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Abstract We continue the study of adequate sets which we began in (Krueger in
Forcing with adequate sets of models as side conditions) by introducing the idea of
a strongly adequate set, which has an additional requirement on the overlap of two
models past their comparison point. We present a forcing poset for adding a club to a
fat stationary subset of ω2 with finite conditions, thereby showing that a version of the
forcing posets of Friedman (Set theory: Centre de Recerca Matemàtica, Barcelona,
2003–2004, Trends in Mathematics. Birkhäuser Verlag, 2006) and Mitchell (Trans
Am Math Soc 361(2):561601, 2009) for adding a club on ω2 can be developed in the
context of adequate sets.
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The idea of an adequate set of models was introduced by the author in [1]. Roughly
speaking, an adequate set is a set consisting of countable models which are pairwise
membership comparable below a particular ordinal called their comparison point. The
relevance of the comparison point is that the two models have only a finite overlap past
this ordinal. We presented a general framework in [1] for using adequate sets of models
as side conditions in forcing on ω2 with finite conditions. Examples of forcings which
fit into this framework include adding a generic function on ω2, forcing a nonreflecting
stationary subset of ω2 ∩ cof(ω), and adding an ω1-Kurepa tree.
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120 J. Krueger

In earlier work Friedman [2] and Mitchell [3] separately introduced forcing posets
which add a club to a fat stationary subset of ω2 with finite conditions, using countable
models as side conditions. In this paper we develop an analogue of these forcings in the
context of adequate sets. To achieve this, we introduce the idea of a strongly adequate
set of models, which differs from an adequate set by obeying an additional requirement
on the overlap of models past their comparison point.

This paper is a sequel to [1]. We assume that the reader is familiar with the material
in Sects. 1–3 of that paper. Our forcing poset is similar to the Friedman-Mitchell posets
in the sense that we approximate a generic club using intervals. Neeman’s method [4]
for adding a club is somewhat different; he adds a generic sequence of models with
finite conditions for which the suprema of models appearing on the sequence form a
club.

1 Background assumptions and notation

For easy reference, we review here the notation, concepts, and results of Sects. 1–3 of
[1].

Assumption 1 Assume 2ω1 = ω2.

The reason we make this assumption is because it implies that the elementary
substructures of H(ω2) which we will use are determined by their set of ordinals. This
way we can use sets of ordinals as side conditions instead of models.

Using Assumption 1, fix a bijection π : ω2 → H(ω2). Let A denote the structure
(H(ω2),∈, π). The bijection π induces a set of definable Skolem functions for A.
For any set a ⊆ H(ω2), let Sk(a) denote the closure of a under some (equivalently
any) such set of definable Skolem functions. If N ≺ A, then N = π [N ∩ ω2] =
Sk(N ∩ ω2). By Lemma 1.4 of [1], if a and b are subsets of ω2 satisfying that
Sk(a) ∩ ω2 = a and Sk(b) ∩ ω2 = b, then Sk(a) ∩ Sk(b) = Sk(a ∩ b).

Assumption 2 There exists a thin stationary subset of Pω1(ω2).

Fix a stationary set Y ⊆ Pω1(ω2) which is thin. This means that for all β <

ω2, |{a ∩ β : a ∈ Y}| ≤ ω1. Without loss of generality we assume that Y is closed
under initial segments, that is, whenever a ∈ Y and β < ω2, then a ∩ β ∈ Y .

Notation Let C be the club set of β < ω2 such that Sk(β) ∩ ω2 = β. Let � =
C ∩ cof(ω1). Let X denote the stationary set of M in Y such that Sk(M) ∩ ω2 = M
and for all γ ∈ M, sup(C ∩ γ ) ∈ M .

Note that every member of � is a limit point of C .
Suppose that M and N are in X . If M ∈ Sk(N ), then Sk(M) ∈ Sk(N ), sup(M) ∈

N , and every initial segment of M is in Sk(N ). Note that if M ∈ X and β ∈ �, then
Sk(M ∩ β) = Sk(M) ∩ Sk(β). It easily follows that if M ∈ X and β ∈ �, then
M ∩ β ∈ X .

The fact that Y is thin provides the following important consequence: if M is a
subset of β in X , where β ∈ �, then M ∈ Sk(β) (Proposition 1.11 [1]). In particular,
if M ∈ X and β ∈ �, then M ∩ β ∈ Sk(β).
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Strongly adequate sets and adding a club with finite conditions 121

We now discuss the comparison point βM,N of sets M and N in X . The definition
of βM,N is made relative to a stationary subset of �.

Notation Fix a stationary set � ⊆ �.

For a set M ∈ X , let �M denote the set of β ∈ � such that

β = min(�\(sup(M ∩ β))).

In other words, β ∈ �M iff β ∈ � and � ∩ [sup(M ∩β), β) = ∅. If β ∈ �M , then β is
the least element of � which is strictly larger than sup(M ∩ β). Note that if M ⊆ N ,
then �M ⊆ �N .

If M and N are in X , then �M ∩ �N has a largest element. We sketch a proof of
this fact as follows. Note that the first element of � is in both �M and �N . If �M ∩�N

does not have a maximum element, then let γ be the supremum of �M ∩�N . One can
then show that γ is a limit point of both M and N . But then the least element of �

above γ is in �M ∩ �N , which is a contradiction. (See Lemma 2.4 of [1].)

Notation For M and N in X , let βM,N denote the maximum element of �M ∩ �N .

One of the most important facts about the comparison point βM,N is that M and
N share no common elements or limit points above βM,N . In other words, let M ′ =
M ∪ lim(M) and N ′ = N ∪ lim(N ). Then M ′ ∩ N ′ ⊆ βM,N . The idea of the proof is
that if ξ is in M ′ ∩ N ′, then the least element of � above ξ is in �M ∩ �N , and hence
less than or equal to βM,N . (See Proposition 2.6 of [1].)

Definition Let A be a subset of X . We say that A is adequate if for all M and N in
A, either M ∩ βM,N ∈ Sk(N ), N ∩ βM,N ∈ Sk(M), or M ∩ βM,N = N ∩ βM,N .

Note that a set A is adequate iff for all M and N in A, {M, N } is adequate. If {M, N }
is adequate, then the type of comparison which holds between M and N is determined
by M ∩ ω1 and N ∩ ω1. Namely, since ω1 ≤ βM,N , M ∩ βM,N ∈ Sk(N ) implies that
M ∩ ω1 ∈ Sk(N ) and hence M ∩ ω1 < N ∩ ω1. And if M ∩ βM,N = N ∩ βM,N ,
intersecting this equation by ω1 yields M ∩ ω1 = N ∩ ω1. If A is adequate, then an
∈-minimal element of A is a set M ∈ A such that M ∩ ω1 is minimal. If M ∈ A is
∈-minimal, then for all N ∈ A, either M ∩βM,N ∈ Sk(N ) or M ∩βM,N = N ∩βM,N .

Suppose {M, N } is adequate. The remainder sets RN (M) and RM (N ) describe the
overlap of M and N above their comparison point. Namely, let RM (N ) be the set of
β satisfying either

(1) there is γ ≥ βM,N in M such that β = min(N\γ ), or
(2) N ∩ βM,N is either equal to M ∩ βM,N or is in Sk(M), and β = min(N\βM,N ).

The remainder set RM (N ) is always finite. For if RM (N ) were infinite, then there
is an increasing sequence 〈ξn : n < ω〉 such that ξn ∈ N if n is even, and ξn ∈ M if
n is odd. But then letting γ = supn ξn, γ is a common limit point of M and N above
their comparison point βM,N , which is impossible. (See Proposition 2.9 of [1].)
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122 J. Krueger

2 Strongly adequate sets

In Proposition 2.12 of [1] we proved that assuming that � = �, for any adequate pair
{M, N }, the remainder set RN (M) is always a subset of �. This property was needed
for showing that the forcing poset we defined for adding a generic function on ω2
preserves cardinals, but it was not needed for the other applications.

In Sect. 4 below we define a forcing poset for adding a club to a fat stationary
subset of ω2 with finite conditions. The arguments we give require both that � is a
proper subset of �, and that the remainder sets are contained in �. This motivates the
definition of a strongly adequate set.

Definition 2.1 Let A ⊆ X . Then A is strongly adequate if A is adequate and for all
M and N in A, RM (N ) ⊆ �.

In Sect. 3 of [1] we developed some results for combining adequate sets to produce
new adequate sets. These results are important for amalgamating conditions over
elementary substructures, which is used for preserving cardinals. In this section we
show how to adapt those arguments to the case of strongly adequate sets.

By Lemma 3.3 of [1], if {M, N } is adequate and β ∈ �, then {M∩β, N } is adequate.
Note that M ∩ β and N must compare the same way as do M and N , since their type
of comparison is determined by their intersection with ω1.

Let A be adequate and N ∈ X . Then A is N-closed if for all M ∈ A, if M ∩βM,N ∈
Sk(N ) then M ∩βM,N ∈ A. The first goal of this section is to prove that the N -closure
of a strongly adequate set A with N ∈ A is strongly adequate. First we prove several
technical lemmas.

Lemma 2.2 Let M and N be in X and let β ∈ �. If βM,N ≤ β, then βM,N = βM∩β,N .

Proof Since βM,N ≤ β, sup((M ∩ β) ∩ βM,N ) = sup(M ∩ βM,N ); so min(�\sup
((M ∩ β) ∩ βM,N )) = min(�\ sup(M ∩ βM,N )) = βM,N . Therefore βM,N ∈ �M∩β .
It follows that βM,N is the largest ordinal in �M∩β ∩ �N , since it is the largest ordinal
in �M ∩ �N and �M∩β ∩ �N ⊆ �M ∩ �N . So βM,N = βM∩β,N . ��
Lemma 2.3 Let {M, K } be strongly adequate and β ∈ �. If βM,K ≤ β, then {M ∩
β, K } is strongly adequate.

Proof As noted above, {M ∩ β, K } is adequate, and M ∩ β and K compare the same
way as do M and K . Since βM,K ≤ β, by Lemma 2.2 we have that βM,K = βM∩β,K .
Note that min((M ∩ β)\βM∩β,K ), if it exists, is equal to min(M\βM,K ). So if (M∩β)∩
βM∩β,K is either equal to K ∩βM∩β,K or is in Sk(K ), and this minimum exists, then the
minimum is in � since {M, K } is strongly adequate. On the other hand, if K ∩βM∩β,K

is either equal to (M ∩ β) ∩ βM∩β,K or is in Sk(M ∩ β), and min(K\βM∩β,K ) exists,
then this minimum is equal to min(K\βM,K ) and hence is in � since {M, K } is strongly
adequate. Similarly, if γ ∈ (M ∩ β)\βM∩β,K , then γ ∈ M\βM,K ; so min(K\γ ) is
in � if it exists. And if γ ∈ K\βM∩β,K , then γ ∈ K\βM,K ; so if min((M ∩ β)\γ )

exists, then it is equal to min(M\γ ) and hence is in �. ��
Lemma 2.4 Let {M, K } be strongly adequate and β ∈ �. If β < βM,K and M ∩
βM,K ∈ Sk(K ), then {M ∩ β, K } is strongly adequate.
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Strongly adequate sets and adding a club with finite conditions 123

Proof Note that M ∩ β is in Sk(K ) since it is an initial segment of M ∩ βM,K . So
clearly βM∩β,K is the least element of � greater than sup(M ∩ β). But then both
RK (M ∩ β) and RM∩β(K ) are empty. ��
Proposition 2.5 Let A be strongly adequate and let N ∈ A. Then

A ∪ {
M ∩ βM,N : M ∈ A, M ∩ βM,N ∈ Sk(N )

}

is strongly adequate and N-closed.

Proof If suffices to prove the claim that if A is strongly adequate, M and N are in A,
and M ∩βM,N ∈ Sk(N ), then A ∪{M ∩βM,N } is strongly adequate. For then any two
models in the set described in the lemma will compare properly by two applications
of this claim. So let K ∈ A be given, and we will show that {M ∩ βM,N , K } is
strongly adequate. By the previous two lemmas, it suffices to consider the case when
βM,N < βM,K and K ∩ βM,K is either equal to M ∩ βM,K or is is in Sk(M).

Note that K ∩[βM,N , βM,K ) is nonempty. For otherwise sup(K ∩βM,K ) = sup(K ∩
βM,N ). But then βM,K = min(�\ sup(K ∩ βM,K )) = min(�\ sup(K ∩ βM,N )) ≤
βM,N , which contradicts that βM,N < βM,K .

Suppose that K ∩ βM,K = M ∩ βM,K . We claim that βM∩βM,N ,K = βM,N . Since
βM,N < βM,K , M ∩βM,N = K ∩βM,N . It follows that βM∩βM,N ,K is the least ordinal
in � above sup(M ∩βM,N ); for this latter ordinal is clearly in �M∩βM,N ∩�K , and it is
the largest ordinal in �M∩βM,N . But since βM,N ∈ �M , by definition the least ordinal
in � above sup(M ∩βM,N ) is βM,N . So βM∩βM,N ,K = βM,N . Since obviously there is
nothing in M ∩ βM,N above βM,N , RK (M ∩ βM,N ) = ∅ and RM∩βM,N (K ) is either
empty or equal to {min(K\βM,N )}.

Suppose that min(K\βM,N ) exists, and we will prove that it is in �. Recall that
K ∩ [βM,N , βM,K ) is nonempty. Since M ∩ βM,K = K ∩ βM,K , it follows that
min(K\βM,N ) is equal to min(M\βM,N ), and this ordinal is in RN (M) and hence in �.

Now assume that K ∩ βM,K ∈ Sk(M). Then K ∩ βM,N is an initial segment of
K ∩ βM,K and so is in Sk(M); it is also in Sk(βM,N ). Thus K ∩ βM,N ∈ Sk(M) ∩
Sk(βM,N ) = Sk(M ∩βM,N ). No larger initial segment of K can be in Sk(βM,N ) since
it would contain ordinals larger than βM,N . Therefore βM∩βM,N ,K ≤ βM,N . Indeed,
βM∩βM,N ,K is the least ordinal in � larger than sup(K ∩ βM,N ).

We claim that βM∩βM,N ,K = βN ,K . First observe that K ∩ βM,N ∈ Sk(M ∩
βM,N ) ⊆ Sk(N ). Recall that K ∩ [βM,N , βM,K ) is nonempty. Since K ∩
βM,K ∈ Sk(M), K ∩ [βM,N , βM,K ) is a nonempty subset of M\βM,N . Hence
K ∩ [βM,N , βM,K ) is nonempty and disjoint from N . In particular, the least element
of K ∩ [βM,N , βM,K ) is not in N , yet any element of K below this least element is in
N . It follows that βN ,K = min(�\sup(K ∩ βM,N )) = βM∩βM,N ,K .

In particular, if the ordinal min(K\βM∩βM,N ,K ) exists, then it is equal to
min(K\βN ,K ), which is in RN (K ) and hence in �. Let γ in (M ∩ βM,N )\βM∩βM,N ,K

be given, and suppose that ξ = min(K\γ ). Since M ∩ βM,N ∈ Sk(N ), γ is in
N\βN ,K . Hence ξ is in RN (K ) and therefore in �. Finally, assume that γ is in
K\βM∩βM,N ,K . Then γ is not in M ∩βM,N . Since K ∩βM,N is a subset of M, γ must
be at least βM,N . But then min((M ∩ βM,N )\γ ) does not exist. ��
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124 J. Krueger

Proposition 2.6 Let A be strongly adequate, N ∈ X , and suppose that A ⊆ Sk(N ).
Then A ∪ {N } is strongly adequate.

Proof Consider M ∈ A. Then M ∈ Sk(N ). So clearly βM,N is the least member of
� above sup(M). So M ∩ βM,N = M ∈ Sk(N ), and both RM (N ) and RN (M) are
empty. ��

Before we proceed any further, we prove several technical lemmas regarding com-
parison points which we will need.

Lemma 2.7 Let M ∈ X , β ∈ �, and suppose M ⊆ β. Then �M ⊆ β + 1. Therefore
for all N ∈ X , βM,N ≤ β.

Proof Since M ⊆ β, sup(M) < β. Let γ ∈ �M be given. Then sup(M ∩ γ ) ≤
sup(M) < β. Since β ∈ � and γ = min(�\sup(M ∩ γ )), γ ≤ β. So �M ⊆ β + 1.
In particular, if N ∈ X , then by definition βM,N ∈ �M , so βM,N ≤ β.

Lemma 2.8 Let K , M, N ∈ X , and suppose that M ⊆ N. Then βM,K ≤ βN ,K .

Proof Since M ⊆ N , �M ⊆ �N . So �M ∩�K ⊆ �N ∩�K . Hence βM,K = max(�M ∩
�K ) ≤ max(�N ∩ �K ) = βN ,K . ��
Lemma 2.9 Let M and N be in X and let β ∈ �. If N ⊆ β, then βM,N = βM∩β,N .

Proof By Lemma 2.2, it suffices to show that βM,N ≤ β. This follows from Lemma 2.7
and the fact that N ⊆ β. ��

Proposition 2.11 below describes a method for amalgamating strongly adequate
sets over countable elementary substructures. This method is used to preserve ω1 in
forcing with finite conditions. The situation is a bit more complicated than for adequate
sets; a difference is that we now have to consider an auxiliary set K as described in
the next proposition.

Note that if K ∈ X and γ and ζ are in K ∩ �, then {K , K ∩ ζ, K ∩ γ } is strongly
adequate.

Proposition 2.10 Suppose that A is strongly adequate and N ∈ A. Let R(N ) =⋃{RM (N ) : M ∈ A}. Assume that K ∈ X ∩Sk(N ) satisfies that A ∩ Sk(N ) ⊆ Sk(K )

and R(N ) ⊆ K . Then

(A ∩ Sk(N )) ∪ {K } ∪ {K ∩ ζ : ζ ∈ R(N )}

is strongly adequate.

Proof Let M ∈ A∩Sk(N ) be given. Then M ∈ Sk(K ), so by Proposition 2.6, {M, K }
is strongly adequate. Fix L ∈ A and ζ ∈ RL(N ), and we will show that {M, K ∩ ζ } is
strongly adequate. Note that since M ∈ Sk(K ), M∩ζ ∈ Sk(K )∩Sk(ζ ) = Sk(K ∩ζ ).
Since K ∩ ζ ⊆ ζ and ζ ∈ �, βM,K∩ζ ≤ ζ . Hence M ∩ βM,K∩ζ ∈ Sk(K ∩ ζ ). Also
M ∩ ζ = M ∩ βM,K∩ζ , since M ∩ ζ ⊆ M ∩ (K ∩ ζ ) ⊆ βM,K∩ζ .
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Strongly adequate sets and adding a club with finite conditions 125

We will show that RK∩ζ (M) and RM (K ∩ ζ ) are subsets of �. If γ ∈ M\βM,K∩ζ ,
then since M ∩ ζ = M ∩ βM,K∩ζ , γ ≥ ζ . Hence min((K ∩ ζ )\γ ) does not exist. It
follows that RM (K ∩ ζ ) is empty.

Now we show that RK∩ζ (M) is a subset of �. If min(M\βM,K∩ζ ) does not exist,
then RK∩ζ (M) is the emptyset, so assume that it does exist. Since M ∩ ζ = M ∩
βM,K∩ζ , min(M\βM,K∩ζ ) is equal to min(M\ζ ). On the other hand, if γ ∈ (K ∩
ζ )\βM,K∩ζ , then for the same reason, min(M\γ ) is equal to min(M\ζ ). Therefore
letting ξ = min(M\ζ ), RK∩ζ (M) = {ξ}.

It remains to prove that ξ = min(M\γ ) is in �. We will show that ξ is in RL(M),
which suffices. Since M ⊆ N and ζ ∈ RL(N ), βM,L ≤ βN ,L ≤ ζ . If ζ = min(N\γ )

for some γ ∈ L\βN ,L , then obviously ξ = min(M\γ ) and γ ∈ L\βM,L . So ξ ∈
RL(M) and we are done.

Otherwise either N ∩ βN ,L = L ∩ βN ,L or N ∩ βN ,L ∈ Sk(L) and ζ =
min(N\βL ,N ). Clearly then ξ = min(M\βL ,N ). So if M ∩ [βM,L , βN ,L) = ∅, then
ξ = min(M\βM,L) and hence ξ ∈ RL(M). Otherwise M ∩ [βM,L , βN ,L) �= ∅.
Let us show that this is impossible. If π is in M ∩ [βM,L , βN ,L), then π ∈ M\L .
So π ∈ (N ∩ βN ,L)\L . This contradicts the comparison of N and L stated at the
beginning of the paragraph. ��
Proposition 2.11 Let A be strongly adequate, N ∈ A, and suppose that A is N-
closed. Let R(N ) = ⋃{RM (N ) : M ∈ A}. Fix K ∈ Sk(N ) such that A∩ Sk(N ) ⊆ K
and R(N ) ⊆ K . Suppose that B is strongly adequate and

(A ∩ Sk(N )) ∪ {K } ∪ {K ∩ ζ : ζ ∈ R(N )} ⊆ B ⊆ X ∩ Sk(N ).

Then A ∪ B is strongly adequate.

Proof Let M ∈ A\Sk(N ) and L ∈ B be given, and we compare M and L . Note
that since L ⊆ N , βL ,M ≤ βM,N by Lemma 2.8. Therefore βL ,M = βL ,M∩βM,N by
Lemma 2.2.

Claim: If ξ is in RM (L) and ξ = min(L\ζ ) for some ζ ∈ RM (N ), then ξ is in �.

If ξ = ζ then we are done. Otherwise ζ /∈ L and ζ < ξ . Let us compare K and
L . Recall that ζ ∈ K . So if βK ,L ≤ ζ , then ξ is in RK (L) and hence in �. Otherwise
ζ < βK ,L . Suppose that βK ,L ≤ ξ . Since ζ ∈ (K ∩ βK ,L)\L , L ∩ βK ,L ∈ Sk(K ),
since the other types of comparison of K and L are impossible. As ζ < βK ,L ≤ ξ =
min(L\ζ ), we get that ξ = min(L\βK ,L). So ξ is in RK (L) and hence in �.

Finally, assume that ξ < βK ,L . Again since ζ ∈ (K ∩βK ,L)\L , L∩βK ,L ∈ Sk(K ).
We compare L and K ∩ ζ . We have that βK∩ζ,L ≤ ζ < βK ,L by Lemma 2.7. So
L ∩ βK∩ζ,L ∈ Sk(K ) ∩ Sk(ζ ) = Sk(K ∩ ζ ). But L ∩ βK∩ζ,L = L ∩ ζ , since
L ∩ ζ ⊆ L ∩ βK ,L ∈ Sk(K ) implies that any ordinal in L ∩ ζ is in L ∩ (K ∩ ζ ) and
hence in βK∩ζ,L . Therefore ξ = min(L\βK∩ζ,L). So ξ is in RK∩ζ (L) and hence in
�. This completes the proof of the claim.

Suppose that N ∩ βM,N is either equal to M ∩ βM,N or is in Sk(M). Since L ∈
Sk(N ) and βL ,M ≤ βM,N , L ∩ βL ,M ∈ Sk(N ∩ βM,N ) ⊆ Sk(M). First we prove
that RM (L) ⊆ �. Let ξ = min(L\βL ,M ). Then ξ ∈ N\M , so ξ ≥ βM,N . Let
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126 J. Krueger

ζ = min(N\βM,N ), which is in RM (N ). Then ξ = min(L\ζ ); so ξ ∈ � by the claim
above. Similarly, assume γ ∈ M\βL ,M and ξ = min(L\γ ). Then ξ ∈ N\M , so
ξ ≥ βM,N . If γ ≥ βM,N , then ζ := min(N\γ ) is in RM (N ), and ξ = min(L\ζ ); so
ξ ∈ � by the claim. Otherwise βL ,M ≤ γ < βM,N . Letting σ := min(N\βM,N ), note
that σ ∈ RM (N ) and ξ = min(L\σ). So again we have that ξ is in � by the claim.

Now we prove that RL(M) ⊆ �. Let γ ∈ L\βL ,M be given and let ξ = min(M\γ ).
If γ ≥ βM,N , then γ ∈ N\βM,N , so ξ is in RN (M) and hence in �. Otherwise
βL ,M ≤ γ < βM,N . Then γ is in N ∩ βM,N and hence in M . But this is impossible
since then γ ∈ M ∩ L and M ∩ L is a subset of βL ,M .

It remains to consider the case when M ∩ βM,N ∈ Sk(N ). Since A is N -closed,
M ∩ βM,N is in Sk(N ) and hence in B. As M ∩ βM,N and L are both in B, {M ∩
βM,N , L} is strongly adequate. Recall that βL ,M = βL ,M∩βM,N . Let β = βL ,M .

Suppose that (M ∩ βM,N ) ∩ β is either equal to L ∩ β or is in Sk(L). Since β ≤
βM,N , M ∩ βL ,M = (M ∩ βM,N )∩β is either equal to L ∩ βL ,M or is in Sk(L). Let us
show that RL(M) ⊆ �. Suppose that ξ is equal to either min(M\β), or to min(M\γ )

for some γ ∈ L\β. If ξ < βM,N , then ξ is equal to either min((M ∩ βM,N )\β), or to
min((M ∩ βM,N )\γ ) for some γ ∈ L\β; in either case, ξ is in RL(M ∩ βM,N ) and
hence in �. On the other hand suppose that ξ ≥ βM,N . If ξ = min(M\β), then clearly
ξ = min(M\βM,N ) and hence is in RN (M) and therefore in �. Suppose that ξ =
min(M\γ ), where γ ∈ L\β. If γ ≤ βM,N , then ξ = min(M\βM,N ) and hence is in �.
If γ > βM,N , then since γ is in N\βM,N , ξ = min(M\γ ) is in RN (M) and hence in �.

Now we show that RM (L) ⊆ �. Suppose that γ ∈ M\β, and let ξ = min(L\γ ). If
γ < βM,N , then γ ∈ (M ∩ βM,N )\β, and therefore ξ is in RM∩βM,N (L) and hence in
�. Otherwise γ ≥ βM,N . Then γ ∈ M\βM,N . Let ζ = min(N\γ ). Then ζ ∈ RM (N )

and ξ = min(L\ζ ), which implies that ξ ∈ � by the claim. Finally, assume that M ∩β

is equal to L ∩ β, and let ξ = min(L\β). Then ξ is equal to min(L\βL ,M∩βM,N ), and
so is in RM∩βM,N (L) and hence in �.

In the last remaining case, assume that L ∩ β ∈ Sk(M ∩ βM,N ). Then L ∩ β ∈
Sk(M). Let ξ = min(L\β). Then ξ is in RM∩βM,N (L) and hence in �. Assume that
γ ∈ M\β and ξ = min(L\γ ). If γ ∈ M ∩ βM,N , then ξ is in RM∩βM,N (L) and hence
in �. Otherwise γ ≥ βM,N . Then ζ := min(N\γ ) is in RM (N ) and ξ = min(L\ζ ); so
ξ ∈ � by the claim. Now suppose that γ ∈ L\β, and let ξ = min(M\γ ). If ξ < βM,N ,
then ξ = min((M ∩ βM,N )\γ ), and hence ξ is in RL(M ∩ βM,N ) and therefore in �.
Suppose ξ ≥ βM,N . If γ ≥ βM,N , then ξ is in RN (M) and hence in �. If γ < βM,N ,
then ξ = min(M\βM,N ); so ξ is in RN (M) and hence in �. ��

We now turn to the topic of amalgamating strongly adequate sets over models of
size ω1. This kind of amalgamation, which is described in Proposition 2.15 below, is
used to preserve ω2 in forcing with finite conditions.

Lemma 2.12 Let A be strongly adequate, β ∈ �, and K ∈ X with β ∈ K . If
A ⊆ Sk(K ∩ β), then A ∪ {K } ∪ {K ∩ β} is strongly adequate.

This follows from Proposition 2.6.

Lemma 2.13 Let A be strongly adequate, β ∈ �, and suppose that there is K ∈ A
such that β ∈ K and K ∩ β ∈ A. Then for all N ∈ A with N\β �= ∅, the ordinal
min(N\β) is in �.
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Proof Let N ∈ A and suppose that min(N\β) exists. If min(N\β) = β then we are
done. Suppose that min(N\β) > β. If βN ,K ≤ β, then since β ∈ K , min(N\β)

is in RK (N ) and hence in �. Assume that β < βN ,K . Then since β ∈ K\N , we
must have that N ∩ βN ,K ∈ Sk(K ). Since βN ,K∩β ≤ β < βN ,K by Lemma 2.7,
N ∩ βN ,K∩β ∈ Sk(K ) ∩ Sk(β) = Sk(K ∩ β). Now N ∩ β = (N ∩ βN ,K ) ∩ β ⊆
N ∩ (K ∩ β) ⊆ βN ,K∩β . So min(N\β) = min(N\βN ,K∩β), which is in RK∩β(N )

and hence in �. ��
For an adequate set A and β ∈ �, the set A is β-closed if for all M ∈ A, M ∩β ∈ A.

The next proposition says that the β-closure of a strongly adequate set is strongly
adequate.

Proposition 2.14 Let A be strongly adequate, β ∈ �, and suppose that there is K ∈ A
such that β ∈ K and K ∩ β ∈ A. Then

A ∪ {M ∩ β : M ∈ A}

is strongly adequate and β-closed.

Proof It suffices to prove the claim that under the assumptions above, if M ∈ A then
A ∪ {M ∩ β} is strongly adequate. For then the statement of the proposition can be
proved with two applications of this claim. Fix M and N in A, and we will show that
{M ∩ β, N } is strongly adequate. By Lemmas 2.3 and 2.4, it suffices to consider the
case when β < βM,N and N ∩ βM,N is either equal to M ∩ βM,N or is in Sk(M).

Suppose that N ∩ βM,N = M ∩ βM,N . Then M ∩ β = N ∩ β. Since βM∩β,N ≤
β, (M ∩β)∩βM∩β,N = N ∩βM∩β,N . Also M ∩β = M ∩βM∩β,N , since any ordinal
in the set on the left is in both M ∩ β and N , and hence in βM∩β,N . It follows that
RN (M ∩ β) is empty and RM∩β(N ) is either empty or equal to {min(N\βM∩β,N )}.
But since N ∩ β = M ∩ β = M ∩ βM∩β,N , in the latter case min(N\βM∩β,N ) =
min(N\β), which is in � by Lemma 2.13.

Now assume that N ∩ βM,N ∈ Sk(M). Since β < βM,N , it follows that N ∩ β ∈
Sk(M)∩ Sk(β) = Sk(M ∩β). Since βM∩β,N ≤ β, N ∩βM∩β,N ∈ Sk(M ∩β). Also
as N ∩ β ⊆ M ∩ β, N ∩ β = N ∩ βM∩β,N , since any ordinal in the set on the left
is in (M ∩ β) ∩ N and hence in βM∩β,N . So N ∩ [βM∩β,N , β) = ∅. It follows that
min(N\βM∩β,N ), if it exists, is equal to min(N\β), which is in � by Lemma 2.13.
And if γ ∈ (M ∩ β)\βM∩β,N and ξ = min(N\γ ), then again ξ = min(N\β), which
is in �. Finally, suppose γ ∈ N\βM∩β,N . Then γ ≥ β, so min((M ∩ β)\γ ) does not
exist. ��
Proposition 2.15 Let A be strongly adequate, β ∈ �, and suppose that A is β-closed.
Assume that there is K ∈ A such that β ∈ K . Let B be a strongly adequate set
satisfying

A ∩ Sk(β) ⊆ B ⊆ Sk(β).

Then A ∪ B is strongly adequate.
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Proof Consider M ∈ A\Sk(β) and N ∈ B, and we will prove that {M, N } is strongly
adequate. Since A is β-closed, M ∩ β ∈ A. As we discussed in Section1, the thinness
of the stationary set Y implies that M ∩ β is in Sk(β). So M ∩ β is in A ∩ Sk(β) and
hence in B. Therefore {M ∩ β, N } is strongly adequate. If M = M ∩ β then we are
done. So assume that M\β �= ∅. Then by Lemma 2.13, the ordinal min(M\β) is in
�. Since N ⊆ β, βM,N ≤ β by Lemma 2.7. So by Lemma 2.2, βM,N = βM∩β,N .

We claim that M and N compare the same way as do M ∩ β and N . If (M ∩ β) ∩
βM∩β,N = N ∩ βM∩β,N , then (M ∩ β) ∩ βM,N = M ∩ βM,N is equal to N ∩ βM,N .
Suppose (M∩β)∩βM∩β,N ∈ Sk(N ). Then (M∩β)∩βM∩β,N = M∩βM,N ∈ Sk(N ).
Finally, if N ∩ βM∩β,N ∈ Sk(M ∩ β), then N ∩ βM,N ∈ Sk(M).

Now we prove that (1) any ordinal in RN (M) is either in RN (M ∩ β) or is equal
to min(M\β), and (2) RM (N ) ⊆ RM∩β(N ). It follows that RN (M) and RM (N ) are
subsets of �.

(1) Note that min(M\βM,N ) is either equal to min((M ∩ β)\βM∩β,N ), or is equal
to min(M\β). So if M ∩ βM,N is either equal to N ∩ βM,N or is in Sk(N ), then
(1) is satisfied for min(M\βM,N ). If γ ∈ N\βM,N , then γ ∈ N\βM∩β,N . So
if min(M\γ ) exists, then it is either equal to min((M ∩ β)\γ ), and hence is in
RN (M ∩ β), or it is equal to min(M\β).

(2) Since βM,N = βM∩β,N , the ordinal min(N\βM,N ) is equal to min(N\βM∩β,N );
so this ordinal is in RM∩β(N ) in the case when N ∩ βM,N is either equal to
M ∩ βM,N or is in Sk(M). If γ ∈ M\βM,N , then either γ ∈ M ∩ β and
min(N\γ ) is in RM∩β(N ), or γ ≥ β and min(N\γ ) does not exist. ��

3 Forcing with strongly adequate sets as side conditions

We give an example of a forcing poset with finite conditions which illustrates how the
results of the previous section can be used for preserving cardinals.

Definition 3.1 Let P be the forcing poset whose conditions are finite strongly
adequate sets. Let B ≤ A if A ⊆ B.

Proposition 3.2 The forcing poset P preserves ω1.

Proof Let A � ġ : ω → ω1 is a function. Fix θ > ω2 regular with ġ ∈ H(θ). Let N∗
be a countable elementary substructure of H(θ) satisfying that P, A, ġ, π,X ∈ N∗
and N := N∗∩ω2 ∈ X . Since π ∈ N∗, N∗∩H(ω2) = π [N ] = Sk(N ). In particular,
N∗ ∩ P ⊆ Sk(N ).

Let B = A ∪ {N }. Then B is strongly adequate by Proposition 2.6. We will prove
that B is N∗-generic. This implies that B forces that the range of ġ is contained in N ,
and therefore ġ does not collapse ω1. Fix a dense set E ∈ N∗, and we will show that
N∗ ∩ E is predense below B.

Let C ≤ B be given. Define

D = C ∪ {
M ∩ βM,N : M ∈ C, M ∩ βM,N ∈ Sk(N )

}
.

By Proposition 2.5, D is strongly adequate and N -closed.
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Let X = N∗ ∩ D. Since X is a finite subset of N∗, X ∈ N∗. Let R(N ) =⋃{RM (N ) : M ∈ D}. By elementarity we can fix K ∈ N∗ ∩X such that X ∈ Sk(K )

and R(N ) ⊆ K . Let Y = X ∪ {K } ∪ {K ∩ ζ : ζ ∈ R(N )}. By Proposition 2.10,
Y is strongly adequate. Since E is dense, we can apply elementarity to fix Z ≤ Y
in N∗ ∩ E . Then by Proposition 2.11, D ∪ Z is strongly adequate. So D ∪ Z
is a condition below D and Z , and Z ∈ E . This shows that N∗ ∩ E is predense
below B. ��

Note that the condition B in the proof above is actually strongly N∗-generic (see
the comments following Proposition 4.2 in [1]).

Proposition 3.3 The forcing poset P preserves ω2.

Proof Let A � ġ : ω1 → ω2 is a function. Fix θ > ω2 regular such that ġ ∈ H(θ).
Let N∗ ≺ H(θ) be of size ω1 such that P, A, ġ, π,X ∈ N∗ and β∗ := N∗ ∩ ω2 ∈ �.
Since π ∈ N∗, N∗ ∩ H(ω2) = π [β∗] = Sk(β∗). In particular, N∗ ∩ P ⊆ Sk(β∗).

Fix K ∈ X with β∗ ∈ K and A ∈ Sk(K ). Then A ∈ Sk(K ) ∩ Sk(β∗) =
Sk(K ∩β∗). Let B = A∪{K }∪{K ∩β∗}. Then B is strongly adequate by Lemma 2.12.
We claim that B is N∗-generic. This implies that B forces that the range of ġ is a subset
of N∗, and hence does not collapse ω2. Fix a dense set E ∈ N∗, and we show that
N∗ ∩ E is predense below B.

Let C ≤ B be given. Define

D = C ∪ {
M ∩ β∗ : M ∈ C

}
.

Then D is strongly adequate and β∗-closed by Proposition 2.14.
Let X = N∗ ∩ D. Then X is in N∗. Note that X = Sk(β∗) ∩ D. Since E is dense,

by elementarity we can fix Y ≤ X in N∗ ∩ E . Then D ∩ Sk(β∗) = X ⊆ Y ⊆ Sk(β∗).
By Proposition 2.15, D ∪ Y is strongly adequate. So D ∪ Y is a condition below Y
and D, and Y ∈ N∗ ∩ E . ��

Note that since P has size ω2, it preserves all cardinals larger than ω2 as well.
Let us consider a more complicated example of a forcing poset with strongly ade-

quate sets as side conditions. This example adds a generic function on ω2.

Definition 3.4 Let P be the forcing poset whose conditions are pairs ( f, A) satisfying:

(1) f is a finite partial function from ω2 to ω2;
(2) A is a finite strongly adequate set;
(3) for all M ∈ A and α ∈ dom( f ), if M ∩ [α, f (α)] �= ∅, then α, f (α) ∈ M .

Let (g, B) ≤ ( f, A) if A ⊆ B and f ⊆ g.

A similar forcing poset was defined in Sect. 5 of [1] in the case when � = �,
except that a side condition was assumed to be adequate, and not strongly adequate.
It was shown that this forcing poset preserves ω1 and ω2 and adds a total function
from ω2 to ω2. The proof relied on the fact that remainder sets are subsets of � when
� = �. Definition 3.4 gives a version of this forcing poset in the case when � is a
proper subset of �, but we require a side condition to be strongly adequate. Under this
stronger requirement, the proof of the preservation of cardinals is identical to that in [1].
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4 Adding a club to a fat stationary set

Fix for the remainder of the section a fat stationary set S ⊆ ω2. Being fat means that
for every club D ⊆ ω2, S ∩ D contains a closed subset of order type ω1 + 1. We will
define a forcing poset with finite conditions which adds a club subset of S. Clearly
it suffices to add a club to any stationary subset of S. By fatness and the fact that �

contains almost all points of cofinality ω1, there are stationarily many β in S ∩cof(ω1)

such that β ∈ � and S ∩ cof(ω) ∩ β contains a club in β. By removing the ordinals
where this fails, we will assume without loss of generality that this property holds for
all β in S ∩ cof(ω1).

Let � = S ∩ cof(ω1). Then � is a stationary subset of �. Let us define the com-
parison points βM,N for M and N in X relative to this set �. Let Z denote the set of
M in X such that sup(M) ∈ S and for all β ∈ M ∩ S, sup(M ∩ β) ∈ S. Note that if
M ∈ Z and β ∈ M ∩ �, then M ∩ β ∈ Z .

Lemma 4.1 The set Z is stationary in Pω1(ω2).

Proof Let F : [ω2]<ω → ω2 be a function. Since � is stationary, we can find β ∈ �

which is closed under F . As X is stationary, fix N∗ which is countable and satisfies
that N∗ ≺ (H(ω2),∈, F, S), β ∈ N∗, and N := N∗ ∩ ω2 ∈ X .

By elementarity, there is a club subset c of β in N∗ such that c ⊆ S. Again by
elementarity, N ∩ c is unbounded in sup(N ∩ β), so sup(N ∩ β) is in c and hence in
S. Let M = N ∩ β. Then M is in X and sup(M) = sup(N ∩ β) ∈ S. Also since N
and β are both closed under F , so is M .

Let γ ∈ M ∩ S be given. If γ has cofinality ω, then sup(M ∩ γ ) = γ , which is in
S. Assume γ has cofinality ω1. By elementarity, there is a club subset d of γ in N∗
such that d ⊆ S. Then N ∩ d is unbounded in sup(N ∩ γ ), so sup(N ∩ γ ) is in d and
hence in S. Since γ < β, sup(N ∩ γ ) = sup(M ∩ γ ). ��

Given ordinals α ≤ γ and α′ ≤ γ ′, we say that the pairs 〈α, γ 〉 and 〈α′, γ ′〉 are
overlapping if [α, γ ] ∩ [α′, γ ′] �= ∅, and are nonoverlapping if [α, γ ] ∩ [α′, γ ′] = ∅.

Definition 4.2 Let P be the forcing poset whose conditions are pairs (x, A) satisfying:

(1) x is a finite set of nonoverlapping pairs 〈α, γ 〉, where α ∈ S and α ≤ γ < ω2;
(2) A is a finite strongly adequate subset of Z;
(3) if M ∈ A, 〈α, γ 〉 ∈ x , and M ∩ [α, γ ] �= ∅, then α and γ are in M ;
(4) if M ∈ A, 〈α, γ 〉 ∈ x, M ∩ [α, γ ] = ∅, and M\α is nonempty, then min(M\α)

∈ S.

Let (y, B) ≤ (x, A) if x ⊆ y and A ⊆ B.

Note that in (4), the ordinal min(M\α) has cofinality ω1. So the conclusion of (4)
is equivalent to requiring that min(M\α) is in �.

If p = (x, A), we let x p = x and Ap = A.
Let Ḋ be a P-name such that P forces

Ḋ = {
α : ∃p ∈ Ġ ∃γ 〈α, γ 〉 ∈ x p

}
.

Our goal is to show that P preserves cardinals and forces that Ḋ is a club subset of S.
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Lemma 4.3 Let p be a condition. Suppose that 〈α, γ 〉 ∈ x p, N ∈ Ap, N ∩ [α, γ ] =
∅, and N\α �= ∅. Let β = min(N\α). Then either 〈β, ξ 〉 ∈ x p for some ξ , or
(x p ∪ {〈β, β〉}, Ap) is a condition below p.

Proof Suppose that there is no pair of the form 〈β, ξ 〉 in x p, and we will prove that
(x p ∪ {〈β, β〉}, Ap) is a condition. (1) Since p is a condition, β ∈ �. Consider a pair
〈ξ, ζ 〉 ∈ x p, and suppose for a contradiction that β ∈ [ξ, ζ ]. Then N ∩ [ξ, ζ ] �= ∅ and
ξ < β ≤ ζ . It follows that ξ ∈ N ∩ β. Since β = min(N\α) and ξ < β, we must
have that ξ < α. But then ξ < α < β ≤ ζ . Hence 〈α, γ 〉 and 〈ξ, ζ 〉 are distinct and
overlapping, which contradicts that p is a condition.

(2) and (3) are immediate. For (4), suppose that M ∈ Ap, β /∈ M , and M\β
is nonempty. We need to show that min(M\β) ∈ �. Since β ∈ N , if β ≥ βM,N

then min(M\β) is in RN (M) and hence in �. Suppose that β < βM,N . Then since
β ∈ N\M, M ∩ βM,N ∈ Sk(N ). So M ∩ βM,N ⊆ N . As γ < β < βM,N and
N ∩[α, γ ] = ∅, it follows that M ∩[α, γ ] = ∅. Since p is a condition, min(M\α) ∈ �.
But as M ∩ β ⊆ N ∩ β and β = min(N\α), min(M\α) = min(M\β). ��
Proposition 4.4 The forcing poset P preserves ω1.

Proof Let p � ġ : ω → ω1 is a function. Fix θ > ω2 regular with ġ ∈ H(θ). Let N∗ be
a countable elementary substructure of H(θ) satisfying that P, p, ġ, π,X , S,Z ∈ N∗
and N := N∗ ∩ ω2 ∈ Z . Note that since π ∈ N∗, N∗ ∩ H(ω2) = π [N ∩ ω2] =
Sk(N ). In particular, N∗ ∩ P ⊆ Sk(N ).

Define q = (x p, Ap ∪{N }). We will prove that q is N∗-generic. Then q forces that
the range of ġ is contained in N , so ġ does not collapse ω1. Fix a dense set D ∈ N∗,
and we will show that N∗ ∩ D is predense below q.

Let r ≤ q. Applying Lemma 4.3 finitely many times, we will assume without
loss of generality that whenever 〈α, γ 〉 ∈ xr , N ∈ Ar , N ∩ [α, γ ] = ∅, and N\α is
nonempty, then 〈min(N\α), ξ 〉 is in xr for some ξ .

Define s = (xr , A′), where

A′ = Ar ∪ {
M ∩ βM,N : M ∈ Ar , M ∩ βM,N ∈ Sk(N )

}
.

We claim that s is a condition. (1) is immediate. (2) A′ is strongly adequate by Propo-
sition 2.5. Let us prove that A′ ⊆ Z . Consider M ∈ Ar such that M ∩βM,N ∈ Sk(N ).
First we show that sup(M ∩ βM,N ) ∈ S. If M = M ∩ βM,N then this is immediate.
Otherwise let β = min(M\βM,N ). Then β ∈ RN (M), and hence β ∈ � since A is
strongly adequate. As M ∈ Z and β ∈ M ∩�, sup(M ∩βM,N ) = sup(M ∩β) is in S.
Now if γ ∈ (M ∩ βM,N ) ∩ S, then γ ∈ M ∩ S and therefore sup((M ∩ βM,N ) ∩ γ ) =
sup(M ∩ γ ) ∈ S.

(3,4) Consider M ∈ Ar such that M ∩ βM,N ∈ Sk(N ), and let 〈α, γ 〉 ∈ xr .
First suppose that (M ∩ βM,N ) ∩ [α, γ ] �= ∅. Then α and γ are in M . Since M ∩
βM,N ∈ Sk(N ), N ∩ [α, γ ] �= ∅. So α and γ are also in N . Hence α and γ are
in M ∩ N , which is a subset of βM,N . So α and γ are in M ∩ βM,N . Now suppose
that (M ∩ βM,N ) ∩ [α, γ ] = ∅. If M ∩ [α, γ ] �= ∅, then α is in M\(M ∩ βM,N ),
so α ≥ βM,N . In that case, min((M ∩ βM,N )\α) does not exist and we are done.
On the other hand, if M ∩ [α, γ ] = ∅ and min((M ∩ βM,N )\α) exists, then clearly
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min((M ∩ βM,N )\α) is equal to min(M\α), which is in S. This completes the proof
that s is a condition.

Let u = (xs ∩ Sk(N ), As ∩ Sk(N )). Then u ∈ N∗ ∩ P. Let R(N ) = ⋃{RM (N ) :
M ∈ As}. Then R(N ) is a finite subset of N and hence is in N∗. Since Z ∈ N∗, by
elementarity we can fix K ∈ N∗ ∩ Z satisfying that u ∈ Sk(K ) and R(N ) ⊆ K .
Since R(N ) ⊆ K ∩ �, for all ζ ∈ R(N ), K ∩ ζ ∈ Z . Define v = (xu, A∗), where

A∗ = Au ∪ {K } ∪ {K ∩ ζ : ζ ∈ R(N )} .

Let us prove that v is a condition. (1) is clear and (2) follows from Proposition 2.10.
(3,4) Let 〈α, γ 〉 be in xu . Then α, γ ∈ K . Fix ζ ∈ R(N ), and suppose that (K ∩ ζ ) ∩
[α, γ ] = ∅. Since α ∈ K , α ≥ ζ . So min((K ∩ ζ )\α) does not exist. This proves (4).

For (3), fix ζ ∈ RM (N ) for some M ∈ As , and suppose that (K ∩ ζ ) ∩ [α, γ ] �= ∅.
Then α < ζ . We need to show that α and γ are in K ∩ ζ . Since α and γ are in K , it
suffices to show that γ < ζ . Recall that by the definition of RM (N ), βM,N ≤ ζ .

Suppose for a contradiction that ζ ≤ γ . So we have that α < ζ ≤ γ . In particular,
βM,N ≤ γ . We claim that M ∩ [α, γ ] = ∅. If not, then γ ∈ M since s is a condition;
but this is impossible since then γ ∈ M ∩ N ⊆ βM,N ≤ ζ . So indeed M ∩[α, γ ] = ∅.

Suppose that βM,N ≤ α. Then since α < ζ are in N , it cannot be the case that
ζ = min(N\βM,N ). So there is σ ≥ βM,N in M such that ζ = min(N\σ). Since
α ∈ N and α < ζ , this implies that α < σ < ζ . But then σ ∈ M∩[α, γ ], contradicting
that M ∩ [α, γ ] = ∅.

Therefore we have that α < βM,N ≤ ζ . So α is in N ∩ βM,N but is not in
M . This implies that M ∩ βM,N ∈ Sk(N ). The definition of RM (N ) in this case
gives that there is σ ∈ M\βM,N such that ζ = min(N\σ). But then we have that
α < βM,N ≤ σ < ζ ≤ γ ; so M ∩ [α, γ ] is nonempty, which again is a contradiction.
Thus γ < ζ . So γ ∈ K ∩ ζ , which completes the proof that v is a condition.

Fix w ≤ v in N∗ ∩ D. We will prove that w and s are compatible, which shows that
N∗ ∩ D is predense below q. So let z = (xz, Az) be defined by letting xz = xw ∪ xs

and Az = Aw ∪ As . We will prove that z is a condition. Then clearly z ≤ w, s and we
are done.

(1) Let 〈α, γ 〉 ∈ xw and 〈α′, γ ′〉 ∈ xs be given. Suppose for a contradiction that
the pairs are distinct and overlapping. If N ∩ [α′, γ ′] �= ∅, then α′ and γ ′ are
in N . It follows that 〈α′, γ ′〉 ∈ xw and the intervals are nonoverlapping since
w is a condition, which is a contradiction. So N ∩ [α′, γ ′] = ∅. Since α and
γ are in N , we must have that α < α′ ≤ γ ′ < γ . Let β = min(N\α′). Then
α < γ ′ < β ≤ γ , and by the choice of r, 〈β, ξ 〉 ∈ xs for some ξ . Since
β ∈ N , 〈β, ξ 〉 ∈ xw. But then 〈α, γ 〉 and 〈β, ξ 〉 are distinct pairs in xw which
overlap, contradicting that w is a condition.

(2) Az is strongly adequate by Proposition 2.11, and clearly Az ⊆ Z . (3,4) Let
M ∈ Aw and 〈α, γ 〉 ∈ xs . If N ∩ [α, γ ] �= ∅ then α and γ are in N , and so
〈α, γ 〉 ∈ xw. In this case (3) and (4) are satisfied since w is a condition.

Suppose that N ∩ [α, γ ] = ∅. Then since M ∈ Sk(N ), M ∩ [α, γ ] = ∅. Assume
that β := min(M\α) exists, and we will prove that β ∈ �. Let β ′ = min(N\α). Then
β ′ ∈ �. If β = β ′ then we are done. Suppose β ′ < β. By the choice of r, 〈β ′, ξ 〉 ∈ xs
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for some ξ , and as β ′ ∈ N , 〈β ′, ξ 〉 ∈ xw. Since β ′ /∈ M , the ordinal min(M\β ′),
which is equal to β, is in �.

Now let M ∈ As and 〈α, γ 〉 ∈ xw. Suppose that M ∩ [α, γ ] �= ∅, and we show that
α and γ are in M .

First assume that there is ξ ∈ M ∩ [α, γ ] such that ξ ≥ βM,N . Let ζ = min(N\ξ).
Then ζ ∈ RM (N ) and ζ ∈ (α, γ ]. By the choice of K , ζ ∈ K . Therefore K ∩
[α, γ ] �= ∅. Since K ∈ Aw, α and γ are in K . But α < ζ , so α ∈ K ∩ ζ . Hence
(K ∩ ζ ) ∩ [α, γ ] �= ∅. Since K ∩ ζ ∈ Aw, γ ∈ K ∩ ζ . But this is impossible since
ζ ≤ γ . So this configuration is not possible.

Therefore M ∩ [α, γ ] ⊆ βM,N . Since M ∩ [α, γ ] is nonempty, (M ∩ βM,N ) meets
the interval [α, γ ]. If M ∩ βM,N ∈ Sk(N ), then M ∩ βM,N is in Aw, and therefore
α and γ are in M ∩ βM,N and hence in M . Otherwise N ∩ βM,N is either equal to
M ∩ βM,N or is in Sk(M). If βM,N > γ , this implies that α and γ are in N ∩ βM,N

and hence in M .
Otherwise we have that α < βM,N ≤ γ . Let ζ = min(N\βN ,M ). Then ζ ∈ RM (N )

and α < ζ ≤ γ . By the choice of K , ζ ∈ K , and hence K meets the interval [α, γ ].
Therefore α ∈ K since w is a condition. So α ∈ K ∩ ζ , and therefore K ∩ ζ meets
the interval [α, γ ]. This implies that γ ∈ K ∩ ζ since w is a condition, contradicting
that ζ ≤ γ .

Now assume that M ∩ [α, γ ] = ∅ and min(M\α) exists. We will prove that
min(M\α) ∈ �. Assume first that N ∩βM,N is either equal to M∩βM,N or is in Sk(M).
Since α is in N\M, βM,N ≤ α. So α ∈ N\βM,N , and thus min(M\α) is in RN (M)

and hence in �. Now suppose that M ∩ βM,N ∈ Sk(N ). Then M ∩ βM,N ∈ Aw.
If βM,N ≤ α, then again min(M\α) is in RN (M) and hence in �. So assume that
α < βM,N . If min((M ∩ βM,N )\α) exists, then clearly it is equal to min(M\α), and
this ordinal is in � since w is a condition. Otherwise the least element of M above α is
at least βM,N . But then min(M\α) = min(M\βM,N ), which is in RN (M) and hence
in �. ��
Proposition 4.5 The forcing poset P preserves ω2.

Proof Let p � ġ : ω1 → ω2 is a function. Fix θ > ω2 regular such that ġ ∈ H(θ). Let
N∗ ≺ H(θ)be of sizeω1 such that P, p, ġ, π,X , S,Z ∈ N∗ andβ∗ := N∗ ∩ ω2 ∈ �.
This is possible since � is stationary. Note that since π ∈ N∗, Sk(β∗) = π [β∗] =
N∗ ∩ H(ω2). In particular, N∗ ∩ P ⊆ Sk(β∗).

Fix K ∈ Z such that p and β∗ are in Sk(K ). Let q = (xq , Aq), where xq =
x p ∪ {〈β∗, β∗〉} and Aq = Ap ∪ {K } ∪ {K ∩ β}. Then Aq is strongly adequate by
Lemma 2.12. The other properties of being a condition are easy to check. We claim
that q is N∗-generic. This implies that q forces that the range of ġ is a subset of N∗, and
hence does not collapse ω2. Fix a dense set D ∈ N∗, and we will show that N∗ ∩ D
is predense below q.

Let r ≤ q be given, and we will find a condition w in N∗ ∩ D which is compatible
with r . Note that for any pair 〈α, γ 〉 in xr different from 〈β∗, β∗〉, α and γ are either
both below or both above β∗.

Let s = (xr , A∗), where

A∗ = {
M ∩ β∗ : M ∈ Ar

}
.
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We claim that s is a condition. (1) is immediate. For (2), the set As is strongly adequate
by Proposition 2.14. To see that As ⊆ Z , consider M ∈ Ar . If M = M ∩ β∗ then
we are done. Otherwise let ξ = min(M\β∗). Then ξ is in �; for if ξ = β∗ then
this is immediate, and otherwise ξ ∈ � by property (4) of r being a condition. Now
M ∩ β∗ = M ∩ ξ , so sup(M ∩ β∗) ∈ S since M ∈ Z . Suppose ζ is in (M ∩ β∗) ∩ �.
Then ζ ∈ M ∩ �. But sup((M ∩ β∗) ∩ ζ ) = sup(M ∩ ζ ), which is in S since M ∈ Z .

(3,4) Consider 〈α, γ 〉 ∈ xr and M ∈ Ar . If α and γ are at least β∗, then (M ∩ β∗) ∩
[α, γ ] = ∅ and the least element of M ∩ β∗ above α does not exist. Suppose that α

and γ are both below β∗. If (M ∩β∗)∩ [α, γ ] = ∅ and min((M ∩β∗)\α) exists, then
M ∩ [α, γ ] = ∅ and min((M ∩ β∗)\α) = min(M\α) ∈ �. If (M ∩ β∗) ∩ [α, γ ] �= ∅,
then α and γ are in M , and hence in M ∩ β∗. This completes the proof that s is a
condition.

Let v = (xs ∩Sk(β∗), As ∩Sk(β∗)). So xv = xs ∩(β∗ × β∗) and Av = As ∩P(β∗).
By elementarity, fix w ≤ v in N∗ ∩ D. Let z = (xw ∪ xs, Aw ∪ As). We will prove
that z is a condition. Then clearly z ≤ w, s, completing the proof.

(1) Let 〈α, γ 〉 ∈ xw and 〈α′, γ ′〉 ∈ xs be distinct. If α′ and γ ′ are both at least
β∗, then obviously [α, γ ] ∩ [α′, γ ′] = ∅. Otherwise they are both below β∗, and so
〈α′, γ ′〉 ∈ xw. Then [α, γ ] ∩ [α′, γ ′] = ∅ since w is a condition. (2) Az is strongly
adequate by Proposition 2.15, and clearly Az ⊆ Z .

(3,4) Let M ∈ Aw and 〈α, γ 〉 ∈ xs . If α and γ are at least β∗, then M ∩ [α, γ ] = ∅
and min(M\α) does not exist. Suppose α and γ are both below β∗. Then 〈α, γ 〉 ∈ xw,
so (3) and (4) are satisfied for 〈α, γ 〉 and M since w is a condition.

Now let M ∈ As and 〈α, γ 〉 ∈ xw. Then α and γ are below β∗ and M ∩ β∗ ∈ Aw.
Suppose that M ∩ [α, γ ] = ∅. Then (M ∩ β∗) ∩ [α, γ ] = ∅. If min(M\α) does not
exist then we are done. If min((M ∩ β∗)\α) exists, then it is in � and it is equal
to min(M\α). Otherwise min(M\α) exists but min((M ∩ β∗)\α) does not exist.
So min(M\α) ≥ β∗, and therefore min(M\α) = min(M\β∗). If β∗ ∈ M , then
min(M\α) = β∗, which is in �. Otherwise min(M\α) = min(M\β∗) is in � since s
is a condition and 〈β∗, β∗〉 is in xs . Now suppose that M ∩ [α, γ ] �= ∅. Since α and γ

are below β∗, (M ∩ β∗) ∩ [α, γ ] �= ∅. Since M ∩ β∗ ∈ Aw, α and γ are in M ∩ β∗
and hence in M . ��

Finally, we show that P adds a club subset of S. Recall that Ḋ is a P-name and P

forces that

Ḋ = {
α : ∃p ∈ Ġ ∃γ 〈α, γ 〉 ∈ x p

}
.

Clearly Ḋ is forced to be a subset of S, and it is straightforward to verify that Ḋ is
forced to be cofinal in ω2. Proposition 4.7 below will show that Ḋ is a club.

Lemma 4.6 Suppose that p forces that α is a limit point of Ḋ. Assume that M ∈ Ap

and sup(M ∩ α) = α. Then sup(M ∩ S ∩ α) = α.

Proof Let ξ < α be given, and we will find an element of M ∩ S ∩ α which is above
ξ . Since p forces that α is a limit point of Ḋ, we can find q ≤ p, and σ and π such
that ξ < σ ≤ π < α and 〈σ, π〉 ∈ xq . If σ ∈ M then we are done, since σ ∈ S.
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Otherwise M ∩ [σ, π ] = ∅ and min(M\σ) is in S. Since ξ < σ and M ∩ α is cofinal
in α, we have that ξ < min(M\σ) < α. ��
Proposition 4.7 The forcing poset P forces that Ḋ is closed.

Proof It will suffice to show that if p forces that α is a limit point of Ḋ, then there is
q ≤ p such that 〈α, γ 〉 ∈ xq for some γ . If p already satisfies this property, then we
are done; so assume not. Then since p forces that α is a limit point of Ḋ, for any pair
〈ξ, γ 〉 ∈ x p, the ordinals ξ and γ are either both below or both strictly above α. In
particular, the pair 〈α, α〉 does not overlap any pair in x p. Also note that α is a limit
point of S, since this is true in a generic extension.

We claim that for any M ∈ Ap, if sup(M ∩ α) < α and M\α �= ∅, then
min(M\α) ∈ �. Namely, fix r ≤ p and 〈ξ, γ 〉 ∈ xr such that sup(M ∩ α) <

ξ ≤ γ < α. Then since M ∈ Ar and M ∩ [ξ, γ ] = ∅, min(M\ξ) ∈ �. But as
sup(M ∩ α) < ξ, min(M\ξ) = min(M\α).

First suppose that there exists M ∈ Ap such that sup(M) = α. Then since M ∈
Z, sup(M) = α ∈ S. Let q = (x p ∪{〈α, α〉}, Ap). We will show that q is a condition,
which finishes the proof in this case.

The only way that q could fail to be a condition is if there is some N ∈ Ap such
that α /∈ N and ξ := min(N\α) /∈ �. We will show that this is impossible. By
the comments above, we must have that sup(N ∩ α) = α. So α is a common limit
point of M and N , which implies that α < βM,N . First assume that ξ < βM,N .
Then since ξ ∈ N\M, M ∩ βM,N = M ∈ Sk(N ). By elementarity, this implies that
sup(M) = α is in N , which contradicts our assumptions. Now assume that βM,N ≤ ξ .
Then both M ∩ βM,N and N ∩ βM,N have a supremum equal to α, which belongs to
neither M nor N . Hence the only comparison of M and N which is possible is that
M ∩ βM,N = N ∩ βM,N . But then ξ = min(N\βM,N ) is in RM (N ) and hence in �,
which again contradicts our assumptions.

We now assume that for all M ∈ Ap, if sup(M ∩ α) = α, then M\α is nonempty.
Recall that if M ∈ Ap, sup(M ∩ α) < α, and M\α is nonempty, then min(M\α) ∈ �.
Define A0, A1, and A2 as follows:

A0 = {
M ∈ Ap : sup(M) < α

}
,

A1 = {
M ∈ Ap : sup(M ∩ α) < α, min(M\α) ∈ �

}
,

A2 = {
M ∈ Ap : sup(M ∩ α) = α, M\α �= ∅}

.

Then by the facts just noted, Ap = A0 ∪ A1 ∪ A2.
First suppose that A2 is empty. We claim that q = 〈x p ∪{〈α, α〉}, Ap〉 is a condition,

which will finish the proof in this case. Clearly q is a condition unless α is not in S, since
the other properties are immediate. Suppose that α is not in S. Then for all M ∈ Ap,
either sup(M) < α in case M ∈ A0, or sup(M ∩ α) < α and min(M\α) ∈ � in case
M ∈ A1. In the second case, min(M\α) > α since α is not in S. Fix ξ < α in S
larger than sup(M ∩α) for all M ∈ Ap. Then easily (x p ∪{〈ξ, α〉}, Ap) is a condition,
contradicting that p forces that α is a limit point of Ḋ.

Now suppose that A2 is nonempty. Let q = (x p ∪ {〈α, α〉}, Ap). If q is a condition
then we are done, so assume that it is not. Then either α is not in S, or there is N ∈ Ap
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such that α /∈ N and min(N\α) is not in S. The rest of the proof will lead us to a
contradiction.

Let M be ∈-minimal in A2 and let ξ := min(M\α). We claim that ξ is not in S.
So suppose that it is. Then since M ∈ Z, sup(M ∩ ξ) = α ∈ S. Therefore there must
be N ∈ Ap with α /∈ N and min(N\α) /∈ S. Note that N must be in A2. So α is a
common limit point of M and N , which implies that α < βM,N . By the ∈-minimality
of M , either M ∩βM,N = N ∩βM,N or M ∩βM,N ∈ Sk(N ). But M ∩βM,N cannot be
in Sk(N ), since if it were then M ∩α, and hence sup(M ∩α) = α, would be in N . So
M ∩βM,N = N ∩βM,N . Since ξ = min(M\α) ∈ S and min(N\α) /∈ S, it must be the
case that βM,N ≤ ξ . So M ∩α = M ∩βM,N = N ∩βM,N . Thus N ∩α = N ∩βM,N .
Therefore min(N\α) = min(N\βM,N ), which is in RM (N ) and hence in �, giving a
contradiction.

So indeed ξ is not in S. Next we claim that for all K ∈ A1, min(K\α) > ξ .
Consider K ∈ A1 and let σ = min(K\α). Then σ ∈ �, and therefore σ �= ξ . Suppose
for a contradiction that σ < ξ . Then ξ = min(M\σ). So if βM,K ≤ σ , then ξ is in
RK (M) and hence in �, which is false. Therefore σ < βM,K . In particular, α < βM,K .
But sup(K ∩ α) < α = sup(M ∩ α); so it must be the case that K ∩ βM,K ∈ Sk(M).
This is impossible as σ ∈ (K ∩ βM,K )\M . This proves that ξ < min(K\α).

Using Lemma 4.6, choose γ in M ∩ S ∩ α which is larger than any ordinal below
α which appears in a pair of x p, and larger than sup(N ∩ α) for all N in A0 ∪ A1. Let
r = (x p ∪ {〈γ, ξ 〉}, Ap). We claim that r is a condition. This will contradict that p
forces that α is a limit point of Ḋ, finishing the proof.

(1) Let 〈τ, π〉 be in x p. If either of τ or π is below α, then they are both below γ , and
therefore [τ, π ]∩ [γ, ξ ] = ∅. Otherwise they are both strictly above α. We claim
that τ > ξ , which implies that the intervals are disjoint. If not, then α < τ ≤ ξ .
Since τ is in S and ξ is not, τ < ξ . So τ is not in M . But then min(M\τ) = ξ is
in �, which is false.

(2) is immediate. (3,4) Let K be in Ap. If K is in A0, then K ∩ [γ, ξ ] = ∅ and
min(K\γ ) does not exist. If K is in A1, then again K ∩ [γ, ξ ] = ∅, and
min(K\γ ) = min(K\α) is in � and hence in S. Suppose that K is in A2.
Then α is a common limit point of M and K , so α < βM,K . By the ∈-minimality
of M, γ ∈ K . If ξ < βM,K , then again by the ∈-minimality of M we have that
ξ ∈ K and we are done. Otherwise α < βM,K < ξ . So ξ = min(M\βM,K ) is in
RK (M) and hence in �, which is a contradiction. ��
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