Mathematical Logic

CrossMark

Elementary classes of finite VC-dimension

Domenico Zambella

Received: 25 October 2014 / Accepted: 17 February 2015 / Published online: 4 March 2015 © Springer-Verlag Berlin Heidelberg 2015

Abstract Let U be a saturated model of inaccessible cardinality, and let $\mathcal{D} \subseteq \mathcal{U}$ be arbitrary. Let (U, D) denote the expansion of U with a new predicate for D. Write $e(\mathcal{D})$ for the collection of subsets $\mathcal{C} \subseteq \mathcal{U}$ such that $\langle \mathcal{U}, \mathcal{C} \rangle \equiv \langle \mathcal{U}, \mathcal{D} \rangle$. We prove that if the vc-dimension of $e(\mathcal{D})$ is finite then $\mathcal D$ is externally definable.

Keywords vc-dimension · NIP · Externally definable sets · Expansions of saturated models

Mathematics Subject Classification 03C95

1 Introduction

Let U be a saturated model of signature L, and let T denote its theory and κ its cardinality. We require that κ is uncountable, inaccessible, and larger than $|L|$. There is no blanket assumption on *T* . Throughout the following *z* is a tuple of variables of finite length and the letters D and C denote arbitrary subsets of \mathcal{U}^{z} . As usual the letters *A*, *B*,... denote subsets of U of small cardinality.

Recall that D is **externally definable** if $D = D_{p,\varphi}$ for some global type $p \in S_{\chi}(\mathcal{U})$ and some $\varphi(x, z) \in L$, where

$$
\mathcal{D}_{p,\varphi} = \{a \in \mathcal{U}^{|z|} : \varphi(x,a) \in p\}.
$$

Externally definable sets are ubiquitous in model theory, though they mainly appear in the form of global φ -types (in fact, they are in one-to-one correspondence with these). One important fact about externally definable sets has been proved by

D. Zambella (\boxtimes)

Dipartimento di Matematica, Università di Torino, via Calrlo Alberto 10, 10123 Turin, Italy e-mail: domenico.zambella@unito.it

Shelah [\[7](#page-9-0)], generalizing a theorem of Baisalov and Poizat [\[1\]](#page-9-1). Assume *T* is nip and let U^{Sh} be the model obtained by expanding U with a new predicate for each externally definable set. Then Th (U^{Sh}) has quantifier elimination. A few proofs of this result are available, see [\[5\]](#page-9-2) and [\[3](#page-9-3)]. The proof in [\[3\]](#page-9-3), by Chernikov and Simon, is relevant to us because it introduces the notion of *honest definition* that will find an application here. The Shelah expansion of groups with NIP has been studied in [\[4](#page-9-4)].

To any set D we associate an expansion of U with a new |*z*|-ary predicate for $z \in \mathcal{D}$. We denote this expansion by $\langle \mathcal{U}, \mathcal{D} \rangle$. We denote by $e(\mathcal{D}/A)$ the set $\{$ \sim : $\langle U, \mathcal{C} \rangle \equiv_A \langle U, \mathcal{D} \rangle$. We would like to know if there there are conditions on $e(D/A)$ that characterize externally definable sets. Note that there are straightforward conditions that characterize definable sets. For example, $\mathcal D$ is definable if and only if $|e(\mathcal D/A)| = 1$ for some *A*.

By adapting some ideas in [\[3\]](#page-9-3) (see also [\[10](#page-9-5)]), in Corollary [12](#page-5-0) we prove a sufficient condition for D to be externally definable, namely that it suffices that for some set of parameters *A* the vc-dimension of $e(D/A)$ is finite. Though in general this is not a necessary condition, it characterizes external definability when *T* is nip (see Corollary [13\)](#page-5-1). Finally, in the last two sections we use $e(\mathcal{D})$ in an attempt to generalize the notion of non-dividing to sets.

2 Notation

Let *L* be a first-order language. We consider formulas build inductively from the symbols in *L* and the atomic formulas $t \in \mathcal{X}$, where \mathcal{X} is some second-order variable and t is a tuple of terms. For the the time being, the logical connectives are firstorder only (in the last section we will add second-order quantification). The set of all formulas is itself denoted by L or, if parameters from A are allowed, by $L(A)$. When a second-order parameter is included (we never need more than one) we write *L*(*A***;** D). When φ (X) ∈ *L*(*A*) and $D \subseteq U^{|z|}$, we write φ (D) for the formula obtained by replacing $\mathfrak X$ by $\mathfrak D$ in $\varphi(\mathfrak X)$. The truth of $\varphi(\mathfrak D)$ is defined in the obvious way. Warning: the meaning of $\varphi(\mathcal{D})$ depends on whether the formula is presented as $\varphi(\mathcal{X})$ or as $\varphi(x)$ (see the first paragraph of Sect. [3\)](#page-2-0).

We write $\mathcal{C} \equiv_A \mathcal{D}$ if the equivalence $\varphi(\mathcal{C}) \leftrightarrow \varphi(\mathcal{D})$ holds for all $\varphi(\mathcal{X}) \in L(A)$. Then the class $e(D/A)$ defined in the introduction coincides with the set $\{C \subseteq \mathcal{U}^{|z|} : C \subseteq \mathcal{U}^{|z|} \}$ $C \equiv_A \mathcal{D}$.

We say that *M* is $L(A; \mathcal{C})$ -saturated if every finitely consistent type $p(x) \subseteq$ $L(A; \mathcal{C})$ is realized in M. If \mathcal{C} is such that \mathcal{U} is $L(A; \mathcal{C})$ -saturated for every A, we say that C is **saturated**. In other words, C is saturated if the expansion (U, C) is a saturated model.

Proposition 1 *For every* D *and every* A *there is a saturated* C *such that* $C \equiv_A D$ *. Moreover, if* D *and* C *are both saturated, then there is* $f \in Aut(U/A)$ *that takes* D *to* C*.*

Proof We prove that there is $C \equiv_A D$ such that expansion (U, C) is saturated. As κ is a large inaccessible cardinal, there is a model $\langle U, D' \rangle \equiv_A \langle U, D \rangle$ that is saturated and of

cardinality *κ*. Then there is an isomorphism $f: \mathcal{U} \to \mathcal{U}$ that fixes *A*. Then $f[\mathcal{D}'] = \mathcal{C}$ is the required saturated subset of U. The second claim is clear by back-and-forth. □

Let Δ be a set of formulas and let $\langle I, \langle I \rangle$ be a linearly ordered set. We say that the sequence $\langle a_i : i \in I \rangle$ is **indiscernible in** Δ if for every integer *k* and two increasing tuples $i_1 \leq i_1 \cdots \leq i_k$ and $j_1 \leq i_1 \cdots \leq i_k$ and formula $\varphi(x_1, \ldots, x_k) \in \Delta$, we have $\varphi(a_{i_1}, \ldots, a_{i_k}) \leftrightarrow \varphi(a_{j_1}, \ldots, a_{j_k})$. When $\Delta = L(A)$ we say that $\langle a_i : i \in I \rangle$ is *A***-indiscernible**.

We denote by $o(\mathcal{D}/A)$ the set $\{f[\mathcal{D}] : f \in \text{Aut}(\mathcal{U}/A)\}$, that is, the orbit of \mathcal{D} under Aut(\mathcal{U}/A). If $o(\mathcal{D}/A) = \{ \mathcal{D} \}$ we say that $\mathcal D$ is invariant over A . A global type $p \in S_x(\mathcal{U})$ is invariant over *A* if for every $\varphi(x, z)$ the set $\mathcal{D}_{p,\omega}$ is invariant over *A*. The main fact to keep in mind about global *A*-invariant types is that any sequence $\langle a_i : i < \lambda \rangle$ such that $a_i \vDash p_{\upharpoonright A, a_{\downarrow i}}$ is an *A*-indiscernible sequence.

We assume that the reader is familiar with basic facts concerning NIP theories as presented, e.g., in [\[8,](#page-9-6) Chapter 2].

3 Approximations

The set $D \cap A^{|z|}$ is called the **trace** of D over *A*. For every formula $\psi(z) \in L(\mathcal{U})$ we define $\psi(A) = \psi(\mathfrak{U}) \cap A^{|\mathfrak{Z}|}$, that is, the trace over *A* of the definable set $\psi(\mathfrak{U}) = \{a \in \mathfrak{U} \mid a \in \mathfrak{U}\}$ $\mathcal{U}^{|z|}: \psi(a)\big\}.$

A set D is called **externally definable** if there are a global type $p \in S_{x}(\mathcal{U})$ and a formula $\varphi(x, z)$ such that $\mathcal{D} = \{a : \varphi(x, a) \in p\}$. Equivalently, a set \mathcal{D} is externally definable if it is the trace over U of a set which is definable in some elementary extension of U. This explains the terminology.

We prefer to deal with external definability in a different, though equivalent, way.

Definition 2 We say that D is **approximable** by the formula $\varphi(x, z)$ if for every finite *B* there is a $b \in \mathcal{U}^{|x|}$ such that $\varphi(b, B) = \mathcal{D} \cap B^{|z|}$. We may call the formula $\varphi(x, z)$ the **sort** of D. If in addition we have that $\varphi(b, \mathcal{U}) \subset \mathcal{D}$, we say that D is **approximable from below**. If $\mathcal{D} \subseteq \varphi(b, \mathcal{U})$ we say that \mathcal{D} is **approximable from above**.

Approximability from below is an adaptation to our context of the notion of *having an honest definition* in [\[3](#page-9-3)]. The following proposition is clear by compactness.

Proposition 3 *For every* D *the following are equivalent:*

- *1.* D *is approximable;*
- *2.* D *is externally definable.*

Example 4 Let *T* be the theory a dense linear orders without endpoints and let $D \subseteq U$ be an interval. Then D is approximable both from below and from above by the formula $x_1 < z < x_2$. Now let *T* be the theory of the random graph. Then every $\mathcal{D} \subseteq \mathcal{U}$ is approximable and, when D has small cardinality, it is approximable from above but not from below.

In Definition [2,](#page-2-1) the sort $\varphi(x, z)$ is fixed (otherwise any set would be approximable) but this requirement of uniformity may be dropped if the sets *B* are allowed to be infinite.

Proposition 5 *For every* D *the following are equivalent:*

- *1.* D *is approximable;*
- *2. for every B of cardinality* $\leq |T|$ *there is* $\psi(z) \in L(\mathfrak{U})$ *such that* $\psi(B) = \mathfrak{D} \cap B^{|z|}$ *.*

Similarly, the following are equivalent:

- *3.* D *is approximable from below;*
- *4. for every B* \subseteq D *of cardinality* \leq |*T*| *there is* $\psi(z) \in L(\mathbb{U})$ *such that* $B^{|z|} \subseteq$ $\psi(\mathfrak{U}) \subset \mathfrak{D}$.

Proof To prove 2⇒1, for a contradiction assume 2 and \neg 1. For each formula $\psi(x, z) \in$ *L* choose a finite set *B* such that $\psi(b, B) \neq \mathcal{D} \cap B^{|z|}$ for every $b \in \mathcal{U}^{|x|}$. Let *C* be the union of all these finite sets. Clearly $|C| \leq |T|$. By 2 there are a formula $\varphi(x, z)$ and a tuple *c* such that $\varphi(c, C) = \mathcal{D} \cap C^{|\mathcal{Z}|}$, contradicting the definition of *C*.

The implication ¹⇒² is obtained by compactness and the equivalence ³⇔⁴ is proved similarly. \Box

Proposition 6 *If* D *is approximable of sort* $\varphi(x, z)$ *then so is any* C *such that* $C \equiv D$ *. The same holds for approximability from below and from above.*

Proof If the set D is approximable by $\varphi(x, z)$ then for every *n*

$$
\forall z_1, \ldots, z_n \exists x \bigwedge_{i=1}^n [\varphi(x, z_i) \leftrightarrow z_i \in \mathcal{D}].
$$

So the same holds for any $\mathcal{C} \equiv \mathcal{D}$. As for approximability from below, add the conjunct $\forall z$ [$\varphi(x, z)$ → $z \in D$] to the formula above, and similarly for approximability from above. \Box \Box

4 The Vapnik-Chervonenkis dimension

We say that $u \subseteq \mathcal{P}(\mathcal{U}^{z})$ shatters $B \subseteq \mathcal{U}^{z}$ if every $H \subseteq B$ is the trace over *B* of some set $\mathcal{D} \in u$. The **VC-dimension** of *u* is finite if there is some $n < \omega$ such that no set of size *n* is shattered by *u*.

Proposition 7 *The following are equivalent:*

1. e(D/*A*) *has finite* vc*-dimension;* 2. $o(\mathcal{C}/A)$ *has finite* VC-dimension for some (any) saturated $\mathcal{C} \equiv_A \mathcal{D}$.

Proof 1⇒2. Clear because $o(\mathcal{C}/A) \subseteq e(\mathcal{D}/A)$.

2⇒1. Let C be any saturated set such that $C \equiv_A D$. Let *B* be a finite set that is shattered by $e(\mathcal{D}/A)$, namely such that every $H \subseteq B$ is the trace of some $\mathcal{C}_H \equiv_A \mathcal{D}$. By Proposition [1,](#page-1-0) we can require that all these sets C_H are saturated. Then they all belong to $o(\mathcal{C}/A)$. It follows that if $e(\mathcal{D}/A)$ has infinite vc-dimension so does $o(\mathcal{C}/A)$. \Box

We say that a sequence of sentences $\langle \varphi_i : i \langle \varphi \rangle$ converges if the truth value of φ_i is eventually constant.

Lemma 8 *Assume that* $o(D/A)$ *has finite* VC-dimension and let $\langle a_i : i \rangle \langle \omega \rangle$ be any *A-indiscernible sequence. Then* $\langle a_i \in \mathcal{D} : i \langle \omega \rangle$ converges.

Proof Negate the conclusion and let $\langle a_i : i \in \omega \rangle$ witness this. We show that $o(\mathcal{D}/A)$ shatters $\{a_i : i \leq n\}$ for arbitrary *n*, hence that $o(\mathcal{D}/A)$ has infinite vc-dimension. Fix some $H \subseteq n$, and for every $h < n$ pick some a_{i_h} such that $a_{i_h} \in \mathcal{D}$ if and only if *h* ∈ *H*. We also require that $i_0 < \cdots < i_{n-1}$. Let $f \in Aut(\mathcal{U}/A)$ be such that $f: a_{i_0}, \ldots a_{i_{n-1}} \mapsto a_0, \ldots a_{n-1}$. Then $a_h \in f[\mathcal{D}]$ if and only if $h \in H$. \Box

We abbreviate $\mathcal{U} \setminus \mathcal{C}$ as $\neg \mathcal{C}$. We write \neg^i for $\neg \dots (i$ times)... \neg and abbreviate \neg^{i} (· ∈ ·) as \notin^{i} . The following lemmas adapt some ideas from [\[3](#page-9-3), Sect. 1] to our context.

Lemma 9 Assume that C is saturated and that $o(C/A)$ has finite VC-dimension. Let $M \prec \mathcal{U}$ *be an L(A; C)-saturated. Then every global A-invariant type p(z) contains a formula* $\psi(z) \in L(M)$ *such that either* $\psi(\mathfrak{U}) \subseteq \mathfrak{C}$ *or* $\psi(\mathfrak{U}) \subseteq \neg \mathfrak{C}$ *.*

Proof By Lemma [8](#page-3-0) there is no infinite sequence $\langle b_i : i \rangle \langle \omega \rangle$ such that

1. $b_i \neq p(z)|_{A,b_{|i}} \wedge z \notin^i \mathcal{C}.$

Let *n* be the maximal length of a sequence $\langle b_i : i \rangle$ that satisfies 1. Then

$$
p(z)|_{A,b_{\restriction n}} \to z \notin^n \mathcal{C}.
$$

As *M* is $L(A; \mathcal{C})$ -saturated, we can assume further that $b_i \in M$. Also, by saturation we can replace $p(z)|_{A,b|n}$ with some formula $\psi(z)$. Then, if *n* is even, $\psi(\mathfrak{U}) \subseteq \mathfrak{C}$, and if *n* is odd $\psi(\mathfrak{U}) \subset \neg \mathfrak{C}$. Ч

Notice that $p(z) \in S(M)$ is finitely satisfied in $A \subseteq M$ if and only if it contains the type

q(*z*) = {¬*φ*(*z*) ∈ *L*(*M*) : *φ*(*A*) = ∅}.

With this notation in mind, we can state the following lemma.

Lemma 10 *Assume* C *is saturated and o*(C/*A*) *has finite* vc*-dimension. Then there are two formulas* $\psi_i(z)$ *, where i* < 2*, such that* $\psi_i(z) \to z \notin$ ^{*i*} C *and, if* $q(z)$ *is the type defined above,* $q(z) \rightarrow \psi_0(z) \vee \psi_1(z)$ *.*

Proof Let *M* be an $L(A; \mathcal{C})$ -saturated model. By definition, for every $a \models q(z)$ the type tp(a/M) is finitely satisfiable in *A* so it extends to a global invariant type. By Lemma [9,](#page-4-0) $q(\mathcal{U})$ is covered by formulas $\psi(z) \in L(M)$ such that either $[\psi(z) \to z \in \mathcal{C}]$ or $[\psi(z) \rightarrow z \notin \mathcal{C}]$. The conclusion follows by compactness.

Theorem 11 Assume \mathcal{C} *is saturated and* $o(\mathcal{C}/A)$ *has finite* VC-dimension for some A. *Then* C *is approximable from below and from above.*

Proof Let $B \subseteq C$ be given. Enlarging *A* if necessary, we can assume that $B \subseteq A$. Let *M* and $q(z) \subseteq L(M)$ be as in # above. Trivially $A \subseteq q(\mathcal{U})$, hence $B \subseteq \psi_0(\mathcal{U}) \subseteq \mathcal{C}$. The set *B* has arbitrary (small) cardinality. Then by Lemma 5 , \mathcal{C} is approximable from below.

As for approximation from above, observe that this is equivalent to $\neg \mathcal{C}$ being approximable from below. As $\neg \mathcal{C}$ is also saturated and $o(\neg \mathcal{C}/A)$ has finite vc-dimension, approximability from above follows.

Corollary 12 Assume $e(D/A)$ has finite VC-dimension for some A. Then D is ap*proximable from below and from above.*

Proof Let $C \equiv_A \mathcal{D}$ be saturated. As $o(C/A)$ also has finite vc-dimension, from Theorem [11](#page-4-1) it follows that C is approximable from below and from above. Then by Proposition [6](#page-3-1) the same conclusion holds for D. \Box

Recall that a formula $\varphi(x, z) \in L$ is NIP if $\{\varphi(a, \mathcal{U}) : a \in \mathcal{U}^{|x|}\}$ has finite vcdimension. If this is the case, $\{\mathcal{D}_{p,\varphi} : p \in S_{x}(\mathcal{U})\}$, that is, the set of externally definable sets of sort $\varphi(x, z)$, also has finite vc-dimension. Now, observe that if D is any externally definable set and $\mathcal{C} \equiv \mathcal{D}$ then C is also externally definable and has the same sort as D. Hence, if $\varphi(x, z)$ is NIP, $e(\mathcal{D}) \subseteq {\mathcal{D}_{p,\varphi}} : p \in S_{x}(\mathcal{U})$ has finite vc-dimension.

The theory T is NIP if in U every formula is NIP. Hence we obtain the following characterization of externally definable sets in a nip theory:

Corollary 13 *Il T is* nip *then the following are equivalent:*

- *1.* D *is approximable from below (in particular, externally definable);*
- *2. e*(D) *has finite* vc*-dimension.*

We conclude by mentioning the following corollary, which is a version of Proposition 1.7 of [\[3](#page-9-3)] stated with different terminology. Note that it is not necessary to require that *T* is nip.

Corollary 14 *If* D *is approximable by a* nip *formula, then* D *is approximable from below.*

Proof If D is approximable of sort $\varphi(x, z)$, by Proposition [6,](#page-3-1) so are all sets in $e(\mathcal{D})$. If $\varphi(x, z)$ is NIP, then $e(\mathcal{D})$ has finite VC-dimension and Corollary [12](#page-5-0) applies. \Box

Observe that, given a formula $\varphi(x, z)$ that approximates D, the proof of Corollary [14](#page-5-2) does not give explicitely the formula $\psi(x, z)$ that approximates D from below.

5 Lascar invariance

The content of the second part of the paper is only loosely connected to the previous sections. We introduce the notion of a *pseudo-invariant set* which is connected to non-dividing but it is sensible for arbitrary subsets of U. We assume that the reader is familiar with basic facts concerning Lascar strong types and dividing (see e.g., [\[2](#page-9-7)[,8](#page-9-6)[,9](#page-9-8)]) though in this section we will recall everything we need.

If $o(D/A) = \{D\}$ we say that D is **invariant over** *A*. We say that D is **invariant** tout court if it is invariant over some A . We say that D is **Lascar invariant over** A if it is invariant over every model $M \supseteq A$.

Proposition 15 *There are at most* $2^{2^{|L(A)|}}$ *sets* D *that are Lascar invariant over* A.

Proof Let *N* be a model containing *A* of cardinality $\leq |L(A)|$. Every Lascar invariant set over *A* is invariant over *N*. The proposition follows as $|N| \leq |L(A)|$, and there are at most $2^{2^{|N|}}$ sets invariant over *N*. \Box

Proposition 16 *For every* D *and every* $A \subseteq M$ *the following are equivalent:*

- *1.* D *is Lascar invariant over A;*
- *2. every set in o*(D/*A*) *is M -invariant;*
- *3. o*(D/*A*) *has cardinality* < κ*;*
- *4. every endless A-indiscernible sequence is indiscernible in L*(*A*; D)*;*
- *5.* $c_0 \in \mathcal{D} \leftrightarrow c_1 \in \mathcal{D}$ *for every A-indiscernible sequence* $c = \langle c_i : i \langle \omega \rangle$.

Proof The implication 1⇒2 is clear because all sets in $o(D/A)$ are Lascar invariant over *A*. To prove $2 \Rightarrow 3$ it suffices to note that there are fewer than κ sets that are invariant over *M*.

We now prove ³⇒4. Assume ¬4. Then we can find an *A*-indiscernible sequence $\langle c_i : i \times \kappa \rangle$ and a formula $\varphi(x) \in L(A; \mathcal{D})$ such that $\varphi(c_0) \leftrightarrow \varphi(c_1)$. Define

 $E(x, y) \Leftrightarrow \psi(x) \leftrightarrow \psi(y)$ for every $C \in o(\mathcal{D}/A)$ and every $\psi(x) \in L(A; \mathcal{C})$.

Then $E(x, y)$ is an *A*-invariant equivalence relation. As $\neg E(c_0, c_1)$, indiscernibility over *A* implies that $\neg E(c_i, c_j)$ for every $i < j < \kappa$. Then $E(x, y)$ has κ equivalence classes. As κ is inaccessible, this implies \neg 3.

The implication $4 \Rightarrow 5$ is trivial. We prove $5 \Rightarrow 1$. Suppose $a \equiv_M b$ for some $M \supseteq A$. Let $p(z)$ be a global coheir of $tp(a/M) = tp(b/M)$. Let $c = \langle c_i : i \langle \omega \rangle$ be a Morley sequence of $p(z)$ over M , a , b . Then both a , c and b , c are A -indiscernible sequences. So from 5 we obtain $a \in \mathcal{D} \leftrightarrow c_0 \in \mathcal{D} \leftrightarrow b \in \mathcal{D}$ and, as *M* is arbitrary, 1 follows.

As the number of *M*-invariant sets is at most $2^{2^{|M|}}$, we obtain the following corollary.

Corollary 17 *For every* D *the following are equivalent:*

- *1.* $o(D/A)$ *has cardinality* \lt *κ;*
- 2. $o(\mathcal{D}/A)$ *has cardinality* $\leq 2^{2^{|L(A)|}}$ *.*

6 Dividing

Though Definition [18](#page-6-0) below does not make any assumptions on B and $u \subseteq \mathcal{P}(\mathcal{U}^{z} | \mathcal{U})$, it yields a workable notion only when B is invariant and *u* is closed in a sense that we will explain. Moreover, for the proof of Lemma [22](#page-7-0) we need κ to be a Ramsey cardinal, so this will a blanket assumption throughout this section.

Definition 18 Let $u \subseteq \mathcal{P}(\mathcal{U}^{z}|\)$ and let $\mathcal{B} \subseteq \mathcal{U}^{z}|\.$ We say that *u* **locally covers** \mathcal{B} if for every $\mathcal{K} \subseteq \mathcal{B}$ of cardinality κ and every integer k there is a $\mathcal{D} \in u$ such that k ≤ | \mathcal{K} ∩ \mathcal{D} |.

The subsets of $\mathcal{P}(\mathcal{U}^{z}|)$ that are definable by formulas $\varphi(\mathcal{X}) \in L(A)$ form a base of clopen sets for a topology. The proposition below implies that this topology is compact.

Proposition 19 *Let* $p(\mathcal{X}) \subseteq L(A)$ *be finitely consistent, that is, for every* $\varphi(\mathcal{X})$ *conjunction of formulas in* $p(\mathcal{X})$ *there is a* $\mathcal{D} \subseteq \mathcal{U}^{z}$ *such that* $\varphi(\mathcal{D})$ *. Then there is a set* C *such that* $p(C)$ *.*

Proof The proposition follows from the fact that every saturated model is resplendent, see [\[6](#page-9-9), Théorème 9.17]. But the reader may prefer to prove it directly by adapting the argument used in the proof of Proposition [1.](#page-1-0) \Box

Notice that the topology introduced above is not T_0 because there are $C \neq D$ such that $C \equiv \mathcal{D}$. However, it is immediate that taking the Kolmogorov quotient (i.e. quotienting by the equivalence relation ≡) gives a Hausdorff topology. Then there is no real need to distinguish between *compactness* and *quasi-compactness*.

We will say that the set $u \subseteq \mathcal{P}(\mathcal{U}^{[z]})$ is **closed** if it is closed in the topology introduced above. In other words, *u* is closed if $u = \{D : p(D)\}$ for some $p(\mathcal{X}) \subseteq L$.

Remark 20 We may read Definition [18](#page-6-0) as a generalization of non-dividing. Let us recall the definition of dividing. We say that the formula $\varphi(x, b)$ divides over *A* if there there is an infinite set $\mathcal{K} \subseteq o(b/A)$ such that $\{\varphi(x, c) : c \in \mathcal{K}\}\$ is *k*-inconsistent for some k. By compactness, there is no loss of generality if we require $|\mathcal{K}| = \kappa$. Let $u \subseteq \mathcal{P}(\mathcal{U}^{z}|\)$ contain the externally definable sets of sort $\varphi(x, z)$. Then the requirement that $\{\varphi(x, c) : c \in \mathcal{K}\}\$ is *k*-inconsistent can be rephrased as $|\mathcal{K} \cap \mathcal{D}| < k$ for every $D \in u$. So we may conclude that the following are equivalent:

- 1. the formula $\varphi(x, b)$ does not divide over *A*;
- 2. *u* locally covers $o(b/A)$.

Incidentally, note that $o(b/A)$ is *A*-invariant and that *u* is a closed set.

We now need to use second-order quantifiers. The set of formulas containing second-order quantifiers is denoted by L^2 , or $L^2(A; \mathcal{D})$ when parameters occur. Second-order quantifiers are interpreted to range over $\mathcal{P}(\mathcal{U}^{z|})$. The following fact is immediate but noteworthy.

Fact 21 *Every formula* $\varphi(x) \in L^2(A)$ *is A-invariant and consequently any Aindiscernible sequence is indiscernible in* $L^2(A)$ *.*

Lemma 22 *Let* $u \subseteq \mathcal{P}(\mathcal{U}^{z|})$ *be a closed set and let* $\mathcal{B} \subseteq \mathcal{U}^{|z|}$ *be an A-invariant set. Then the following are equivalent:*

- *1. u locally covers* B*;*
- *2. every A-indiscernible sequence* $\langle a_i : i \langle \omega \rangle \subseteq B$ *is contained in some* $D \in u$ *.*

Proof 1⇒2. Let $p(\mathcal{X}) \in L$ be such that $u = \{ \mathcal{D} : p(\mathcal{D}) \}$. Assume \neg and fix an *A*-indiscernible sequence $\langle a_i : i \langle \omega \rangle \subseteq B$ such that $p(\mathcal{X}) \cup \{a_i \in \mathcal{X} : i \langle \omega \rangle\}$ is inconsistent. By compactness there are some i_1, \ldots, i_k and some $\varphi(\mathcal{X}) \in p$ such that

$$
\forall \mathfrak{X} \left[\varphi(\mathfrak{X}) \to \neg \bigwedge_{n=1}^{k} a_{i_n} \in \mathfrak{X} \right].
$$

Extend $\langle a_i : i \rangle \langle \omega \rangle$ to an *A*-indiscernible sequence $\langle a_i : i \rangle \langle \kappa \rangle$. By indiscernibility, every $\mathcal{D} \in u$ contains fewer than *k* elements of $\{a_i : i \leq \kappa\} \subseteq \mathcal{B}$. Hence $-1.$

2⇒1. Assume \neg 1 and fix $\mathcal{K} \subseteq \mathcal{B}$ of cardinality κ and an integer k such that $|\mathcal{K} \cap \mathcal{D}| < k$ for every $\mathcal{D} \in u$. As κ is a Ramsey cardinal, there is an *A*-indiscernible $\langle a_i : i \leq \kappa \rangle \subseteq \mathcal{K}$. Then $\langle a_i : i \leq \kappa \rangle$ may not be contained in any $\mathcal{D} \in \mathcal{U}$, hence $\neg 2$.

We say that D is **pseudo-invariant** over *A* if $e(D)$ locally covers $o(b/A)$ for every $b \in \mathcal{D}$.

Proposition 23 If D is Lascar invariant over A, then for every $\varphi(w) \in L(A; D)$ the *set* $\varphi(\mathfrak{U})$ *is pseudo-invariant over A.*

Proof Fix $\varphi(w) \in L(A; \mathcal{D})$ and let $b \in \varphi(\mathcal{U})$. Let $\langle a_i : i \langle \omega \rangle \subseteq o(b/A)$ be an indiscernible sequence and fix some $f \in Aut(U/A)$ such that $fa_0 = b$. Then $\langle fa_i :$ $i < \omega$ is indiscernible in $L(A; \mathcal{D})$ by Proposition [16.](#page-6-1) Then $\langle fa_i : i < \omega \rangle \subseteq \varphi(\mathcal{U})$. Hence $\langle a_i : i \langle \omega \rangle \subseteq f^{-1}[\varphi(\mathfrak{U})]$. Clearly, $f^{-1}[\varphi(\mathfrak{U})] \in e(\varphi(\mathfrak{U}))$, so the proposition follows from Lemma [22.](#page-7-0) \Box

Proposition 24 *Let e*(D) *have finite* vc*-dimension. Then the following are equivalent:*

- *1.* D *is Lascar invariant over A;*
- *2.* $\varphi(\mathfrak{U})$ *is pseudo-invariant over A for every* $\varphi(w) \in L(A; \mathfrak{D})$ *;*
- *3.* $\mathcal{D} \times \neg \mathcal{D}$ *is pseudo-invariant over A.*

Proof 1⇒2 holds for any D by Proposition [23](#page-8-0) and 2⇒3 is obvious.

3⇒1. Assume \neg 1. By Proposition [16,](#page-6-1) there is an *A*-indiscernible sequence $\langle a_i : i \rangle$ ω such that $a_0 \in \mathcal{D} \leftrightarrow a_1 \in \mathcal{D}$, say $a_0 \in \mathcal{D}$ and $a_1 \notin \mathcal{D}$. Assume 2 for a contradiction. Then by Lemma [22](#page-7-0) there is $C \equiv D$ such that $\langle a_{2i}a_{2i+1} : i < \omega \rangle \subseteq C \times \neg C$. By Lemma [8,](#page-3-0) $e(\mathcal{C}) = e(\mathcal{D})$ has infinite vc-dimension contradicting the assumptions.

The hypothesis of finite vc-dimension is necessary. Assume *T* is the theory of dense linear orders without endpoints. Let D be a discretely ordered subset of U of cardinality κ . Then $\mathcal D$ is not invariant and $e(\mathcal D)$ has infinite vc-dimension. One can verify that $\mathcal{D} \times \neg \mathcal{D}$ is pseudo-invariant over \varnothing directly from the definition.

It is well known that under the hypothesis that T is NIP, Lascar invariance of global types is equivalent to non-dividing (equivalently, non-forking), see [\[8,](#page-9-6) Proposition 5.21]. Then, when *T* is NIP, a global type $p(x)$ does not divide over *A* if and only if $\mathcal{D}_{p,\omega} \times \neg \mathcal{D}_{p,\omega}$ is pseudo-invariant over *A* for every $\varphi(x, z)$.

However, pseudo-invariance is too strong a requirement to coincide with nondividing in general. A counter-example may be found even when *T* is simple. Let *T* be the theory of the random graph and let D be a complete subgraph of U . Let $p(x)$ be the unique global type that contains

$$
\big\{r(x,a)\,:\,a\in\mathcal{D}\big\}\,\cup\,\big\{\neg r(x,a)\,:\,a\notin\mathcal{D}\big\}\,\cup\,\big\{x\!\not\equiv\!a\,:\,a\in\mathcal{U}\big\}.
$$

Then $p(x)$ does not fork over the empty set. On the other hand, D is not pseudoinvariant: let $\langle a_i : i \rangle \langle \omega \rangle$ be an indiscernible sequence such that $a_0 \in \mathcal{D} \land \neg r(a_0, a_1)$. As every $\mathcal{C} \equiv \mathcal{D}$ is a complete graph, no such \mathcal{C} may contain $\langle a_i : i \rangle$.

References

- 1. Baisalov, Y., Poizat, B.: Paires de structures o-minimales. J. Symb. Log. **63**(2), 570–578 (1998)
- 2. Casanovas, E.: Simple Theories and Hyperimaginaries. Lecture Notes in Logic, vol. 39. Cambridge University Press, Cambridge (2011)
- 3. Chernikov, A., Simon, P.: Externally definable sets and dependent pairs. Isr. J. Math. **194**(1), 409–425 (2013). [arXiv:1007.4468](http://arxiv.org/abs/1007.4468)
- 4. Chernikov, A., Pillay, A., Simon, P.: External definability and groups in NIP theories. (2014). [arXiv:1307.4794](http://arxiv.org/abs/1307.4794)
- 5. Pillay, A.: On externally definable sets and a theorem of Shelah. In: Festchrift, F. (ed.) Studies in Logic, College Publications, London (2007)
- 6. Poizat, B.: Cours de théorie des modèles. Bruno Poizat, Lyon (1985)
- 7. Shelah, S.: Dependent first order theories, continued. Isr. J. Math. **173**(1), 1–60 (2009). [arXiv:math/0504197](http://arxiv.org/abs/math/0504197)
- 8. Simon, Pierre.: A guide to NIP theories. (2014). [arXiv:1202.2650](http://arxiv.org/abs/1202.2650)
- 9. Tent, K., Ziegler, M.: A Course in Model Theory. Lecture Notes in Logic vol. 40. Cambridge University Press, Cambridge (2012)
- 10. Ziegler, M.: Chernikov and Simon's Proof of Shelah's Theorem. Unpublished notes available on the author's homepage (2010)