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Abstract Let U be a saturated model of inaccessible cardinality, and let D ⊆ U be
arbitrary. Let 〈U,D〉 denote the expansion of U with a new predicate for D. Write
e(D) for the collection of subsets C ⊆ U such that 〈U,C〉 ≡ 〈U,D〉. We prove that if
the vc-dimension of e(D) is finite then D is externally definable.

Keywords vc-dimension · NIP · Externally definable sets · Expansions of saturated
models
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1 Introduction

Let U be a saturated model of signature L , and let T denote its theory and κ its
cardinality. We require that κ is uncountable, inaccessible, and larger than |L|. There
is no blanket assumption on T . Throughout the following z is a tuple of variables of
finite length and the letters D and C denote arbitrary subsets of U|z|. As usual the
letters A, B, . . . denote subsets of U of small cardinality.

Recall thatD is externally definable ifD = Dp,ϕ for some global type p ∈ Sx (U)

and some ϕ(x, z) ∈ L , where
Dp,ϕ = {

a ∈ U|z| : ϕ(x, a) ∈ p
}
.

Externally definable sets are ubiquitous in model theory, though they mainly ap-
pear in the form of global ϕ-types (in fact, they are in one-to-one correspondence
with these). One important fact about externally definable sets has been proved by
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512 D. Zambella

Shelah [7], generalizing a theorem of Baisalov and Poizat [1]. Assume T is nip and let
USh be the model obtained by expanding U with a new predicate for each externally
definable set. Then Th(USh) has quantifier elimination. A few proofs of this result are
available, see [5] and [3]. The proof in [3], by Chernikov and Simon, is relevant to us
because it introduces the notion of honest definition that will find an application here.
The Shelah expansion of groups with nip has been studied in [4].

To any set D we associate an expansion of U with a new |z|-ary predicate for
z ∈ D. We denote this expansion by 〈U,D〉. We denote by e(D/A) the set

{
C :

〈U,C〉 ≡A 〈U,D〉}.Wewould like to know if there there are conditions on e(D/A) that
characterize externally definable sets. Note that there are straightforward conditions
that characterize definable sets. For example,D is definable if andonly if |e(D/A)| = 1
for some A.

By adapting some ideas in [3] (see also [10]), in Corollary 12 we prove a sufficient
condition for D to be externally definable, namely that it suffices that for some set
of parameters A the vc-dimension of e(D/A) is finite. Though in general this is
not a necessary condition, it characterizes external definability when T is nip (see
Corollary 13). Finally, in the last two sections we use e(D) in an attempt to generalize
the notion of non-dividing to sets.

2 Notation

Let L be a first-order language. We consider formulas build inductively from the
symbols in L and the atomic formulas t ∈ X, where X is some second-order variable
and t is a tuple of terms. For the the time being, the logical connectives are first-
order only (in the last section we will add second-order quantification). The set of
all formulas is itself denoted by L or, if parameters from A are allowed, by L(A).
When a second-order parameter is included (we never need more than one) we write
L(A;D). When ϕ(X) ∈ L(A) andD ⊆ U|z|, we write ϕ(D) for the formula obtained
by replacingX byD inϕ(X). The truth ofϕ(D) is defined in the obviousway.Warning:
the meaning of ϕ(D) depends on whether the formula is presented as ϕ(X) or as ϕ(x)
(see the first paragraph of Sect. 3).

We write C ≡A D if the equivalence ϕ(C) ↔ ϕ(D) holds for all ϕ(X) ∈ L(A).
Then the class e(D/A) defined in the introduction coincides with the set

{
C ⊆ U|z| :

C ≡A D
}
.

We say that M is L(A;C)-saturated if every finitely consistent type p(x) ⊆
L(A;C) is realized in M . If C is such that U is L(A;C)-saturated for every A, we say
that C is saturated. In other words, C is saturated if the expansion 〈U,C〉 is a saturated
model.

Proposition 1 For every D and every A there is a saturated C such that C ≡A D.
Moreover, ifD and C are both saturated, then there is f ∈ Aut(U/A) that takesD to
C.

Proof We prove that there is C ≡A D such that expansion 〈U,C〉 is saturated. As κ is a
large inaccessible cardinal, there is amodel 〈U′,D′〉 ≡A 〈U,D〉 that is saturated and of
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Elementary classes of finite vc-dimension 513

cardinality κ . Then there is an isomorphism f : U′ → U that fixes A. Then f [D′] = C

is the required saturated subset of U. The second claim is clear by back-and-forth. 
�
Let � be a set of formulas and let 〈I,<I 〉 be a linearly ordered set. We say that the

sequence 〈ai : i ∈ I 〉 is indiscernible in � if for every integer k and two increasing
tuples i1 <I · · · <I ik and j1 <I · · · <I jk and formula ϕ(x1, . . . , xk) ∈ �, we
have ϕ(ai1 , . . . , aik ) ↔ ϕ(a j1 , . . . , a jk ). When � = L(A) we say that 〈ai : i ∈ I 〉 is
A-indiscernible.

We denote by o(D/A) the set
{
f [D] : f ∈ Aut(U/A)

}
, that is, the orbit of D

under Aut(U/A). If o(D/A) = {
D

}
we say that D is invariant over A. A global

type p ∈ Sx (U) is invariant over A if for every ϕ(x, z) the set Dp,ϕ is invariant over
A. The main fact to keep in mind about global A-invariant types is that any sequence
〈ai : i < λ〉 such that ai � p�A,a�i is an A-indiscernible sequence.

We assume that the reader is familiar with basic facts concerning nip theories as
presented, e.g., in [8, Chapter 2].

3 Approximations

The setD ∩ A|z| is called the trace ofD over A. For every formula ψ(z) ∈ L(U) we
define ψ(A) = ψ(U)∩ A|z|, that is, the trace over A of the definable setψ(U) = {

a ∈
U|z| : ψ(a)

}
.

A set D is called externally definable if there are a global type p ∈ Sx (U) and a
formula ϕ(x, z) such thatD = {a : ϕ(x, a) ∈ p}. Equivalently, a setD is externally
definable if it is the trace over U of a set which is definable in some elementary
extension of U. This explains the terminology.

We prefer to deal with external definability in a different, though equivalent, way.

Definition 2 We say thatD is approximable by the formula ϕ(x, z) if for every finite
B there is a b ∈ U|x | such that ϕ(b, B) = D ∩ B|z|. We may call the formula ϕ(x, z)
the sort ofD. If in addition we have that ϕ(b,U) ⊆ D, we say thatD is approximable
from below. If D ⊆ ϕ(b,U) we say that D is approximable from above.

Approximability from below is an adaptation to our context of the notion of having
an honest definition in [3]. The following proposition is clear by compactness.

Proposition 3 For every D the following are equivalent:

1. D is approximable;
2. D is externally definable.

Example 4 Let T be the theory a dense linear orders without endpoints and letD ⊆ U

be an interval. ThenD is approximable both frombelow and fromabove by the formula
x1 < z < x2. Now let T be the theory of the random graph. Then every D ⊆ U is
approximable and, when D has small cardinality, it is approximable from above but
not from below.

In Definition 2, the sort ϕ(x, z) is fixed (otherwise any set would be approximable)
but this requirement of uniformity may be dropped if the sets B are allowed to be
infinite.
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514 D. Zambella

Proposition 5 For every D the following are equivalent:

1. D is approximable;
2. for every B of cardinality≤ |T | there isψ(z) ∈ L(U) such thatψ(B) = D∩ B|z|.
Similarly, the following are equivalent:

3. D is approximable from below;
4. for every B ⊆ D of cardinality ≤ |T | there is ψ(z) ∈ L(U) such that B|z| ⊆

ψ(U) ⊆ D.

Proof To prove 2⇒1, for a contradiction assume 2 and¬1. For each formulaψ(x, z) ∈
L choose a finite set B such that ψ(b, B)=/D ∩ B|z| for every b ∈ U|x |. Let C be the
union of all these finite sets. Clearly |C | ≤ |T |. By 2 there are a formula ϕ(x, z) and
a tuple c such that ϕ(c,C) = D ∩ C |z|, contradicting the definition of C .

The implication 1⇒2 is obtained by compactness and the equivalence 3⇔4 is
proved similarly. 
�
Proposition 6 IfD is approximable of sort ϕ(x, z) then so is any C such that C ≡ D.
The same holds for approximability from below and from above.

Proof If the set D is approximable by ϕ(x, z) then for every n

∀z1, . . . , zn ∃x
n∧

i=1

[
ϕ(x, zi ) ↔ zi ∈ D

]
.

So the same holds for any C ≡ D. As for approximability from below, add the con-
junct ∀z [

ϕ(x, z) → z ∈ D
]
to the formula above, and similarly for approximability

from above. 
�

4 The Vapnik-Chervonenkis dimension

We say that u ⊆ P(U|z|) shatters B ⊆ U|z| if every H ⊆ B is the trace over B of
some setD ∈ u. The VC-dimension of u is finite if there is some n < ω such that no
set of size n is shattered by u.

Proposition 7 The following are equivalent:

1. e(D/A) has finite vc-dimension;
2. o(C/A) has finite vc-dimension for some (any) saturated C ≡A D.

Proof 1⇒2. Clear because o(C/A) ⊆ e(D/A).
2⇒1. Let C be any saturated set such that C ≡A D. Let B be a finite set that is

shattered by e(D/A), namely such that every H ⊆ B is the trace of some CH ≡A D.
By Proposition 1, we can require that all these sets CH are saturated. Then they
all belong to o(C/A). It follows that if e(D/A) has infinite vc-dimension so does
o(C/A). 
�

We say that a sequence of sentences 〈ϕi : i < ω〉 converges if the truth value of ϕi
is eventually constant.
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Elementary classes of finite vc-dimension 515

Lemma 8 Assume that o(D/A) has finite vc-dimension and let 〈ai : i < ω〉 be any
A-indiscernible sequence. Then 〈ai ∈ D : i < ω〉 converges.
Proof Negate the conclusion and let 〈ai : i ∈ ω〉 witness this. We show that o(D/A)

shatters {ai : i < n} for arbitrary n, hence that o(D/A) has infinite vc-dimension.
Fix some H ⊆ n, and for every h < n pick some aih such that aih ∈ D if and only
if h ∈ H . We also require that i0 < · · · < in−1. Let f ∈ Aut(U/A) be such that
f : ai0 , . . . ain−1 �→ a0, . . . an−1. Then ah ∈ f [D] if and only if h ∈ H . 
�
We abbreviate U � C as ¬C. We write ¬i for ¬ . . . (i times) . . . ¬ and abbreviate

¬i (· ∈ ·) as /∈i . The following lemmas adapt some ideas from [3, Sect. 1] to our
context.

Lemma 9 Assume that C is saturated and that o(C/A) has finite vc-dimension. Let
M � U be an L(A;C)-saturated. Then every global A-invariant type p(z) contains a
formula ψ(z) ∈ L(M) such that either ψ(U) ⊆ C or ψ(U) ⊆ ¬C.

Proof By Lemma 8 there is no infinite sequence 〈bi : i < ω〉 such that

1. bi � p(z)|A,b�i ∧ z /∈i C.

Let n be the maximal length of a sequence 〈bi : i < n〉 that satisfies 1. Then

p(z)|A,b�n → z /∈n C.

As M is L(A;C)-saturated, we can assume further that bi ∈ M . Also, by saturation
we can replace p(z)|A,b�n with some formula ψ(z). Then, if n is even, ψ(U) ⊆ C, and
if n is odd ψ(U) ⊆ ¬C. 
�

Notice that p(z) ∈ S(M) is finitely satisfied in A ⊆ M if and only if it contains the
type

# q(z) = {¬ϕ(z) ∈ L(M) : ϕ(A) = ∅

}
.

With this notation in mind, we can state the following lemma.

Lemma 10 Assume C is saturated and o(C/A) has finite vc-dimension. Then there
are two formulas ψi (z), where i < 2, such that ψi (z) → z /∈i C and, if q(z) is the
type defined above, q(z) → ψ0(z) ∨ ψ1(z).

Proof Let M be an L(A;C)-saturated model. By definition, for every a � q(z) the
type tp(a/M) is finitely satisfiable in A so it extends to a global invariant type. By
Lemma 9, q(U) is covered by formulasψ(z) ∈ L(M) such that either [ψ(z) → z ∈ C]
or [ψ(z) → z /∈ C]. The conclusion follows by compactness.

Theorem 11 Assume C is saturated and o(C/A) has finite vc-dimension for some A.
Then C is approximable from below and from above.

Proof Let B ⊆ C be given. Enlarging A if necessary, we can assume that B ⊆ A. Let
M and q(z) ⊆ L(M) be as in # above. Trivially A ⊆ q(U), hence B ⊆ ψ0(U) ⊆ C.
The set B has arbitrary (small) cardinality. Then by Lemma 5, C is approximable from
below.
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516 D. Zambella

As for approximation from above, observe that this is equivalent to ¬C being ap-
proximable frombelow.As¬C is also saturated and o(¬C/A) has finite vc-dimension,
approximability from above follows.

Corollary 12 Assume e(D/A) has finite vc-dimension for some A. Then D is ap-
proximable from below and from above.

Proof Let C ≡A D be saturated. As o(C/A) also has finite vc-dimension, from
Theorem 11 it follows that C is approximable from below and from above. Then by
Proposition 6 the same conclusion holds for D. 
�

Recall that a formula ϕ(x, z) ∈ L is nip if
{
ϕ(a,U) : a ∈ U|x |} has finite vc-

dimension. If this is the case,
{
Dp,ϕ : p ∈ Sx (U)

}
, that is, the set of externally

definable sets of sort ϕ(x, z), also has finite vc-dimension. Now, observe that if D is
any externally definable set and C ≡ D then C is also externally definable and has
the same sort as D. Hence, if ϕ(x, z) is nip, e(D) ⊆ {

Dp,ϕ : p ∈ Sx (U)
}
has finite

vc-dimension.
The theory T is nip if in U every formula is nip. Hence we obtain the following

characterization of externally definable sets in a nip theory:

Corollary 13 Il T is nip then the following are equivalent:

1. D is approximable from below (in particular, externally definable);
2. e(D) has finite vc-dimension.

We conclude by mentioning the following corollary, which is a version of Proposi-
tion 1.7 of [3] stated with different terminology. Note that it is not necessary to require
that T is nip.

Corollary 14 If D is approximable by a nip formula, then D is approximable from
below.

Proof If D is approximable of sort ϕ(x, z), by Proposition 6, so are all sets in e(D).
If ϕ(x, z) is nip, then e(D) has finite vc-dimension and Corollary 12 applies. 
�

Observe that, given a formulaϕ(x, z) that approximatesD, the proof ofCorollary 14
does not give explicitely the formula ψ(x, z) that approximates D from below.

5 Lascar invariance

The content of the second part of the paper is only loosely connected to the previous
sections. We introduce the notion of a pseudo-invariant set which is connected to
non-dividing but it is sensible for arbitrary subsets of U. We assume that the reader is
familiar with basic facts concerning Lascar strong types and dividing (see e.g., [2,8,9])
though in this section we will recall everything we need.

If o(D/A) = {
D

}
we say that D is invariant over A. We say that D is invariant

tout court if it is invariant over some A. We say thatD is Lascar invariant over A if
it is invariant over every model M ⊇ A.
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Elementary classes of finite vc-dimension 517

Proposition 15 There are at most 22
|L(A)|

sets D that are Lascar invariant over A.

Proof Let N be a model containing A of cardinality≤ |L(A)|. Every Lascar invariant
set over A is invariant over N . The proposition follows as |N | ≤ |L(A)|, and there are
at most 22

|N |
sets invariant over N . 
�

Proposition 16 For every D and every A ⊆ M the following are equivalent:

1. D is Lascar invariant over A;
2. every set in o(D/A) is M-invariant;
3. o(D/A) has cardinality < κ;
4. every endless A-indiscernible sequence is indiscernible in L(A;D);
5. c0 ∈ D ↔ c1 ∈ D for every A-indiscernible sequence c = 〈ci : i < ω〉.
Proof The implication 1⇒2 is clear because all sets in o(D/A) are Lascar invariant
over A. To prove 2⇒3 it suffices to note that there are fewer than κ sets that are
invariant over M .

We now prove 3⇒4. Assume ¬4. Then we can find an A-indiscernible sequence
〈ci : i < κ〉 and a formula ϕ(x) ∈ L(A;D) such that ϕ(c0) ↔/ ϕ(c1). Define

E(x, y)⇔ψ(x) ↔ ψ(y) for every C ∈ o(D/A) and every ψ(x) ∈ L(A;C).

Then E(x, y) is an A-invariant equivalence relation.As¬E(c0, c1), indiscernibility
over A implies that ¬E(ci , c j ) for every i < j < κ . Then E(x, y) has κ equivalence
classes. As κ is inaccessible, this implies ¬3.

The implication 4⇒5 is trivial. We prove 5⇒1. Suppose a ≡M b for some M ⊇ A.
Let p(z) be a global coheir of tp(a/M) = tp(b/M). Let c = 〈ci : i < ω〉 be a Morley
sequence of p(z) over M, a, b. Then both a, c and b, c are A-indiscernible sequences.
So from 5 we obtain a ∈ D ↔ c0 ∈ D ↔ b ∈ D and, as M is arbitrary, 1 follows.

As the number ofM-invariant sets is atmost 22
|M|

, we obtain the following corollary.

Corollary 17 For every D the following are equivalent:

1. o(D/A) has cardinality < κ;
2. o(D/A) has cardinality ≤ 22

|L(A)|
.

6 Dividing

Though Definition 18 below does not make any assumptions on B and u ⊆ P
(
U|z|),

it yields a workable notion only whenB is invariant and u is closed in a sense that we
will explain. Moreover, for the proof of Lemma 22 we need κ to be a Ramsey cardinal,
so this will a blanket assumption throughout this section.

Definition 18 Let u ⊆ P
(
U|z|) and let B ⊆ U|z|. We say that u locally covers B

if for every K ⊆ B of cardinality κ and every integer k there is a D ∈ u such that
k ≤ |K ∩ D|.
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518 D. Zambella

The subsets of P(U|z|) that are definable by formulas ϕ(X) ∈ L(A) form a base
of clopen sets for a topology. The proposition below implies that this topology is
compact.

Proposition 19 Let p(X) ⊆ L(A) be finitely consistent, that is, for every ϕ(X) con-
junction of formulas in p(X) there is a D ⊆ U|z| such that ϕ(D). Then there is a set
C such that p(C).

Proof The proposition follows from the fact that every saturated model is resplendent,
see [6, Théorème 9.17]. But the reader may prefer to prove it directly by adapting the
argument used in the proof of Proposition 1. 
�

Notice that the topology introduced above is not T0 because there areC=/ D such that
C ≡ D. However, it is immediate that taking theKolmogorov quotient (i.e. quotienting
by the equivalence relation ≡) gives a Hausdorff topology. Then there is no real need
to distinguish between compactness and quasi-compactness.

Wewill say that the setu ⊆ P
(
U|z|) is closed if it is closed in the topology introduced

above. In other words, u is closed if u = {
D : p(D)

}
for some p(X) ⊆ L .

Remark 20 We may read Definition 18 as a generalization of non-dividing. Let us
recall the definition of dividing. We say that the formula ϕ(x, b) divides over A if
there there is an infinite setK ⊆ o(b/A) such that {ϕ(x, c) : c ∈ K} is k-inconsistent
for some k. By compactness, there is no loss of generality if we require |K| = κ . Let
u ⊆ P(U|z|) contain the externally definable sets of sort ϕ(x, z). Then the requirement
that {ϕ(x, c) : c ∈ K} is k-inconsistent can be rephrased as |K ∩ D| < k for every
D ∈ u. So we may conclude that the following are equivalent:

1. the formula ϕ(x, b) does not divide over A;
2. u locally covers o(b/A).

Incidentally, note that o(b/A) is A-invariant and that u is a closed set.

We now need to use second-order quantifiers. The set of formulas containing
second-order quantifiers is denoted by L2, or L2(A;D) when parameters occur.
Second-order quantifiers are interpreted to range over P(U|z|). The following fact
is immediate but noteworthy.

Fact 21 Every formula ϕ(x) ∈ L2(A) is A-invariant and consequently any A-
indiscernible sequence is indiscernible in L2(A).

Lemma 22 Let u ⊆ P
(
U|z|) be a closed set and let B ⊆ U|z| be an A-invariant set.

Then the following are equivalent:

1. u locally covers B;
2. every A-indiscernible sequence 〈ai : i < ω〉 ⊆ B is contained in some D ∈ u.

Proof 1⇒2. Let p(X) ∈ L be such that u = {
D : p(D)

}
. Assume ¬2 and fix an

A-indiscernible sequence 〈ai : i < ω〉 ⊆ B such that p(X) ∪ {ai ∈ X : i < ω} is
inconsistent. By compactness there are some i1, . . . , ik and some ϕ(X) ∈ p such that
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Elementary classes of finite vc-dimension 519

∀X
[
ϕ(X) → ¬

k∧

n=1

ain ∈ X
]
.

Extend 〈ai : i < ω〉 to an A-indiscernible sequence 〈ai : i < κ〉. By indiscerni-
bility, every D ∈ u contains fewer than k elements of {ai : i < κ} ⊆ B. Hence
¬1.

2⇒1. Assume ¬1 and fix K ⊆ B of cardinality κ and an integer k such that
|K ∩ D| < k for everyD ∈ u. As κ is a Ramsey cardinal, there is an A-indiscernible
〈ai : i < κ〉 ⊆ K. Then 〈ai : i < κ〉 may not be contained in any D ∈ u, hence ¬2.

We say thatD is pseudo-invariant over A if e(D) locally covers o(b/A) for every
b ∈ D.

Proposition 23 If D is Lascar invariant over A, then for every ϕ(w) ∈ L(A;D) the
set ϕ(U) is pseudo-invariant over A.

Proof Fix ϕ(w) ∈ L(A;D) and let b ∈ ϕ(U). Let 〈ai : i < ω〉 ⊆ o(b/A) be an
indiscernible sequence and fix some f ∈ Aut(U/A) such that f a0 = b. Then 〈 f ai :
i < ω〉 is indiscernible in L(A;D) by Proposition 16. Then 〈 f ai : i < ω〉 ⊆ ϕ(U).
Hence 〈ai : i < ω〉 ⊆ f −1[ϕ(U)]. Clearly, f −1[ϕ(U)] ∈ e(ϕ(U)), so the proposition
follows from Lemma 22. 
�
Proposition 24 Let e(D) have finitevc-dimension. Then the following are equivalent:

1. D is Lascar invariant over A;
2. ϕ(U) is pseudo-invariant over A for every ϕ(w) ∈ L(A;D);
3. D ×¬D is pseudo-invariant over A.

Proof 1⇒2 holds for any D by Proposition 23 and 2⇒3 is obvious.
3⇒1. Assume¬1. By Proposition 16, there is an A-indiscernible sequence 〈ai : i <

ω〉 such that a0 ∈ D ↔/ a1 ∈ D, say a0 ∈ D and a1 /∈ D. Assume 2 for a contradiction.
Then by Lemma 22 there is C ≡ D such that 〈a2i a2i+1 : i < ω〉 ⊆ C ×¬C. By
Lemma 8, e(C) = e(D) has infinite vc-dimension contradicting the assumptions.

The hypothesis of finite vc-dimension is necessary. Assume T is the theory of
dense linear orders without endpoints. Let D be a discretely ordered subset of U of
cardinality κ . Then D is not invariant and e(D) has infinite vc-dimension. One can
verify that D ×¬D is pseudo-invariant over ∅ directly from the definition.

It is well known that under the hypothesis that T is nip, Lascar invariance of global
types is equivalent to non-dividing (equivalently, non-forking), see [8, Proposition
5.21]. Then, when T is nip, a global type p(x) does not divide over A if and only if
Dp,ϕ ×¬Dp,ϕ is pseudo-invariant over A for every ϕ(x, z).

However, pseudo-invariance is too strong a requirement to coincide with non-
dividing in general. A counter-example may be found even when T is simple. Let
T be the theory of the random graph and letD be a complete subgraph of U. Let p(x)
be the unique global type that contains

{
r(x, a) : a ∈ D

} ∪ {¬r(x, a) : a /∈ D
} ∪ {

x=/ a : a ∈ U
}
.
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520 D. Zambella

Then p(x) does not fork over the empty set. On the other hand, D is not pseudo-
invariant: let 〈ai : i < ω〉 be an indiscernible sequence such that a0 ∈ D∧¬r(a0, a1).
As every C ≡ D is a complete graph, no such C may contain 〈ai : i < ω〉.
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