:

⎛

⎝
⋃

w∈V A

(maxw↑ ∩ F)

⎞

⎠ #
∫

V or

⎛

⎝
⋃

w∈V B

(maxw↑ ∩ F)

⎞

⎠ #
∫

V .

In the first case, A = {∅V } is what we are looking for.
In the second case, for each w ∈ V B , there is an antichain Aw in w↑ as in case (B).

Set A = ⋃
w∈V B Aw. This completes the proof of the proposition.
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We can go back to the main proof.
We apply the proposition to cascade Vn , set Fi

α and function fα . If case (A) holds,
then we take any U ∈ S(∅Vn ) and set Hn,i = U .

If case (B) holds, then for each v ∈ A and each w ∈ v+, such that S(w) �= ∅, we
fix some Uw ∈ S(w); for the remaining w ∈ v+ let Uw = ∅. For v ∈ A, consider
Tv = ⋃

w∈v+ Uw, and note that fα[Tv] is infinite. Since I is tall, there is an infinite
Iv ∈ I such that Iv ⊂ fα[Tv]. Since I is a P-ideal, there is infinite In,i ∈ I such that
for all v ∈ A the difference Iv\In,i is finite. Set Hn,i = f −1[In,i ].
Substep (ii) Now we will show how to replace sets Hn,i by one set Hn . Consider two
possibilities:

1. there is an infinite K ⊂ ω such that fα[Hn,i ] is infinite for each i ∈ K ;
2. there is an infinite K ⊂ ω such that fα[Hn,i ] is a singleton for each i ∈ K .

In both cases, since (Fi
α)i<ω is decreasing without loss of generality we may assume

that K = ω.
Assume that the case (1) holds. Since I is an P-ideal, there is an infinite In ∈ I

such that for each i < ω the difference In,i\In is finite. Set Hn = f −1
α [In].

In case (2), we have two sub-cases:
If fα[⋃i<ω Hn,i ] is infinite, then since I is tall, there is an infinite In ∈ I such that

In ⊂ fα[⋃i<ω Hn,i ] and we set Hn = f −1
α [In].

Otherwise fα[⋃i<ω Hn,i ] is finite and there is j ∈ fα[⋃i<ω Hn,i ] such that
f −1
α [{ j}] = Hn,i for infinitely many i . We set Hn = f −1

α [{ j}].
Clearly, in both cases Vn ∪ Fα ∪ {Hn} has the finite intersection property and

fα[Hn] ∈ I.
Substep (iii) In this step we have to find a set Gα which can replace each Hn . We have
shown that, for each n, there is a set Hn such that fα[Hn] ∈ I. In fact, we have got
a little bit more: either fα[Hn] is infinite but it belongs to I or fα[Hn] is a singleton.
We set

S = {n < ω : (∃Rn) : Vn ∪ Fα ∪ {Rn} has the f.i.p. and fα[Rn] is a singleton} .

It could happen that fα[Hn] is infinite, but n ∈ S i.e. that for some Rn �= Hn the image
fα[Rn] is a singleton. In this case we replace Hn by Rn . For n ∈ ω\S we leave Hn

unchanged. Once again the proof splits into two cases: either S is infinite, or it is finite.

S is infinite Without loss of generality, since (Vn)n<ω is increasing, we may assume
that S = ω i.e. fα[Hn] is a singleton for each n < ω.

If fα[⋃n<ω Hn] is finite, then there is j ∈ fα[⋃n<ω Hn] such that fα[Hn] =
{ j}, for infinitely many n. Since Vn is increasing and (Fn

α ) is decreasing, the family⋃
n<ω Vn ∪ Fα ∪ f −1

α [{ j}] has the finite intersection property. Set Gα = f −1
α [{ j}].

If fα[⋃n<ω Hn] is infinite, then, since I is tall, there is an infinite Iα ∈ I such
that Iα ⊂ fα[⋃n<ω Hn]. Since Vn is increasing and (Fn

α ) is decreasing, the family⋃
n<ω Vn ∪ Fα ∪ f −1

α [Iα] has the finite intersection property. Set Gα = f −1
α [Iα].

S is finite: Without loss of generality, since (Vn)n<ω is increasing, we may assume
that S = ∅ i.e. that fα[Hn] is infinite for each n < ω.
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Since I is a P-ideal and fα[Hn] ∈ I, there exists Iα ∈ I such that for each n < ω

the difference fα[Hn]\Iα is finite and there is no Rn such that fα[Rn] is finite and that
{Vn ∪ Fα ∪ {Rn}} has the finite intersection property. Fix n < ω. Since {Vn ∪ Fα ∪
{Hn}} has the finite intersection property and since Hn ⊂ f −1

α [ fα[Hn]\Iα]∪ f −1[Iα]
thus {Vn ∪ Fα ∪ { f −1

α [ fα[Hn]\Iα]}} has the finite intersection property or {Vn ∪
Fα ∪ { f −1[Iα]}} has the finite intersection property. The first case cannot occur since
fα[ f −1

α [ fα[Hn]\Iα]] is finite and thus the second case holds true. Set Gα = f −1
α [Iα].

Substep (iv)Since the familyFα∪{Gα} is countable, byLemma2.2 there exists a set Aα

whichdoes notmesh the contourWα and such that the family
⋃

n<ω Vn∪Fα∪{Gα, Aα}
has the finite intersection property.

Substep (v) We complete the proof as for γ = 2.

Step 4: γ = ω1.
Again, we list ωω = { fα : α < ω1}, as well as all pairs (set and its complement)

in the ω1-sequence of pairs (Aα, ω\Aα)α<ω1 , so that each set appears in the sequence
only once: either as set Aα , or as its complement ω\Aα .

We will build an ω1-sequence (Vα : α < ω1) of monotonic sequential cascades
such that

(Z1)
∫
Vβ ⊂ ∫

Vα , for each β < α < ω1.
(Z2) r(Vα) = α, for every α < ω1;
(Z3) max Vα = ω, for every α < ω1;
(Z4) there exists U ∈ ∫ Vα+1 such that fα[U ] ∈ I;
(Z5) Aα ∈ ∫ Vα+1 or ω\Aα ∈ ∫ Vα+1.

Let V1 be anymonotonic sequential cascade of rank 1. Suppose that we have already
defined cascades Vβ , for all β < α.

Case 1: α = β + 1 is a successor. Let us consider Vβ . By step 3, there is a set

Hα such that Hα#
∫
Vβ and fα[Hα] ∈ I. Consider the cascade V ↓Hα

β . This is a
monotonic sequential cascade of rank β. By the proof of Theorem 4.6 from [7], there is
a monotonic sequential cascade Ṽα of rank α such that

∫
V ↓Hα

β ⊂ ∫
Ṽα . At least one of

the elements of the pair (Aα, ω\Aα)meshes
∫
Ṽα . Denote it by Bα and let Vα = Ṽ ↓Bα

α .

Case 2: α is a limit ordinal. Let Vα be any monotonic sequential cascade of rank α

such that
∫
Vβ ⊂ ∫

Vα for each β < α. A construction of such a cascade one can find
in the proof of Theorem 4.6 in [7].

Now it suffices to take u = ⋃
α<ω1

∫
Vα .

The assumption that the ideal I is tall is essential: Flašková proved in Proposition
2.2 [8], that if I is not tall, then there is no I-ultrafilter. One can easily see that an
ideal I has to contain all singletons.

4 Rudin–Keisler ordering

LetF be a filter on X , and let G be a filter on Y ; we say thatF is Rudin–Keisler greater
than G (we write F ≥RK G) if there is a map f : X → Y such that f (F) ⊃ G. We
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say that F and G are Rudin–Keisler equivalent (denoted by F ≈RK G ) iff F ≥RK G
and G ≥RK F . Rudin–Keisler order is called Katětov order by some authors.

The main result of the paper can be improved as follows:

Theorem 4.1 (CH) Let I be a tall P-ideal that contains all singletons and let 1 <

γ < ω1 be an ordinal. Then there exists a pair u, o of Rudin–Keisler incomparable
I-ultrafilters that belong to Pγ .

To prove the theorem, we need an additional lemma which states that the contour
operation preserves the Rudin–Kiesler ordering:

Lemma 4.2 Assume that α is a countable ordinal number and u, v ∈ Pα are, such
that u �≥RK v. Fix a P-point p and an arbitrary free filter s. Next let (Un)n<ω and
(Vi )i<ω be partitions of ω into infinite sets and let (un) and (vi ) be sequences of
ultrafilters such that un ≈RK u, Un ∈ un, vi ≈RK v, Vi ∈ vi . Then

∫
p un �≥RK

∫
s vi .

Proof Supposeon the contrary that there is a function f : ω → ω such that f (
∫
p un) =

∫
s vi , without loss of generality f is a surjection. Take a non-decreasing sequence of
ordinals (αn)n<ω such thatαn < α, limn→∞(αn+1) = α. For each Vi , fix amonotonic
sequential cascade Ci of rank αi such that

∫
Ci ⊂ vi and maxCi = Vi .

In addition define cascades Di from Ci as follows: leave all non-maximal elements
unchanged and for every v of rank 1 replace v+ by f −1(v+). More formally, this
means that v+Di = f −1(v+Ci ). Consider a cascade K = (i) � Di . Clearly K is a
monotone sequential cascade of rank α.

Since un ∈ Pα thus there are sets Un ∈ un small with respect to K . These sets
mesh

∫
Di only for finitely many i . Since un is an ultrafilter there is Tn ∈ un such that

either:

1. Tn meshes
∫
Di for exactly one i that will be denoted by i(n), and f [Tn] ⊂ Vi ; or

2. Tn never meshes
∫
Di .

Let A be a set of those n for which the first case holds. There are two possibilities:

1. A ∈ p;
2. ω\A ∈ p.

Assume that A ∈ p. Without loss of generality A = ω. Consider the partition of ω

into sets Ai = {n < ω : i(n) = i}. Since p is a P-point, there is a P ∈ p such that
P ∩ Ai is finite for each i . The possibility that there is a P ∈ p which is contained in
some Ai can be excluded since f (

⋃
n∈P ′ Tn) ∈ ∫s vn for each co-finite P ′ ⊂ P .

Define the sets

N ( j) = {n : i(n) = j and n ∈ P}.

These sets are finite. For each n ∈ N ( j), since u �≥ RK v, there are pairs of sets Ũn ∈ un ,
Ṽ j,n ∈ v j such that f [Ũn] ∩ Ṽ j,n = ∅. Put

U ′
n = Ũn ∩ Tn and
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V ′
j =

{⋂
n∈N ( j) Ṽ j,n, j = i(n) for any n < ω

V ′
j = Vj , otherwise

.

Clearly

U ′
n ∈ un, V ′

i ∈ vi and f [U ′
n] ∩ V ′

i = ∅

for each pair (n, i) such that n ∈ P . Therefore

⋃

n∈P

U ′
n ∈

∫

p
un and

⋃

i<ω

V ′
i ∈

∫

p
vi and f (

⋃

n∈P

U ′
n) ∩

⋃

i<ω

V ′
i = ∅.

Indeed, it is so because f [Un ∩ Tn] ⊂ f [Tn] ⊂ Vi(n).
Assume that ω\A ∈ p. Without loss of generality, A = ∅.
If the set {n < ω : there is i < ω and a set Rn ⊂ Un , Rn ∈ un , such that F[Rn] ⊂ Vi ,

f [Rn] ∈ vi } belongs to p then we proceed as in the case when A ∈ p.
Otherwise without loss of generality we may assume that for each n, i < ω the set

Tn\ f −1[⋃ j≤i V j ] belongs to ui .
Since u �≥RK v for each n there are sets Ũn and Ṽn such that

Ũn ∈ un, Ṽn ∈ vn and f [Ũn] ∩ Ṽn = ∅.

Define

U ′
n = (Ũn ∪ Tn)\ f −1

⎡

⎣
⋃

j≤n

Vj

⎤

⎦ and V ′
n = Ṽn\ f

⎡

⎣
⋃

j<n

Tj

⎤

⎦ .

Notice that U ′
n ∈ un and V ′

n ∈ vn .
Clearly

⋃

n<ω

U ′
n ∈

∫

p
un,

⋃

n<ω

V ′
n ∈

∫

s
vi and f

[
⋃

n<ω

U ′
n

]

∩
⋃

n<ω

V ′
n = ∅.

Proof (of the theorem) Generally speaking, the proof is similar to the proof of the
main result.

Step 1: for γ = 2. The proof is similar to the one in Step 3 below but easier. Hence,
we skip it.

Step 2: γ > 2 is a countable successor ordinal number. Let u′ and o′ be a pair of RK
incomparable I-ultrafilters that belong to Pγ−1. Fix a partition (An : n < ω) of ω

into infinitely many infinite sets. Let (u′
n : n < ω) be a sequence of ultrafilters such

that u′
n ≈ u′, An ∈ u′

n . Also let (o′
n : n < ω) be a sequence of ultrafilters such that

o′
n ≈ o′, An ∈ o′

n .
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Take the ultrafilters u = ∫
p u

′
n and o = ∫

p o
′
n , where p is any P-point that is

I-ultrafilter. Theorem 2.5 guarantees that u and o belong to Pγ whilst Lemma 2.3
guarantees that u and o are I-ultrafilters. Finally, Lemma 4.2 ensures that u and o are
RK -incomparable.

Step 3: γ < ω1 is a countable limit ordinal number.We constructFα and its decreasing
base (Fn

α )n<ω as in Theorem 3.1. Simultaneously, we construct Eα and (En
α)n<ω with

exactly the same properties as Fα and (Fn
α )n<ω. Additionally we have to make sure

that Fα and Eα are related as follows:

(W8) for each α < ω1, there is F ∈ Fα+1 such that ( fα[F])c ∈ Eα+1 and there is
E ∈ Eα+1 such that ( fα[E])c ∈ Fα+1.

Firstly we define Fn
α , Aα and Gα as in Threorem 3.1 and set F∗

α+1 = {Fn
α : n <

ω} ∪ {Aα,Gα}. We define E∗
α+1 in exactly the same way.

Since 〈F∗
α+1 ∪⋃n<ω Vn〉 is not an ultrafilter, there is a set Y such that bothF∗

α+1 ∪⋃
n<ω Vn ∪ {Y } and F∗

α+1 ∪⋃n<ω Vn ∪ {Y c} have the finite intersection property.
Now { f −1

α [Y ]} ∪ E∗
α+1 ∪⋃n<ω Vn has the finite intersection property (case 1) or

{( f −1
α [Y ])c} ∪ E∗

α+1 ∪⋃n<ω Vn has the finite intersection property (case 2).
In the first case we set Z1

α+1 = f −1
α [Y ] and X1

α+1 = Y c whilst in the second case
we set Z1

α+1 = ( f −1
α [Y ])c and X1

α+1 = Y .
Similarly, since 〈E∗

α+1 ∪⋃n<ω Vn ∪ {Z1
α+1}〉 is not an ultrafilter, there is a set Y

such that both E∗
α+1 ∪⋃n<ω Vn ∪ {Z1

α+1,Y } and E∗
α+1 ∪⋃n<ω Vn ∪ {Z1

α+1,Y
c} have

the finite intersection property.
Now { f −1

α [Y ], X1
α+1}∪

⋃
n<ω Vn∪F∗

α+1 has the finite intersection property (case 1)
or {( f −1

α [Y ])c, X1
α+1}∪⋃n<ω Vn ∪F∗

α+1 has the finite intersection property (case 2).
In the first case we set X2

α+1 = f −1
α [Y ] and Z2

α+1 = Y c whilst in the second we
set X2

α+1 = ( f −1
α [Y ])c and Z2

α+1 = Y .

Order F∗
α+1 ∪ {X1

α+1, X
2
α+1} in a sequence (F̃n

α+1)n<ω. Set Fn
α+1 = ⋂

m≤n F̃
n
α+1

to get a decreasing sequence, and let Fα+1 = 〈{Fn
α+1 : n < ω}〉.

We proceed similarly with Eα+1.
Finally we take any ultrafilter u that extends

⋃
n<ω Vn∪⋃α<ω1

Fα and any ultrafil-
ter o that extends

⋃
n<ω Vn ∪⋃α<ω1

Eα . Ultrafilters o and u have the same properties.
It is easy to see that u and o are RK-incomparable.

Step 4: γ = ω1.
The proof is as in Theorem 3.1, but we build two sequences (Vα : α < ω1), (Wα :

α < ω1) of monotonic sequential cascades instead of one. We demand that they are
related as follows:

(Z6) for each α < ω1 there is V ∈ ∫ V
α+1, such that ( fα[V ])c ∈ ∫ W

α+1, and there
is W ∈ ∫ W

α+1, such that ( fα[W ])c ∈ ∫ V
α+1.

On the inductive step we have two cases. For a limit ordinal α there is no change
in comparision to the proof of Theorem 3.1. Assume that α = β + 1 is a successor
ordinal. Exactly as in the original proof we find Ṽ ↓Bα

α . Next, there is a change in the
proof. Set V ∗

α = Ṽ ↓Bα
α and define its counterpart W ∗

α in the same way.
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We define sets Y , Z1
α , X

1
α for

∫
V ∗

α and
∫
W ∗

α exactly as we defined sets Y , Z1
α+1,

X1
α+1 for 〈F∗

α+1∪⋃n<ω Vn〉 and E∗
α+1∪⋃n<ω Vn on step 3. This argument we repeat

once again to get another sets Z2
α , X

2
α for

∫
W ∗

α ∪ {Z1
α} and ∫ V ∗

α ∪ {X1
α}.

Let

Vα = V
∗↓(X1

α∩X2
α)

α and Wα = W
∗↓(Z1

α∩Z2
α)

α

Now it suffices to take u = ⋃
α<ω1

∫
Vα and o = ⋃

α<ω1

∫
Wα . Condition (Z6)

guarantees that u and o are RK -incomparable.

5 Ordinal ultrafilters and relatively minimal ultrafilters

Baumgartner in his paper [1] defined the notion of ordinal ultrafilters for an indecom-
posable ordinal α as Jα-ultrafilters where are ideals defined on ω1 as follows:

Jα = {A ⊂ ω1 : A has order type < α}.

Let J ∗
α -ultrafilters be ultrafilters which are Jα-ultrafilters but are not Jβ -ultrafilters for

any β < α.
Baumgartner ([1, Theorem 4.1] and [1, Theorem 4.2]) proved that

Theorem 5.1 J ∗
ω2 -ultrafilters are P-points.

Theorem 5.2 Let (αn)n<ω be a non-decreasing sequence of countable ordinal num-
bers. Let α = limn<ω αn and let (Xn)n<ω be a partition of ω. If (pn)n<ω is a sequence
of ultrafilters such that Xn ∈ pn ∈ J ∗

ωαn and p is a P-point, then
∫
p pn ∈ J ∗

ωα+1 .

Applying the above theorems in our proof we obtain the following:

Theorem 5.3 (CH) For each successor ordinal 1 < α < ω1 and for each tall P-ideal
I there are two RK-incomparable I-ultrafilters that belongs to J∗

ωα .

It is still an open problem whether classes J ∗
ωα are nonempty for any limit infinite

α, in any model of ZFC; an unpublished (as yet) Starosolski’s result [22] state that the
class J ∗

ωω is empty (ZFC).
Let C be any set of filters on a fixed set X . We say that an ultrafilter u is relatively

RK-C-minimal, whenever u ∈ C and f (u) ≈RK u or f (u) �∈ C for each function
f : X → X .
For the P-hierarchy and for ordinal ultrafilters we have the following:

Theorem 5.4 ([24], reformulation of Theorems 4.4 and 4.7) Let α < ω. If (pn) is
a discrete sequence of relatively RK-Pα (J ∗

ωα )-minimal ultrafilters on ω and p is a
RK-minimal ultrafilter, then

∫
p pn is relatively RK-Pα+1 (J ∗

ωα+1)-minimal.

A standard modification of the proof of Theorem 4.1 proof in virtue of Theorems
5.1 and 5.2 gives us the following:

Theorem 5.5 (CH) For each natural number n and for each tall P-ideal I there are
two RK-incomparable relatively RK-Pn (J ∗

ωn )-minimal ultrafilters.
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Relatively RK-Pα-minimal ultrafilters for successor infinite α’s do not exist (see
[24]). For limit α and for classes of ordinal ultrafilters of infinite rank the question
remains open.
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