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Abstract We consider an extension of Gödel logic by a unary operator that enables
the addition of non-negative reals to truth-values. Although its propositional frag-
ment has a simple proof system, first-order validity is Π2-hard. We explain the close
connection to Scarpellini’s result on Π2-hardness of Łukasiewicz’s logic.
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1 Introduction

First-order Gödel logic is a superintuitionistic logic, which can be described in different
ways and which appears in numerous contexts; see the forthcoming article [3] for a
detailed overview and for proofs. In contrast to all other continuous t-norm logics, the
valid formulas of first-order Gödel logic over [0, 1] are recursively enumerable. In fact,
the validity problem in first-order t-norm logics can exhibit very high complexity, e.g.,
Łukasiewicz logic is Π2-complete [11], and first-order product logic and the first-order
logic of continuous t-norms even fall outside the arithmetical hierarchy. Therefore
first-order Gödel logic is the only one among all t-norm logics that provides a good
starting point for extensions, in particular, for modal-like extensions: It has a simple
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262 O. Fasching, M. Baaz

sound-complete superintuitionistic proof system, and papers like [6] and [5] furnish
evidence that the combination of propositional Gödel logics and of modal logics is
accomplishable with decent semantics and uncomplicated proof systems.

In Sect. 2, we will introduce an extension of Gödel logic by a unary operator
that adds non-negative constants to truth values. While validity in the propositional
fragment of this extension can be plainly characterised by just the three extra axioms

1. (⊥ ≺ ◦⊥)⊃ (A ≺ ◦A),
2. (⊥↔ ◦⊥)⊃ (A↔◦A),
3. ◦(A ⊃ B)↔ (◦A ⊃ ◦B),

we prove the surprising fact that first-order validity is Π2-hard; see Sect. 3. Thus the
valid formulas are not recursively enumerable and neither are they describable by a
reasonable proof system.

This extension has two purposes:

(1) We adapt Scarpellini’s proof [12] of Π2-hardness for first-order Łukasiewicz logic
to obtain Π2-hardness also for our extension. Both propositional Łukasiewicz
logic and Gödel logic can be characterised by adding a single axiom to Hájek’s
Basic Logic but as their first-order complexities differ significantly, this immedi-
ately raises the question why they show a different behaviour. Our extension gives
at least a partial answer: While Gödel logic is the logic of relative comparison,
any semantical means (be it in the original language or artificially added in form
of an operator) to measure absolute distance between truth values endows the
semantics with an expressivity that cannot be effectively captured.

(2) This extension can be regarded as a particular case of a modal logic extension
because A⊃◦A holds and ◦ distributes over∧,∨,⊃. It serves as an example for the
fact that even a seemingly harmless real-valued semantics of such an operator may
lead to a complex first-order validity problem. (An extension where the similar
formula ◦A ⊃ A holds was considered by Hájek [10].)

In Sect. 3, we will show that the propositional fragment of our extension stays
finitely axiomatisable even when extended further by the Monteiro–Takeuti–Titani Δ

operator.
The first author would like to thank both reviewers for their extremely useful com-

ments and improvements of the presentation of this paper.

2 Language and semantics of Gödel logics

The propositional language Lp of Gödel logics and of classical logics is generated by
a denumerable set Var of propositional variables and by the logical connectives⊥,⊃,
∧, ∨ with their usual arities. We understand ¬A as an abbreviation for A ⊃ ⊥, and
A↔ B for (A⊃ B) ∧ (B ⊃ A), and 	 for ⊥⊃⊥, and A ≺ B for (B ⊃ A)⊃ B. Let
◦ and 
 be two fresh unary connectives, which we will call operators for the sake of
simplicity. We will use Lp◦, Lp


, Lp
◦,
 to denote the extensions of Lp by these operators.

We define ◦0 A := A and ◦n+1 A := ◦(◦n A) for all n ∈ N. The first-order language L
of Gödel logics and of classical logics contains quantifiers ∀ and ∃, and is constructed
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Monotone operators on Gödel logic 263

from Lp in the usual way. We will occasionally distinguish free and bound individual
variables. A first-order formula is closed if no free variable occurs in it. The first-order
languages L◦, L
, L◦,
 correspond to Lp◦, Lp


, Lp
◦,
.

In order to define Gödel semantics, we first put for all x, y ∈ R:

x ⊕ y := min{1, x + y},

x � y :=
{

1 if x ≤ y

y if x > y,

x � y :=
{

1 if x < y

y if x ≥ y,

x �� y :=
{

1 if x = y

min{x, y} if x �= y,

π0(x) :=
{

1 if x > 0

0 if x ≤ 0, and

π1(x) :=
{

1 if x ≥ 1

0 if x < 1.

It is immediately clear that ⊕, �, �, �� induce functions [0, 1] × [0, 1] → [0, 1],
and π0 and π1 induce functions [0, 1] → [0, 1].

A Gödel interpretation I of Lp assigns a value in [0, 1] to each formula in Lp such
that

I(⊥) = 0,

I(A ∧ B) = min{I(A),I(B)},
I(A ∨ B) = max{I(A),I(B)}, and

I(A ⊃ B) = I(A) � I(B)

for all formulas A and B. Obviously, any function I : Var → [0, 1] can be uniquely
extended to a Gödel interpretation. In Lp


 and Lp
◦,
, the operator 
 is interpreted

by I(
A) := π1(I(A)). For Lp◦ and Lp
◦,
, a Gödel interpretation I consists also of a

constant rI ∈ [0, 1], which we use to put I(◦A) := rI⊕I(A). For any given s ∈ [0, 1],
every Lp◦- or Lp

◦,
-interpretation I with rI = s is referred to as an s-interpretation.
A Gödel interpretation I of L (or L◦, L
, L◦,
) interprets the logical connectives

and operators like its propositional counterpart and consists, as usual, of a nonempty
domain |I|, a function PI : |I|n → [0, 1] for each n-ary predicate symbol P , a
function f I : |I|n → |I| for each n-ary function symbol f , and an element aI ∈ |I|
for each free variable and for each constant a. The quantifiers are interpreted by
I(∀x A(x)) = inf{I(A(u)) : u ∈ |I|} and I(∃x A(x)) = sup{I(A(u)) : u ∈ |I|}; here,
we tacitly use the convention that a domain element u ∈ |I| in a formula stands for a
fresh constant u to be interpreted as u. — A classical interpretation of L is a Gödel
interpretation such that PI : |I|n → {0, 1}.

A formula A is valid if I(A) = 1 for every interpretation I. This leads to definitions
that depend on the language, but we easily see that the validity of a formula A does
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not change when the language is joined with an operator that does not occur in A. For
the sake of clarity, we explicitly state that A in L◦ is valid if and only if I(A) = 1
holds for every r ∈ [0, 1] and every r -interpretation I.

Let A be a formula in a language L and let Γ be a set of formulas in L . (If L is a
first-order language, we stipulate that no free variable occurs in Γ .) We write Γ � A
and say Γ entails A (w.r.t. L) if inf{I(B) : B ∈ Γ } ≤ I(A) for every interpretation
I of L . We write Γ �1 A and say Γ one-entails A (w.r.t. L) if I(A) = 1 for every
interpretation I of L such that I(B) = 1 for all B ∈ Γ . We say that the entailment
relation is compact if Γ � A implies the existence of a finite subset Γ ′ of Γ such that
Γ ′ � A. Compactness for one-entailment is defined analogously.

3 Failure of recursive enumerability of valid formulas in L◦

In this section, we will prove that the closed prenex formulas in L◦ valid w.r.t. Gödel
semantics are not recursively enumerable. We will closely follow the idea of Scarpellini
[12] by first defining a faithful translation of the formulas that are classically valid in
all finite domains into the prenex fragment of L◦ and then applying Trakhtenbrot’s
theorem.

Definition 1 Let A be a formula in L. The formula A¬¬ is obtained from A by
replacing every occurrence Q of an atom, except ⊥, by ¬¬Q.

We immediately see that A¬¬ takes only values 0 and 1 under each Gödel interpre-
tation.

Lemma 1 There is an effective translation β of the closed prenex formulas in L to
the closed formulas in L◦ such that any closed prenex formula A is classically valid
in all finite domains if and only if β(A) is valid in L◦ w.r.t. Gödel semantics.

Proof Let A be a closed prenex formula inL so that A¬¬ has the form Q1w1 . . . QMwM

U (w1, . . ., wM ), where Qi ∈ {∀, ∃}, the wi are bound variables and U is quantifier
free. Let (Pk)k<K be an enumeration of the set of all predicate symbols that occur in
A. We will denote the arity of Pk by ar(Pk). We will construct β(A) first and then
prove the required properties. Let N be the maximum of 1 and of all arities of the Pk ;
take a fresh binary predicate E and a fresh unary predicate R. Define

F := ∀x, y, z, a1, b1, . . . , aN , bN .

((¬¬E(x, x))

∧(¬¬E(x, y)⊃¬¬E(y, x))

∧((¬¬E(x, y) ∧ ¬¬E(y, z))⊃¬¬E(x, z))

∧
∧

k<K

(¬¬E(a1, b1) ∧ · · · ∧ ¬¬E(an, bn))

⊃(¬¬Pk(a1, . . . , aar(Pk ))↔¬¬Pk(b1, . . . , bar(Pk )))

∧¬¬◦⊥
∧(¬E(x, y)⊃ ((◦R(x)⊃ R(y)) ∨ (◦R(y)⊃ R(x))))).

and β(A) := F ⊃ ∃x Q1w1 . . . QMwM (U (w1, . . . , wM ) ∨ R(x)).
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Monotone operators on Gödel logic 265

The predicate E obviously serves the purpose of modelling an equivalence relation
such that elements are equivalent when they cannot be distinguished by some Pk .
To explain the purpose of R, we first remark that it can be easily proved by case
distinction that, for all formulas X and Y and for any r -interpretation I, we have
I((◦X ⊃ Y ) ∨ (◦Y ⊃ X)) = 1 whenever |I(X)− I(Y )| ≥ r , and that I((◦X ⊃ Y ) ∨
(◦Y ⊃ X)) = max{I(X),I(Y )} whenever |I(X) − I(Y )| < r . The last conjunct of
F now expresses that RI interprets elements in different equivalence classes of E by
values in [0, 1] that have at least distance r . By the topological compactness of the
[0, 1] interval, this construction ensures the finiteness of the number of equivalence
classes but does not impose a bound on their number since r > 0 can be arbitrary
small. (Observe that the penultimate conjunct in F models the condition r > 0.)

To prove the lemma, it obviously suffices to prove that the following conditions are
equivalent for every formula A:

(1) There is a classical interpretation I′ with a finite domain such that I′(A) = 0.
(2) We have I(β(A)) < 1 for some r ∈ [0, 1] and some Gödel r -interpretation I.

We prove (1)→(2): Let I′ be a classical interpretation with a finite domain
∣∣I′∣∣ �= ∅

such that I′(A) = 0. Let d0, . . ., dD be an enumeration of
∣∣I′∣∣ and take r := 1

D+2 .

Define a Gödel r -interpretation I with the domain
∣∣I′∣∣ as follows: EI(x, y) := 1

whenever x = y, EI(x, y) := 0 whenever x �= y, RI(di ) := i
D+2 , and PI

k := PI′
k .

Since PI
k (x) = PI′

k (x) ∈ {0, 1} for all arguments x , we easily see I(A¬¬) = I′(A).
In particular, we have I(A¬¬) = 0. We suppose now that (2) would not hold. We find
I(β(A)) = 1 then and, since x does not occur in U , also I(F) ≤ max

{
supx RI(x),

I(Q1w1 . . . QMwMU (w1, . . . , wM ))
} = max

{
max

{ 0
D+2 , . . . , D

D+2

}
,I(A¬¬)

} =
D

D+2 ; here, any index in sup or inf will refer to |I|. It is readily verified that 1 =
infx I(¬¬E(x, x))= inf x,y I(¬¬E(x, y) ⊃¬¬E(y, x))= inf x,y,z I((¬¬E(x, y)∧
¬¬E(y, z))⊃¬¬E(x, z)) = infa1,b1,...,an ,bn I((¬¬E(a1, b1)∧· · ·∧¬¬E(an, bn))⊃
(¬¬Pk(a1, . . . , an)↔¬¬Pk(b1, . . . , bn))) and that I(¬¬◦⊥)=π0(r)=π0

( 1
D+2

) =
1. For the remaining conjunct in F , this means that inf x,y(I(¬E(x, y))�I((◦R(x)⊃
R(y)) ∨ (◦R(y) ⊃ R(x)))) ≤ D

D+2 < 1. Thus there exist di , d j ∈ |I| such that
I(¬E(di , d j )) > I((◦R(di )⊃R(d j ))∨(◦R(d j )⊃R(di ))).Hence we have |I(R(di ))−
I(R(d j ))| < r and I(¬E(di , d j )) > max

{
I(R(di )),I(R(d j ))

} ≥ 0. From the for-

mer, we obtain 1
D+2 = r > |RI(di )− RI(d j )| =

∣∣∣ i
D+2 − j

D+2

∣∣∣ and thus i = j . This

yields I(¬E(di , d j )) = 0, which is absurd.
We prove (2)→(1): Suppose we have I(β(A)) < 1 for some r ∈ [0, 1] and

some Gödel r -interpretation I so that I(F) > I(∃x Q1w1 . . . QMwM (U (w1, . . .,
wM ) ∨ R(x))). Since U does not contain x , we find I(F) > supx RI(x) and 1 ≥
I(F) > I(Q1w1 . . . QMwMU (w1, . . . , wM )) ≥ 0. It can be easily seen that I(F) is
the minimum of the following expressions:

C1 := inf
x

π0(EI(x, x)),

C2 := inf
x,y

π0(EI(x, y)) � π0(EI(x, y)),

C3 := inf
x,y,z

min{π0(EI(x, y)), π0(EI(y, z))}� π0(EI(x, z)),
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266 O. Fasching, M. Baaz

C4,k := inf
a1,...,an ,b1,...,bn

min{π0(EI(a1, b1)), . . . , π0(EI(an, bn))}�

(π0(PI
k (a1, . . . , aar(Pk))) �� π0(PI

k (b1, . . . , bar(Pk )))), for all k < K ,

C5 := π0(r), and

C6 := inf
x,y

(1− π0(EI(x, y))) � I((◦RI(x)⊃ RI(y)) ∨ (◦RI(y)⊃ RI(x))).

Since 0 < I(F) we have 0 < C5 and hence 0 < r . Using the definitions of � and
�� and the fact that π0(x) ∈ {0, 1} for all x ∈ [0, 1], we see that C1, C2, C3, C4,k ,
C5 ∈ {0, 1} for all k < K . Since 0 < I(F), we find 1 = C1 = C2 = C3 = C4,k = C5
for all k < K . All atoms in U , except⊥, are under double negation, and thus I(A¬¬) =
I(Q1w1 . . . QMwMU (w1, . . . , wM )) can only take values 0 and 1, and hence must
be 0 because it is less than I(F). We thus obtain C6 = I(F) > supx RI(x).

We prove now that we have |RI(a) − RI(b)| ≥ r for all a, b ∈ |I| such that
EI(a, b) = 0. Suppose this was not the case so that |RI(a) − RI(b)| < r and
EI(a, b) = 0 for some a, b ∈ |I|. As remarked earlier, we have I((◦RI(a)⊃RI(b))∨
(◦RI(b) ⊃ RI(a))) = max{RI(a), RI(b)}. Since π0(EI(a, b)) = 0, we find from
the definition of C6 that C6 = max{RI(a), RI(b)} ≤ supx RI(x) < I(F) = C6,
which is a contradiction.

Put a ∼ b :⇔ EI(a, b) > 0 for all a, b ∈ |I|. Since 1 = C1 = C2 = C3, this is
an equivalence relation. We will prove that there are only finitely many equivalence
classes w.r.t. ∼. Suppose this was not the case so that we can find a sequence (xi )i∈N
such that xi ∼ x j if and only if i = j . whenever i �= j , we have EI(xi , x j ) = 0 so
that then, by C6 = 1 and the remark further above, we see |RI(xi ) − RI(x j )| ≥ r .
However this contradicts the topological compactness of [0, 1] since, as proved earlier,
r > 0.

Let Pk be an m-ary predicate symbol. Suppose we have elements in |I| such that
a1 ∼ b1, …, am ∼ bm so that π0(EI)(ai , bi ) = 1 whenever 1 ≤ i ≤ m. It follows
from C4,k = 1 that 1 = π0(PI

k (a1, . . . , am)) �� π0(PI
k (b1, . . . , bm)). It is easy to

see that x �� y = 1 if and only if x = y. Thus we find π0(PI
k (a1, . . . , am)) =

π0(PI
k (a1, . . . , am)).

The above paragraph shows that a classical interpretation I′ whose domain |I′| con-
sists of the equivalence classes w.r.t.∼ can be well-defined by PI′

k ([x1], . . . , [xm]) :=
π0(PI

k (x1, . . . , xm)) ∈ {0, 1}; here [x] denotes the equivalence classes containing x .

Free variables are interpreted by vI′ := [vI]. Since π0 renders double negation, one
can readily show by induction on the formula complexity that I′(B[x1], . . . , [xm]) =
I((B(x1, . . . , xm))¬¬) for all x1, …, xm ∈ |I| and all formulas B. In particular, we
have I′(A) = 0 because of I(A¬¬) = 0. This completes the proof. ��

The following proposition allows us to sharpen the above lemma by performing
a kind of quantifier shift, which goes back to Takeuti and Titani [13], Extra Axiom
Schema 6

(∀x A(x)⊃ B)⊃ ∃x((A(x)⊃ C) ∨ (C ⊃ B))

123



Monotone operators on Gödel logic 267

and their Theorem 1.1, Formula (13),

(A ⊃ ∃x B(x))⊃ ∃x((A ⊃ C) ∨ (C ⊃ B(x))),

where C does not contain x .

Proposition 1 Let a0, b0, …, an, bn, c0, d0, …, cm, dm be blocks of distinct bound
variables, possibly empty, and let K := K (a0, b0, . . . , an, bn)and L := L(c0, d0, . . . ,

cm, dm) be semiformulas in L◦,
.
Let U and V be fresh nullary predicate symbols. W.r.t. Gödel semantics, the validity

of the following formulas is then equivalent:

(1) (∃a0∀b0 . . . ∃an∀bn K )⊃ (∃c0∀d0 . . . ∃cm∀dm L)

(2) ∀a0∃b0 . . . ∀an∃bn∃c0∀d0 . . . ∃cm∀dm((K ⊃U ) ∨ (U ⊃ V ) ∨ (V ⊃ L)).

Proof We only give a sketch of the elementary arguments:
Given d ∈ [0, 1] and a [0, 1]-valued function f on a nonempty set X , we obviously

have d < infx f (x) if and only if ∃c ∈ [0, 1]. ∀x ∈ X . d < c < f (x). Similarly, we
find that d < supx holds if and only if ∃c ∈ [0, 1].∃x ∈ X.d < c < f (x); this is the
case if and only if ∃x ∈ X . d < f (x).

By applying the above equivalences and by unwinding the definitions of the quan-
tifier interpretations, we see for any e ∈ [0, 1] that e < I(∃a0∀b0 . . . ∃an∀bn K )

holds if and only if there is r ∈ [0, 1] such that ∃a0 ∈ X.∀b0 ∈ X. … ∃an ∈ X .
∀bn ∈ X.e < r < I(K ). Likewise, I(∃c0∀d0 . . . ∃cm∀dm K ) < e holds if and only if
there is r ∈ [0, 1] such that ∀c0 ∈ X.∃d0 ∈ X. … ∀cm ∈ X.∃dm ∈ X . I(L) < r < e.

Clearly, (1) is not valid if and only if there are an interpretation I and e ∈ [0, 1]
such that I(∃c0∀d0 . . . ∃cm∀dm L) < e < I(∃a0∀b0 . . . ∃an∀bn K ). By the above
paragraph, this is equivalent to the existence of r, s ∈ [0, 1] such that ∃a0. ∀b0. …
∃an . ∀bn .∀c0. ∃d0. … ∀cm . ∃dm .I(L) < s < r < I(K ).

We can readily prove that (2) is not valid if and only if there is some interpretation I′
and some g ∈ [0, 1] such that ∃a0.∀b0. . . . ∃an .∀bn .∀c0.∃d0. . . . ∀cm .∃dm .F , where
F abbreviates the condition I′((K ⊃ U ) ∨ (U ⊃ V ) ∨ (V ⊃ L)) < g < 1. Here, F
can be replaced by I′(L) < I′(V ) < I′(U ) < I′(K ) ∧ I′(U ) < g < 1 since it is
easy to verify that for every interpretation I′, every h ∈ [0, 1] and all propositional
atoms A, B, C , D we have I′((A ⊃ B) ∨ (B ⊃ C) ∨ (C ⊃ D)) < h if and only if
I′(D) < I′(C) < I′(B) < I′(A) ∧ I′(B) < h.

The above conditions expressing the nonvalidity of (1) and (2) can be seen to be
equivalent as follows: For one direction, put s := I′(V ), r := I′(U ). For the other,
redefine I(U ) to be r and I(V ) to be s and put g := 1+r

2 . This provides the required
properties and completes the proof. ��

Since β(A) in the proof of Lemma 1 has the form assumed in Proposition 1, we
obtain the following corollary:

Corollary 1 There is an effective translation α of the closed prenex formulas in L to
the closed prenex formulas in L◦ such that any closed prenex formula A is classically
valid in all finite domains if and only if α(A) is valid in L◦ w.r.t. Gödel semantics.
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268 O. Fasching, M. Baaz

Fig. 1 Proof system IPL
(MP)

A A ⊃ B

B
(IPL1) ⊥  ⊃ A
(IPL2)        (A ∧ B) ⊃ A
(IPL3)        (A ∧ B) ⊃ B
(IPL4) A ⊃ (B ⊃ (A ∧ B ))
(IPL5) A ⊃ (A ∨ B )
(IPL6) B ⊃ (A ∨ B )
(IPL7)        (A ⊃ C ) ⊃ (( B ⊃ C ) ⊃ (( A ∨ B ) ⊃ C ))
(IPL8) A ⊃ (B ⊃ A )
(IPL9)        (A ⊃ B ⊃ C ) ⊃ (( A ⊃ B ) ⊃ (A ⊃ C ))

By Trakhtenbrot’s theorem [14], the set of closed (prenex) formulas that are classi-
cally valid in all finite domains are not r.e. From Corollary 1, we immediately obtain:

Corollary 2 The set of valid prenex formulas in L◦ w.r.t. Gödel semantics is Π2-hard.

4 Proof systems for validity in Lp◦ and Lp
◦,�

In this section we will prove Theorem 3, where we present (1) proof systems that are
sound and (weakly) complete for the Gödel logics in Lp◦ and Lp

◦,
 and (2) an algorithm
to derive a valid formula in these proof systems. Dummett’s paper [7] immediately
implies the following theorem, and the method of proof presented therein forms also
the basis for our results. After Definition 2, we will describe how we have extended
this method. For an exposition of Dummett’s result and a discussion for more general
operators, see [8, Section 3].

Let IPL denote the proof system in Fig. 1, which is sound and complete for intu-
itionistic propositional logic.

Theorem 1 Let G be the extension of IPL by the axiom scheme of linearity

(LIN) : (A ⊃ B) ∨ (B ⊃ A).

For any formula A in Lp, the proof system G proves A if and only if A is valid w.r.t.
the Gödel semantics for Lp.

The proof system G is sound and complete w.r.t. Gödel semantics for Lp. Moreover,
there is an algorithm that either constructs a G-proof of a formula A or constructs a
Gödel evaluation I such that I(A) < 1, i.e. a countermodel to the validity of A.

The following proposition summarises well-known properties of G and will allow
us to abbreviate formal proofs in Lp◦ and Lp

◦,
.

Proposition 2 The proof system G in the language Lp has the following properties:
The deduction theorem holds, i. e., G + A � B if and only if G � A ⊃ B. The rule
A ⊃ B B ⊃ C

A ⊃ C
is derivable. Let E[·] denote an Lp-context, and let A, B, C, D be

formulas in Lp. Then G proves the following:
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(G1) A ≺ 	
(G2) (⊥ ≺ A) ∨ (⊥↔ A)

(G3) (A ≺ B) ∨ (A↔ B) ∨ (B ≺ A)

(G4) (A↔ B)⊃ (E[A] ↔ E[B])
(G5) (A � B)⊃ (E[A ∧ B] ↔ E[A]) for � ∈ {≺,↔}
(G6) (A � B)⊃ (E[A ∨ B] ↔ E[B]) for � ∈ {≺,↔}
(G7) (A � B)⊃ (E[A ⊃ B] ↔ E[	]) for � ∈ {≺,↔}
(G8) (A ≺ B)⊃ (E[B ⊃ A] ↔ E[A])
(G9) E[A � A] ↔ E[A] for � ∈ {∧,∨}

(G10) E[A � B] ↔ E[B � A] for � ∈ {∧,∨,↔}
(G11) E[(A � B) � C] ↔ E[A � (B � C)] for � ∈ {∧,∨}
(G12) E[A � (B ♦ C)] ↔ E[(A � B) ♦ (A � C)] for �,♦ ∈ {∧,∨}
(G13) (A ≺ A)↔ ((A↔ A) ∧ (A↔	))

(G14) A ⊃ A
(G15) ((A ≺ B) ∧ (B � A))↔ ((A↔ B) ∧ (B↔	)) for � ∈ {⊃,≺,↔}
(G16) ((A � B) ∧ (B ♦ C) ∧ (C ≺ A))↔ ((A↔ B) ∧ (B↔ C) ∧ (C ↔	)) for

�,♦ ∈ {↔,≺}
(G17) E[	 ∨ A] ↔ E[	]
(G18) E[⊥ ∨ A] ↔ E[A]
(G19) E[⊥ ∧ A] ↔ E[⊥]
(G20) E[A ≺ ⊥]↔ E[⊥]
(G21) (	 ≺ A)↔ (	↔ A)

(G22) (B ∨ C)↔ (((A↔ A) ∧ B) ∨ C)

(G23) (((A↔ B) ∧ C) ∨ D)↔ (((A↔ B) ∧ (B↔ A) ∧ C) ∨ D)

(G24) (((A ≺ ⊥) ∧ B) ∨ C)↔ C
(G25) (A ⊃ (B↔ C))⊃ ((A ∧ (B ≺ C))↔ (A ∧ (B↔ C) ∧ (C↔	)))

(G26) (A ⊃ (B ≺ C))⊃ ((A ∧ (C ≺ B))↔ (A ∧ (B↔ C) ∧ (C↔	)))

(G27) (A⊃ (B ≺ C))⊃ ((A∧ (B↔C)∧ (C ≺ 	))↔ (A∧ (B↔C)∧ (C↔	)))

(G28) (A ⊃ B)⊃ ((B ⊃ C)⊃ (A ⊃ C))

(G29) (A ⊃ B)⊃ ((B ≺ A)↔ ((A↔ B) ∧ (B↔	)))

Proof The validity of these formulas w.r.t. Gödel semantics can be effortlessly checked.
Therefore it suffices to apply Theorem 1 in order to verify the derivability of every
instance of the formulas (G1)–(G29). The proofs of the other claims are routine. ��
Definition 2 Let G◦ denote the proof system in Lp◦ that extends G by the following
axiom schemata:

(R1) (⊥ ≺ ◦⊥)⊃ (A ≺ ◦A),
(R2) (⊥↔ ◦⊥)⊃ (A↔◦A),
(R3) ◦(A ⊃ B)↔ (◦A ⊃ ◦B),

where A and B are any formulas from Lp◦. If A is G◦-derivable, we write G◦ � A.

We omit the easy proof of the following lemma.

Lemma 2 G◦ is sound w.r.t. Gödel semantics in Lp◦.
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The completeness of G◦ however requires a lengthy and technical but elementary
proof, which occupies the rest of this section. The method of proof goes back to
Dummett [7] and is also presented in a more modern way in [4] to investigate inter-
polation in Gödel logics. For the sake of self-containedness, we shall repeat the main
ideas here:

Once one has found a formal derivation of (G3), axiom (IPL7) allows us to make
case distinctions in the following sense: In order to prove a given formula D, it suffices
to prove (X ≺ Y ) ⊃ D, (X ↔ Y ) ⊃ D, and (Y ≺ X) ⊃ D; here X and Y can be
chosen arbitrarily. Let �i ∈ {≺,↔}; since IPL can prove that (X1 �1 Y1)⊃ ((X2 �2
Y2)⊃ . . . ((Xn �n Yn)⊃D)) and ((X1 �1 Y1)∧· · ·∧ (Xn �n Yn))⊃D are equivalent,
these case distinctions can be gathered into a conjunction. We now assume that all
case distinctions for all unordered pairs {X, Y } of variables in D, of 	 and of ⊥ are
performed in the above way. The derivable formulas (G13), (G15), (G16) etc. allow
us to transform the above conjunction with a branch of these case distinctions into
a so-called chain, which is a conjunction of the form C := (X1 �1 X2) ∧ (X2 �2
X3) ∧ · · · ∧ (Xn−1 �n−1 Xn) with variables Xi . The formulas (G5)–(G8) are then
used to “evaluate” D under C , i. e., to find a derivation of C ⊃ (D↔ D′), where D′
is a variable, or ⊥, or 	. This is done step-by-step by replacing some innermost non-
trivial subformula by a variable,⊥, or	. Observe that we need two features of Gödel
logics for this: In-depth substitution (G4), and the projection property, which says that
I(F(A1, . . . , An)) ∈ {I(	),I(⊥),I(A1), . . . ,I(An)} for any interpretation I and
any formula F in variables A1, …, An . If D′ is⊥or a variable (that is not in the same↔-
equivalence class as	 w.r.t. C) one can immediately read off from C a countermodel
I to the validity of D due to the chain form of C : It is obvious how to construct a
“realising” interpretation I of C , i.e., with I(X1) ♦1 I(X2) ♦2 . . . ♦n−1 I(Xn) where
♦i is= whenever �i = ↔ and where ♦i = < whenever �i = ≺. We have I(C) = 1
but I(D) < 1 then. But, as D was assumed to be valid, this indirect argument shows
that D′ can be chosen as 	, as required.

For Lp◦, this method needs only few modifications, which we sketch briefly: The
case distinctions have to be enlarged from all variables to ring powers ◦m A; here A
is ⊥ or a variable, and m ∈ N is bound by the maximal nesting level of rings in
D. Definition 5 extends the notion of a chain accordingly but also excludes certain
orderings to render the fact that the ring axioms (R1)–(R3) can strengthen certain
conjunctions of case distinctions further, e. g., a ≺ b and ◦b ≺ ◦a ought not to
occur simultaneously in a chain since there is a G◦-derivation of ((a ≺ b) ∧ (◦b ≺
◦a))↔((a ≺ b)∧(◦a↔◦b)∧(◦b↔	)). The text from Proposition 3 to Definition 6
contains the tedious proof that one can construct, for every chain C , a value r ∈ R and
a realising r -interpretation I, with the same properties as in the previous paragraph.
As a consequence, Definition 5 can be discerned as an appropriate generalisation of
the ringless chain in the sense that it rules out exactly those orderings that can be
strengthened.

Let us remark by the way that a typical “algebraical” Lindenbaum-Tarski argument
to prove completeness of G◦ w.r.t. the given semantics cannot work: A close inspection
of this method reveals that it relies on the compactness of the chosen entailment relation
but neither 1-entailment nor entailment are compact as the following example shows.
For R := {◦k A ⊃ B; k ∈ N} and S := {B ∨ ¬◦⊥}, we have R � S and R �1 S but
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U �� S and U ��1 S for any finite subset U of R. It would be interesting if any other
“algebraical” approach can provide a proof of completeness.

In the following proofs, we will often just state that a certain Lp-formula is
G-provable but we will leave it to the reader to verify its validity and then apply
Theorem 1 to obtain a G-proof.

Proposition 3 G◦ proves for any Lp◦-formulas A, B, C and any Lp◦-context E[·]:
(S1) A ⊃ ◦A

(S2) ◦(A � B)↔ (◦A � ◦B) for � ∈ {≺,∧,∨,↔}
(S3) (A↔ B)⊃ (E[A] ↔ E[B])

Proof (S1): Since G proves ((⊥ ≺ C)⊃(D ≺ E))⊃(((⊥↔C)⊃(D↔E))⊃(D⊃E)),
G◦ proves its instance ((⊥ ≺ ◦⊥)⊃(A ≺ ◦A))⊃(((⊥↔◦⊥)⊃(A↔◦A))⊃(A⊃◦A)).
From (R1) and (R2), we obtain (S1).

First, we consider the case � = ≺ for (S2). Due to (R3), we have G◦ � ◦((B ⊃
A) ⊃ B)↔ (◦(B ⊃ A) ⊃ ◦B) and G◦ � ◦(B ⊃ A)↔ (◦B ⊃ ◦A). Since G proves
(C↔ (D ⊃ E))⊃ (D↔ F)⊃ (C↔ (F ⊃ E)), it follows G◦ � ◦((B ⊃ A)⊃ B)↔
((◦B ⊃ ◦A)⊃ ◦B), as required.

For the case � = ∧ of (S2), we observe that G proves (((C∧D)⊃C)⊃P)⊃(((E∧
F)⊃ F)⊃Q)⊃ ((G⊃ (H ⊃ (G∧H)))⊃ R)⊃ (P↔ (K ⊃ N ))⊃ (Q↔ (K ⊃M))⊃
(R↔(N⊃ S))⊃(S↔(M⊃K ))⊃(K↔(N ∧M)). We apply (MP) to an appropriate
instance of this formula and the (S1)-instances ((A ∧ B) ⊃ A) ⊃ ◦((A ∧ B) ⊃ A),
((A∧B)⊃B)⊃◦((A∧B)⊃B), (A⊃(B⊃(A∧B)))⊃◦(A⊃(B⊃(A∧B))) and the (R3)-
instances ◦((A∧ B)⊃ A)↔ (◦(A∧ B)⊃◦A), ◦((A∧ B)⊃ B)↔ (◦(A∧ B)⊃◦B),
◦(A⊃ (B⊃ (A∧ B)))↔ (◦A⊃◦(B⊃ (A∧ B))), ◦(B⊃ (A∧ B))↔ (◦B⊃◦(A∧ B))

to obtain ◦(A ∧ B)↔ (◦A ∧ ◦B).
For the case � = ∨ of (S2), we take an appropriate instance of the G-provable

formula (((U ∨V )⊃V )⊃ P)⊃ (((U ∨V )⊃U )⊃Q)⊃ ((C⊃ (C∨D))⊃ R)⊃ ((E⊃
(E∨F))⊃S)⊃(P↔(G⊃E))⊃(Q↔(G⊃F))⊃(R↔(E⊃G))⊃(S↔(F⊃G))⊃
(G↔(E∨F)) and apply the (S1)-instances ((A∨B)⊃A)⊃◦((A∨B)⊃A), ((A∨B)⊃
B)⊃◦((A∨B)⊃B), (A⊃(A∨B))⊃◦(A⊃(A∨B)), (B⊃(A∨B))⊃◦(B⊃(A∨B)),
the (R3)-instance◦((A∨B)⊃A)↔(◦(A∨B)⊃◦A), ◦((A∨B)⊃B)↔(◦(A∨B)⊃◦B),
◦(A⊃ (A∨ B))↔ (◦A⊃◦(A∨ B)), ◦(B ⊃ (A∨ B))↔ (◦B ⊃◦(A∨ B)) to obtain
the required ◦(A ∨ B)↔ (◦A ∨ ◦B).

For the case � = ↔ of (S2), we take the G-provable formula (G↔ (E ∧ F)) ⊃
(E↔(C⊃D))⊃(F↔(D⊃C))⊃(G↔(C↔D)), the (S2)(∧)-instance ◦((A⊃B)∧
(B⊃ A))↔(◦(A⊃B)∧◦(B⊃ A)) and the (R3)-instances ◦(A⊃B)↔(◦A⊃◦B) and
◦(B⊃ A)↔ (◦B⊃◦A) to obtain ◦((A⊃ B)∧ (B⊃ A))↔ ((◦A⊃◦B)∧ (◦B⊃◦A)),
i. e. ◦(A↔ B)↔ (◦A↔◦B), as required.

We will prove now by induction on formula complexity of E[·]: G◦ proves (A↔
B) ⊃ (A↔ B) and (A↔ B) ⊃ (C ↔ C) since also G does. Given a G◦-proof of
(A↔ B) ⊃ (E[A] ↔ E[B]), one can obtain G◦ � (A↔ B) ⊃ (◦E[A] ↔ ◦E[B])
from the (S2)(↔)-instance ◦(E[A]↔ E[B])↔ (◦E[A]↔◦E[B]), the (S1)-instance
(E[A] ↔ E[B]) ⊃ ◦(E[A] ↔ E[B]) and (IPL2). Given G◦-proofs of (A↔ B) ⊃
(E[A] ↔ E[B]) and (A↔ B) ⊃ (F[A] ↔ F[B]), we use the G-provable formulas
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(X⊃(P↔Q))⊃(X⊃(R↔S))⊃(X⊃((P�R)↔(Q�S))), for any � ∈ {∧,∨,⊃}, to
find G◦-proofs of (A↔B)⊃((E[A]�F[A])↔(E[B]�F[B])). This establishes (S3).

��
Definition 3 (Grid) Given a finite, non-empty set X , we call (Y,�,∼) a grid over
X if there is some N : X → N such that Y = {(x, n); x ∈ X, n ≤ N (x)}, ∼ is a
reflexive, symmetric and transitive relation on Y ,� is a transitive relation on Y and,
moreover, for all a, b, c ∈ Y we have

(T1) either a � b or a ∼ b or b � a;
(T2) a ∼ b � c implies a � c,
(T3) a � b ∼ c implies a � c,
(T4) a + 1 ∈ Y implies a � a + 1,
(T5) (a + 1 ∈ Y ∧ b + 1 ∈ Y ) implies (a � b if and only if a + 1� b + 1),
(T6) (a + 1 ∈ Y ∧ b + 1 ∈ Y ) implies (a ∼ b if and only if a + 1 ∼ b + 1),

here we have put (x, n)+ k := (x, n + k) for all n, k ∈ N and x ∈ X . We will regard
X as a subset of Y by virtue of x �→ (x, 0). We put �∼ := �∪∼.

Lemma 3 Let C = (Y,�,∼)be a grid over X. Then there is an algorithm to construct
a grid C∗ = (Y∗,�∗,=) over X and a σ : Y → Y∗ such that for all y, y′ ∈ Y :

y ∼ y′ if and only if σ(y) = σ(y′),
y � y′ if and only if σ(y)�∗ σ(y′),
y + 1 ∈ Y implies σ(y + 1) = σ(y)+ 1 ∈ Y∗

Proof We will prove only the following statement: For every grid C = (Y,�,∼) and
p, q ∈ Y such that p ∼ q, we can specify a grid C ′ = (Y∗,�∗,∼∗) and t : Y → Y∗
such that t (p) = t (q) and for all y, y∗ ∈ Y holds: (1) y ∼ y∗ if and only if t (y) ∼∗
t (y∗), (2) y � y∗ if and only if t (y) �∗ t (y∗), and (3) t (y + 1) ∼∗ t (y) + 1 ∈ Y∗
whenever y ∈ Y such that y + 1 ∈ Y . Observe that, provided that p and q are chosen
differently, the number of equivalence classes in C∗ is less than in C . By applying
the above statement iteratively, we obtain a C∗ with only one equivalence class. The
lemma is then established by taking σ as the concatenation of the intermediate t’s.

Thus, let C = (Y,�,∼) and p, q ∈ Y such that p ∼ q. Then there are a, b ∈ X and
n, m ∈ N such that p = (a, n) ∼ q = (b, m). W. l. o. g. we assume that n ≥ m. Thus,
by (T5), a+K ∼ b for K := n−m ∈ N. Define N ′(x) := N (x) for all x ∈ X �{a, b}
and let N ′(a) := max{N (a), N (b)+ K }. Put Y∗ := {(x, i); x ∈ X � {b}, i < N ′(x)}
and define t : Y → Y∗ by t (b, i) := (a, i+K ) and t (x, i) := (x, i) for all x ∈ X �{b}.

For all (x, n), (x ′, n′) ∈ Y , we will see by distinguishing four cases that t (x, n) =
t (x ′, n′) implies (x, n) ∼ (x ′, n′): If both x, x ′ ∈ X � {b} then (x, n) = t (x, n) =
t (x ′, n′) = (x ′, n′). If x = b = x ′ then (a, n+K ) = t (x, n) = t (x ′, n′) = (a, n′+K )

so that n = n′ and thus (x, n) ∼ (x ′, n′). If x = b and x ′ ∈ X � {b} then (x, n) =
(b, n) ∼ (a, n + K ) = t (x, n) = t (x ′, n′) = (x ′, n′). If x ′ = b and x ∈ X � {b} then
(x, n) = t (x, n) = t (x ′, n′) = (a, n′ + K ) ∼ (b, n′) = (x ′, n′).

Since t is surjective, the property just proved enables us to define two relations�∗
and ∼∗ on Y∗ by t (c) �∗ t (d) :⇔ c � d and by t (c) ∼∗ t (d) :⇔ c ∼ d. This
establishes properties (1) and (2). Clearly, t (b, i + 1) = (a, i + K + 1) = t (b, i)+ 1
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and t (x, i + 1) = (x, i + 1) = (x, i) + 1 = t (x, i) + 1 for all x ∈ X � {b}. Thus
property (3) holds, and so it easy to check that (Y∗,�∗,∼∗) is indeed a grid. We also
have t (q) = t (b, m) = (a, m + K ) = (a, n) = t (a, n) = t (p). ��

Given a grid (Y,�,∼), it can be easily seen that every non-empty subset Z of Y has
a �∼ -minimal element, i.e. there is u ∈ Z such that u �∼ u′ for all u′ ∈ Z ; likewise,
there is a �∼ -maximal element U ∈ Z . In particular, any non-empty subset of a grid
(Y,�,=), where the equivalence relation is the identity, has a unique�-minimal and
a unique�-maximal element.

Lemma 4 Let (Y,�,=) be a finite grid over X and let s be the�-minimal element
of Y . Then we can construct f : Y → [0,∞) ∩ Q such that f (s) = 0 and such that
for all y, y′ ∈ Y :

y � y′ implies f (y) < f (y′),
y + 1 ∈ Y implies f (y + 1) = f (y)+ 1.

Proof We will use the following definitions in the slightly involved iterative construc-
tion of f . Let S be the�-maximal element of Y , cf. the remark before the statement
of the lemma. Take � := � ∪ idY , which is obviously a reflexive and transitive
relation on Y . Let E(a, f ) abbreviate the condition that a ∈ Y and f is a function
from {y ∈ Y ; y� a} to [0,∞) ∩Q such that for all y, y′ ∈ Y :

(1) y � y′ � a ⊃ f (y) < f (y′),
(2) (y + 1 ∈ Y ∧ y + 1� a) ⊃ f (y + 1) = f (y)+ 1,
(3) (y + 1 ∈ Y ∧ y� a � y + 1) ⊃ f (a) < f (y)+ 1.

We start the construction by f0(s) := 0 so that E(s, f0) holds. The remainder of the
proof is dedicated to the demonstration that, for any given a ∈ Y and any f such that
a � S and E(a, f ), we can construct a∗ ∈ Y and f∗ such that a � a∗ and E(a∗, f∗);
in particular, we have a �= a∗ then. This suffices to construct an f such that E(S, f )

so that f is total on Y and then conditions (1) and (2) establish the lemma.
Suppose now that a ∈ Y and f are given such that a � S and E(a, f ) hold. We

will distinguish two cases.
In the first case, we suppose that ∅ �= B := {b ∈ Y ; b� a � b + 1} holds. Let b

be�-minimal in B. By definition of B, we have b + 1 ∈ Y . By (1) and (3), we see
f (b) ≤ f (a) < f (b)+ 1, thus 0 < f (b)+ 1− f (a) ≤ 1.

For C := {c ∈ Y ; a � c � b+ 1}, we have C ⊆ X for otherwise a � c � b+ 1
for some c ∈ Y � X ; the latter means that c = d + 1 for some d ∈ Y , but then
a � d + 1� b + 1 implies d � b by (T5), which contradicts the minimality of b.

Let c1 � c2 � . . . � cM be an enumeration of C . Extend f to f∗ by f∗(cm) :=
f (a)+ m

M+1 ( f (b)+ 1− f (a)) and f∗(b + 1) := f (b)+ 1 so that f∗ is defined for
all y� b + 1 and f (a) = f∗(a) < f∗(c1) < f∗(c2) < · · · < f∗(cM ) < f∗(b + 1).
Thus, by the definition of C , we see f∗(a) < f∗(y) < f∗(y′) ≤ f∗(b + 1) whenever
a� y � y′ � b + 1. Now, we will prove E(b + 1, f∗). The statements (1), (2), (3)
will refer to the conditions in E(a, f ).

Given y, y′ ∈ Y with y � y′ � b + 1, we need to show f∗(y) < f∗(y′). We may
assume y � a since a�y implies a�y � y′�b+1 and this yields, as proved above,
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f∗(y) < f∗(y′). From y � a, we see f∗(y) = f (y) < f (a) = f∗(a) by (1). We may
assume also a � y′ since y′ � a implies y � y′ � a and then f∗(y) < f∗(y′) by
(1). As observed earlier, we have f∗(a) < f∗(y′) and thus f∗(y) < f∗(a) < f∗(y′),
as required.

Given y ∈ Y such that y+1 ∈ Y and y+1�b+1, we need to prove f∗(y+1) =
f∗(y) + 1. We may assume y + 1 � b + 1 because b + 1� y + 1, together with
y + 1� b + 1, yields b + 1 = y + 1 so that y = b and f∗(b + 1) = f∗(b) + 1 by
definition of f∗. We may assume y + 1� a for otherwise a � y + 1 ∈ Y holds and
thus y + 1 ∈ C but this contradicts C ⊆ X and y ∈ Y . Now y � y + 1� a, and so
f∗(y + 1) = f (y + 1) = f (y)+ 1 = f∗(y)+ 1 by (2), as required.

The previous three paragraphs complete the proof of E(b+1, f∗) for this first case.
In the second case, we suppose that ∅ = {y ∈ Y ; y�a � y+1} holds in addition

to E(a, f ) and a � S. Due to a � S there is some c ∈ Y that is�-minimal among
the y ∈ Y with a � y. We must have c ∈ X for otherwise there is y ∈ Y with
a � c = y + 1, but since y � a � y + 1 is impossible, we obtain a � y and
thus a � y � y + 1 = c, which contradicts the minimality of c. Extend f to f∗ by
f∗(c) := f (a)+ ε for some ε > 0, e. g. ε = 1. We will prove E(c, f∗).

Given y, y′ ∈ Y such that y � y′ � c, we need to prove f∗(y) < f∗(y′). We
may assume a � y′ since otherwise y′ � a holds and then y � y′ � a implies
f∗(y) = f (y) < f (y′) = f∗(y′) by (1). From a � y′ � c, we conclude y′ = c by
minimality of c. We may assume that a �= y since a = y implies f (y) = f (a) <

f (a) + ε = f∗(c) = f∗(y′). We cannot have a � y since then a � y � y′ = c
contradicted the minimality of c. Thus y � a and now f∗(y) = f (y) < f (a) <

f (a)+ ε = f∗(c) = f∗(y′) by (1), as required.
Given y ∈ Y such that y+1 ∈ Y , y+1�c, we need to prove f∗(y+1) = f∗(y)+1.

We have y � a since otherwise a � y holds, which implies a � y � y + 1� c,
but this contradicts the minimality of c. Since y� a � y + 1 is impossible, we have
y + 1� a. By (2), we find f (y + 1) = f (y)+ 1, as required.

Given y ∈ Y such that y+1 ∈ Y , y�c � y+1, we need to prove f∗(c) < f∗(y)+1.
We must have a � y+ 1 for otherwise we obtain a contradiction from y+ 1� a and
a � c � y+1. Since y�a � y+1 cannot hold, we must have a � y. From y� c
and the minimality of c, we conclude that y = c. Thus f∗(c) < f∗(y) + 1 trivially
holds.

Thus E(c, f∗) holds, as claimed, also in the second case. This completes the whole
proof. ��
Definition 4 (Chain) Let K ∈ N, let X ⊆ Var be finite and choose two distinct fresh
formal symbols	 and⊥. Put Z ′ := {(x, k); x ∈ X∪{⊥}, k ≤ K }, Z := {	}∪Z ′, and
(x, m)+n := (x, m+n) for all x ∈ X ∪{⊥}, m, n ∈ N. We understand X as a subset
of Z ′ by virtue of the embedding x �→ (x, 0). We call (Z ,≺,↔) an (X, K )-chain if
↔ is a reflexive, symmetric, transitive relation on Z , ≺ is a transitive relation on Z
such that for all a, b, c ∈ Z and for all α, β ∈ Z ′:
(U1) a↔ b ≺ c ⊃ a ≺ c,
(U2) a ≺ b↔ c ⊃ a ≺ c,
(U3) either a ≺ 	 or a↔	,
(U4) either ⊥ ≺ a or ⊥↔ a,
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(U5) either a ≺ b or a↔ b or b ≺ a,
(U6) (α + 1 ∈ Z ∧ ⊥↔⊥+ 1)⊃ α↔ α + 1.
(U7) (α + 1 ∈ Z ∧ ⊥ ≺ ⊥+ 1)⊃ (α ≺ α + 1 ∨ α↔ α + 1↔	),
(U8) (α + 1 ∈ Z ∧ β + 1 ∈ Z ∧ α↔ β)⊃ α + 1↔ β + 1,
(U9) (α + 1 ∈ Z ∧ β + 1 ∈ Z ∧ ⊥ ≺ ⊥+ 1 ∧ α ≺ β)

⊃(α + 1 ≺ β + 1 ∨ α + 1↔ β + 1↔	),

Lemma 5 Let (Z ,≺,↔) be an (X, K )-chain. Put Z ′ := Z � {	}. Then we can
construct r ∈ [0, 1] ∩Q and g : Z → [0, 1] ∩Q such that g(⊥) = 0, g(	) = 1 and
such that for all a, b ∈ Z and all α ∈ Z ′:

a ≺ b implies g(a) < g(b),
a↔ b implies g(a) = g(b),
α + 1 ∈ Z implies g(α + 1) = g(α)⊕ r .

Proof By (U4), either⊥↔⊥+1 or⊥ ≺ ⊥+1 holds. In the case⊥↔⊥+1, condition
(U6) yields x ↔ x + 1↔ · · · ↔ x + K for every x ∈ X ∪ {⊥}. Due to (U1)–(U5),
the equivalence classes of X w.r.t.↔ are linearly ordered and thus it is easy to find
some g : X ∪ {⊥,	} → [0, 1] ∩ Q such that g(⊥) = 0, g(	) = 1 and such that for
all x, y ∈ X : x ≺ y implies g(x) < g(y), and x ↔ y implies g(x) = g(y). Putting
r := 0 and extending g to Z ′ by g((x, k)) := g(x), where k ≤ K and x ∈ X , now
obviously yields the desired properties. Therefore, we assume ⊥ ≺ ⊥+ 1 w.l.o.g. in
the remainder of the proof.

The subsets Y0 := {z ∈ Z; z ≺ 	} and Y1 := {z + 1; z ∈ Z ′, z ≺ 	↔ z + 1}
of Z ′ are disjoint by (U3). For any relation R, let RT denote the transposed relation.
By (U5), the sets L0 := ≺ � (Y0×Y0), L0

T and Q0 := ↔ � (Y0×Y0) form a pairwise
disjoint partition of Y0 × Y0. Employing all properties of a chain, it is easily seen that
the sets L1 := {(z + 1, z′ + 1); z, z′ ∈ Z ′, z ≺ z′ ≺ 	↔ z + 1↔ z′ + 1}, L1

T and
Q1 := {(z+1, z′+1); z, z′ ∈ Z ′, z↔z′ ≺ 	↔z+1↔z′+1} form a pairwise disjoint
partition of Y1× Y1. For Y := Y0 ∪Y1 and L2 := Y0× Y1, we conclude therefore that
the sets L0, L0

T , Q0, L1, L1
T , Q1, L2, L2

T comprise a pairwise disjoint partition
of Y × Y . In the following paragraphs, we will prove that (Y,�,∼) is a grid over
X ∪ {⊥} for� := L0 ∪ L1 ∪ L2 and∼ := Q0 ∪ Q1. Since�T = L0

T ∪ L1
T ∪ L2

T ,
it follows that the sets �, ∼, �T comprise a pairwise disjoint partition of Y × Y .
Thus (T1) holds for Y . Since Q0 is reflexive w. r. t. Y0 and Q1 w. r. t. Y1, also ∼ is
reflexive w. r. t. Y . Since Q0 and Q1 are symmetric, so is∼. We see that∼ is transitive
since a ∼ b ∼ c ∈ Y0 implies aQ0bQ0c and aQ0c, and a ∼ b ∼ c ∈ Y1 implies
aQ1bQ1c and aQ1c.

We define ≺↔ := ≺∪↔ and �∼ := �∪∼. Since �∼ = L0∪L1∪L2∪Q0∪Q1 ⊆
(Y0 × Y0) ∪ (Y0 × Y1) ∪ (Y1 × Y1), we remark for use in the next paragraph that
d �∼ e ∈ Y0 implies d ∈ Y0 and that Y1 # d �∼ e implies e ∈ Y1.

We will now prove that a �∼ b � c implies a � c. Since Y0 × Y1 ⊆ �, we only
need to distinguish the case a ∈ Y1 and the case c ∈ Y0. First, suppose c ∈ Y0 so that
b ∈ Y0 and, in turn, a ∈ Y0; thus (a, b) ∈ �∼ � (Y0 × Y0) = L0 ∪ Q0, i. e. a ≺↔ b,
and (b, c) ∈ � � (Y0 × Y0) = L0, i. e. b ≺ c, and therefore a ≺ c is established
by (U1) or by transitivity of ≺. Second, suppose a ∈ Y1 so that b ∈ Y1 and, in turn,
c ∈ Y1; thus (a, b) ∈ �∼ � (Y1 × Y1) = L1 ∪ Q1 and (b, c) ∈ � � (Y1 × Y1) = L1;
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hence there are za, zb, zc ∈ Z ′ such that a = za + 1, b = zb + 1, c = zc + 1 and
za
≺↔ zb ≺ zc ≺ 	↔ za + 1↔ zb + 1↔ zc + 1, which yields a � c by (U1) or by

transitivity of ≺.
In a completely symmetrical way, we can prove that a � b �∼ c implies a � c.

This yields that (Y,�,∼) satisfies (T2) and (T3) and that� is transitive.
We will prove for later use that any a ∈ Y such that a + 1 ∈ Y satisfies a ∈ Y0

and a ≺ a + 1. Since a + 1 ∈ Y1 implies a ≺ 	 ∼ a + 1 and, in turn, a ∈ Y0 and
a ≺ a + 1, we may assume that a + 1 /∈ Y1 so that a + 1 ∈ Y0, i. e. a + 1 ≺ 	.
By (U7), we have either a ≺ a + 1 or a↔ a + 1↔	. From a + 1 ≺ 	 and (U5),
we conclude a ≺ a + 1 ≺ 	 and hence a ∈ Y0.

To prove (T4), we suppose a ∈ Y such that a+1 ∈ Y ; we need to show a � a+1.
By the above, we have a ∈ Y0 and a ≺ a + 1. Since Y0 × Y1 ⊆ �, we may assume
a + 1 /∈ Y1 so that a + 1 ∈ Y0. Since L0 ⊆ �, we have a � a + 1.

The next two paragraphs prepare to prove (T5) and (T6).
Let a, b ∈ Y such that a + 1, b+ 1 ∈ Y and a � b; we will prove a + 1� b+ 1.

As observed above, we have a, b ∈ Y0, thus a ≺ b by L0 ⊆ �. From (U9) and (U5),
we conclude that either a + 1 ≺ b + 1 or a + 1 ∼ b + 1 ∼ 	. If b + 1 ∈ Y0, then
a + 1 ≺ b + 1 ≺ 	 so that also a + 1 ∈ Y0 and thus (a + 1, b + 1) ∈ L0 ⊆ �.
Therefore, we may assume b+ 1 ∈ Y1. If a+ 1 ∈ Y1, then (a+ 1, b+ 1) ∈ L1 ⊆ �.
Therefore, we may assume a + 1 ∈ Y0. Hence (a + 1, b + 1) ∈ Y0 × Y1 ⊆ � as
required.

Let a, b ∈ Y such that a + 1, b + 1 ∈ Y and a ∼ b; we will prove a + 1 ∼
b + 1. As observed above, we have a, b ∈ Y0, thus a↔ b by Q0 ⊆ ∼ and therefore
a + 1↔ b + 1 by (U8). If a + 1 ∈ Y0 or b + 1 ∈ Y0, then {a + 1, b + 1} ⊆ Y0 and
thus (a + 1, b+ 1) ∈ Q0 ⊆ ∼. Thus we may assume {a + 1, b+ 1} ⊆ Y1. Therefore
(a + 1, b + 1) ∈ Q1 ⊆ ∼ as required.

For any a, b ∈ Y such that a + 1, b + 1 ∈ Y , the two preceding paragraphs have
shown the implications a � b ⇒ a + 1 � b + 1 and a ∼ b ⇒ a + 1 ∼ b + 1 and
b � a ⇒ b + 1 � a + 1. By (U5), we see that a + 1 � b + 1 implies that neither
a ∼ b nor b � a can hold and thus, again by (U5), we must have a � b. Similarly,
a+1 ∼ b+1 implies that neither a � b nor b � a can hold, and thus a ∼ b follows.
This establishes (T5) and (T6).

Now, we have proved that (Y,�,∼) is indeed a grid over X ∪ {⊥}. By Lemma 3
and Lemma 4, we can construct f : Y → [0,∞) ∩ Q such that f (⊥) = 0, ∀a, b ∈
Y

(
a � b ⊃ f (a) < f (b)

)
, ∀a, b ∈ Y

(
a ∼ b ⊃ f (a) = f (b)

)
, and ∀a ∈ Y(

a+1 ∈ Y ⊃ f (a+1) = f (a)+1
)
. Since (Y,�,∼) is a grid, Y0 has a �∼ -maximal

element u, i. e. u ∈ Y0 such that a �∼ u for all a ∈ Y0, in particular, f (a) ≤ f (u).
Likewise, there is U ∈ Y1 such that U �∼ b for all b ∈ Y1, in particular f (U ) ≤ f (b).
Since (u, U ) ∈ Y0 × Y1 ⊆ �, we have f (u) < f (U ). Put r := 2

f (u)+ f (U )
and

g(y) := min{1, r · f (y)} for all y ∈ Y . Clearly, g(⊥) = 0. We observe the two
following facts: For all a ∈ Y0 and b ∈ Y1, we conclude from 0 ≤ f (a) ≤ f (u) <
f (u)+ f (U )

2 = 1
r < f (U ) ≤ f (b) that 0 ≤ g(a) < 1 = g(b). For all a, b ∈ Y0 such

that a ≺ b, we conclude from (a, b) ∈ L0 ⊆ � that 0 ≤ f (a) < f (b) ≤ f (u) < 1
r ,

therefore 0 ≤ g(a) < g(b) < 1.
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We extend the domain of g from Y to Z by g(z) := 1 for all z ∈ Z �Y . In particular,
g(	) = 1. Since (Z � Y )∪ Y1 ⊆ (Z � Y0)∪ Y1 ⊆ {z ∈ Z; z↔	}, we see for every
z ∈ Z that g(z) < 1 holds if and only if z ≺ 	.

We need to prove g(a) < g(b) for all a, b ∈ Z with a ≺ b. If b ≺ 	, then
a ≺ b ≺ 	, thus a, b ∈ Y0 and, as observed earlier, g(a) < g(b). Thus we may
assume b↔	 so that now g(b) = 1. We have a ≺ 	 for otherwise a ↔	↔ b,
which contradicts a ≺ b. As observed earlier, we have g(a) < 1 = g(b), as required.

We need to prove g(a) = g(b) for all a, b ∈ Z with a ↔ b. If a ≺ 	, we find
b ≺ 	 and thus (a, b) ∈ Q0 ⊆ ∼ so that f (a) = f (b) and g(a) = g(b). Thus we
may assume a↔	. Now, we see b↔	 and g(a) = 1 = g(b) as required.

We need to prove that g(a + 1) = min{1, g(a) + r} for all a ∈ Z ′ such that
a + 1 ∈ Z . In the case of a ≺ a + 1 ∼ 	, we find a ∈ Y0 and a + 1 ∈ Y1 so that
g(a) < 1 = g(a + 1) as observed earlier; since min{1, r · f (a)} = g(a) < 1 and
f (a+1) = f (a)+1, we see r · f (a) = g(a) and g(a+1) = min{1, r ·( f (a)+1)} =
min{1, r · f (a)+r} = min{1, g(a)+r}, as required. In the case of a ≺ a+1 ≺ 	, we
find 0 ≤ g(a) < g(a+1) < 1 as observed earlier; since min{1, r · f (a)} = g(a) < 1,
min{1, r · f (a+1)} = g(a+1) < 1 and f (a+1) = f (a)+1, we see 1 > g(a+1) =
r · f (a+1) = r · f (a)+r = g(a)+r , thus g(a+1) = min{1, g(a)+r}, as required.
The remaining case is a↔	↔a+1, due to (U7). We now have g(a) = 1 = g(a+1)

and thus g(a + 1) = min{1, g(a)+ r}, as required.
This completes the proof of all claimed properties. ��

Definition 5 Let X ⊆ Var be finite and K ∈ N. Let huv ∈ {≺,↔} be given for
all u, v ∈ Z ; here Z := {	} ∪ {(x, k); x ∈ X ∪ {⊥}, k ≤ K } as in the above
definition of a chain. Define a map ι from Z to formulas in Lp◦ by (x, k) �→ ◦k x ,
	 �→ 	, ⊥ �→ ⊥. Let R≺ := {(u, v); huv = ≺} and R↔ := {(u, v); huv = ↔}.
If (Z , R≺, R↔) is an (X, K )-chain, an (X, K )-chain formula is an Lp◦-conjunction∧

u∈Z , v∈Z ι(u) huv ι(v), regardless of parenthesisation and order in the conjunction.
In this case, we define ι(u) ≺C ι(v) whenever huv = ≺, and ι(u)↔C ι(v) whenever
huv = ↔.

Theorem 2 Suppose C is an (X, K )-chain formula. Let Z∗ := {	} ∪ {◦k x; x ∈
X ∪ {⊥}, k ≤ K }. Then there is a Gödel r-interpretation I : Var → [0, 1] such that
I(C) = 1 and for all a, b ∈ Z∗ we have: I(a) < I(b) whenever a ≺C b; and
I(a) = I(b) whenever a↔C b.

Proof We use the same notation as in the of the (X, K )-chain formula. By Lemma 5,
we can construct r ∈ [0, 1] and g : Z → [0, 1] such that (1) g(⊥) = 0, (2) g(	) = 1,
(3) ∀u, v ∈ Z .(huv = ≺)⊃ g(u) < g(v), (4) ∀u, v ∈ Z .(huv = ↔)⊃ g(u) = g(v),
(5) ∀u ∈ Z ′.u + 1 ∈ Z ⊃ g(u + 1) = r ⊕ g(u).

Let I(x) := g(x) for all x ∈ X and I(x) := 0 for all x ∈ Var � X , and extend I
to all formulas in Lp◦ such that I is a Gödel r -interpretation.

We claim I(ι(u)) = g(u) for all u ∈ Z . For u ∈ {⊥,	}, this follows from (1) and
(2). It remains to check I(ι(x, k)) = I(◦k x) = g(x, k) for all x ∈ X and k ≤ K . By
elementary arithmetics, we see I(◦k x) = (k · r)⊕I(x). Using (5) for k− 1 times, we
find g(x + k) = (k · r)⊕ g(x) = (k · r)⊕ I(x). This establishes the claim.
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We claim I(ι(u) huv ι(v)) = 1 for all u, v ∈ Z . We have to distinguish two cases:
If (huv = ≺), then I(ι(u) ≺ ι(v)) = I(ι(u)) � I(ι(v)) = 1 by (3). If (huv = ↔),
then I(ι(u) ≺ ι(v)) = I(ι(u)) �� I(ι(v)) = 1 by (4). This proves that I(C) = 1.

The other properties are immediate consequences of (3) and (4). ��
Example 1 Since the relations ≺ and ↔ of a chain must fulfil transitivity, (U1),
and (U2), we need not specify huv in detail. As is done in the following example,
it suffices to string the elements of a chain and insert ≺ and↔ between them. Still,
the result needs to be checked to be a chain; however, this is easy for the follow-
ing ({d, e, f, g, h}, 3)-chain C given by (⊥, 0)↔C (d, 0) ≺C (e, 0) ≺C ( f, 0) ≺C

(⊥, 1)↔C (d, 1) ≺C (e, 1) ≺C (g, 0) ≺C ( f, 1) ≺C (⊥, 2)↔C (d, 2) ≺C (h, 0) ≺C

(e, 2) ≺C (g, 1) ≺C ( f, 2) ≺C (⊥, 3)↔C (d, 3) ≺C (h, 1) ≺C (e, 3) ≺C (g, 2)↔C

( f, 3)↔C (h, 2)↔C (g, 3)↔C (h, 3)↔C 	. Then Corollary 2 says that there is
an r -Gödel interpretation I such that I(C) = 1 and 0 = I(⊥) = I(d) < I(e) <

I( f ) < I(◦⊥) = I(◦d) < I(◦e) < I(g) < I(◦ f ) < I(◦◦⊥) = I(◦◦d) <

I(h) < I(◦◦e) < I(◦g) < I(◦◦ f ) < I(◦◦◦⊥) = I(◦◦◦d) < I(◦h) < I(◦◦◦e) <

I(◦◦g) = I(◦◦◦ f ) = I(◦◦h) = I(◦◦◦g) = I(◦◦◦h) = 1.

Definition 6 Let the ring depth rdp of a formula in Lp◦ or Lp
◦,
 be recursively defined

by rdp(A) := 0 for all A ∈ Var∪{⊥}, and by rdp(◦A) := 1+rdp(A), rdp(A� B) :=
max{rdp(A), rdp(B)}, for � ∈ {∧,∨,⊃} and rdp(
A) := rdp(A); here A and B are
Lp◦- and Lp

◦,
-formulas.

Item (c) of the following theorem establishes the weak completeness of G◦ for
validity in Lp◦ w. r. t. Gödel ◦-semantics.

Theorem 3 Suppose X ⊆ Var is finite and K ∈ N. Let Z∗ := {	} ∪ {◦k x; x ∈
X ∪ {⊥}, k ≤ K }.
(a) Then we can construct a set C of (X, K )-chain formulas and a G◦-proof of∨

C∈C C.
(b) For any (X, K )-chain C and any formula F with Var(F) ⊆ X and rdp(F) ≤ K ,

we can construct a (not necessarily unique) z ∈ Z∗ and a G◦-proof of C⊃(F↔z).
We will say that C evaluates F to z.

(c) If F in Lp◦ is valid, we can construct a G◦-proof of F; thus F is valid if and only
if G◦ � F.

Proof Since the case of K = 0, i. e. without rings, is contained in [7], we will stipulate
K �= 0 to avoid trivialities.

(a) We will often tacitly treat the abbreviations≺,↔ and	 as if they were connectives
in their own right, e. g., a formula presented as a↔ b is not meant to undergo a
transformation applied to all formulas with top symbol ∧.

By (G3), we have G◦ � (a ≺ b) ∨ (a ↔ b) ∨ (b ≺ a) for all a, b ∈ Z∗. The
conjunction of these formulas is G◦-provable by (IPL4). Applying (G12) and (S3)
repeatedly, we obtain a G◦-proof of a disjunctive normal form

∨
m C0

m . Now, each
disjunct C0

m has the property (∗): it is a conjunction that consists only of conjuncts
a�b with a, b ∈ Z∗, � ∈ {↔,≺} and that, moreover, contains for each pair a, b ∈ Z∗
at least one conjunct of the form a ≺ b, a↔ b, b↔ a or b ≺ a.
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In the next paragraph, we will specify an iterative procedure that turns
∨

m C0
m

into the required disjunction of chains. We will leave the easy task to the reader to
verify that property (∗) is retained in the intermediate disjunctions. We will neglect
parenthesisation and ordering in conjunctions and disjunctions due to (G10), (G11),
and (S3).

Take
∨

m C0
m and repeatedly apply the first matching rule of the following list until

none of the rules matches:

1. Contract equal conjuncts, i. e. replace e ∧ e by e.
2. Contract disjuncts that are equal up to the order of their contained conjuncts, i. e.

replace C ∨ C by C .
3. Remove some disjunct that contains a conjunct a ≺ ⊥.
4. Replace 	 ≺ a by 	↔ a.
5. Replace a conjunct a ≺ a by (a↔ a) ∧ (a↔	).
6. Replace (a ≺ b) ∧ (b � a), where � ∈ {↔,≺}, by (a↔ b) ∧ (b↔	).
7. Replace (a � b) ∧ (b ♦ c) ∧ (c ≺ a), where �,♦ ∈ {↔,≺}, by (a↔ b) ∧ (b↔

c) ∧ (c↔ a) ∧ (a↔	).
8. Replace (a↔ b) ∧ (◦a ≺ ◦b) by (a↔ b) ∧ (◦a↔◦b) ∧ (◦b↔	).
9. Replace (a ≺ b) ∧ (◦b ≺ ◦a) by (a ≺ b) ∧ (◦a↔◦b) ∧ (◦b↔	).

10. Replace (a ≺ b)∧ (◦a↔◦b)∧ (◦b ≺ 	) by (a ≺ b)∧ (◦a↔◦b)∧ (◦b↔	).
11. Replace (⊥↔ ◦⊥) ∧ (a ≺ ◦a) by (⊥↔ ◦⊥) ∧ (a↔◦a) ∧ (◦a↔	).
12. Replace (◦a ≺ a) by (a↔◦a) ∧ (◦a↔	).
13. Replace (⊥ ≺ ◦⊥)∧ (a↔◦a)∧ (a ≺ 	) by (⊥ ≺ ◦⊥)∧ (a↔◦a)∧ (a↔	).
14. If a disjunct does not contain the conjunct a↔ a, a ∈ Z , add it.
15. If a disjunct contains the conjunct a↔ b but not the conjunct b↔ a, add b↔ a.

For termination, observe the following: The number of disjuncts cannot increase.
Property (∗) and rule 1 provide a quadratic upper bound of the number of conjuncts of
any disjunct in the size of Z∗. The number of Z∗-pairs joined by≺ properly decreases
in the rules 3–13 and does not increase in the other rules so that the rules 3–13 succeed
only a bounded number of times. The system with the rules 3–13 removed is easily
seen to be terminating.

Let
∨

m C1
m denote the result of the procedure. Given a G◦-proof of

∨
m C0

m , we
will iteratively construct a G◦-proof of

∨
m C1

m : If rule 1 transforms the disjunctive
normal form E[e ∧ e] to E[e], extend the G◦-proof of E[e ∧ e] by the (G9)-instance
(e∧ e)↔ e and the (S3)-instance ((e∧ e)↔ e)⊃ (E[e∧ e]↔ E[e]) to obtain a proof
of E[e]; proceed similarly for rule 2. For the other rules, tacitly apply (S3) and the
following: Use (G24) for rule 3, (G21) for 4, (G13) for 5, (G15) for 6, (G16) for 7.
Use (G25) and the (S3)-instance (a↔ b)⊃ (◦a↔◦b) for rule 8. For rule 9, first use
the (S1) and (S2) to prove (a ≺ b)⊃(◦a ≺ ◦b); then use (G26). For rule 10, use (G27)
instead of (G26). Use (R2) and (G25) for 11; (G29) for 12; (R1) and (G27) for 13; use
(G22) for 14; use (G23) for 15.

Observe that rule 3 can never yield an empty disjunction so that there is at least one
disjunct in

∨
m C1

m .
We will now prove that each disjunct C1

m of
∨

m C1
m is an (X, K )-formula. We use

the notation of Definition 5, in particular, Z = {	} ∪ {(x, k); x ∈ X ∪ {⊥}, k ≤ K }.
For u, v ∈ Z , let huv := ≺ if ι(u) ≺ ι(v) is contained in C1

m and huv := ↔ if
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ι(u)↔ ι(v) is contained in C1
m . It remains to show that (Z , R≺, R↔) fulfills properties

(U1)–(U9).
By construction, none of the above rules is applicable to

∨
m C1

m . From property
(∗) and the fact that rules 6 and 15 do not apply, we see that either huv =≺ or huv = ↔
or hvu =≺ holds for any u, v ∈ Z ; this proves property (U5). In particular, huu =≺
or huu = ↔ holds for any u ∈ Z . Since rule 5 does not apply but huu =≺ would
trigger it, R↔ is reflexive. Similarly, rule 15 causes the symmetry of R↔. Transitivity
of R↔ can be attributed to rule 7. In a similar way, transitivity of R≺ and properties
(U1), (U2) follow from 7; (U3) from rule 4; (U4) from 3; (U6) from 11 and 12; (U7)
from 12, 13 and 4; (U8) from 8; (U9) from 9, 10 and 4.

(b) The abbreviations ≺ and↔ are meant to have been unwound in F . In contrast,
we will always treat any occurrence of ⊥⊃⊥ as a nullary connective 	, which
is contained in Z∗. We will construct a finite sequence (Fn)n≤N of formulas
with strictly decreasing formula complexity such that FN ∈ Z∗ and such that
G◦ � C ⊃ (F ↔ Fn) and rdp(Fn) ≤ K for all n.

Take F0 := F for the induction basis so that rdp(F0) ≤ K holds by assumption and,
clearly, we have G◦ � C⊃(F↔F0). For the induction step, assume G◦ � C⊃(F↔Fn)

and rdp(Fn) ≤ K . We may assume Fn /∈ Z∗ for otherwise the construction of the
sequence is completed. Since 	 ∈ Z∗, we have Fn �= 	 = (⊥ ⊃ ⊥) and then there
exist some context E[·], a, b ∈ Z∗ and � ∈ {∧,∨,⊃}. such that Fn = E[a � b].

For the case of � = ⊃, we distinguish three sub-cases: First, we consider the case
b ≺C a: We see that C contains the conjunct b ≺ a because of rdp(a) ≤ rdp(Fn) ≤ K
and rdp(b) ≤ rdp(Fn) ≤ K . Now G◦ � C⊃(b ≺ a) follows from (IPL2) and (IPL3).
We use this together with the (G8)-instance G◦ � (b ≺ a)⊃ ((a ⊃ b)↔ b), the (S3)-
instance G◦ � ((a∧b)↔b)⊃(Fn↔E[b]) and the assumption G◦ � C⊃(F↔Fn) to
obtain G◦ � C⊃(F↔E[b]); hence we put Fn+1 := E[b] then. In the case of a ≺C b,
we use G◦ � C⊃ (a ≺ b), the (G7)-instance G◦ � (a ≺ b)⊃ ((a⊃b)↔	), the (S3)-
instance G◦ � ((a⊃b)↔	)⊃(Fn↔E[	]) and the assumption G◦ � C⊃(F↔Fn)

to obtain G◦ � C ⊃ (F ↔ E[	]); hence we put Fn+1 := E[	] then. In the case of
a↔C b, we use G◦ � (a↔ b) ⊃ ((a ⊃ b)↔	) to conclude in a similar way that
G◦ � C ⊃ (F ↔ E[	]); hence we put Fn+1 := E[	] also then. In all of these sub-
cases, we find G◦ � C ⊃ (F ↔ Fn+1) and rdp(Fn+1) ≤ rdp(Fn) ≤ K hold and that
Fn+1 has a strictly lower formula complexity than Fn , as required. The other cases of
� = ∧ and � = ∨ can be treated similarly by (G5), (G6) and (G7).

(c) Soundness has been proved in Lemma 2. For the converse direction, let now F be
valid, put X := Var(F) and K := rdp(F) and stipulate that C has the properties
as described in (a); we have to construct a G◦-proof of F .

First, we will construct a G◦-proof of C⊃F for every C ∈ C. By (b), C evaluates F
to some z ∈ Z∗, i. e. G◦ � C⊃(F↔z). In particular, C⊃(F↔z) is valid by soundness.
If we had z ≺C 	, then Corollary 2 provided a Gödel r -interpretation I : X → [0, 1]
with I(C) = 1 and I(z) < I(	) = 1 so that I(C⊃ (z↔	)) = I(C)� (I(z)��1) =
1 � I(z) = I(z) < 1, but this contradicts the validity of C ⊃ (F ↔ z). By (U3), we
conclude z↔C	 and therefore we can construct a G◦-proof of C⊃(z↔	) by (IPL2)
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and (IPL3). Since G � (U ⊃ (V ↔ W ))⊃ (U ⊃ W )⊃ (U ⊃ V ), we conclude from
G◦ � C ⊃ (F ↔ z) and G◦ � C ⊃ (z↔	) that G◦ � C ⊃ F .

Having constructed G◦-proofs of C ⊃ F for every C ∈ C, we can join them by
multiple use of (IPL7) to obtain G◦ � (

∨
C∈C C) ⊃ F . Since G◦ � ∨

C∈C C by (a),
we find G◦ � F , as claimed. ��

We will now generalise Theorem 3 to Lp
◦,
. The
-operator has a long history and

is known by different names in different branches of research. A sound and complete
proof system for Gödel logic with
 is given in [1]; we will extend it for our purposes.

Definition 7 Let G◦,
 denote the proof system of G◦ extended by the axiom schemata

(
1) 
A ⊃ A
(
2) 
A ⊃

A
(
3) 
A ∨ ¬
A
(
4) 
(A ∨ B)⊃ (
A ∨
B)

(
5) 
(A ⊃ B)⊃ (
A ⊃
B)

and the rule (
N) A

A .

We will prove in Theorem 3 that G◦,
 characterises validity in Lp
◦,
. Clearly, G◦,


is substitutive. By [1, Theorem 3.1], G
 proves all validities in Lp

.

Proposition 4 G◦,
 proves

(D1) 
A ⊃
◦A,
(D2) 
(A ⊃ B)⊃
(◦A ⊃ ◦B)

(D3) (
A ∧
B)↔
(A ∧ B)

(D4) (
A ∨
B)↔
(A ∨ B)

(D5) 
(A ⊃ B)⊃
(
A ⊃
B)

(D6) 
(A↔ B)⊃
(
A↔
B)

(D7) 
(A↔ B)⊃
(E[A] ↔ E[B])
(D8) 
(A↔ B)⊃ (E[A] ↔ E[B])
here E[·] denotes an Lp

◦,
-context.

Proof (D1) follows from G◦,
 � A ⊃ ◦A, (
N) and (
5).
Apply (
N) and (
5) to the G◦-provable (A ⊃ B)⊃ (◦A ⊃ ◦B) to obtain (D2).
(D3): Apply (
N) and (
5) to G◦,
 � (A∧ B)⊃ A to obtain G◦,
 � 
(A∧ B)⊃


A. Similarly, G◦,
 � 
(A∧B)⊃
B holds and thus G◦,
 � 
(A∧B)⊃(
A∧
B).
To show the converse direction, apply (
N) and (
5) to G◦,
 � A⊃ B ⊃ (A∧ B) so
that G◦,
 � 
A⊃
(B ⊃ (A ∧ B))). Since 
(B ⊃ (A ∧ B))⊃
B ⊃
(A ∧ B) by
(
5), we have G◦,
 � 
A ⊃
B ⊃
(A ∧ B). Thus (D3) follows.

(D4): One direction is (
4). Apply (
N) and (
5) to A ⊃ (A ∨ B) to obtain
G◦,
 � 
A⊃
(A∨ B). Similarly, G◦,
 � 
B ⊃
(A∨ B). Now, (D4) follows by
(IPL3).

(D5): By (
5), G◦,
 � 
(A ⊃ B)⊃
A ⊃
B holds. Applying (
N) and (
5),
we see G◦,
 � 

(A⊃ B)⊃
(
A⊃
B). Since G◦,
 � 
(A⊃ B)⊃

(A⊃ B)

by (
2), we obtain (D5).
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(D6) follows from instances of (D5) and (D3).
(D7) is proved by induction on the complexity of the context. Clearly, G◦,
 �


(A↔ B)⊃
(A↔ B) and G◦,
 � 
(A↔ B)⊃
(C↔C). Suppose we already
have G◦,
 � 
(A↔B)⊃
(E[A]↔E[B]), then G◦,
 � 
(A↔B)⊃
(
E[A]↔

E[B]) by (D6) and also G◦,
 � 
(A↔ B)⊃
(◦E[A] ↔ ◦E[B]) from instances
of (D2) and (D3). Suppose we already have G◦,
 � 
(A↔ B)⊃
(E[A]↔ E[B])
and G◦,
 � 
(A↔B)⊃
(F[A]↔F[B]); by applying (
N) and (
5) several times
to G � (E[A] ↔ E[B]) ⊃ (F[A] ↔ F[B]) ⊃ ((E[A] � F[A])↔ (E[B] � F[B]))
for any � ∈ {∧,∨,⊃} and by using the assumptions, we find G◦,
 � 
(A↔ B) ⊃

((E[A]� F[A])↔ (E[B]� F[B])).

(D8) follows from (D7) and (
1). ��
Definition 8 An (X, K )-chain formula in Lp

◦,
 has the form
S∧¬
N where S is an

(X, K )-chain formula in Lp◦ and N is a conjunction
∧

i Ai with Ai ∈ Y := {◦k x; x ∈
X ∪ {⊥}, k ≤ K } such that either S contains A↔	 or N contains A.

Theorem 4 Let F be a formula in Lp
◦,
. Then F is valid if and only if G◦,
 � F.

Proof Soundness is a routine matter. For completeness, we only sketch how to prove
statements analogous to (a), (b) and (c) of Theorem 3 because the reasoning is very
similar. In addition to the notation of Definition 8, we put X := Var(F), K := rdp(F)

and Z := Y ∪ {	}.
For part (a), we start by constructing a set C of (X, K )-chain formulae in Lp

◦,
 such
that G◦,
 proves

∨
C∈C C . Clearly, G◦,
 proves the formulas 
(a ≺ b) ∨ 
(a ↔

b) ∨
(b ≺ a) and 
(a↔	) ∨ ¬
a for all a, b ∈ Z so that G◦,
 proves also their
conjunction, which we transform into a disjunctive normal form D by (G12). For each
a ∈ Z , each conjunction in D contains 
(a↔	), or ¬
a, or both by construction.
As (
N) and (D8) allow us to replace subformulas by provably equivalent ones,
the algorithm in part (a) of Theorem 3 needs only small modifications to work. The
G◦,
-provable formula (
(a↔	) ∧ ¬
a)↔⊥ eliminates conjunctions in D that
simultaneously contain
(a↔	) and¬
a so that D becomes a disjunction of chains
in the sense of Definition 8.

For part (b), it suffices to remark that we can evaluate a given formula step-by-step
by the G◦,
-provable formulas
(a ≺ b)⊃ (E[a ∧ b]↔ E[a]),
(a↔ b)⊃ (E[a ∧
b] ↔ E[b]), 
(b ≺ a) ⊃ (E[a ∧ b] ↔ E[b]) and formulas similar in fashion to
(G5)–(G8).

Part (c) can be almost literally carried over to Lp
◦,
 because Theorem 2 does not

only hold for Lp◦ but also for Lp
◦,
 as we will show now. Using the notation from

Definition 8, let C := 
S∧¬
N be an (X, K )-chain formula in Lp
◦,
. The application

of Theorem 2 for Lp◦ already yields the desired interpretation I with I(C) = 1,
I(a) < I(b) whenever a ≺S b, and I(a) = I(b) whenever a↔S b for all a, b ∈ Z
because Definition 8 rules out all chains that would require both 
A and ¬
A, for
any A ∈ Z , to receive the value 1 under I. ��

It is astonishing that the axioms we added for ◦ and for
 do not interfere with each
other. One of the reasons for this is that the countermodels in the construction for the
fragment with ◦ alone can be used as countermodels for the fragment with ◦ and 
.
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5 Final remarks

The exact complexity class of the validity problem in L◦ remains an open problem.
Another unanswered question from a semantical point of view is the existence of a
feasible truth-preserving embedding from L◦ into Łukasiewicz logic.

The paper [8] presents, e.g., a weakly complete proof system for propositional Gödel
semantics where the interpretation of ◦ is generalised from all functions x �→ x + r
with r ∈ [0, 1] to all functions f : [0, 1] → [0, 1] such that f (1) = 1,∀x, y. x <

y ⇒ f (x) < f (y). These functions, which preserve relative order, are more natural
for Gödel semantics than the addition of constants because Gödel semantics does not
perform arithmetical operations but merely compares truth values. These semantics
reveal which ◦-axioms are forced by the use of the [0, 1]-interval (in contrast of using
an interpretation with values in an algebra). Also here the complexity of first-order
validity remains an open problem.

In [9], Theorem 3.4.23, it was proved that satisfiability in Lp◦ is NP-complete. As
suggested by a reviewer, we show here coNP-completeness of the validity problem
in Lp◦ by embedding it into the validity problem in Lp with Gödel semantics. This is
accomplished by translating axioms with ◦ into a conjunction of ◦-free formulas in an
antecedent of an implication. The same method of proof can also be found in Theorem
4.6 of [2] to show the weak completeness of a proof system for a related semantics
of a ◦-operator. We follow the outline of the reviewer closely in the following proof
sketch.

Suppose we are given a formula A in propositional variables an , 1 ≤ n ≤ N , with a
maximal nesting level K ≥ 1 of rings in A; we define a0 := ⊥. Introduce fresh propo-
sitional variables (an,k)1≤n≤N , 0≤k≤K and (a0,k)1≤k≤K . Moreover, define a0,0 := ⊥.
Now construct A′ from A by removing all ◦ and by replacing each occurrence of an
ai by ai,n , where n is the number of ◦-operators in whose scope this occurrence of ai

in A is contained. (Thus, if ⊥ is not in the scope of any ◦, it is left unchanged.) We
claim that A is valid w.r.t. Gödel semantics in Lp◦ if and only if ΓA ⊃ A′ is valid w.r.t.
Gödel semantics in Lp; here ΓA is the conjunction of the following formulas, for all
combinations of meaningful indices:

(a0,0 ≺ a0,1)⊃ (an,k ≺ an,k+1)

(a0,0↔ a0,1)⊃ (an,0↔ an,1)

(an,k ≺ am,�)⊃ (an,k+1 ≺ am,�+1)

(an,k ↔ am,�)⊃ (an,k+1↔ am,�+1)

First observe that, by (R3), that any ◦ in A can be moved without altering validity
across binary connectives towards propositional variables and⊥. (For a detailed proof
in an even weaker proof system, see Proposition 3.11 in [8].) Thus we may assume
w.l.o.g. that no scope of any ◦ in A contains a binary connective, i.e., the ◦-operator
occurs in A only in the form of ◦kan , 0 ≤ n ≤ N , 1 ≤ k ≤ K so that A can be
obtained from A′ by substituting an,k by ◦kan , 0 ≤ n ≤ N , 0 ≤ k ≤ K .

If A is not valid w.r.t. Gödel semantics in Lp◦, there is an r -interpretation I such
that I(A) < 1. By putting I′(an,k) := I(◦kan), one obtains a well-defined Gödel
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interpretation I′. It is easy to check that I′(ΓA) = 1 and I′(A′) = I(A) < 1, thus
ΓA ⊃ A′ is not valid w.r.t. Gödel semantics in Lp, as claimed.

Conversely, if ΓA ⊃ A′ is not valid w.r.t. Gödel semantics in Lp, there is I ′(ΓA ⊃
A′) < 1 for some Gödel interpretation I′. We can even assume w.l.o.g. that I′(A′) <

I ′(ΓA) = 1, due to the Lifting Lemma for Gödel logic (The propositional Lifting
Lemma is included in its first-order variant, cf. e.g. [2], Proposition 4.4.). Using
I ′(ΓA) = 1, it is easy to check that the (an,k)n,k together with the transitive rela-
tion an,k ≺ am,� :⇔ I′(an,k) < I′(am,�) and the equivalence relation an,k↔am,� :⇔
I′(an,k) = I′(am,�) form a chain according to Definition 4. Theorem 2 thus provides
an r ∈ [0, 1] and a Gödel r -interpretation I such that I(◦kan) < I(◦�am) if and only if
I′(an,k) < I′(am,�) and as well I(◦kan) = I(◦�am) if and only if I′(an,k) = I′(am,�).
It is now easy to obtain I(A) < 1 from the assumed condition I′(A′) < 1. Thus A is
not valid w.r.t. Gödel semantics in Lp◦, which concludes the proof.
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