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Abstract We define a forcing poset which adds a club subset of a given fat sta-
tionary set S ⊆ ω2 with finite conditions, using S-adequate sets of models as side
conditions. This construction, together with the general amalgamation results con-
cerning S-adequate sets on which it is based, is substantially shorter and simpler than
our original version in Krueger (Arch Math Logic 53(1–2):119–136, 2014).
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The theory of adequate sets introduced in [2] provides a framework for adding generic
objects onω2 with finite conditions using countable models as side conditions. Roughly
speaking, an adequate set is a set of models A such that for all M and N in A, M and
N are either equal or membership comparable below their comparison point βM,N .
A technique which was central to the development of adequate sets in [2], as well as
to our original forcing for adding a club to a fat stationary subset of ω2 in [3], involves
taking an adequate set A and enlarging it to an adequate set which contains certain
initial segments of models in A.

In this paper we prove amalgamation results for adequate sets which avoid the
method of adding initial segments of models. It turns out that these new results drasti-
cally simplify the amalgamation results from [3] for strongly adequate sets. As a result
we are able to develop a forcing poset for adding a club to a given fat stationary subset
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162 J. Krueger

of ω2 with finite conditions which is substantially shorter than our original argument
in [3].

Forcing posets for adding a club to ω2 with finite conditions were originally de-
veloped by Friedman [1] and Mitchell [5], and then later by Neeman [6]. Adequate
set forcing was introduced in [2] in an attempt to simplify and generalize the methods
used by the first two authors. This new framework is also flexible as it admits useful
variations. For example, in a subsequent paper [4] we show that the forcing poset for
adding a club presented below can be modified to preserve CH, answering a problem
of Friedman [1].

1 Background

For the remainder of the paper assume that (1) 2ω1 = ω2 and (2) there exists a thin
stationary set Y ⊆ Pω1(ω2), which means that Y is stationary and for all β < ω2,
|{a ∩ β : a ∈ Y}| ≤ ω1. Without loss of generality assume that for all a ∈ Y and
β < ω2, a ∩ β ∈ Y . By (1) we can fix a bijection π∗ : ω2 → H(ω2). Consider the
structure (H(ω2),∈, π∗). The bijection π∗ induces definable Skolem functions for
this structure. For any set x ⊆ H(ω2), let Sk(x) denote the closure of x under these
Skolem functions.

Let C∗ denote the set of α < ω2 such that Sk(α) ∩ ω2 = α. Easily C∗ is a club.
Let � = C∗ ∩ cof(ω1). Let X be the set of a in Y such that Sk(a) ∩ ω2 = a.
The set X is the collection of side conditions which we use in our forcing posets. If
x and y are in X ∪ �, a straightforward argument shows that Sk(x) = π∗[x] and
Sk(x) ∩ Sk(y) = Sk(x ∩ y). It follows that if x ∈ X and β ∈ �, then x ∩ β ∈ X .

For M ∈ X , define �M as the set β ∈ � such that �∩ [sup(M ∩β), β) = ∅. Note
that for β < ω2, β ∈ �M iff β = min(�\ sup(M ∩ β)).

Lemma 1.1 The following statements hold:

(1) If β ∈ � and M ∈ P(β) ∩ X , then M ∈ Sk(β). In particular, if M ∈ X and
β ∈ �, then M ∩ β ∈ Sk(β).

(2) If M and N are in X , then �M ∩ �N has a maximum element. Let βM,N :=
max(�M ∩ �N ).

(3) (M ∪ lim(M)) ∩ (N ∪ lim(N )) ⊆ βM,N .

(1) follows from the thinness of Y . See Proposition 1.11 of [2]. (2) is proved in Lemma
2.4 of [2]. The maximum ordinal βM,N is called the comparison point of M and N .
(3) is proved as Proposition 2.6 of [2].

Definition 1.2 Let A be a subset of X . We say that A is adequate if for all M and N
in A, either M ∩ βM,N ∈ Sk(N ), N ∩ βM,N ∈ Sk(M), or M ∩ βM,N = N ∩ βM,N .

Suppose that {M, N } is adequate. If M ∩ βM,N ∈ Sk(N ) then we write M < N . If
either M ∩ βM,N ∈ Sk(N ) or M ∩ βM,N = N ∩ βM,N then we write M ≤ N .

Lemma 1.3 Let {M, N } be adequate. Then M < N iff M ∩ω1 < N ∩ω1, and M ≤ N
iff M ∩ ω1 ≤ N ∩ ω1.
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The lemma follows easily from the fact that ω1 ≤ βM,N . Therefore if {M, N } is
adequate, then the relationship between M and N is determined by their intersections
with ω1. If A is an adequate set, then M ∈ A is minimal in A if M ∩ ω1 ≤ N ∩ ω1 for
all N ∈ A. If M is minimal, then for all N ∈ A, M ≤ N .

Lemma 1.4 Suppose that M < N. Then Sk(M ∩ βM,N ) is a member and a subset of
Sk(N ). Also every limit point of M ∩ βM,N and every initial segment of M ∩ βM,N is
in Sk(N ).

This follows from the elementarity of Sk(N ), the fact that Sk(M ∩ βM,N ) =
π∗[M ∩ βM,N ], and M ∩ βM,N being countable.

Definition 1.5 Suppose that {M, N } is adequate. Define RM (N ) as the set of β satis-
fying either:

(1) there is γ ∈ M\βM,N such that β = min(N\γ ), or
(2) N ≤ M and β = min(N\βM,N ).

Note that if M < N then the ordinal min(N\βM,N ) is not required to be in RM (N ).
The elements of RM (N ) are called remainder points of N over M . The set RM (N )

is finite; for a proof see Proposition 2.9 of [2]. If A is adequate and N ∈ A, let
RA(N ) = ⋃{RM (N ) : M ∈ A}. Let RA = ⋃{RM (K ) : M, K ∈ A}.

For the purposes of adding a club to a fat stationary set, we need a stronger version
of adequate. The next property was called strongly adequate in [3].

Definition 1.6 Let S be a subset of ω2 such that S ∩ cof(ω1) is stationary and is a
subset of �. A set A ⊆ X is S-adequate if A is adequate and for all M and N in A,
RM (N ) ⊆ S.

If A is S-adequate, N ∈ X , and A ⊆ Sk(N ), then easily A ∪ {N } is S-adequate.
Below we record some technical facts, most of which follow by elementary argu-

ments from the definitions. The reader would benefit by proving these results as a
warm up before proceeding. Any difficulties in doing so can be remedied by reading
Sects. 1–3 of [2].

Lemma 1.7 Let K , L, and M be in X .

(1) If M ⊆ L then �M ⊆ �L . Hence βK ,M ≤ βK ,L .
(2) If L ⊆ β and β ∈ �, then �L ⊆ β + 1. Therefore βK ,L ≤ β.
(3) If β < βK ,L and β ∈ �, then K ∩ [β, βK ,L) 
= ∅.
(4) Suppose that K ∩ βK ,M ⊆ L. Then βK ,M ≤ βL ,M .

Proof (4) By definition βK ,M ∈ �M . By our assumptions, sup(K ∩βK ,M ) ≤ sup(L ∩
βK ,M ). Since βK ,M ∈ �K , βK ,M = min(�\ sup(K ∩ βK ,M )). So clearly βK ,M =
min(�\ sup(L ∩ βK ,M )). Hence βK ,M ∈ �L . Since βL ,M is maximal in �L ∩ �M ,
βK ,M ≤ βL ,M . ��
Lemma 1.8 Let M and N be in X and assume that {M, N } is adequate.

(1) If there is ζ ∈ M\N with ζ < βM,N , then N < M.
(2) If M ≤ N then M ∩ βM,N = M ∩ N.
(3) If β < βM,N and β ∈ �, then (M ∩ N )\β 
= ∅.
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164 J. Krueger

2 Amalgamation of S-adequate sets

The basic method for preserving cardinals when forcing with side conditions is the
amalgamation of conditions over elementary substructures. In this section we prove
general results for amalgamating S-adequate sets over countable structures and struc-
tures of size ω1. This material is a simplification of the analogous results from [3].

Lemma 2.1 Let A be an adequate set. Let ζ ∈ RA and K ∈ A with K\ζ 
= ∅. Then
min(K\ζ ) ∈ RA.

Proof The proof splits into a large number of cases. Fix M and L in A such that
ζ ∈ RM (L). Let σ := min(K\ζ ) and we will show that σ ∈ RA. If ζ = σ , then we
are done since ζ ∈ RA. So assume that ζ < σ . Then ζ /∈ K . If βK ,L ≤ ζ , then since
ζ ∈ L , σ ∈ RL(K ) and we are done. So assume that ζ < βK ,L . As ζ ∈ L\K , it
follows that K < L .

If βK ,L ≤ σ , then σ = min(K\βK ,L), so σ ∈ RL(K ) and we are done. So assume
that σ < βK ,L . Since K ∩ βK ,L ⊆ L , it follows that σ ∈ L and K ∩ σ ⊆ L .

Case 1 L ≤ M . Then K < M . Since ζ ∈ RM (L), βL ,M ≤ ζ . So σ ∈ L\βL ,M , and
hence σ /∈ M . Therefore σ ∈ K\M . Since K < M , this implies that βK ,M ≤ σ .
Hence K ∩ βK ,M ⊆ L . By Lemma 1.7(4), βK ,M ≤ βL ,M .

Subcase 1.1 ζ = min(L\γ ) for some γ ∈ M\βL ,M . Since βK ,M ≤ βL ,M , γ ∈
M\βK ,M and easily σ = min(K\γ ). So σ ∈ RM (K ).

Subcase 1.2 ζ = min(L\βL ,M ). Let σ ′ := min(K\βK ,M ), which is in RM (K ). We
claim that σ ′ = σ . Since K ∩ ζ ⊆ L , K ∩ [βL ,M , ζ ) = ∅. So if σ ′ < σ , then
σ ′ < βL ,M . But then σ ′ ∈ L ∩ βL ,M and hence σ ′ ∈ M since L ≤ M . Hence
σ ′ ∈ (K ∩ M)\βK ,M , which is impossible.

Case 2: M < L . Then there is γ ∈ M\βL ,M such that ζ = min(L\γ ). Since K ∩σ ⊆
L , σ = min(K\γ ). So if βK ,M ≤ γ , then σ ∈ RM (K ). Assume that βK ,M > γ .
Then since γ ∈ M\K , K < M . If βK ,M ≤ σ , then σ = min(K\βK ,M ) and hence
σ ∈ RM (K ). Assume that βK ,M > σ . Then σ ∈ M . But then σ ∈ (L ∩ M)\βL ,M ,
which is impossible. ��

For the rest of the section assume that S is a subset of ω2 such that S ∩ cof(ω1) is
stationary and is a subset of �.

The next result describes the amalgamation of adequate sets over countable models,
and replaces the material of 2.2–2.11 of [3].

Proposition 2.2 Let A be adequate and let N ∈ A. Let B be adequate and assume
that A ∩ Sk(N ) ⊆ B ⊆ Sk(N ). Suppose that:

(1) for all M < N in A, there is M ′ ∈ B such that M ∩ βM,N = M ′ ∩ βM,N ;
(2) there is N ′ in B such that RA(N ) ⊆ RB(N ′);
(3) for all M < N in A, M ′ < N ′ and βM,N = βM ′,N ′ .

Then A ∪ B is adequate and RA∪B = RA ∪ RB. Therefore if A and B are S-adequate,
then so is A ∪ B.
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Proof Let M ∈ A and L ∈ B. We will prove that either M ≤ L or L < M , and
RL(M) and RM (L) are subsets of RA ∪ RB .

First suppose that N ≤ M . Since L ∈ Sk(N ), βL ,M ≤ βM,N , and so L ∩ βL ,M ∈
Sk(N ) ∩ Sk(βM,N ) = Sk(N ∩ βM,N ) ⊆ Sk(M). This proves that L < M . Let ζ ∈
RL(M). Then there exists γ ∈ L\βL ,M such that ζ = min(M\γ ). Since γ ∈ N\M
and N ≤ M , βM,N ≤ γ . So ζ is in RN (M).

Now consider ζ ∈ RM (L). Then ζ is equal to either (a) min(L\βL ,M ), or (b)
min(L\γ ) for some γ ∈ M\βL ,M . Since ζ ∈ N\M and N ≤ M , βM,N ≤ ζ . So
βL ,M ≤ βM,N ≤ ζ . Let ξ := min(N\βM,N ). Since N ≤ M , ξ ∈ RM (N ). So by
property (2), ξ ∈ RB . (a) If ζ = min(L\βL ,M ), then clearly ζ = min(L\ξ). Since ξ is
in RB , ζ ∈ RB by Lemma 2.1. (b) If γ ≤ βM,N , then again ζ = min(L\ξ) so ζ ∈ RB .
Otherwise γ > βM,N . Then γ ∈ M\βM,N . Let τ := min(N\γ ). Then τ ∈ RM (N )

and hence τ ∈ RB . Clearly ζ = min(L\τ), so ζ ∈ RB by Lemma 2.1.
Assume now that M < N . Since L ⊆ N , βL ,M ≤ βM,N . As M ∩ βM,N =

M ′ ∩βM,N , M ∩βL ,M ⊆ M ′. By Lemma 1.7(4), βL ,M ≤ βL ,M ′ . We claim that either
βL ,M = βL ,M ′ or βL ,M ′ > βM,N . Suppose that βL ,M < βL ,M ′ . Since {L , M ′} is
adequate, by Lemma 1.8(3) fix θ ∈ (L ∩ M ′)\βL ,M . Then θ < βL ,M ′ . If θ < βM,N ,
then θ ∈ M ′ ∩ βM,N = M ∩ βM,N . So θ ∈ (L ∩ M)\βL ,M , which is impossible.
Hence βM,N ≤ θ < βL ,M ′ .

Since B is adequate, either M ′ ≤ L or L < M ′. Suppose that M ′ ≤ L . Then
M ′∩βL ,M ′ is either equal to L∩βL ,M ′ or is in Sk(L). SinceβL ,M ≤ βL ,M ′ , M ′∩βL ,M is
either equal to L ∩βL ,M or is in Sk(L). But as βL ,M ≤ βM,N , M ′∩βL ,M = M ∩βL ,M .
So M ∩ βL ,M is either equal to L ∩ βL ,M or is in Sk(L). Therefore M ≤ L . Note that
L and M compare the same way as do L and M ′.

Consider ζ ∈ RL(M). Then ζ is equal to either (a) min(M\βL ,M ) or (b) min(M\γ )

for some γ ∈ L\βL ,M . First assume that ζ < βM,N . Then ζ ∈ M ∩ βM,N = M ′ ∩
βM,N . Since M ′ ≤ L and ζ ∈ M ′\L , we must be in the case that βL ,M = βL ,M ′ . In case
(a), clearly ζ = min(M ′\βL ,M ′), and in case (b), γ ∈ L\βL ,M ′ and ζ = min(M ′\γ ).
In either case, ζ ∈ RL(M ′). Now assume that βM,N ≤ ζ . If (a) holds or if (b) holds
and γ < βM,N , then clearly ζ = min(M\βM,N ) and hence ζ ∈ RN (M). Otherwise
(b) holds and βM,N ≤ γ . Since γ ∈ N , ζ ∈ RN (M).

Now let ζ ∈ RM (L). Then either (a) L ∩βL ,M = M ∩βL ,M and ζ = min(L\βL ,M )

or (b) ζ = min(L\γ ) for some γ ∈ M\βL ,M . Assume (a). Then L ∩ βL ,M ′ =
M ′ ∩ βL ,M ′ . If βL ,M = βL ,M ′ , then ζ = min(L\βL ,M ′) and hence is in RM ′(L).
Otherwise βM,N < βL ,M ′ . Note that ζ cannot be below βM,N , because otherwise it
would be in L∩βM,N = M ′∩βM,N = M∩βM,N , and hence in (L∩M)\βL ,M , which is
impossible. Therefore ζ = min(L\βM,N ). By Lemma 1.8(3), L∩M ′ meets the interval
[βM,N , βL ,M ′). Hence ζ < βL ,M ′ . Then ζ = min(M ′\βM,N ). But βM,N = βM ′,N ′
and M ′ < N ′. So ζ ∈ RN ′(M ′).

Now assume (b). First suppose that βL ,M = βL ,M ′ . Then γ ∈ M\βL ,M ′ . If γ <

βM,N , then γ ∈ M ′. So ζ = min(L\γ ) and γ ∈ M ′\βL ,M ′ , and hence ζ is in RM ′(L).
Otherwise γ ∈ M\βM,N . Let ξ := min(N\γ ). Then ξ ∈ RM (N ) and hence ξ ∈ RB .
Clearly ζ = min(L\ξ), so ζ ∈ RB by Lemma 2.1. Now assume that βM,N < βL ,M ′ .
We claim that γ ≥ βM,N . Otherwise γ ∈ M∩βM,N = M ′∩βM,N . So γ ∈ M ′∩βL ,M ′ ,
and since M ′ ≤ L , this implies that γ ∈ L . But then γ ∈ (L ∩ M)\βL ,M which is
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impossible. Since γ ∈ M\βM,N , ξ := min(N\γ ) is in RM (N ) and hence in RB .
Clearly ζ = min(L\ξ), so ζ ∈ RB by Lemma 2.1.

In the final comparison, suppose that L < M ′. Then L ∩ βL ,M ′ ∈ Sk(M ′). Since
βL ,M ≤ βL ,M ′ , βM,N , L ∩ βL ,M ∈ Sk(M ′) ∩ Sk(βM,N ) = Sk(M ′ ∩ βM,N ) =
Sk(M ∩βM,N ) ⊆ Sk(M). So L < M . Let ζ ∈ RL(M) be given. Then ζ = min(M\γ )

for some γ ∈ L\βL ,M . If γ ≥ βM,N , then ζ ∈ RN (M). Suppose that γ < βM,N . If
βL ,M ′ > βM,N then since L < M ′, γ ∈ M ′. But then γ ∈ M ′ ∩ βM,N = M ∩ βM,N .
So γ ∈ (L ∩ M)\βL ,M which is impossible. Therefore βL ,M = βL ,M ′ . If ζ < βM,N ,
then clearly ζ = min(M ′\γ ), and ζ is in RL(M ′). Otherwise γ < βM,N ≤ ζ . Then
clearly ζ = min(M\βM,N ). Since M < N , ζ ∈ RN (M).

Consider ζ ∈ RM (L). Then ζ is equal to either (a) min(L\βL ,M ) or (b) min(L\γ )

for some γ ∈ M\βL ,M . First assume that βL ,M = βL ,M ′ . Then (a) implies that
ζ ∈ RM ′(L). Suppose (b). If γ < βM,N , then γ ∈ M ∩ βM,N = M ′ ∩ βM,N , so
γ ∈ M ′\βL ,M ′ . Therefore ζ ∈ RM ′(L). Assume that βM,N ≤ γ . Let ξ := min(N\γ ).
Since γ ∈ M , ξ ∈ RM (N ) and hence ξ ∈ RB . Clearly ζ = min(L\ξ), so ζ ∈ RB by
Lemma 2.1.

Now assume that βM,N < βL ,M ′ . We claim that ζ ≥ βM,N . Otherwise since L <

M ′, ζ ∈ M ′ ∩βM,N = M ∩βM,N . But then ζ ∈ (L ∩ M)\βL ,M , which is impossible.
In case (a) or in case (b) when γ ≤ βM,N , ζ = min(L\βM,N ). By Lemma 1.7(3),
ζ < βL ,M ′ . Recall that βM,N = βM ′,N ′ and M ′ < N ′. Let τ := min(M ′\βM,N ),
which is in RN ′(M ′). Then ζ = min(L\τ), so ζ ∈ RB by Lemma 2.1. Suppose case
(b) and γ > βM,N . Then γ ∈ M\βM,N . Let ξ := min(N\γ ), which is in RM (N ) and
hence in RB . Then clearly ζ = min(L\ξ), so ζ ∈ RB by Lemma 2.1. ��

The next proposition decribes the amalgamation of adequate sets over models of
size ω1 and replaces 2.12–2.15 of [3].

Proposition 2.3 Let A be adequate and β∗ ∈ �. Let B be adequate and assume
that A ∩ Sk(β∗) ⊆ B ⊆ Sk(β∗). Suppose that there is β < β∗ in � such that for all
M ∈ A, there is M ′ in B with M ∩β∗ = M ′ ∩β. Let rA = {min(M\β∗) : M ∈ A} and
rB = {min(K\β) : K ∈ B}. Then A∪B is adequate and RA∪B ⊆ RA∪RB∪rA∪rB. In
particular, if A and B are S-adequate, rA ⊆ S, and rB ⊆ S, then A∪ B is S-adequate.

Proof Let M ∈ A and L ∈ B. Note that M ∩ β∗ ⊆ β and M ∩ β = M ′ ∩ β.
Since L ⊆ β∗, βL ,M ≤ β∗ by Lemma 1.7(2). We claim that βL ,M ≤ β. Otherwise
β < βL ,M , which implies that M ∩ [β, βL ,M ) 
= ∅ by Lemma 1.7(3). But then
M ∩[β, β∗) 
= ∅, which is false. Since βL ,M ≤ β, M ∩βL ,M ⊆ M ′. So βL ,M ≤ βL ,M ′
by Lemma 1.7(4).

We claim that either βL ,M = βL ,M ′ or βL ,M ′ > β. Assume that βL ,M ′ > βL ,M .
Since {L , M ′} is adequate, by Lemma 1.8(3) we can fix θ ∈ (L ∩ M ′)\βL ,M . Then
θ ∈ βL ,M ′ . If θ < β, then θ ∈ M ′ ∩ β = M ∩ β, so θ ∈ (L ∩ M)\βL ,M , which is
impossible. Hence β ≤ θ < βL ,M ′ .

Since L and M ′ are in B, either M ′ ≤ L or L < M ′. Assume that M ′ ≤ L . Then
M ′ ∩βL ,M ′ is either equal to L ∩βL ,M ′ or is a member of Sk(L). Since βL ,M ≤ βL ,M ′ ,
M ′ ∩ βL ,M is either equal to L ∩ βL ,M or is a member of Sk(L). But as βL ,M ≤ β,
M ′ ∩ βL ,M = M ∩ βL ,M . So M ≤ L . Also note that L and M compare the same way
as do L and M ′.
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Let ζ ∈ RM (L). Then either (a) ζ = min(L\βL ,M ) and M ∩ βL ,M = L ∩ βL ,M ,
or (b) ζ = min(L\γ ) for some γ ∈ M\βL ,M . Assume (a). Then M ′ ∩ βL ,M ′ =
L ∩ βL ,M ′ . If βL ,M = βL ,M ′ then clearly ζ ∈ RM ′(L). Otherwise βL ,M ′ > β. Then
L ∩ β = M ′ ∩ β = M ∩ β. Since ζ /∈ M , ζ ≥ β. So ζ = min(L\β) and ζ ∈ rB .

Assume (b). Since L ⊆ β∗ and ζ exists, γ < β∗, and hence γ < β. So γ ∈ M ′.
We claim that βL ,M = βL ,M ′ . Otherwise βL ,M ′ > β, so γ ∈ M ′ ∩ βL ,M ′ ⊆ L . So
γ ∈ (L ∩ M)\βL ,M , which is impossible. So βL ,M = βL ,M ′ . Then γ ∈ M ′\βL ,M ′ ,
so ζ ∈ RM ′(L).

Now consider ζ in RL(M). Then ζ is equal to either (a) min(M\βL ,M ), or (b)
min(M\γ ) for some γ ∈ L\βL ,M . If ζ ≥ β∗, then since βL ,M ≤ β∗ and L ⊆ β∗,
ζ = min(M\β∗). So ζ ∈ rA. Otherwise ζ < β. Hence ζ ∈ M ′. Since M ′ ≤ L and ζ

is not in L , βL ,M = βL ,M ′ . Hence in either case (a) or (b), ζ ∈ RL(M ′).
Suppose that L < M ′. Then L ∩ βL ,M ′ ∈ Sk(M ′). Since βL ,M ≤ βL ,M ′ , β,

L ∩ βL ,M ∈ Sk(M ′) ∩ Sk(β) = Sk(M ′ ∩ β) ⊆ Sk(M). So L < M .
Let ζ ∈ RL(M). Then there is γ ∈ L\βL ,M such that ζ = min(M\γ ). If ζ ≥ β∗,

then since γ < β∗, ζ = min(M\β∗) and so ζ ∈ rA. Otherwise ζ < β and ζ ∈ M ′.
Then γ < β. If β < βL ,M ′ , then since L < M ′, γ ∈ M ′∩β ⊆ M , which is impossible
since γ ≥ βL ,M . So βL ,M = βL ,M ′ . Hence ζ ∈ RL(M ′).

Finally, consider ζ ∈ RM (L). Then ζ is equal to either (a) min(L\βL ,M ), or (b)
min(L\γ ) for some γ ∈ M\βL ,M . Assume (a). If ζ ≥ β, then since βL ,M ≤ β,
ζ = min(L\β) and hence ζ ∈ rB . Otherwise ζ < β. Since ζ /∈ M , ζ /∈ M ′. As
L < M ′, this implies that βL ,M = βL ,M ′ . Hence ζ ∈ RM ′(L).

Assume (b). Since L ⊆ β∗ and ζ exists, clearly γ < β. Hence γ ∈ M ′. If
βL ,M = βL ,M ′ , then γ ∈ M ′\βL ,M ′ , so ζ ∈ RM ′(L). Otherwise βL ,M ′ > β. Since
L < M ′, if ζ < β then ζ ∈ M ′ ∩ β ⊆ M , which contradicts that ζ is not in M . So
ζ ≥ β. But γ < β. So ζ = min(L\β) and hence ζ ∈ rB . ��

3 Adding a club

Let S be a fat stationary subset of ω2. That means that for every club D ⊆ ω2, S ∩ D
contains a closed subset of order type ω1 +1. We will define a forcing poset with finite
conditions which preserves cardinals and adds a club subset of S.

Note that since S is fat, S ∩ cof(ω1) is stationary. Thinning out S if necessary using
fatness, assume that S ∩ cof(ω1) ⊆ � and for all α ∈ S ∩ cof(ω1), S ∩ α contains
a club subset of α. Let Z denote the set of N in X such that sup(N ) ∈ S and for all
α ∈ N ∩ S, sup(N ∩ α) ∈ S. A straighforward argument shows that Z is a stationary
subset of Pω1(ω2).

Pairs of ordinals 〈α, α′〉 and 〈γ, γ ′〉 are said to be overlapping if either α < γ ≤ α′
or γ < α ≤ γ ′; otherwise they are nonoverlapping. A pair 〈α, α′〉 and an ordinal ζ

are overlapping if α < ζ ≤ α′, and otherwise are nonoverlapping.

Definition 3.1 Let P be the forcing poset whose conditions are of the form p =
(x p, Ap) satisfying:

(1) x p is a finite set of nonoverlapping pairs of the form 〈α, α′〉, where α ≤ α′ < ω2
and α ∈ S;

(2) Ap is a finite S-adequate subset of Z;
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(3) let M ∈ Ap and 〈α, α′〉 ∈ x p; if M ∩ [α, α′] 
= ∅, then α and α′ are in M ; if
M ∩ [α, α′] = ∅ and M\α 
= ∅, then min(M\α) ∈ S;

(4) if ζ ∈ RAp then ζ is nonoverlapping with any pair in x p.

Let q ≤ p if x p ⊆ xq and Ap ⊆ Aq .1

For a condition p, a pair 〈α, α′〉 can be added to p if (x p ∪ {〈α, α′〉}, Ap) is a
condition (and in that case is obviously below p).

Let p be a condition and ζ ∈ S. Then 〈ζ, ζ 〉 can be added to p provided that there
is no pair 〈α, α′〉 in x such that α < ζ ≤ α′, and for any N in Ap such that ζ /∈ N and
N\ζ 
= ∅, min(N\ζ ) ∈ S.

In particular, suppose that ζ ∈ RAp . Then ζ ∈ S and ζ does not overlap any pair in
x p. Also if N ∈ Ap, ζ /∈ N , and N\ζ 
= ∅, then by Lemma 2.1, min(N\ζ ) ∈ RAp ,
so min(N\ζ ) ∈ S. It follows that 〈ζ, ζ 〉 can be added to p. Consequently there are
densely many conditions p satisfying that for all ζ ∈ RAp , 〈ζ, ζ 〉 ∈ x p.

If (x, A) satisfies properties (1), (2), and (3), and for all ζ ∈ RAp , 〈ζ, ζ 〉 ∈ x p, then
p is a condition. For in that case, property (4) follows from property (1).

Let Ḋ be a P-name such that P forces

Ḋ = {α : ∃p ∈ Ġ ∃γ 〈α, γ 〉 ∈ x p}.

Clearly Ḋ is forced to be a subset of S. We will show that P preserves cardinals and
forces that Ḋ is club in ω2.

Lemma 3.2 Let p be a condition. Suppose that 〈α, α′〉 ∈ x p, N ∈ Ap, N∩[α, α′] = ∅,
and N\α 
= ∅. Let β := min(N\α). Then 〈β, β〉 can be added to p.

Proof Note that β ∈ S. Let 〈γ, γ ′〉 be in x , and suppose for a contradiction that
γ < β ≤ γ ′. Since β ∈ N , N ∩ [γ, γ ′] 
= ∅. Hence γ and γ ′ are in N . Since γ < β

and β = min(N\α), γ < α. But then γ < α ≤ γ ′, contradicting that p is a condition.
Suppose that M ∈ Ap, β /∈ M , and M\β 
= ∅. We will show that ζ := min(M\β)

is in S. If βM,N ≤ β, then since β ∈ N , ζ is in RN (M) and hence in S. Assume that
βM,N > β. Then as β ∈ N\M , M < N . As α ≤ α′ < β < βM,N and M∩βM,N ⊆ N ,
M ∩ [α, α′] = ∅. So min(M\α) ∈ S. But easily min(M\α) = ζ . ��
Proposition 3.3 The forcing poset P preserves ω1.

Proof Let p � ġ : ω → ω1 is a function. Fix χ > ω2 regular with ġ ∈ H(χ). Let N∗
be a countable elementary substructure of H(χ) such that P, p, ġ, π∗, C∗,�,X , S,

Z ∈ N∗ and N := N∗ ∩ ω2 ∈ Z . This is possible as Z is stationary. Note that since
π∗ ∈ N∗, N∗ ∩ H(ω2) = π∗[N ] = Sk(N ). In particular, N∗ ∩ P ⊆ Sk(N ).

Let q := (x p, Ap ∪ {N }). We will prove that q is N∗-generic. It follows that q
forces that the range of ġ is contained in N , so ġ does not collapse ω1. Fix a dense set
D ∈ N∗, and we will show that N∗ ∩ D is predense below q.

1 The difference between this forcing poset and the one we defined in [3] is the additional requirement (4),
and a slightly different definition of pairs overlapping.
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Let r ≤ q. Extending r if necessary using Lemma 3.2, assume that whenever
〈α, α′〉 ∈ xr , M ∈ Ar , M ∩ [α, α′] = ∅, and M\α is nonempty, then 〈min(M\α),

min(M\α)〉 ∈ xr . Similarly assume that for all ζ ∈ RAr , 〈ζ, ζ 〉 ∈ xr .
Let M0, . . . , Mk list the sets M in Ar with M < N . For each i ≤ k, βMi ,N ∈

�Mi implies that βMi ,N = min(�\(sup(Mi ∩ βMi ,N ))), and hence βMi ,N ∈ N by
elementarity.

The objects r , N , and M0, . . . , Mk witness the following statement: there exists v,
N ′, and M ′

0, . . . , M ′
k satisfying:

(1) v ∈ P;
(2) xr ∩ Sk(N ) ⊆ xv , Ar ∩ Sk(N ) ⊆ Av , and M ′

0, . . . , M ′
k and N ′ are in Av;

(3) RAr (N ) = RAv (N ′);
(4) for all i ≤ k, M ′

i < N ′, Mi ∩ βMi ,N = M ′
i ∩ βMi ,N , and βMi ,N = βM ′

i ,N ′ .

The parameters of the above statement, namely P, xr ∩ Sk(N ), Ar ∩ Sk(N ), RAr (N ),
and Mi ∩ βMi ,N and βMi ,N for i ≤ k, are all members of N∗. By the elementarity of
N∗, fix v, N ′, and M ′

0, . . . , M ′
k in N∗ which satisfy the same statement.

Fix w ≤ v in N∗ ∩ D. Extending w if necessary, assume that for all ζ ∈ RAw ,
〈ζ, ζ 〉 ∈ xw. We will prove that w is compatible with r , which finishes the proof.
Define t by letting xt := xr ∪ xw and At := Ar ∪ Aw. We will show that t is a
condition. Then clearly t ≤ r, w and we are done.

(1)–(4) Imply that the hypotheses of Proposition 2.2 hold for A = Ar and B = Aw.
It follows that At is S-adequate and Rt = RAr ∪ RAw . So by the choice of r and w,
if ζ ∈ RAt then 〈ζ, ζ 〉 ∈ xt . Thus t is a condition provided that requirements (1), (2),
and (3) in the definition of P are satisfied. We already know that (2) is true.

(1) Let 〈α, α′〉 ∈ xr and 〈γ, γ ′〉 ∈ xw be given. Suppose for a contradiction that
α < γ ≤ α′. Since γ ∈ N , N ∩ [α, α′] 
= ∅. So α and α′ are in N , and hence
〈α, α′〉 ∈ xw. This contradicts that w is a condition.

Now assume for a contradiction that γ < α ≤ γ ′. If N ∩ [α, α′] 
= ∅, then α and
α′ are in N and 〈α, α′〉 ∈ xw, which contradicts that w is a condition. Assume that
N ∩[α, α′] = ∅. Let ζ := min(N\α). Then by the choice of r , 〈ζ, ζ 〉 ∈ xr ∩ Sk(N ) ⊆
xw. But γ < ζ ≤ γ ′, which contradicts that w is a condition.

(3, 4) Let M ∈ Aw and 〈α, α′〉 ∈ xr be given. Assume that N ∩[α, α′] 
= ∅. Then α

and α′ are in N , and hence 〈α, α′〉 ∈ xw, and we are done sincew is a condition. Assume
that N ∩ [α, α′] = ∅. As M ∈ Sk(N ), M ∩ [α, α′] = ∅. Suppose that M\α 
= ∅. Let
ζ := min(N\α). Then ζ ∈ S, and by the choice of r , 〈ζ, ζ 〉 ∈ xr ∩ Sk(N ) ⊆ xw. If
ζ ∈ M then min(M\α) = ζ , which is in S. Otherwise ζ /∈ M , so min(M\ζ ) ∈ S
since w is a condition. But min(M\ζ ) = min(M\α).

Now let M ∈ Ar and 〈α, α′〉 ∈ xw be given. First suppose that M ∩[α, α′] = ∅ and
M\α is nonempty. Let ζ := min(M\α). Note that ζ = min(M\α′). If βM,N ≤ α′,
then since α′ ∈ N , ζ ∈ RN (M) and hence ζ ∈ S. Suppose that α′ < βM,N . Then
since α′ ∈ N\M , M < N . If βM,N ≤ ζ , then ζ = min(M\βM,N ). So ζ is in RN (M)

and hence in S. Finally suppose that βM,N > ζ . Then M ′ ∩ [α, α′] = M ∩[α, α′] = ∅
and ζ = min(M ′\α). So ζ ∈ S since w is a condition.

Now suppose that M ∩ [α, α′] 
= ∅, and we will show that α and α′ are in M . First
assume that there is ξ ∈ M∩[α, α′] such that βM,N ≤ ξ . Since ξ ∈ M , ζ := min(N\ξ)

123



170 J. Krueger

is in RM (N ) and α < ζ ≤ α′. Since ζ ∈ RM (N ), ζ ∈ RAw . But ζ and 〈α, α′〉 overlap,
which contradicts that w is a condition.

Otherwise M ∩ [α, α′] ⊆ βM,N . In particular, α < βM,N . Suppose that N ≤ M .
Then α ∈ M . If α′ < βM,N , then α′ ∈ M as well. Assume that α < βM,N ≤ α′. Since
N ≤ M , ζ := min(N\βM,N ) is in RM (N ) and hence in RAw . But α < ζ ≤ α′, which
contradicts that w is a condition.

Finally, assume that M < N . Then M ∩ βM,N = M ′ ∩ βM,N , so M ′ ∩ [α, α′] 
= ∅.
It follows that α and α′ are in M ′. So α ∈ M . If α′ < βM,N , then α′ ∈ M as
well. Otherwise βM,N ≤ α′. But βM,N = βM ′,N ′ and M ′ < N ′. Since α < βM,N ,
α ∈ M ′ ∩βM ′,N ′ and hence α ∈ N ′. So N ′ ∩ [α, α′] 
= ∅, which implies that α′ ∈ N ′.
So α′ ∈ (M ′ ∩ N ′)\βM ′,N ′ , which is impossible. ��
Proposition 3.4 The forcing poset P preserves ω2.

Proof Let p � ġ : ω1 → ω2 is a function. Fix χ > ω2 regular such that ġ ∈ H(χ).
Let N∗ ≺ H(χ) be of size ω1 such that P, p, ġ, π∗, C∗,�,X , S,Z ∈ N∗ and
β∗ := N∗ ∩ ω2 ∈ S ∩ cof(ω1). This is possible since S ∩ cof(ω1) is stationary. Note
that since π∗ ∈ N∗, Sk(β∗) = π [β∗] = N∗∩ H(ω2). In particular, N∗∩P ⊆ Sk(β∗).

Let q := (x p ∪ {〈β∗, β∗〉}, Ap). We will show that q is N∗-generic. It follows that
q forces that N∗ is closed under ġ, and hence ġ does not collapse ω2. So fix a dense
open set D ∈ N∗, and we will show that N∗ ∩ D is predense below q.

Let r ≤ q be given. We will find a condition w in N∗ ∩ D which is compatible
with r . Extending r if necessary, assume that for all ζ ∈ RAr , 〈ζ, ζ 〉 ∈ xr . Also by
Lemma 3.2 assume that whenever M ∈ Ar , M\β∗ 
= ∅, and ξ = min(M\β∗), then
〈ξ, ξ 〉 ∈ xr . Note that if M ∈ Ar and M\β∗ 
= ∅, then min(M\β∗) ∈ S. Also note
that for all 〈α, α′〉 ∈ xr , if α < β∗, then α′ < β∗.

Let M0, . . . , Mk enumerate Ar . The objects r , β∗, and M0, . . . , Mk witness the
following statement: there exists v, β, and M ′

0, . . . , M ′
k satisfying:

(1) v ∈ P;
(2) β ∈ S ∩ cof(ω1) and 〈β, β〉 ∈ xv;
(3) xr ∩ N∗ ⊆ xv , Ar ∩ N∗ ⊆ Av , and M ′

0, . . . , M ′
k ∈ Av;

(4) for all i ≤ k, Mi ∩ β∗ = M ′
i ∩ β.

The parameters P, S, xr ∩ N∗, Ar ∩ N∗, and Mi ∩ β∗ for i ≤ k are in N∗. By
elementarity, fix v, β, and M ′

0, . . . , M ′
k in N∗ which satisfy the same properties.

Extend v to w in D ∩ N∗. Extending w if necessary, assume that for all ζ ∈ RAw ,
〈ζ, ζ 〉 ∈ xw, and for all M ∈ Aw, if ξ = min(M\β) then 〈ξ, ξ 〉 ∈ xw. Let r0 =
{min(M\β∗) : M ∈ Ar } and r1 = {min(M\β) : M ∈ Aw}. Then r0 and r1 are
subsets of S. So all the hypotheses of Proposition 2.3 are satisfied. It follows that
Ar ∪ Aw is S-adequate and RAr ∪As ⊆ RAr ∪ RAw ∪ r0 ∪ r1.

Define t by letting xt = xr ∪ xw and At = Ar ∪ Aw. We will prove that t is a
condition. Then clearly t ≤ r, w and we are done. By the choice of r and w, for every
ζ ∈ RAt , 〈ζ, ζ 〉 ∈ xt . So it suffices to show that t satisfies properties (1), (2), and (3).
We already know that (2) holds. For (1) let 〈α, α′〉 ∈ xw and 〈γ, γ ′〉 ∈ xr . Then either
γ and γ ′ are both below β∗ and 〈γ, γ ′〉 ∈ xw, or β∗ ≤ γ . In either case, the pairs do
not overlap.
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(3, 4) Let M ∈ Aw and 〈α, α′〉 ∈ xr\xw. Then β∗ ≤ α. So M ∩ [α, α′] = ∅ and
min(M\α) does not exist. Now let M ∈ Ar\Aw and 〈α, α′〉 ∈ xw. Then α and α′
are below β∗. First assume that β ≤ α. Since M ∩ β∗ ⊆ β, M ∩ [α, α′] = ∅ and
min(M\α) = min(M\β∗), which is in S.

Now assume that α < β. Then since 〈β, β〉 ∈ xw, α′ < β. Suppose that M ∩
[α, α′] = ∅. Since M ∩β = M ′ ∩β, M ′ ∩ [α, α′] = ∅. Let ζ := min(M\α). If ζ < β,
then ζ = min(M ′\α) and hence ζ ∈ S. Otherwise ζ = min(M\β∗), which is in S.
Now assume that M ∩ [α, α′] 
= ∅. Then M ′ ∩ [α, α′] 
= ∅. So α and α′ are in M ′ ∩ β

and hence in M . ��
Proposition 3.5 The forcing poset P forces that Ḋ is a club.

Proof It is easy to see that P forces that Ḋ is unbounded. Suppose that p forces that α

is a limit point of Ḋ. Let A0 := {K ∈ Ap : sup(K ∩ α) < α} and A1 := {M ∈ Ap :
sup(M ∩ α) = α}. Note that for all M and N in A1, α is a limit point of both M and
N and hence βM,N > α.

Extending p if necessary, we may assume the following: (1) for all ζ ∈ RAp ,
〈ζ, ζ 〉 ∈ x p; (2) whenever 〈β, β ′〉 ∈ x p, M ∈ Ap, M ∩ [β, β ′] = ∅, and ξ =
min(M\β), then 〈ξ, ξ 〉 ∈ x p; (3) let γ be the largest ordinal such that γ < α and
〈γ, γ ′〉 ∈ x p for some γ ′; then γ is larger than sup(K ∩ α) for all K ∈ A0.

If 〈α, α′〉 ∈ x p for some α′, then p forces that α ∈ Ḋ and we are done. So assume
not. Then for all 〈ξ, ξ ′〉 in x p, ξ and ξ ′ are either both below or both strictly above α. (3)
implies that for all K ∈ A0 with K\α 
= ∅, min(K\α) = min(K\γ ) ∈ S. As a result
of these observations, if α ∈ S but we cannot add 〈α, α〉 to p, then there is N ∈ A1
such that α /∈ N , N\α 
= ∅, and min(N\α) /∈ S. Note that if M ∈ A1 then γ ∈ M .
For otherwise γ < min(M\γ ) < α and (2) implies that 〈min(M\γ ), min(M\γ )〉 is
in x p, contradicting the maximality of γ .

Suppose that there is M ∈ Ap with sup(M) = α. We claim that 〈α, α〉 can be added
to p. By definition of Z , α ∈ S. So if this pair cannot be added, then by the comments
above there is N ∈ A1 such that α /∈ N and ξ := min(N\α) /∈ S. Since βM,N > α

and α is not in M nor N , M ∩ βM,N = N ∩ βM,N . Since ξ /∈ M , βM,N ≤ ξ , so
ξ = min(N\βM,N ). Then ξ is in RM (N ) and hence in S, which is a contradiction. So
we may assume that for all M ∈ A1, M\α 
= ∅.

Suppose that there is K ∈ A0 such that α ∈ K . Then α = min(K\α) is in S as
discussed above. We claim that we can add 〈α, α〉 to p. Otherwise there is N ∈ A1
with α /∈ N and min(N\α) /∈ S. Note that βK ,N > α. So as α ∈ K\N , N < K . But
this is impossible since sup(K ∩ α) < α = sup(N ∩ α). Hence we may assume that
for all K ∈ A0, α /∈ K .

Suppose that A1 = ∅. Then it is easy to see that 〈γ, α〉 can be added to p, which
contradicts that p forces that α is a limit point of Ḋ. Namely, this pair does not overlap
any pair in x p by the maximality of γ . And it does not conflict with any K ∈ A0 with
K\α 
= ∅, since K ∩ [γ, α] = ∅ and min(K\α) ∈ S.

Assume that A1 
= ∅. Let M be a minimal set in A1 such that the ordinal σ :=
min(M\α) is minimal amongst all minimal sets in A1. Suppose first that σ ∈ S. By
definition of Z , α = sup(M ∩ σ) ∈ S. We claim that 〈α, α〉 can be added to p. If
not, then there is N ∈ A1 such that α /∈ N and τ := min(N\α) /∈ S. In particular,
τ 
= σ . Since βM,N > α and α is not in N , N ≤ M . So by the minimality of M ,
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M ∩ βM,N = N ∩ βM,N . Hence N is also minimal in A1. By the minimality of σ ,
σ < τ . Since σ /∈ N , βM,N ≤ σ . So τ = min(N\σ). Therefore τ is in RM (N ) and
hence in S, which is a contradiction.

Finally, assume that σ /∈ S. We will show that we can add 〈γ, σ 〉 to p, which
contradicts that p forces that α is a limit point of Ḋ. We claim that for all K ∈ A0
with K\α 
= ∅, τ := min(K\α) > σ . Since τ ∈ S and σ /∈ S, τ 
= σ . Assume
for a contradiction that τ < σ . Then σ = min(M\τ). So if βK ,M ≤ τ , then σ is in
RK (M) and hence in S which is false. Suppose that τ < βK ,M . Then since τ ∈ K\M ,
M < K . But this is impossible since sup(K ∩ α) < α = sup(M ∩ α).

Let us show that 〈γ, σ 〉 has no conflict with models in Ap. Let K ∈ A0. If sup(K ) <

α, then K ∩[γ, σ ] = ∅ and min(K\γ ) does not exist. Otherwise by the last paragraph,
min(K\γ ) = min(K\α) > σ . Hence K ∩ [γ, σ ] = ∅ and min(K\γ ) ∈ S. Now let
N ∈ A1. We already observed that γ ∈ N . To prove that σ ∈ N , by the minimality
of M it suffices to show that σ < βM,N . Assume for a contradiction that βM,N ≤ σ .
Then α ≤ βM,N ≤ σ , so σ = min(M\βM,N ). Hence σ is in RN (M) and therefore in
S, which is a contradiction.

Let 〈β, β ′〉 ∈ x p. Since 〈γ, γ ′〉 ∈ x p, it is false that β < γ ≤ β ′. Suppose that
γ < β ≤ σ . Then by the maximality of γ , α < β. Since β ∈ S and σ /∈ S,
β < σ . Then β /∈ M , which implies that min(M\β) ∈ S. But min(M\β) = σ , which
contradicts that σ is not in S. ��
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