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Abstract In this paper we are concerned about the ways GCH can fail in relation to
rank-into-rank hypotheses, i.e., very large cardinals usually denoted by I3, I2, I1 and
I0. The main results are a satisfactory analysis of the way the power function can vary
on regular cardinals in the presence of rank-into-rank hypotheses and the consistency
under I0 of the existence of j : Vλ+1 ≺ Vλ+1 with the failure of GCH at λ.
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1 Introduction

The behaviour of the power function κ �→ 2κ has been under scrutiny since the
birth of set theory. Already in 1878 Cantor proposed the Continuum Hypothesis and
years later Hausdorff [9] extended it globally, stating for the first time the Generalized
Continuum Hypothesis. Gödel’s universe of constructible sets provided a model for
the Generalized Continuum Hypothesis, while the consistency of its negation was first
proved locally by Cohen and then globally by Easton [4], who used a class-product of
Cohen forcings to prove the consistency of the failure of GCH at all regular cardinals.
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352 V. Dimonte, S.-D. Friedman

This left open the more difficult case of singular cardinals, known as the Singular
Cardinal Problem. At the same time, another line of research was thriving. Just before
the advent of forcing, Scott [15] connected the power function with large cardinals,
proving that if a measurable cardinal violates GCH, then GCH is violated on a measure
one set of cardinals below it. After that, Silver [16] proved that if the GCH holds below
a singular cardinal of uncountable cofinality it must hold at that cardinal, and Solovay
[17] proved that the GCH holds at all strong limit singular cardinals above a strongly
compact cardinal. Therefore large cardinals have a big impact on the power function,
and the investigation of the possible behaviours of the power function under large
cardinal hypotheses is now a fundamental subject in the Singular Cardinal Problem
analysis.

This paper is a contribution to the Singular Cardinal Problem in a novel case. After
Kunen’s proof that a Reinhardt cardinal is inconsistent [11], some very large cardinal
hypotheses appeared, at the border of inconsistency, the rank-into-rank hypotheses
I0-I3. These hypotheses naturally give rise to a strong limit cardinal of countable
cofinality that is traditionally denoted as λ, and we study the failure of GCH at λ.

In Sect. 2 all the preliminary facts are collected. In Sect. 3 we present a proof of
the consistency of I0 with the failure of GCH at regular cardinals. In Sect. 4 we use an
absoluteness result of Woodin to prove that starting with a model of I0 there is a model
of I1 in which the power function at λ violates GCH in numerous ways. In Sect. 5 we
extend the results of Sect. 4 to hypotheses stronger than I1.

2 Preliminaries

To avoid confusion or misunderstandings, all notation and standard basic results are
collected here.

If M and N are sets or classes, j : M ≺ N denotes that j is an elementary
embedding from M to N . We write the case in which the elementary embedding is
the identity, i.e., M is an elementary submodel of N , simply as M ≺ N , while when
j is indicated we always suppose that it is not the identity.

If j : M ≺ N and either M � AC or N ⊆ M then it moves at least one ordinal.
The critical point, crt( j), is the least ordinal moved by j .

Let j be an elementary embedding and κ = crt( j). Define κ0 = κ and κn+1 =
j (κn). Then 〈κn : n ∈ ω〉 is the critical sequence of j .

Kunen [11] proved under AC that if M = N = Vη for some ordinal η ≤ Ord, and
λ is the supremum of the critical sequence, then η cannot be bigger than λ + 1 (and
of course cannot be smaller than λ).

Kunen’s result leaves room for a new breed of large cardinal hypotheses, sometimes
referred to in the literature as rank-into-rank hypotheses:

I3 iff there exists λ s.t. ∃ j : Vλ ≺ Vλ;
I2 iff there exists λ s.t. ∃ j : V ≺ M , with Vλ ⊆ M and λ is the supremum of the

critical sequence;
I1 iff there exists λ s.t. ∃ j : Vλ+1 ≺ Vλ+1.

The consistency order of the above hypotheses is reversed with respect to their
numbering: I1 is strictly stronger than I2, which in turn is strictly stronger than I3
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(see [12]). All of these hypotheses are strictly stronger than all of the large cardinal
hypotheses outside the rank-into-rank umbrella (see [10], 24.9 for n-huge cardinals,
or [1] for the Wholeness Axiom).

Note that if j witnesses a rank-into-rank hypothesis, then λ is uniquely determined
by j , so in the following λ always denotes the first nontrivial fixed point of the em-
bedding j under consideration.

An interesting point is that every elementary embedding j : Vλ ≺ Vλ has a unique
extension to Vλ+1: let 〈κn : n ∈ ω〉 be its critical sequence; then for any X ⊆ Vλ define
j+(X) = ⋃

n∈ω j (X ∩ Vκn ). Then j+ is a �0-elementary embedding from Vλ+1 to
itself.

A consequence of this is the possibility of defining finite iterates of j , when j : Vλ ≺
Vλ. Since j ∈ Vλ+1 and “ j : Vλ ≺ Vλ is an elementary embedding” is a �0 property
of Vλ+1 with parameters j, Vλ, we can define j2 = j+( j), and consequently j2 is
an elementary embedding from Vλ to itself. More generally, define jn+1 = j+( jn).
As for the iterates for I1-related elementary embeddings, Laver [12] proved that if
j : Vλ+1 ≺ Vλ+1, then the extension of j ( j � Vλ) to Vλ+1 is in fact an elementary
embedding, so we can define jn+1 = ( j ( jn � Vλ))

+. In the same paper Laver also
proved a similar result for I2.

Suppose that j witnesses I3 and let 〈κn : n ∈ ω〉 be its critical sequence. Then it
is immediate to see by elementarity that crt( j2) = crt( j+( j)) = j (crt( j)) = κ1, and
more generally crt( jn+1) = κn . The same holds if j witnesses I1: note that

( j ( j � Vλ))
+ � Vλ = ( j � Vλ)

+( j � Vλ),

so, as before, crt( jn+1) = crt( jn+1 � Vλ) = κn . Therefore for any γ < λ we can
always assume j to have a critical point between γ and λ.

We define also jn as the composition of n copies of j , i.e., j1 = j and jn+1 = j◦ jn .
Note that these are different from the iterates: for example, jn and j have the same
critical point, but crt( j2) = j (crt( j)).

If X is a set, then L(X) denotes the smallest inner model that contains X ; it is
defined like L but starting with the transitive closure of {X} as L0(X).

In the early 1980’s Woodin proposed an axiom even stronger than all the previous
ones:

I0 For some λ there exists a j : L(Vλ+1) ≺ L(Vλ+1), with crt( j) < λ.

Note that if λ witnesses I0, then L(Vλ+1) � AC, because otherwise L(Vλ+1) �
ZFC, and we would contradict the proof of Kunen’s Theorem [11], which shows that
one cannot have j : V ≺ M with critical point less than λ and a well-order of Vλ+1 in
V . The fact that I0 is strictly stronger than I1 was proved by Laver [12].

Definition 2.1 We define �L(Vλ+1) = {α : ∃π : Vλ+1 � α, π ∈ L(Vλ+1)}, where
� denotes a surjection.
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The following is Lemma 5 in [18]:

Lemma 2.2 Let j : L(Vλ+1) ≺ L(Vλ+1) be such that crt( j) < λ. Let

U = U j = {X ∈ L(Vλ+1) ∩ Vλ+2 : j � Vλ ∈ j (X)}.

Then U is an L(Vλ+1)-ultrafilter such that Ult(L(Vλ+1), U ) is well-founded. By
condensation the collapse of Ult(L(Vλ+1), U ) is L(Vλ+1), and jU : L(Vλ+1) ≺
L(Vλ+1), the inverse of the collapse, is an elementary embedding. Moreover, there is
an elementary embedding kU : L(Vλ+1) ≺ L(Vλ+1) with crt(kU ) > �L(Vλ+1) such
that j = kU ◦ jU .

Definition 2.3 Let j : L(Vλ+1) ≺ L(Vλ+1) be such that crt( j) < λ. Then j is proper
iff j = jU j .

By Lemma 2.2 any elementary embedding j : L(Vλ+1) ≺ L(Vλ+1) can be substi-
tuted with a proper one, that coincides on L

�L(Vλ+1) (Vλ+1).
Properness is used to define finite iterates for the I0 case: let j : L(Vλ+1) ≺ L(Vλ+1)

with crt( j) < λ be a proper elementary embedding, and let U = U j be the relevant
ultrafilter. Define

j (U ) =
⋃

{ j (ran(π)) : π ∈ L(Vλ+1), π : Vλ+1 → U }

and then define j2 as the map associated to j (U ). All the jn are defined accordingly
by induction. Woodin [18] proved that the jn are elementary embeddings, so also in
this case for any γ < λ we can always assume j to have a critical point between γ

and λ.
The elements of the critical sequence of elementary embeddings that witness rank-

into-rank hypotheses are really large cardinals.

Definition 2.4 Let κ be an uncountable cardinal. We say that κ is:

• strong limit if for any η < κ, 2η < κ;
• measurable if there is a nontrivial κ-complete ultrafilter over κ;
• strongly compact if for any η ≥ κ there is a fine κ-additive measure on Pκ(η),

where U is fine means that for any ξ < η, {A : ξ ∈ A} ∈ U ;
• supercompact if for any η ≥ κ there is a fine normal measure on Pκ(η), i.e., a

measure U such that for any f : Pκ(η) → η such that f (x) ∈ x for almost every
x, f is constant on a set in U ;

• n-huge if there is a sequence κ = λ0 < λ1 < · · · < λn = λ and a κ-complete
normal ultrafilter U over P(λ) such that for any i < n,

{x ∈ P(λ) : ot(x ∩ λi+1) = λi } ∈ U.

Let j : Vλ ≺ Vλ and let 〈κn : n ∈ ω〉 be its critical sequence. Note that for any
n, κn = crt( jn+1), so any property of κ0 expressible in Vλ is shared by all of the κn’s.
We have
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• “κ0 is measurable” is witnessed by U = {X ⊆ κ0 : κ0 ∈ j (X)};
• “κ0 is n-huge” is witnessed by κ0 < κ1 < · · · < κn and

U = {X ⊆ P(κn) : j ′′κn ∈ j (X)};

• “Vλ � κ0 is strongly compact and supercompact”: let κ0 ≤ η < λ, and suppose
η < κn ; then this is witnessed by

U = {X ⊆ Pκ0(η) : ( jn)′′η ∈ jn(X)}.

The situation is radically different for λ, since it is a singular cardinal, and the large
cardinals described in Definition 2.4 (strong limit excluded) must be regular. However,
since it is a limit of strong limit cardinals, λ is a strong limit cardinal. Moreover, we
trivially have that Vκ0 ≺ Vκ1 and for any n ∈ ω, Vκn ≺ Vκn+1 . But then the Vκn ’s form
a direct system with limit Vλ and Vκn ≺ Vλ for any i ∈ ω. In particular, Vλ is a model
of ZFC.

For proving results about rank-into-rank elementary embeddings and the contin-
uum function two forcings will be used: Easton forcing, that will be explained in the
following section, and Prikry forcing. For both forcings we use the notation ǎ to in-
dicate the canonical name of an element in the ground model, and Ġ to indicate the
canonical name for the generic.

Prikry forcing (a detailed discussion about it can be found in [7]) is defined as
follows: fix an ultrafilter U over κ measurable; p ∈ P iff p = (s, A), where s ∈
[κ]<ω, A ∈ U and

⋃
s <

⋂
A. For p = (s, A), q = (t, B) ∈ P, we say q ≤ p iff

s ⊆ t, B ⊆ A and t \ s ⊆ A.

Theorem 2.5 Prikry forcing on κ is κ+-c.c. and doesn’t add bounded subsets of κ .

3 GCH and its negation at regular cardinals

There are various results already published about the interaction of rank-into-rank
hypotheses with different behaviours of the continuum function. The following defi-
nition captures the concept of “right behaviour” of the continuum function at regular
cardinals:

Definition 3.1 Let E : Reg → Card be a class function. Then E is an Easton function
iff

• α < β → E(α) ≤ E(β);
• cof(E(α)) > α for all α ∈ Reg.

Theorem 3.2 Let I ∗ be I3, I2, I1 or I0, and suppose that I ∗ holds with associated
cardinal λ. Let E be an Easton function such that E � λ is definable over Vλ. Then
in a generic extension, I ∗ still holds for λ and 2κ = E(κ) for regular κ . Moreover, if
E(κ) = κ+ for regular κ we have

Con(ZFC + I ∗) → Con(ZFC + I ∗ + GCH).
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Note that in the I0 case the Easton function will be realized in V [G], not in
L(Vλ+1)[G] or L(V [G]λ+1).

Specific cases of Theorem 3.2 have already appeared in the literature: Hamkins [8]
proved it for I1 and E(κ) < 2κ , Corazza [2] proved it for I3 and E(κ) less than the
first inaccessible cardinal larger than κ , and Friedman [5] proved it for I2 and GCH.
Although the framework of the proof is the same as in the cited papers, Theorem 3.2
weakens the hypotheses on E and also considers I0. For this reason, we give the proof
just for the I0 case.

The main tool for the proof is forcing iteration. If Pλ is a forcing iteration of length
λ, for any δ < λ we denote Pδ as the δ-th stage of the iteration, and Qδ as the δ-th
forcing of the iteration.

Definition 3.3 Let Pλ be a forcing iteration of length λ, where λ is either a strong
limit cardinal or is equal to ∞, the class of all ordinals. We say that Pλ is

• reverse Easton if nontrivial forcing is done only at infinite cardinal stages, direct
limits are taken at all inaccessible cardinal limit stages, and inverse limits are taken
at all other limit stages; moreover, Pλ is the direct limit of the 〈Pδ, δ < λ〉 if λ is
regular or ∞, the inverse limit of the 〈Pδ, δ < λ〉, otherwise;

• directed closed if for all δ < λ, Qδ is < δ-directed closed, i.e., for any D ⊆
Qδ, |D| < δ such that for any d1, d2 ∈ D there is an e ∈ D with e ≤ d1, e ≤ d2,
there exists p ∈ Qδ such that p ≤ d for any d ∈ D;

• λ-bounded if for all δ < λ, Qδ has size < λ. Note that in the case λ = ∞, this
just means that each Qδ is a set-forcing;

• above ω if Qω is trivial forcing.

Moreover, if j is any elementary embedding such that j ′′λ ⊂ λ and Pλ ⊂ dom( j),
we say that Pλ is j-coherent if for any δ < λ, j (Pδ) = P j (δ).

Note that these definitions are local, i.e., if Pλ satisfies one of the above, then for
any δ < λ, Pδ satisfies the same.

The following theorem was proved by Easton in 1970:

Theorem 3.4 (Easton [4]) Let E be an Easton function. Then there exists a generic
extension V [G] of V such that V [G] � ∀κ(κ regular → 2κ = E(κ)).

Theorem 3.4 can be proved using iterated forcing. Define Qδ , for δ closed under E ,
as the Easton product of forcings to make 2γ = E(γ ) for regular γ in [δ, δ∗), where δ∗
is the least cardinal greater than δ closed under E . Limits are taken so that the iteration
is reverse Easton. It is easy to prove that this forcing is directed closed. If λ is closed
under E then the forcing is λ-bounded, and 〈Pα : α < λ〉 ⊆ Vλ. Finally, if E � λ is
definable over Vλ, then 〈Pα : α < λ〉 is definable over Vλ and if the parameters used
in the definition of E � λ are in Vcrt( j) then Pλ is j-coherent.

We will prove the following:

Theorem 3.5 Let j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ and Pλ a λ-bounded,
j-coherent, directed closed, reverse Easton iteration. Then for Pλ-generic G, j lifts
to j∗ : L(Vλ+1)[G] ≺ L(Vλ+1)[G] and the restriction of such a lifting to L(V [G]λ+1)

witnesses I0 in V [G].
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Rank-into-rank hypotheses and the failure of GCH 357

Lemma 3.6 Let j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ and Pλ a λ-bounded, j-
coherent, directed closed, reverse Easton iteration. Then there exists q ∈ Pλ such that
q � p ∈ Ġ → j (p) ∈ Ġ.

Proof Let 〈κn : n ∈ ω〉 be the critical sequence of j . The key point is that j-coherence
limits the largeness of forcing stages. Let γ < κ0. Then if |Pγ | ≥ κ0, by elementarity
we would have | j (Pγ )| = |P j (γ )| = |Pγ | ≥ κ1, and by ω applications of j it follows
|Pγ | ≥ λ, a contradiction by λ-boundedness. By elementarity, it follows that for any
γ < κn, |Pγ | < κn .

We define q piece by piece. Let q � κ1 be the trivial condition. Now, fix n ≥ 1.
Then

� |{ j (p)(κn) : p ∈ Ġ}| < κn,

because

{ j (p)(κn) : p ∈ G} = { j (p(κn−1)) : p ∈ G}
= { j (p(κn−1)) : p � (κn−1)

+ ∈ G ∩ P(κn−1)+}

and |P(κn−1)+| < κn . So, since Qκn is < κn-directed closed in V Pκn , there exists a name
τ such that � ∀p ∈ Ġ τ ≤ j (p)(κn), and define q(κn) = τ . As for the definition of q
between elements of the critical sequence, we have that � | j ′′Ġ � (κn, κn+1)| ≤ κn ,
and as Pκn ,κn+1 (the forcing strictly between κn and κn+1) is ≤ κn-directed closed there
exists a name τ such that

� ∀p ∈ Ġ ∀β ∈ (κn, κn+1) τ (β) ≤ j (p)(β)

and define q � (κn, κn+1) = τ . Now, suppose that p, q ∈ G. Clearly q � [κ1, λ) ≤
j (p) � [κ1, λ), so j (p) � [κ1, λ) ∈ G � [κ1, λ). But j (p) � κ0 = p, and j (p) �
[κ0, κ1) is trivial, so j (p) ∈ G. ��

To use the typical lifting lemma, we have to prove that in fact the model L(Vλ+1)

as constructed in the generic extension is in the domain of the lifting.

Lemma 3.7 ([8]) If Pλ is a λ-bounded, directed closed forcing iteration, then
V [G]λ+1 = Vλ+1[G].
Proof Let p be a condition forcing that σ is a name for a subset of λ. Then there
is an extension q of p and a sequence 〈σn : n < ω〉 in V such that for each n, q
forces σ ∩ κn = σn and σn is a canonical Pκn -name for a subset of κn . Then each σn

belongs to Vλ and therefore q forces σ = σ ∗ for some name σ ∗ in Vλ+1. This proves
that V [G]λ+1 is contained in Vλ+1[G ∩ Vλ] = Vλ+1[G]. The converse is clear, as
any element of Vλ+1[G] belongs to L(X, G ∩ Vλ) for some X in Vλ+1 and therefore
belongs to V [G]λ+1. ��

Although it will not be used in this paper, the following Corollary of Lemma 3.7 is
of independent interest.
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Corollary 3.8 If Pλ is a λ-bounded, directed closed, reverse Easton iteration, and G
is Pλ-generic then L(V [G]λ+1) is contained in L(Vλ+1)[G]. If Pλ is above ω then we
have equality.

Proof The first conclusion follows immediately from Lemma 3.7: by induction, it is
possible to prove that a set constructible in V [G] from some elements has a name that
is constructible in V from the names of such elements, therefore by Lemma 3.7 any
element of L(V [G]λ+1) has a name in L(Vλ+1).

For the second conclusion, note that if Pλ is above ω and X is a subset of λ in V [G]
then X belongs to V iff X ∩ κn belongs to V for each n, and therefore as elements of
Vλ+1 are coded by subsets of λ, Vλ+1 belongs to L(Vλ, V [G]λ+1) = L(V [G]λ+1).
From this it follows that G also belongs to L(V [G]λ+1) as p ∈ G iff p ∈ Vλ+1 and
p|Vα ∈ G ∩ Vλ for all α < λ, and so G belongs to L(Vλ+1, G ∩ Vλ). As both Vλ+1
and G belong to L(V [G]λ+1) we can then conclude that L(Vλ+1)[G] is contained in
L(V [G]λ+1). ��

Now we have enough tools to prove Theorem 3.5:

Proof of Theorem 3.5 Let j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ. We can suppose
that the condition q in Lemma 3.6 is in the generic G. By the usual argument, we
can extend j to j ′ : L(Vλ+1)[G] ≺ L(Vλ+1)[G], letting j (τG) = j (τ )G for any τ ∈
L(Vλ+1), and j ′ is an elementary embedding. By Corollary 3.8 that L(V [G]λ+1) ⊆
L(Vλ+1)[G], and as j ′(V [G]λ+1) = V [G]λ+1, the restriction of j ′ to L(V [G]λ+1)

witnesses I0 in V [G]. ��
Corollary 3.9 Suppose I0 and let E be an Easton function such that E � λ is definable
over Vλ. Then Con(ZFC + I 0 + GCH) and there is a generic extension that satisfies
I0 + 2κ = E(κ) holds for all regular κ .

Proof Fix a j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ and such that all the parameters
that define E � λ are in Vcrt( j). Let P be the Easton iteration on all ordinals from
Theorem 3.4. First we consider the first λ steps of the iteration, Pλ. Then 〈Pα : α <

λ〉 ⊆ Vλ is definable in Vλ with parameters that are fixed points of j , therefore Pλ is
λ-bounded and j-coherent, so by Theorem 3.5 j lifts to

j ′ : L(V [G ∩ Vλ]λ+1) ≺ L(V [G ∩ Vλ]λ+1).

Now, the rest of the iteration is < λ+-directed closed, in particular is λ-closed (every
descending sequence of length λ has a lower bound), therefore it doesn’t change
L(V [G]λ+1), and j ′ witnesses I0 in V [G]. ��

After having proved the consistency of rank-into-rank hypotheses with the failure
of GCH at regular cardinals, the next step is to prove it at some singular cardinal.
However, there are some well-known limitations:

Theorem 3.10 (Solovay [17]) Let κ be a strongly compact cardinal. Let λ be a sin-
gular strong limit cardinal greater than κ . Then 2λ = λ+.
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Suppose that j : Vλ ≺ Vλ. The critical point of j is strongly compact in Vλ, so
for any crt( j) < η < λ singular strong limit cardinal we have 2η = η+, and this is
impossible to kill while preserving the embedding. For the rest of this article we will
focus on the failure of GCH at λ, the first point not covered by Solovay’s result.

Theorem 3.11 Let j : Vλ ≺ Vλ. Then for any δ < ℵ1 there exists a generic extension
V [G] such that j lifts to V [G]λ and 2λ = λ+δ+1.

This is a simple corollary of Gitik’s construction using short extenders for blowing
up the size of the power set of a singular cardinal [6]:

Theorem 3.12 Assume GCH. Suppose λ is a cardinal of cofinality ω such that {κ <

λ : o(κ) ≥ κ+n} is cofinal in λ for every n ∈ ω. Then for any δ < ℵ1 there exist
a cofinality preserving generic extension having the same bounded subsets of λ and
satisfying 2λ = λ+δ+1.

Proof of Theorem 3.11 Let j : Vλ ≺ Vλ and (κn)n∈ω the critical sequence. Then for
any n, m ∈ ω, o(κn) ≥ (κn)

+m , therefore λ satisfies the hypotheses of Theorem
3.12. Moreover, by Theorem 3.2 we can suppose GCH, thereby allowing the proof of
Theorem 3.12 to go through. Since Gitik’s forcing does not add bounded subsets of
λ, we have trivially Vλ = V [G]λ, so there is no need to lift j , and Theorem 3.11 is
proved. ��

The case I2 has been treated by Cummings and Foreman: in [3] they prove, using
a hypothesis slightly stronger than I2, that I2(λ) is consistent with 2λ = λ++.

Unfortunately, the same cannot be said for I1. There are many obstacles for lifting
an I1 elementary embedding to a forcing that kills GCH at λ, like the fact that the
names for elements of V [G]λ+1 live outside Vλ+1, or the difficulties of finding a
master condition for such a forcing. This is why we change strategy, and we reflect the
embedding instead of lifting it. For this we need more information about elementary
embeddings that witness I0.

4 Consistency of I1 and the negation of GCH

In the Preliminaries we defined the finite iterates for an I0 elementary embedding, but
in this section we need more.

Definition 4.1 Let j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ be a proper elementary
embedding, and let U = U j be the relevant ultrafilter. Remember that the second
iterate of j was defined as the map associated to j (U ).

Define the successive iterates in the usual way: let α be an ordinal. Then

• if α = β + 1, Mβ is well-founded and jβ : Mβ ≺ Mβ is the ultrapower via W ,
then Mα = Ult(Mβ, jβ(W )) and jα = jβ( jβ).

• if α is a limit, let (Mα, jα) be the direct limit of (Mβ, jβ) with β < α.

We say that j is iterable, if for every α ∈ Ord, Mα is well-founded and jα : Mα ≺
Mα . In this case, we call jα,β the natural embeddings between Mα and Mβ .
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The following is a conjunction of Lemma 16 and Lemma 21 in [18]:

Theorem 4.2 Let j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ be a proper elementary
embedding. Then j is iterable. Moreover, for any n ∈ ω, jn : L(Vλ+1) ≺ L(Vλ+1).

Theorem 4.2 states that Mn = L(Vλ+1) for n < ω, but Mω is definitively different.
The key point is that j0,ω(crt( j)) = λ, so many characteristics of the critical point
of j are transferred by elementarity to λ in Mω. For example, in L(Vλ+1), crt( j)
is measurable and there is a well-ordering of Vλ, therefore λ is measurable in Mω

and there is a well-ordering of V Mω

j0,ω(λ) = Vj0,ω(λ) ∩ Mω in Mω. In particular, also

V Mω

λ+1 = Vλ+1 ∩ Mω is well-ordered in Mω, and Vj0,ω(λ) ∩ Mω � AC. This last point
will be important in the proof of Theorem 4.4 below.

However, adding again the critical sequence to Mω makes it a little more similar to
the original L(Vλ+1):

Theorem 4.3 (Generic Absoluteness) Let j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ

be a proper elementary embedding. Let 〈κn : n ∈ ω〉 be the critical sequence of j and
let (Mω, jω) be the ω-th iterate of j . Then for all α < λ there exists an elementary
embedding

π : Lα(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ≺ Lα(Vλ+1)

such that π � λ is the identity.

The previous theorem is Theorem 135 in [18] by Woodin.

Theorem 4.4 Suppose I0. Then there exists a generic extension V [G] of V such that
V [G] � ∃γ ∃i : Vγ+1 ≺ Vγ+1 ∧ 2γ > γ +.

Proof Let j : L(Vλ+1) ≺ L(Vλ+1) witness I0 in V . By Lemma 2.2 we can sup-
pose that j is proper, and by Corollary 3.9 we can suppose that for all regular cardi-
nals κ, 2κ = κ++. Let 〈κn : n ∈ ω〉 be the critical sequence of j . Let (Mω, jω)

be the ω-th iterate of j . Then, by elementarity, since L(Vλ+1) � “for all regu-
lar cardinals κ < λ, 2κ = κ++”, λ is regular in Mω and λ < j0,ω(λ), Mω �
“there exists a bijection between P(λ) and λ++”.

Let U = {X ⊆ κ0 : κ0 ∈ j (X)} be the measure on κ0 derived from j and let P be
the Prikry forcing on κ0 with measure U . Then j0,ω(P) is the Prikry forcing on λ with
measure j0,ω(U ).

Claim 4.5 〈κn : n ∈ ω〉 is generic for j0,ω(P) over Mω.

Proof of Claim We use the Mathias characterization of genericity for Prikry forcing
[14], i.e., we prove that for any A ∈ j0,ω(U ), the set 〈κn : n ∈ ω〉 \ A is finite.
The characterization needs the Axiom of Choice, but works also in this setting, as
Vj0,ω(λ) ∩ Mω � AC. First, note that if A ∈ j0,n(U ), then κn ∈ jn,ω(A): by definition
of U and elementarity A ∈ j0,n(U ) iff κn ∈ jn(A); the critical point of jn+1,ω is κn+1,
so by elementarity

κn = jn+1,ω(κn) ∈ jn+1,ω( jn(A)) = jn,ω(A).
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Now, let A ∈ j0,ω(U ). There exists n ∈ ω and Ā ∈ L(Vλ+1) such that A = jn,ω( Ā),
and by elementarity Ā ∈ j0,n(U ) and, more generally, jn,n+i ( Ā) ∈ j0,n+i (U ). So for
any i ∈ ω, κn+i ∈ jn+i,ω( jn,n+i ( Ā)) = A. ��

Because of the claim we can use the usual properties of Prikry forcing:

Claim 4.6 Mω[〈κn : n ∈ ω〉] � there exists a bijection from 2λ to λ++.

Proof of Claim Note that, even if Mω[〈κn : n ∈ ω〉] � AC, we have in fact that
Vj0,ω(λ) ∩ Mω � AC, therefore no special care is needed in this respect. Since Prikry
forcing does not add bounded subsets of λ, Vλ ∩ Mω = Vλ ∩ Mω[〈κn : n ∈ ω〉],
therefore for any name τ for a subset of Vλ ∩ Mω, we can suppose that dom(τ ) ⊆ {ǎ :
a ∈ Vλ ∩ Mω}. Prikry forcing is λ+-c.c., so there are only

(2λ)Mω = (λ++)Mω = (λ++)Mω[〈κn :n∈ω〉]

possible nice names for subsets of Vλ ∩ Mω, and this proves the claim. ��
This proves that λ in Mω[〈κn : n ∈ ω〉] has the desired properties, and we will

use generic absoluteness (Theorem 4.3) to prove the existence of the I1-elementary
embedding.

Consider j � Vλ+1 : Vλ+1 ≺ Vλ+1. We can define it as

( j � Vλ+1)(a) =
⋃

n∈ω

( j � Vλ)(a ∩ Vκn ),

using only j � Vλ and the critical sequence as parameters, both elements of Vλ+1, so
j � Vλ+1 ∈ L1(Vλ+1) and L1(Vλ+1) � ∃i : Vλ+1 ≺ Vλ+1. By generic absoluteness
(Theorem 4.3) then

L1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) � ∃i : Vλ+1 ≺ Vλ+1,

and this is enough, since L1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) computes correctly the
satisfaction relation of

Mω[〈κn : n ∈ ω〉] ∩ Vλ+1 = (Vλ+1)
Mω[〈κn :n∈ω〉]

and
L1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ⊆ Mω[〈κn : n ∈ ω〉].

Therefore
Mω[〈κn : n ∈ ω〉] � ∃i : Vλ+1 ≺ Vλ+1.

By reflecting j0,ω we will have the desired generic extension: from what we proved
above

Mω � ∃p ∈ j0,ω(P) p � j0,ω(P) ∃i : (V
λ̌+1) ≺ (V

λ̌+1) ∧ 2λ̌ = λ̌++
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therefore by elementarity of j0,ω

L(Vλ+1) � ∃p ∈ P p �P ∃i : (Vκ̌0+1) ≺ (Vκ̌0+1) ∧ 2κ̌0 = κ̌++
0 .

Let G be any generic such that p is as above and p ∈ G. Then in L(Vλ+1)[G], and
therefore in V [G], ∃i : Vκ0+1 ≺ Vκ0+1 and 2κ0 = κ++

0 . ��
The proof does not depend specifically on 2λ = λ++, therefore it yields a more

general theorem.

Theorem 4.7 (Main) Suppose there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ.
Then for every Easton function E such that E � λ is definable over Vλ, there is a
generic extension V [G] of V that satisfies

∃γ < λ ∃i : Vγ+1 ≺ Vγ+1 + 2γ = E(γ ).

In particular, for any δ < λ, there is a generic extension V [G] of V that satisfies

∃γ < λ ∃i : Vγ+1 ≺ Vγ+1 + 2κ = κ+δ+1

holds for all regular κ < γ and also for κ = γ .

We make a short comment regarding the meaning of “larger”, in the expression
“one large cardinal is larger than the second one”. Over the years the meaning of this
sentence grew more and more ambiguous: it is mostly used to indicate the consistency
strength of a large cardinal hypothesis, but it sometimes implies that the least cardinal
which is large in the first sense is larger than the least cardinal which is large in the
second sense with respect to the cardinal order. While at the beginning the two concepts
coincided, during the exploration of the upper part of the large cardinal hierarchy the
two concepts often differed completely. Theorem 4.4, coupled with Solovay’s Theorem
3.10, gives us another such example.

Theorem 4.8 Suppose there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ. Then it
is consistent that there exists γ and j : Vγ+1 ≺ Vγ+1 and that every strongly compact
cardinal is larger than γ .

5 Consistency of hypotheses stronger than I1 and the negation of GCH

In the proof of Theorem 4.4, Theorem 4.3 was greatly underutilized: the case α = 1,
the one we considered, gave us a result related to I1, but in fact we can consider larger
α. This will give us consistency results on hypotheses stronger than I1, such as the
existence of j : Lα(Vλ+1) ≺ Lα(Vλ+1), for α < λ. These unnamed hypotheses have
been proven by Laver [12,13] to be strictly stronger than I1 and strictly weaker than
I0.

It is also worthy not to stop at the bound given by Theorem 4.3. There is no evidence
that it is optimal. On the contrary, there are hints that generic absoluteness could
possibly be extended, and Woodin outlined such situations in [18] (see for example
Lemma 130 and Remark 139).
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Definition 5.1 Suppose I0(λ) and let α < �L(Vλ+1). We say that generic absoluteness
holds at α if for any proper j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) < λ there exists

π : Lα(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ≺ Lα(Vλ+1)

such that π � λ is the identity, where 〈κn : n ∈ ω〉 is the critical sequence of j and
Mω is the model of its ω-th iterate.

Theorem 4.3 states, therefore, that generic absolutess holds at any α < λ.
The study of the structure of the sets Lα(Vλ+1) for α < �L(Vλ+1) made by Laver

in [13] gives us the tools to approach Theorem 4.7 under stronger hypotheses.

Definition 5.2 ([13]) Let λ be a cardinal and let α < �L(Vλ+1). Then α is good iff
every element of Lα(Vλ+1) is definable in Lα(Vλ+1) from an element in Vλ+1.

The successor of a good ordinal is a good ordinal: let α be good; the largest ordinal in
Lα+1(Vλ+1) is λ+1+α, therefore α is definable in Lα+1(Vλ+1) with λ as a parameter,
so Lα(Vλ+1) is definable in Lα+1(Vλ+1) with λ as a parameter. But every element in
Lα+1(Vλ+1) is definable using Lα(Vλ+1) and elements of Lα(Vλ+1) (which in turn
are definable with parameters from Vλ+1), and therefore α + 1 is good. This proves
that the natural numbers are good. But also ω is good: every element of Lω(Vλ+1) is
in some Ln(Vλ+1), n ∈ Vλ+1 and n is good for every n. Following the same line of
reasoning, every ordinal up to λ is good, and considering that all ordinals less than λ+
are coded as subsets of λ, and therefore in Vλ+1, every ordinal up to λ+ is good.

On the other side, non-good ordinals exist. The definition of good ordinal is re-
stricted to ordinals strictly less than �L(Vλ+1) because larger ones are trivially not
good: if x is definable with a parameter, then it is uniquely determined by its de-
finition, therefore for any α there exists in L(Vλ+1), π : Vλ+1 � Gα = {x ∈
Lα(Vλ+1) : Lα(Vλ+1) � x is definable from an element in Vλ+1}; then if �L(Vλ+1) ⊆
Lα(Vλ+1), Gα must be strictly contained in Lα(Vλ+1), by definition of �L(Vλ+1). But
non-good ordinals exist also below �L(Vλ+1): define Lγ (Vλ+1) as the collapse of the
Skolem closure of Vλ+1 in L

�L(Vλ+1) (Vλ+1); as L
�L(Vλ+1) (Vλ+1) � ∃x x not definable

from an element in Vλ+1, by elementarity the same must be true in Lγ (Vλ+1), as the
collapse does not collapse Vλ+1, therefore γ is not good.

One can ask how many good ordinals there are.

Lemma 5.3 ([13]) Let λ be a strong limit cardinal. Then the good ordinals are un-
bounded in �L(Vλ+1).

Therefore assuming α good is in most cases a reasonable choice.
By the usual condensation argument, if α < �L(Vλ+1) and i : Lα(Vλ+1) →

Lα(Vλ+1) then i ∈ L
�L(Vλ+1) (Vλ+1). If α is good, however, it is possible to be much

more precise:

Lemma 5.4 ([13]) Let λ and α be such that α is good and there exists i : Lα(Vλ+1) ≺
Lα(Vλ+1) with crt(i) < λ. Then i is induced by i � Vλ, and therefore i ∈ Lα+1(Vλ+1).

Lemma 5.5 (Woodin) Let λ be a cardinal. If there exists j : L
�L(Vλ+1) (Vλ+1) ≺

L
�L(Vλ+1) (Vλ+1), then for any α < �L(Vλ+1) there exists an i : Lα(Vλ+1) ≺ Lα(Vλ+1).
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Proof Suppose it is false. Then there is a counterexample α such that every i :
Lα(Vλ+1) → Lα(Vλ+1) is not an elementary embedding. All such i’s are in L

�L(Vλ+1)

(Vλ+1) (see remark before Lemma 5.4), therefore L
�L(Vλ+1) (Vλ+1) � ∃α (α is a

counterexample). Let α0 be the least counterexample. Then α0 is definable in L
�L(Vλ+1)

(Vλ+1) and j (α0) = α0. Then j � Lα0(Vλ+1) is as in the lemma, contradiction. ��
The previous lemmas suffice to prove a more general version of Theorem 4.7:

Theorem 5.6 Suppose that there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt( j) = κ0 < λ

and that generic absoluteness holds at α + 1, with α good and such that α = j0,ω(β)

for some β. Then there exists a generic extension that satisfies

∃i : Lβ(Vκ0+1) ≺ Lβ(Vκ0+1) + 2κ0 = (2κ0)V .

Proof The key point is that by Lemma 5.5 there exists i : Lα(Vλ+1) ≺ Lα(Vλ+1) and
by Lemma 5.4, i ∈ Lα+1(Vλ+1), therefore

Lα+1(Vλ+1) � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1).

Let (2κ0)V = η. Using the same notation as in the proof of Theorem 4.4, by the
elementarity of j0,ω, Mω � there exists a bijection between P(λ) and j0,ω(η), and
this is true also in Mω[〈κn : n ∈ ω〉]. By generic absoluteness at α + 1 there exists an
elementary embedding

π : Lα+1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) ≺ Lα+1(Vλ+1).

Note that π(α) = α, as α is definable in both models. Since

Lα+1(Vλ+1) � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1),

Lα+1(Mω[〈κn : n ∈ ω〉] ∩ Vλ+1) � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1),

and therefore

Mω[〈κn : n ∈ ω〉] � ∃i : Lα(Vλ+1) ≺ Lα(Vλ+1) ∧ 2λ = j0,ω(η).

This means that

Mω � ∃p ∈ j0,ω(P) p � ∃i : L α̌(V
λ̌+1) ≺ L α̌(V

λ̌+1) ∧ 2λ̌ = j0,ω(η̌)

and by the elementarity of j0,ω

L(Vλ+1) � ∃p ∈ P p � ∃i : L
β̌
(Vκ̌0+1) ≺ L

β̌
(Vκ̌0+1) ∧ 2κ̌0 = η̌

and this proves the theorem. ��
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Corollary 5.7 Suppose I0(λ). Let E be an Easton function such that E � λ is definable
over Vλ and let α < λ. Then there exists j : L(Vλ+1) ≺ L(Vλ+1) with α < crt( j) < λ

and a generic extension in which

∃i : Lα(Vcrt( j)) ≺ Lα(Vcrt( j)) + 2crt( j) = E(crt( j))

holds.

Proof By Theorem 3.2, we can start with a generic extension in which 2κ = E(κ) for
any κ regular. Fix a j that witnesses I0(λ) and such that crt( j) is bigger than α. Then
j (α) = α and j0,ω(α) = α. Since generic absoluteness holds below λ and α is good,
by Theorem 5.6 the corollary holds. ��

Theorem 4.3 states that generic absoluteness holds for α less than λ, therefore this
is the bound for Theorem 5.6 for now. Even if a generalization of generic absoluteness
could be proved, there would still be questions to answer. Let I0(λ) and I1(λ) be the the
corresponding hypotheses with fixed λ. While we used I0 for the consistency strength
of ∃λ I1(λ) + the failure of GCH at λ, it is not known whether this is optimal.

Question 1 Does Con(ZFC + I 1) imply Con(ZFC + ∃λ (I 1(λ) ∧ 2λ > λ+))?

Theorem 4.7 is limited also in a further direction: in the theorem the behaviour at
λ of the power function is controlled by the Easton function on the regular cardinals
below it. But this seems not a necessary condition, as in Theorem 3.11 λ is in fact the
first cardinal at which GCH fails. Therefore we can ask:

Question 2 Is ZFC + ∃λ (I 1(λ) ∧ 2λ > λ+ ∧ ∀κ < λ 2κ = κ+) consistent? If so,
what is its consistency strength?

Another way to improve the results in this paper would be to approach the consis-
tency of I0(λ) + the failure of GCH at λ.

Question 3 Is ZFC +∃λ (I 0(λ)∧ 2λ > λ+) consistent? If so, what is its consistency
strength?

There is a result of Woodin that indicates a direction for a solution for Question 3
and can be seen as a corollary to Theorem 5.6:

Corollary 5.8 (Woodin) Suppose that generic absoluteness holds at any α<�L(Vλ+1).
Then

Con(Z FC + ∃λ(I 0(λ) + 2λ large)).

Sketch of proof As generic absoluteness holds for any α < �L(Vλ+1), for any such α,

π−1( j � Lα(Vλ+1)) : (Lα(Vλ+1))
Mω[〈κi :i∈ω〉] ≺ (Lα(Vλ+1))

Mω[〈κi :i∈ω〉],

and therefore j∗ = ⋃
α<�L(Vλ+1) π−1( j � Lα(Vλ+1)) is an elementary embedding

from (L
�L(Vλ+1) (Vλ+1))

Mω[〈κi :i∈ω〉] to itself. Define U j∗ as in Lemma 2.2. Then the
ultrapower of (L(Vλ+1))

Mω[〈κi :i∈ω〉] is well-founded, and this proves I0 in Mω[〈κi :
i ∈ ω〉]. As with Theorem 5.6, it is possible to make 2λ large in Mω[〈κi : i ∈ ω〉], and
because of the elementarity of j0,ω the corollary is proved. ��
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The consistency strength of such hypothesis is not yet known. A different road would
be to extend generic absoluteness in another direction. In [18] Woodin introduced new
hypotheses even stronger than I0, and it would be natural to prove an analog of Theorem
4.3 in that setting as a strategy for answering Question 3 affirmatively. However this
seems difficult and therefore Question 3 remains a compelling challenge.
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