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Abstract The best known algebraizable logics with a conjunction and an implication
have the property that the conjunction defines a meet semi-lattice in the algebras of
their algebraic counterpart. This property makes it possible to associate with them
a semi-lattice based deductive system as a companion. Moreover, the order of the
semi-lattice is also definable using the implication. This makes that the connec-
tion between the properties of the logic and the properties of its semi-lattice based
companion is strong. We introduce a class of algebraizable deductive systems that in-
cludes those systems, and study some of their properties and of their semi-lattice based
companions. We also study conditions which, when satisfied by a deductive system in
the class, imply that it is strongly algebraizable. This brings some information on the
open area of research of Abstract Algebraic Logic which consists in finding interesting
characterizations of classes of algebraizable logics that are strongly algebraizable.
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832 R. Jansana

1 Introduction

One of the central concepts of Abstract Algebraic Logic is algebraizable deductive
system. It was introduced by Blok and Pigozzi in their seminal monograph [1]. In
current terminology this concept corresponds to the notion of finitary and finitely
algebraizable deductive system. Blok and Pigozzi’s original concept was broadened
by Czelakowski and Hermman to encompass non-finitary deductive systems, and the
condition of the equivalence of the deductive system with an equational consequence
relation performed by translations from formulas to finite sets of equations and from
equations to finite sets of formulas was weakened to translations to sets of arbitrary
cardinality.

If a deductive system S is algebraizable (in the current broad sense), then there
exists a greatest class of algebras to the equational consequence relation of which
S is equivalent. This class, known as the equivalent algebraic semantics of S, coin-
cides with the class of algebras that is associated with S as its canonical algebraic
counterpart according to prevailing practice in Abstract Algebraic Logic, and it is a
quasivariety when S is finitary and finitely algebraizable.

Almost all the best known finitary and finitely algebraizable deductive systems
have a variety as their equivalent algebraic semantics. But this is not a consequence
of the definition of finitary and finitely algebraizable deductive system. Indeed, there
are finitary and finitely algebraizable deductive systems whose equivalent algebraic
semantics is not a variety: the logic BCK and the 1-assertional logic of implicative
algebras are some of the examples. The algebraizable deductive systems whose equiv-
alent algebraic semantics is a variety are called strongly algebraizable.

Also, many of the best known finitary and finitely algebraizable deductive systems,
like classical and intuitionistic propositional logics, the global consequence relations
of normal modal logics, relevance logics R and Rt , intuitionistic and classical lin-
ear logics, Łukasiewicz infinite-valued logic, among others, besides being strongly
algebraizable have a binary connective ∧ that enjoys the following property:

1. the interpretation of ∧ in every algebra A of the canonical algebraic counterpart1

of S gives a meet semi-lattice 〈A,∧A〉.
These logics also have a binary connective → with the property that the order of the

meet semi-lattices is definable using → and the set of the equations that perform the
translation (involved in being algebraizable) of formulas into sets of equations and,
moreover, the formulas ϕ → ψ and (ϕ ∧ ψ) ↔ ϕ are equivalent, in the sense that
(ϕ → ψ) ↔ ((ϕ ∧ ψ) ↔ ϕ) is a theorem.

In [14], to every class of algebras K of a given similarity type with a binary term ∧
such that for every A ∈ K the structure 〈A,∧A〉 is a meet semi-lattice, is associated
a finitary deductive system S(K,≤) defined using the order of the semi-lattice. This
deductive system has the congruence property (that is, the mutual entailment relation
is a congruence of the algebra of formulas) and its canonical algebraic counterpart is
the variety generated by K. In [14] the deductive systems definable in this way are
called semi-lattice based.

1 For a precise definition we address the reader to the Preliminaries section.
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Algebraizable logics with a strong conjunction 833

Property (1) above allows us to associate with each deductive system S enjoying
it the semi-lattice based companion S(AlgS,≤), where AlgS denotes the algebraic
counterpart of S. In this paper we study the relations between S and S(AlgS,≤)
and the properties of these latter deductive systems from an abstract general point
of view when S is algebraizable and has a conjunction that satisfies condition (1)
above. Moreover, we do not restrict ourselves to finitary deductive systems. We call
the deductive systems with these properties algebraizable deductive systems with a
strong conjunction. It is worth noticing that there are strongly algebraizable deduc-
tive systems without any binary term that behaves as a conjunction, for example the
implicative fragment of intuitionistic logic, whose equivalent algebraic semantics is
the variety of Hilbert algebras.

Some of the examples of deductive systems that motivated the introduction in
[10] of the strong version of a protoalgebraic logic were pairs of deductive systems
in which the first element of the pair is, using the present terminology, algebraiz-
able with a strong conjunction and the second one is its semi-lattice based com-
panion. In [10] we found some concepts and properties that allow for a smooth
theory of a class of pairs of deductive systems with very strong links between
the members of the pair, but as Theorem 8 of the present paper shows, this the-
ory of the strong version does not seem to capture exactly the relation between
an algebraizable deductive system with a strong conjunction and its semi-lattice
based companion, when the latter is protoalgebraic. In fact, the first deductive sys-
tem is the strong version of the second if and only if it is strongly algebraizable
and both have the same theorems. Moreover, there are algebraizable deductive sys-
tems with a strong conjunction whose semi-lattice based companion is not protoal-
gebraic.

One of the open problems in AAL is to find interesting characterizations of classes
of algebraizable logics which are strongly algebraizable, characterizations that some-
how will help to explain the surprising phenomenon that despite the fact that almost
all the best known finitary and finitely algebraizable deductive systems are strongly
algebraizable, the concept finitary and finitely algebraizable deductive system only
implies that the equivalent algebraic semantics is a quasivariety. The present paper
can be seen as a contribution in that direction.

The implication fragment of intuitionistic logic, as we mentioned is strongly alge-
braizable without any conjunction. This is an example of a Fregean deductive system
that admits a deduction theorem. All the finitary deductive systems enjoying these two
properties are strongly algebraizable. So our contribution to the problem of finding
interesting characterizations of classes of algebraizable logics which are strongly al-
gebraizable does not encompass all the strongly algebraizable deductive systems but
only a very significant class.

The outline of the paper is as follows. In Sect. 2 we review all the notions of AAL
necessary to follow the paper. In Sect. 3 we discuss conjunctions and introduce the
concept of strong conjunction. Section 4 is devoted to the study of the main prop-
erties of algebraizable logics with a strong conjunction and the properties of their
semi-lattice based companion. Finally, in Sect. 5 we study the strongly algebraizable
deductive systems with a strong conjunction and properties of their semi-lattice based
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834 R. Jansana

companions. Several of the results we present are generalizations of similar results for
the logics studied in [3] and with more generality in [8].

2 Preliminaries

In this section we review, for the reader’s convenience, all the concepts and results
of AAL we use in the paper and we fix our notation. For more information on these
concepts and facts we address the reader to [5,11].2 Recall that a consequence relation
on a set A is a binary relation 	 ⊆ P(A)× A such that for every X,Y ⊆ A and every
a ∈ A: (1) X 	 a, whenever a ∈ X and (2) if X 	 b for every b ∈ Y and Y 	 a, then
X 	 a. A consequence relation 	 on A is finitary if whenever X 	 a whit X ∪{a} ⊆ A,
there is a finite Y ⊆ X such that Y 	 a. Consequence relations are monotone, in the
sense that if X ⊆ Y and X 	 a, then Y 	 a. If X,Y ⊆ A, X 	 Y means that X 	 a for
every a ∈ Y . Moreover, we say that X,Y ⊆ A are 	-equivalent if X 	 Y and Y 	 X .

Let L be a set of connectives that we also regard as an algebraic similarity type, and
let FmL denote the absolutely free algebra of type L over a denumerable set V ar of
generators, which are the variables. The elements of the universe Fm of FmL are the
formulas of type L. A substitution is an endomorphism of FmL. An equation ϕ ≈ ψ

of type L is identified with the ordered pair of formulas 〈ϕ,ψ〉. For every substitution
σ the map σ e : Fm × Fm → Fm × Fm is defined by σ e(〈ϕ,ψ〉) = 〈σ(ϕ), σ (ψ)〉,
for every ϕ,ψ ∈ Fm.

A (finitary) deductive system of type L is a pair S = 〈FmL,	S〉 where 	S is a
(finitary) consequence relation on Fm which is invariant under substitutions, that is,
if Γ 	S ϕ, then for every substitution σ , σ [Γ ] 	S σ(ϕ). The relation 	S is the
consequence, or entailment, relation of S. If Γ and Γ ′ are sets of formulas, Γ 	S Γ ′
means in this paper that for every ϕ ∈ Γ ′, Γ 	S ϕ. A theorem of S is a formula ϕ
such that ∅ 	S ϕ.

We will omit references to the similarity type unless some confusion may arise and
we assume that the algebras and deductive systems are of the same type.

A theory of a deductive system S, or S-theory, is a set of formulas Γ closed under
	S , that is, such that for every formula ϕ, ifΓ 	S ϕ, then ϕ ∈ Γ . The set of S-theories
is denoted by ThS; it forms a complete lattice when it is ordered by inclusion.

Let K be a class of algebras of type L. The equational consequence of K, denoted
|�K, is the relation between sets of equations and equations defined by

{δi ≈ εi : i ∈ I } |�K δ ≈ ε iff (∀A ∈ K)(∀h ∈ Hom(Fm,A))

(∀i ∈ I ) h(δi ) = h(εi ) �⇒ h(δ) = h(ε).

This relation is a consequence relation on the set of equations of type L and it is
invariant under the set of maps {σ e : σ : Fm → Fm}, that is, if Φ |�K δ ≈ ε, then
for every substitution σ , σ e[Φ] |�K σ

e(δ ≈ ε).

2 In this Section we do not specify who introduced a concept or proved a result except for concepts and
results not covered in [5,11].
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Algebraizable logics with a strong conjunction 835

Semantics of logical matrices

Let S be a deductive system and A an algebra. A set F ⊆ A is an S-filter if for
every homomorphism h : Fm → A, every set of formulas Γ and every formula ϕ,
if Γ 	S ϕ and h[Γ ] ⊆ F , then h(ϕ) ∈ F . The set of all S-filters of an algebra A is
denoted by FiSA. This set is closed under arbitrary intersections, so it is a complete
lattice when it is ordered by inclusion.

A logical matrix, a matrix in an abridged form, is a pair 〈A, F〉 where A is an
algebra and F is a subset of the universe of A. A matrix 〈A, F〉 is a (matrix) model of
a deductive system S if F is an S-filter of A. Therefore, the matrix models of S on
the algebra of formulas are the matrices of the form 〈Fm, T 〉 where T is an S-theory.

Let A be an algebra and F ⊆ A. The Leibniz congruence of F relative to A, denoted
by ΩA(F), is the greatest congruence of A compatible with F , that is, that does not
relate elements in F with elements not in F . The map ΩA when restricted to the
S-filters of A is called the Leibniz operator on A. A matrix 〈A, F〉 is reduced if the
Leibniz congruence ΩA(F) is the identity relationΔA on A. The class of the algebraic
reducts of the reduced matrices which are models of a deductive system S is denoted
by Alg∗S, that is,

Alg∗S = {A : (∃F ∈ FiSA) ΩA(F) = ΔA}.

If M is a class of matrices, the relation 	M on Fm defined by

Γ 	M ϕ iff (∀〈A, F〉 ∈ M)(∀h ∈ Hom(Fm,A))(h[Γ ] ⊆ F ⇒ h(ϕ) ∈ F)

is a consequence relation on Fm invariant under substitutions, so SM = 〈Fm,	M〉 is
a deductive system. When M is closed under ultraproducts, 	M is finitary, and then SM
is a finitary deductive system. A class of matrices M is a complete matrix semantics
for a deductive system S if 	S = 	M. For every deductive system S, the classes of
matrices {〈A, F〉 : F ∈ FiSA} and {〈A, F〉 : A ∈ Alg∗S, F ∈ FiSA,ΩA(F) = ΔA}
are complete matrix semantics for S.

The algebraic counterpart of a deductive system

The class Alg∗S is the class of algebras that the semantics of logical matrices associ-
ates canonically with a deductive system S. By taking into consideration the properties
of non-protoalgebraic logics, it is argued in [9] that this class of algebras is not the right
class to take as the canonical algebraic counterpart of an arbitrary deductive system.
The class of algebras proposed in [9] as the canonical algebraic counterpart and that is
currently considered so in AAL has been defined in more than one way and different
authors have arrived at it following diverse research orientations. The most simple
way of defining it is by means of the so-called Suszko congruence (cf. [6]).

Let A be an algebra and F an S-filter of A. The Suszko congruence of F is the
congruence

˜Ω
A
S(F) =

⋂

{ΩA(G) : F ⊆ G ∈ FiSA}.
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The class of algebras usually considered nowadays in AAL as the canonical alge-
braic counterpart of S is:

AlgS = {A : (∃F ∈ FiSA) ˜Ω
A
S(F) = ΔA}.

It is easy to show that AlgS is the closure of Alg∗S under subdirect products.
In this paper it will be also useful to consider the following characterization of

AlgS. Let A be an algebra. The Tarski congruence of FiSA (cf. [9]) is the relation

˜Ω
A
(FiSA) =

⋂

{ΩA(F) : F ∈ FiSA}.

Thus, the Tarski congruence of FiSA is the Suszko congruence corresponding to
the least S-filter of A. In the particular case of the algebra of formulas, the Tarski
congruence of Th(S) is usually denoted by ˜Ω(S). The Tarski congruence of FiSA
can be characterized as the greatest congruence included in the relation

Λ(FiSA) = {〈a, b〉 ∈ A × A : (∀F ∈ FiSA)(a ∈ F ⇔ b ∈ F)},

which is known as the Frege relation of 〈A,FiSA〉.
The characterization of AlgS using Tarski congruences is as follows:

A ∈ AlgS iff ˜Ω
A
(FiSA) = ΔA,

for every algebra A. This holds because
⋂

FiSA is an S-filter and, as it is easy to see,

this implies that ˜Ω
A
S(

⋂

FiSA) = ˜Ω
A
(FiSA).

The intrinsic variety of a deductive system

Another class of algebras associated with a deductive system that plays a prominent
role in AAL is the intrinsic variety. The intrinsic variety of a deductive system S (cf.
[9,15]) is the variety generated by the algebra Fm/˜Ω(S), and is denoted by KS . The
congruence ˜Ω(S) on Fm is invariant, and therefore the resuting quotient algebra is
free in the class KS . Thus the class KS can be described as the variety axiomatized by
the equations ϕ ≈ ψ such that 〈ϕ,ψ〉 ∈ ˜Ω(S).

The relation between the three classes of algebras Alg∗S, AlgS and KS associated
with a deductive system S so far is as follows:

1. Alg∗S ⊆ AlgS ⊆ KS ,
2. KS is the variety generated by Alg∗S and so also by AlgS.

This is the best we can obtain in general, because there are deductive systems sat-
isfying each one of the possible combinations of proper inclusions and equalities in
expression (1) above.3

3 For example, the algebraizable logic BCK satisfies Alg∗BCK = AlgBCK � KBCK . The proper inclu-
sion AlgBCK � KBCK holds because Alg∗BCK is the class of BCK-algebras, a quasivariety which is not a
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Algebraizable deductive systems

LetΔ(p, q) be a set of formulas in two variables and let τ(p) be a set of equations in
one variable. The set Δ defines a map, that we also denote by Δ, from equations to
sets of formulas by letting

Δ(ϕ,ψ) = {δ(p/ϕ, q/ψ)) : δ ∈ Δ(p, q)},

for every pair of formulas, i.e. equation, 〈ϕ,ψ〉. Similarly, τ defines a map, which we
denote by τ , from formulas to sets of equations by letting

τ(ϕ) = {δ(p/ϕ) ≈ ε(p/ϕ) : δ ≈ ε ∈ τ(p)},

for every formula ϕ. If Φ is a set of equations and Γ is a set of formulas we let

Δ(Φ) :=
⋃

ϕ≈ψ∈Φ
Δ(ϕ,ψ) and τ(Γ ) :=

⋃

ϕ∈Γ
τ(ϕ).

For every substitution σ the maps Δ and τ satisfy

σ [Δ(ϕ,ψ)] = Δ(σ(ϕ), σ (ψ)) σ e[τ(ϕ)] = τ(σ (ϕ)).

Maps from formulas to sets of equations and from equations to sets of formulas
with these properties will be called structural transforms (cf. [5]); they are called
transformers in [17]. Every structural transform is definable by a set of formulasΔ or
a set of equations τ in the way specified above. A structural transform is finite if it is
definable by a finite set of formulas or equations.

A deductive system S is algebraizable if there is a class of algebras K, a set of
formulas Δ(p, q) and a set of equations τ(p) such that for every set of formulas Γ ,
every formula ϕ and every equation δ ≈ ε

1. Γ 	S ϕ iff τ(Γ ) |�K τ(ϕ)

2. δ ≈ ε |�K τ(Δ(δ, ε)) and τ(Δ(δ, ε)) |�K δ ≈ ε.

Conditions (1) and (2) imply:

(3) Φ |�K ϕ ≈ ψ iff Δ(Φ) 	S Δ(ϕ,ψ)
(4) ϕ 	S Δ(τ(ϕ)) and Δ(τ(ϕ)) 	S ϕ.

Every algebraizable deductive system has theorems. Moreover, if S is algebraizable
by K, τ andΔ and also by K′, τ ′ andΔ′, then |�K = |�K′ , τ and τ ′ are |�K-equivalent
andΔ andΔ′ are 	S -equivalent. Also there is a greatest class of algebras K′ such that
|�K = |�K′ . This class is known as the equivalent algebraic semantics of S and coin-
cides with Alg∗S, which for algebraizable deductive systems coincides also with AlgS.

Footnote 3 continued
variety (cf. [18]). If S is the (∧,∨)-fragment of classical logic we have Alg∗S � AlgS = KS . Finally, the
three classes of algebras are different when S is the global subintuitionistic logic of the class of all Kripke
frames, as it is shown in [2].
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An algebraizable deductive system for which the set of formulas Δ may be taken
finite is called finitely algebraizable. This notion, when applied to finitary deductive
systems is the concept of algebraizable logic introduced by Blok and Pigozzi in [1].
In that setting, it implies that the set τ can also be taken as finite. If S is finitary
and finitely algebraizable, then |�K is finitary and the equivalent algebraic semantics
Alg∗S is a quasivariety.

Algebraizable deductive systems have been characterized in terms of the definabil-
ity of the Leibniz congruence of their matrix models and the definability of the filters
of their reduced matrix models. Let 〈A, F〉 be a matrix. A set of formulas Δ(p, q)
defines the Leibniz congruence ΩA(F) if

ΩA(F) = {〈a, b〉 ∈ A2 : ΔA(a, b) ⊆ F}.

If Δ defines the Leibniz congruences of every matrix model of a deductive system S,
then it is called a set of equivalence formulas for S. Let τ(p) be a set of equations.
The set of solutions in A of the equations in τ is denoted by τ(A), that is:

τ(A) := {a ∈ A : A |� τ(p)[a]}.

We say that τ(p) defines a set F ⊆ A on A if F = τ(A). If S is a deductive system
and τ defines the S-filters of the reduced matrix models of S, then τ is called a set of
truth-defining equations for S. Note that if S has a set of truth-defining equations τ ,
then in every A ∈ Alg∗S there is exactly one S-filter F such that 〈A, F〉 is reduced;
this S-filter is τ(A).

The characterization of algebraizable deductive system in terms of definability
conditions is as follows: a deductive system is algebraizable if and only if it has a set
of equivalence formulas and a set of truth-defining equations. These sets define the
structural transforms we met in the definition of algebraizable deductive system.

Other classes of deductive systems

Deductive systems may be studied and classified according to the lattice structure
properties of the lattices of S-filters that are preserved by the Leibniz operator when
passing to the lattices of Alg∗S-relative congruences. The classification is known as
the Leibniz hierarchy.

A deductive system S is protoalgebraic if for every algebra A, the Leibniz opera-
tor is a monotone map from the lattice FiSA to the lattice ConA of the congruences
of A. There is an important, and useful, syntactic characterization of protoalgebraic
deductive systems. A deductive system is protoalgebraic if and only if there is a set of
formulas in two variables ⇒(p, q) with the following two properties:

1. 	S ⇒(p, p)
2. p,⇒(p, q) 	S q (MP or detachment)

A set ⇒(p, q) with these two properties will be called in this paper a set of
protoimplication formulas for S. If S is finitary and protoalgebraic, then it has a
finite set of protoimplication formulas. A protoalgebraic deductive system does not
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necessarily have theorems, but in each similarity type there is exactly one protoalge-
braic deductive system without theorems, the deductive system whose theories are the
empty set and the set of all formulas; this deductive system is called the quasi-incon-
sistent deductive system of the type. For every protoalgebraic deductive system S, the
classes of algebras Alg∗S and AlgS are equal.

A deductive system S is equivalential if it is protoalgebraic and the Leibniz opera-
tor commutes with inverse homomorphisms in the sense that if h is a homomorphism
from A to B, then for every S-filter G of B, h−1[ΩB(G)] = ΩA(h−1(G)). It holds
that S is equivalential if and only if S has a set of equivalence formulas.

A deductive system S is weakly algebraizable if for every algebra A the Leibniz
operator on A is an isomorphism between the lattice of S-filters of A and the lattice
ConAlg∗(S)A of the congruences θ of A such that A/θ ∈ Alg∗S, which are referred to
as the Alg∗S-relative congruences of A. Clearly, every weakly algebraizable deduc-
tive system is protoalgebraic. Moreover, every weakly algebraizable deductive system
has theorems, otherwise ∅ and Fm would be different theories with the same Leibniz
congruence.

Algebraizable deductive systems can be characterized as the equivalential and
weakly algebraizable deductive systems, that is, as the deductive systems such that for
every algebra A the Leibniz operator on A is an isomorphism between the lattice of
S-filters of A and the lattice of the Alg∗S-relative congruences of A that commutes
with inverse homomorphisms.

The class of truth-equational deductive systems is introduced in [16]. A deduc-
tive system S is truth-equational if it has a set of truth-defining equations. In [16] it is
proved that S is truth-equational if and only if the Leibniz operator is completely order
reflecting on every algebra A, that is, if it holds that whenever F ∪ {G} ⊆ FiSA and
⋂

ΩA[F] ⊆ ΩA(G), then
⋂ F ⊆ G. Every weakly algebraizable deductive system

is truth-equational, but the converse does not hold; for instance, there are truth-equa-
tional deductive systems which are not protoalgebraic. In fact, a deductive system is
weakly algebraizable if and only if it is protoalgebraic and truth-equational.

There are also classes of deductive systems studied in AAL which do not have a
characterization by the behaviour of the Leibniz operator w.r.t. the lattice structure
properties of the lattices of S-filters and relative congruences. We recall the ones that
are the most important to the paper.

A deductive system S has the congruence property (or is selfextensional) if the
relation �S	 of mutual entailment between formulas is a congruence of Fm. This
is equivalent to saying that ˜Ω(S) = �S	. So, if S is selfextensional, its intrinsic
variety KS is axiomatized by the equations ϕ ≈ ψ such that ϕ �S	 ψ . A notion
stronger than having the congruence property is the following. A deductive system S
is congruential (or fully selfextensional) if for every algebra A the Tarski congruence
of FiSA satisfies that

〈a, b〉 ∈ ˜Ω
A
(FiSA) iff (∀F ∈ FiSA)(a ∈ F ⇔ b ∈ F)

for every a, b ∈ A, that is, when ˜Ω
A
(FiSA) = Λ(FiSA).

Some deductive systems with the congruence property enjoy a stronger property;
not only �S	 is a congruence but for every S-theory T the relation
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840 R. Jansana

{〈ϕ;ψ〉 : T, ϕ 	S ψ, T, ψ 	S ϕ}

is also a congruence. They are called Fregean. Similarly, some congruential deduc-
tive systems satisfy that for every algebra A and every S-filter G of A the relation
{〈a, b〉 ∈ A2 : (∀F ∈ FiSA)(G ⊆ F ⇒ (a ∈ F ⇔ b ∈ F))} is a congruence of A.
These deductive systems are called fully Fregean.

Assertional logics

Let K be a pointed class of algebras with constant term 1. The 1-assertional logic of
K is the deductive system S(K, 1) defined by

Γ 	S(K,1) ϕ iff (∀A ∈ K)(∀h ∈ Hom(Fm,A))(h[Γ ] ⊆ {1A} ⇒ h(ϕ) = 1A).

If K is a quasivariety, then S(K, 1) is finitary.
A deductive system S is regularly algebraizable if it is algebraizable, the class of

algebras Alg∗S is pointed, and S is the 1-assertional logic of Alg∗S. This is equiv-
alent to say that S is algebraizable and satisfies the G-rule: p, q 	S Δ(p, q), where
Δ(p, q) is any set of equivalence formulas for S.

Classes of algebras with semi-lattice reducts

A class of algebras K of a given algebraic similarity type has semi-lattice reducts if
there is a binary term ∧ such that for every A ∈ K the algebra 〈A,∧A〉 is a semi-
lattice. In this situation we say that K has ∧-semi-lattice reducts. Equivalently, K has
∧-semi-lattice reducts if the semi-lattice equations

(L1) x ∧ x ≈ x (L2) x∧(y ∧ z) ≈ (x ∧ y)∧z (L3) x ∧ y ≈ y ∧ x

hold in K.
If K is a class of algebras with ∧-semi-lattice reducts, the variety V(K) generated

by K has also ∧-semi-lattice reducts. We will consider in every algebra A ∈ V(K) the
partial order ≤A defined by

a ≤A b iff a ∧A b = a,

for every a, b ∈ A. We will omit the superscript in ≤A and ∧A when no confusion is
expected.

Let K be a class of algebras with ∧-semi-lattice reducts and let A ∈ K. We say that
a set F ⊆ A is a semi-lattice filter of A if it is a filter of 〈A,∧A〉, that is, if it is a
nonempty set upper closed under ≤A and closed under ∧A.

Semi-lattice based deductive systems

Let K be a class of algebras with ∧-semi-lattice reducts. We associate with K the fini-
tary deductive system S(K,≤) defined as follows. First we define the consequences
of finite sets by
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ϕ0, . . . , ϕn−1 	S(K,≤) ϕ
iff ∀A ∈ K ∀v ∈ Hom(Fm,A) v(ϕ0) ∧ . . . ∧ v(ϕn−1) ≤ v(ϕ),

∅ 	S(K,≤) ϕ iff ∀A ∈ K ∀v ∈ Hom(Fm,A)∀a ∈ A a ≤ v(ϕ),

and then we extend the definition to arbitrary sets by:

Γ 	S(K,≤) ϕ iff there is a finite Δ ⊆ Γ such that Δ 	S(K,≤) ϕ.

It is easily checked that 〈Fm,	S(K,≤)〉 is a deductive system. Moreover, it is clear
that S(K,≤) and S(V(K),≤) are equal.

We will need the results in [14] which we present in the proposition and lemma
below.

Proposition 1 Let K be a class of algebras with ∧-semi-lattice reducts. Then

1. S(K,≤) is congruential,
2. ∧ is a conjunction for S(K,≤),
3. the variety V(K) is the intrinsic variety of S(K,≤),
4. AlgS(K,≤) = V(K),
5. AlgS(K,≤) is a variety.
6. for every A ∈ AlgS(K,≤), a nonempty set F ⊆ A is an S(K,≤)-filter iff it is a

semi-lattice filter of 〈A,∧A〉.
It should be stressed here that to prove that AlgS(K,≤) is a variety is easy and natu-

ral. However, to show that an algebraizable deductive system is strongly algebraizable
is not so easy and natural, in general.

Lemma 1 If K is a class of algebras with ∧-semi-lattice reducts, then S(K,≤) has
theorems iff for every A ∈ KS(K,≤) the semi-lattice 〈A,∧A〉 has a greatest element
and there is a formula that is interpreted as the greatest element in every A ∈ KS(K,≤).

We say that a deductive system S is semi-lattice based if there is a binary term ∧
and a class of algebras K with ∧-semi-lattice reducts such that S = S(K,≤).4

Let S be a deductive system with a binary term ∧ such that AlgS has ∧-semi-lattice
reducts. The deductive system S(AlgS,≤) will be called the semi-lattice based com-
panion of S. We say that a deductive system S has a semi-lattice based companion
if there is a binary term ∧ such that AlgS has ∧-semi-lattice reducts. Note that the
semi-lattice based companion is (by definition) a finitary deductive system. Note also
that since if a class of algebras has semi-lattice reducts, so does the variety it gener-
ates, then we have that KS has ∧-semi-lattice reducts and S(AlgS,≤) = S(V(AlgS),
≤) = S(KS ,≤). Moreover, since Alg∗S and AlgS generate the variety KS we also
have S(AlgS,≤) = S(Alg∗S,≤).

4 The definition of semi-lattice based deductive system is slightly different from the definition given in
[14]. The present semi-latice based deductive systems are the semi-lattice based and non-pseudo axiomatic
deductive systems of [14].
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3 Deductive systems with a strong conjunction

Let S be a deductive system. A binary term ∧ is said to be a conjunction of S if the
following conditions hold:

p, q 	S p ∧ q (Adj)
p ∧ q 	S p and p ∧ q 	S q.

Notice that if ∧ and ∧′ are conjunctions of S, then for all formulas ϕ,ψ ,

ϕ ∧ ψ �S	 ϕ ∧′ ψ.

A deductive system S is said to be conjunctive if it has a conjunction.
The concept of conjunction just introduced is well known and it is what it is usually

meant when it is said that a term behaves as a conjunction in a given deductive sys-
tem. But there are deductive systems S with a conjunction ∧ which enjoys a stronger
property, namely, that Alg∗S has ∧-semi-lattice reducts. This does not hold for every
conjunction. For example, in infinite-valued Łukasiewicz logic L the fusion connective
is a conjunction (in the above specific sense) but the fusion reducts of the algebras in
Alg∗L are not necessarily meet semi-lattices. In the next proposition we characterize
the conjunctions with this stronger property by means of some syntactic conditions.

Remark 1 Let S be a deductive system with a conjunction ∧. Then any class of alge-
bras Alg∗S, AlgS or KS has ∧-semi-lattice reducts if and only if the other ones do.
This follows from the fact that KS is the variety generated by Alg∗S and AlgS and
the fact that having ∧-semi-lattice reducts is equivalent to satisfying some specific
equations.

Proposition 2 Let S be a deductive system and ∧ a conjunction of S. Then Alg∗S
has ∧-semi-lattice reducts if and only if ∧ satisfies for every formula δ and variable
x that:

1. δ(x/p ∧ p) �S	 δ(x/p)
2. δ(x/p ∧ q) �S	 δ(r/q ∧ p)
3. δ(x/(p ∧ q) ∧ r) �S	 δ(x/p ∧ (q ∧ r)).

Proof Let S be a deductive system and let ∧ be a a conjunction of S. Assume that
Alg∗S has ∧-semi-lattice reducts. It is easy to see that ∧ satisfies conditions (1)-(3).
For example, let δ(x, y) be a formula. Then, that δ(x/p ∧q) �S	 δ(r/q ∧ p) follows
from the fact that

{〈A, F〉 : A ∈ Alg∗S, F ∈ FiSA and ΩA(F) = ΔA}

is a complete matrix semantics for S and the fact that for every A ∈ Alg∗S and every
a, b ∈ A, a ∧ b = b ∧ a.

Assume now that ∧ satisfies conditions (1)–(3). We need to show that the equations
L1-L3 are valid in Alg∗S. We will prove that equation L3 is valid in Alg∗S. The
proofs that L1 and L2 are valid are similar. Let A ∈ Alg∗S and a, b ∈ A. To show
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that a ∧ b = b ∧ a, let F ∈ FiSA be such that ΩA(F) = ΔA, which exist because
A ∈ Alg∗S. We show that 〈a ∧ b, b ∧ a〉 ∈ ΩA(F). We know from the properties of
the Leibniz congruences that 〈a ∧b, b∧a〉 ∈ ΩA(F) iff for every formula δ(x, y) and
every c ∈ A, δ(a∧b, c) ∈ F iff δ(b∧a, c) ∈ F . Let δ(x, y) be a formula and let c ∈ A.
Suppose that δ(a ∧ b, c) ∈ F . Since by assumption δ(x/p ∧ q) �S	 δ(x/q ∧ p),
it follows that δ(b ∧ a, c) ∈ F . Similarly, if δ(b ∧ a, c) ∈ F then δ(a ∧ b, c) ∈ F .
Consequently, 〈a ∧ b, b ∧ a〉 ∈ ΩA(F) and, therefore, a ∧ b = b ∧ a. ��

The proposition motivates the following definition.

Definition 1 Let S be a deductive system. A binary term ∧ is said to be a strong
conjunction of S if

1. ∧ is a conjunction of S,
2. for every formula δ and variable x ,

(a) δ(x/p ∧ p) �S	 δ(x/p)
(b) δ(x/p ∧ q) �S	 δ(r/q ∧ p)
(c) δ(x/(p ∧ q) ∧ r) �S	 δ(x/p ∧ (q ∧ r)).

A deductive system S is said to be strongly conjunctive if it has a strong conjunction.

From Remark 1 and Proposition 2 it immediately follows:

Proposition 3 Let S be a deductive system with a conjunction ∧. The following are
equivalent:

1. ∧ is a strong conjunction,
2. Alg∗S has ∧-semi-lattice reducts,
3. AlgS has ∧-semi-lattice reducts.

Note that Proposition 3 can be stated by saying that for every deductive system S
with a binary term ∧, ∧ is a strong conjunction of S if and only if (i) ∧ is a conjunction
of S and (ii) Alg∗S has ∧-semi-lattice reducts. Condition (i) is necessary. There are
deductive systems with a binary term for which condition (ii) holds and (i) not. For
example, let S be the deductive system in the language with the binary symbol ∨ only
given by the structural rules and the rules for disjunction of the Gentzen calculus LJ
for intuitionistic logic, namely

Γ, ϕ ⇒ Δ Γ,ψ ⇒ Δ

Γ, ϕ ∨ ψ ⇒ Δ

Γ ⇒ ϕ

Γ ⇒ ϕ ∨ ψ
Γ ⇒ ψ

Γ ⇒ ϕ ∨ ψ

It holds that for every A ∈ AlgS, 〈A,∨A〉 is a ∨-semi-lattice but neither of the rules
in the definition of a conjunction hold. Moreover, the concepts conjunction and strong
conjunction do not have the same extension; as we already pointed out, in infinite-val-
ued Łukasiewicz logic the fusion connective is a conjunction (in the above sense) but
it is not a strong conjunction.

An alternative to Proposition 3 is the next proposition.

Proposition 4 Let S be a deductive system with a binary term ∧. The following are
equivalent:
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1. ∧ is a strong conjunction,
2. Alg∗S has ∧-semi-lattice reducts and for every A ∈ Alg∗S the nonempty S-filters

of A are semilattice filters of 〈A,∧A〉,
3. AlgS has ∧-semi-lattice reducts and for every A ∈ AlgS the nonempty S-filters

of A are semilattice filters of 〈A,∧A〉.

As far as we know, the notion of strong conjunction is new; at least as a distinct
concept it has not been considered explicitly in AAL before.

Note that for every deductive system S with the congruence property each con-
junction is a strong conjunction. The reason is that for every conjunction ∧ of S,
p ∧ p �S	 p, p ∧ q �S	 q ∧ p and (p ∧ q) ∧ r �S	 p ∧ (q ∧ r), and since the
relation �S	 is a congruence of the formula algebra, it follows that conditions (a),
(b), (c) in Definition 1 hold and therefore ∧ is a strong conjunction. So:

Proposition 5 Every conjunctive deductive system with the congruence property
is strongly conjunctive. In particular every semi-lattice based deductive system is
strongly conjunctive.

Remark 2 If ∧ and ∧′ are two strong conjunctions of a deductive system S, then in
every A ∈ AlgS, ∧A = ∧′A. Therefore, it follows that for every formula δ and every
variable r , δ(r/p ∧ q) �S	 δ(r/p ∧′ q).

4 Algebraizable deductive systems with a strong conjunction

In this section we first study the algebraizable deductive systems with a strong con-
junction and then their semi-lattice based companions.

4.1 Algebraizable deductive systems with a strong conjunction

Let S be a deductive system with a strong conjunction ∧ and let Δ(p, q) be a set of
formulas in at most the variables p, q. We define the set

⇒Δ(p, q) := Δ(p ∧ q, p).

Proposition 6 Let S be an equivalential deductive system with a strong conjunction
∧ and let Δ(x, y) be a set of equivalence formulas for S. Then ⇒Δ(p, q) is a set of
protoimplication formulas for S.

Proof (1) First we prove that 	S ⇒Δ(p, p), that is, we prove 	S Δ(p ∧ p, p).
Let A ∈ Alg∗S and F ∈ FiSA. Since 〈A,∧A〉 is a semi-lattice, for every a ∈ A,
a ∧A a = a. Thus 〈a ∧A a, a〉 ∈ ΩA(F). Since Δ is a set of equivalence formulas
it follows that ΔA(a ∧A a, a) ⊆ F . Moreover it holds that 	S Δ(p ∧ p, p) if and
only if for every A ∈ Alg∗S, every F ∈ FiSA and every a ∈ A,ΔA(a ∧A a, a) ⊆ F .
Therefore, 	S Δ(p ∧ p, p).
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Now we prove that p,⇒Δ(p, q) 	S q. First of all, since Δ is a set of equiva-
lence formulas for S, p,Δ(p ∧ q, p) 	S p ∧ q. Moreover, since ∧ is a conjunction,
p ∧ q 	S q. Therefore, p,Δ(p ∧ q, p) 	S q. ��
Remark 3 Note that to prove that ⇒Δ(p, q) satisfies detachment we only used the
fact that ∧ is a conjunction and Δ satisfies detachment. To prove that 	S ⇒Δ(p, p)
we used the fact thatΔ is a set of equivalence formulas and Alg∗S has ∧-semi-lattice
reducts.

Remark 4 If Δ′ is another set of equivalence formulas for S, then ⇒Δ(p, q) �S	
⇒Δ′(p, q). This is because Δ(p, q) �S	 Δ′(p, q). In view of this fact we will fre-
quently omit Δ from the expression ⇒Δ.

If S is algebraizable with a strong conjunction, Δ(p, q) is a set of equivalence
formulas for S and τ(p) is any set of truth-defining equations for S, then the set of
equations τ(⇒Δ(p, q)) defines on every algebra A ∈ Alg∗S the semi-lattice order
and ⇒Δ(p, q) ∪ ⇒Δ(p, q) is a set of equivalence formulas.

Proposition 7 Let S be an algebraizable deductive system with a strong conjunction
∧ and letΔ(x, y) be a set of equivalence formulas for S and τ(p) a set of truth-defining
equations. Then,

1. for every algebra A ∈ Alg∗S and every a, b ∈ A,

a ≤A b iff ⇒Δ
A(a, b) ⊆ τ(A),

2. Δ(p, q) �S	 ⇒Δ(p, q) ∪ ⇒Δ(p, q).

Proof (1) Let A ∈ Alg∗S and a, b ∈ A. Then a ≤A b if and only if a ∧A b = a.
Since S is algebraizable with Δ and τ respectively as a set of equivalence formulas
and a set of truth-defining equations, a ∧A b = a if an only ifΔA(a ∧A b, a) ⊆ τ(A).
It follows that a ≤A b if and only if ⇒Δ

A(a, b) ⊆ τ(A).
(2) We have that for every A ∈ Alg∗S and a, b ∈ A, a = b if and only if

a ∧A b = a and b ∧A a = b. Thus, since Δ is a set of equivalence formulas, for
every A ∈ Alg∗S and the least S-filter F on A we have ΔA(a, b) ⊆ F if and
only if ΔA(a ∧A b, a) ∪ ΔA(b ∧A a, b) ⊆ F , for every a, b ∈ A. It follows that
Δ(p, q) �S	 ⇒Δ(p, q) ∪ ⇒Δ(p, q). ��

The following characterization of algebraizable deductive systems with a strong
conjunction uses the existence of a set of truth-defining equations and the existence of
a set of protoimplication formulas that together satisfy property (1) in Proposition 7.

Theorem 1 Let ∧ be a binary term. A deductive system S is algebraizable with ∧ as
a strong conjunction if and only if

1. S has a set τ(p) of truth-defining equations,
2. Alg∗S has ∧-semi-lattice reducts,
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3. there is a set ⇒(p, q) of protoimplication formulas for S such that for every
A ∈ Alg∗S,

a ≤A b iff ⇒A(a, b) ⊆ τ(A),

4. p, q 	S p ∧ q.

Proof Assume that S is algebraizable with a strong conjunction. From the definitions
of algebraizable deductive system and strong conjunction and from Proposition 2,
conditions (1), (2) and (4) follow. Propositions 6 and 7 give condition (3). Assume
now that conditions (1)–(4) hold. To show that S is algebraizable it is enough to prove
that it has a set of equivalence formulas. Let ⇔ (p, q) := ⇒(p, q)∪⇒(q, p). Condi-
tion (3) implies that ⇔(p, q) defines the identity relation on every A ∈ Alg∗S. This,
in turn, implies that ⇔(p, q) is a set of equivalence formulas for S. Now we prove
that ∧ is a strong conjunction. Since we have (2), we only need to show that ∧ is a
conjunction. Then, from Proposition 2 the result follows. Since we have (4), it remains
to show that p ∧ q 	S p and p ∧ q 	S q. To prove this it is enough to show that for
every A ∈ Alg∗S and every assignment v on A such that v(p ∧ q) ∈ τ(A), it holds
that v(p), v(q) ∈ τ(A). Suppose that A ∈ Alg∗S and v is an assignment on A such
that v(p ∧ q) ∈ τ(A). Then, by condition (2), v(p ∧ q) ≤A v(p), and by condition
(3) we have ⇒(v(p ∧ q), v(p)) ⊆ τ(A). Using detachment for ⇒(p, q), we obtain
that v(p) ∈ τ(A). Similarly it follows that v(q) ∈ τ(A). ��
Remark 5 Assuming condition (2) of Theorem 1, the expression on display in condi-
tion (3) of this theorem is equivalent to the following condition:

p ∧ q ≈ p |�Alg∗S τ(⇒(p, q)) and τ(⇒(p, q)) |�Alg∗S p ∧ q ≈ p.

If S is algebraizable, it follows that for every setΔ(p, q) of equivalence formulas for
S, (3) is equivalent to

Δ(p ∧ q, p) �S	 Δ(τ(⇒(p, q))),

which, using algebraizability, it is equivalent to

⇒Δ(p, q) �S	 ⇒(p, q).

Remark 5 suggests the following characterization of the algebraizable deductive
systems inside the class of deductive systems with a strong conjunction.

Proposition 8 Let S be a deductive system with a strong conjunction ∧. Then S
is algebraizable if and only if there is a set of formulas ⇒(p, q) such that letting
⇔(p, q) := ⇒(p, p) ∪ ⇒(p, p):

1. S has a set τ(p) of truth-defining equations,
2. ⇒(p, q) is a set of protoimplication formulas for S,
3. ⇔ (p, q) is a set of equivalence formulas for S,
4. ⇔(p ∧ q, p) �S	 ⇒(p, q).
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Among the many examples of algebraizable logics with a strong conjunction we
have Classical logic, Intuitionistic logic, Linear logic with or without exponentials,
Relevance logics R and Rt , infinite-valued Łukasiewicz logic, finite-valued Łukas-
iewicz logics, the global consequences of the normal modal logics, and all the frag-
ments with ∧ and → of all of them. In all of them the strong conjunction is the so
called additive conjunction.

Remark 6 Let ∧ be a binary term and S an algebraizable deductive system with a
strong conjunction. Let τ(p) be a set of truth-defining equations andΔ a set of equiv-
alence formulas for S. Then

⇒Δ(p, q) ∪ ⇒Δ(q, r) 	S ⇒Δ(q, r).

This holds because if A ∈ Alg∗S and a, b, c ∈ A are such that ⇒Δ
A(a, b) ∪

⇒Δ
A(b, c) ⊆ τ(A), then a ≤A b and b ≤A c; therefore a ≤A c and, hence,

⇒Δ
A(a, c) ⊆ τ(A).

The following is a purely syntactic characterization of algebraizable deductive sys-
tems with a strong conjunction.

Theorem 2 Let ∧ be a binary term. A deductive system S is algebraizable with strong
conjunction ∧ if and only if there is a set of formulas in two variables ⇒(p, q), and a set
of equations in one variable τ(p) such that letting ⇔(p, q) := ⇒(p, p)∪ ⇒(p, p):

1. 	S ⇒(p, p)
2. p,⇒(p, q) 	S q
3. ⇔(p1, q1) ∪ . . .⇔(pn, qn) 	S ⇔(p1 . . . pn, q1 . . . qn),

for every n-ary connective 
4. p �S	 ⇔(τ (p))
5. ⇔(p ∧ q, p) �S	 ⇒(p, q)
6. if ϕ ≈ ψ is one of the semi-lattice equations (L1)-(L3) then 	S ⇔(ϕ, ψ)

7. p, q 	S p ∧ q

Proof Suppose that S is algebraizable with strong conjunction ∧. Then by Propo-
sitions 7 and 1 we obtain conditions (1)–(7). Suppose now that conditions (1)–(7)
hold. First note that conditions (1)–(4) are equivalent to saying that ⇒(p, q) is a set of
protoimplication formulas for S and S is algebraizable with ⇔(p, q) as a set of equiv-
alence formulas and τ(p) as a set of truth-defining equations. Secondly note that under
conditions (1)–(4), condition (5) is equivalent to saying that in every A ∈ Alg∗S, for
every a, b ∈ A, a∧Ab = a iff ⇒(a, b) ⊆ τ(A). And thirdly note that under conditions
(1)–(4), condition (6) is equivalent to saying that in every A ∈ Alg∗S, 〈A,∧A〉 is a
meet-semi-lattice. Thus, using (7), it follows from Theorem 1 that S is algebraizable
and ∧ is a strong conjunction. ��
Remark 7 In any algebraizable deductive system S with a strong conjunction the set
of formulas ⇒(p, q) is a weak implication in the sense introduced by Cintula and
Noguera in [4].

In some of the examples mentioned above, the interpretation of → in the algebras
of the algebraic counterpart is the residual of the interpretation of ∧. This is frequently
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related to the existence of the →-deduction theorem, but it is not necessarily so, as
the example of the global consequences of normal modal logics shows. Before going
on to study the properties of the semi-lattice based companion of an algebraizable
deductive system with a strong conjunction, we characterize the algebraizable deduc-
tive systems with strong conjunction for which the set ⇒(p, q) is the residual of ∧ in
the generalized sense that for every A ∈ Alg∗S and every a, b, c ∈ A,

a ∧ b ≤ c iff a ≤ d, for every d ∈ ⇒(b, c).

Let S be a deductive system with a protoimplication set of formulas ⇒(p, q). Let
A be an algebra and a, b, c ∈ A. We let

⇒(a,⇒(b, c)) :=
⋃

{⇒(a, d) : d ∈ ⇒(b, c)}.

Proposition 9 If S is an algebraizable deductive system with a strong conjunction,
then

⇒(p ∧ q, r) �S	 ⇒(p,⇒(q, r)),

if and only if for every A ∈ Alg∗S and every a, b, c ∈ A,

a ∧ b ≤ c iff a ≤ d, for every d ∈ ⇒(b, c).

Proof Assume that ⇒(p ∧ q, r) �S	 ⇒(p,⇒(q, r)). Note that since for every
A ∈ Alg∗S τ(A) is an S-filter, for every a, b, c ∈ A,

⇒(a ∧ b, c) ⊆ τ(A) iff ⇒(a,⇒(b, c)) ⊆ τ(A).

Now, a∧b ≤ c iff ⇒(a∧b, c) ⊆ τ(A) iff ⇒(a,⇒ (b, c)) ⊆ τ(A) iff ⇒(a, d) ⊆ τ(A)
for every d ∈ ⇒(b, c) iff a ≤ d for every d ∈ ⇒(b, c).

Assume that a ∧ b ≤ c iff a ≤ d, for every d ∈ ⇒(b, c).We have, ⇒(a ∧ b, c) ⊆
τ(A) iff a ∧ b ≤ c iff a ≤ d, for every d ∈ ⇒(b, c) iff ⇒(a, d) ⊆ τ(A), for every
d ∈ ⇒(b, c) iff

⋃{⇒(a, d) : d ∈ ⇒(b, c)} ⊆ τ(A) iff ⇒(a,⇒ (b, c)) ⊆ τ(A). It
follows that ⇒(p ∧ q, r) �S	 ⇒(p,⇒(q, r)). ��

4.2 The semi-lattice based companion of an algebraizable deductive system with a
strong conjunction

If S is an algebraizable deductive system with a strong conjunction we denote by S≤
its semi-lattice based companion, i.e. the deductive system S(AlgS,≤).

Proposition 10 establishes some facts on the relation between an algebraizable
deductive system with a strong conjunction and its semi-lattice based companion. To
prove the proposition we need the following lemma that shows the relation between
the consequence relation of S≤ and the theorems of S. As is apparent, the theorems
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of S determine the consequences in S≤ of empty sets of formulas in the way made
explicit in the lemma.

Lemma 2 If S is algebraizable with a strong conjunction, then for all formulas
ϕ, ϕ1, . . . , ϕn,

ϕ1, . . . , ϕn 	S≤ ϕ iff 	S ⇒(ϕ1 ∧ . . . ∧ ϕn, ϕ).

Proof ϕ1, . . . , ϕn 	S≤ ϕ iff ∀A ∈ AlgS ∀v ∈ Hom(Fm,A) v(ϕ0)∧. . .∧v(ϕn−1) ≤A

v(ϕ) iff ∀A ∈ AlgS ∀v ∈ Hom(Fm,A) ⇒A(v(ϕ0) ∧ . . . ∧ v(ϕn−1), v(ϕ)) ⊆ τ(A)
iff 	S ⇒(ϕ1 ∧ . . . ∧ ϕn, ϕ). ��
Proposition 10 Let S be an algebraizable deductive system with a strong conjunction.

1. S is an extension of S≤;
2. S≤ is congruential with ∧ as a (strong) conjunction;
3. AlgS≤ is a variety;
4. AlgS ⊆ Alg∗S≤ ⊆ AlgS≤ = KS≤ ;
5. ˜Ω(S) = ˜Ω(S≤);
6. KS = KS≤ , i.e. S and S≤ have the same intrinsic variety.
7. AlgS≤ is the variety generated by AlgS.

Proof (2) and (3) follow from the definition of S≤ and Proposition 1. (6) is an imme-
diate consequence of (5). So, we have only to prove (1), (4), (5) and (7).

(1) First suppose that ϕ0, . . . , ϕn−1 	S≤ ϕ. Thus, 	S ⇒(ϕ0 ∧ . . . ∧ ϕn−1, ϕ).
Then, using (MP) and (Adj), ϕ0, . . . , ϕn−1 	S ϕ. Now assume that 	S≤ ϕ. Then
S≤ has theorems; therefore every algebra A ∈ AlgS has a greatest element and for
every v ∈ Hom(Fm,A), v(ϕ) is the greatest element of A. Then, for every formulaψ ,
v(ψ) ≤ v(ϕ); thus ⇒A(ψ, ϕ) ⊆ τ(A) for every v ∈ Hom(Fm,A). Hence for every
formula ψ , 	S ⇒(ψ, ϕ). In particular, if ψ is a theorem of S, by (MP) we obtain that
ϕ is a theorem of S. But S has theorems, because it is algebraizable. Therefore, 	S ϕ.

(4) Since S is protoalgebraic, AlgS = Alg∗S, and since S is an extension of S≤,
Alg∗S ⊆ Alg∗S≤. The inclusion Alg∗S≤ ⊆ AlgS≤ holds because it holds for every
deductive system. Finally, by Proposition 1, AlgS≤ = KS≤ .

(5) If 〈ϕ,ψ〉 ∈ ˜Ω(S≤), then ϕ �S≤	 ψ . Using Lemma 2 we obtain 	S ⇒(ϕ, ψ)∪
⇒(ψ, ϕ). Then, since ⇒(p, q) ∪ ⇒(q, p) is a set of equivalence formulas for S it
follows that for every δ and every p, δ(p/ϕ) �S	 δ(p/ψ). So 〈ϕ,ψ〉 ∈ ˜Ω(S).
Suppose now that 〈ϕ,ψ〉 ∈ ˜Ω(S). We show that ϕ �S≤	 ψ , which implies that
〈ϕ,ψ〉 ∈ ˜Ω(S≤) because S≤ is selfextensional. Since ⇒(p, q) ∪ ⇒(q, p) is a set
of equivalence formulas for S, 	S ⇒(ϕ, ψ)∪ ⇒(ψ, ϕ). Then Lemma 2 implies that
ϕ �S≤	 ψ .

(7) The intrinsic variety KS is the variety generated by AlgS. By (4) and (6),
KS = KS≤ = AlgS≤. So, the result follows. ��

The deductive system S and its semi-lattice based companion may have different
theorems. For example the system R of relevant logic has theorems but its semi-lattice
based companion, which is the logic W R studied in [12], does not. The proposition
below gives a condition that characterizes when S and S≤ have the same theorems.
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Proposition 11 Let S be an algebraizable deductive system with a strong conjunc-
tion. Then S and S≤ have the same theorems iff S has the property that for every ϕ,ψ ,
if 	S ϕ, then 	S ⇒(ψ, ϕ).

Proof Assume that S and S≤ have the same theorems. Suppose that 	S ϕ. Then
	S≤ ϕ. Therefore, for every ψ , ψ 	S≤ ϕ. This means that for every A ∈ AlgS and
every v ∈ Hom(Fm,A), v(ψ) ≤A v(ϕ); therefore v[⇒(ψ, ϕ)] ⊆ τ(A). This implies
that 	S ⇒(ψ, ϕ). Assume now that for every ϕ, if 	S ϕ, then for every formula ψ ,
	S ⇒(ψ, ϕ). To show that S and S≤ have the same theorems it is enough to show
that every theorem of S is a theorem of S≤. Suppose that 	S ϕ. Letψ be any formula.
Then, 	S ⇒(ψ, ϕ). Thus, for any every A ∈ AlgS and every v ∈ Hom(Fm,A),
⇒A(v(ψ), v(ϕ)) ⊆ τ(A), and hence v(ψ) ≤A v(ϕ). This implies that every algebra
in AlgS has a greatest element and so S≤ has theorems. It follows also that ψ 	S≤ ϕ
for every ψ . Therefore, 	S≤ ϕ. ��

If S≤ has theorems, then the conditions in the proposition are equivalent to S being
regularly algebraizable.

Proposition 12 Let S be an algebraizable deductive system with a strong conjunction
and such that S≤ has theorems. The following statements are equivalent:

1. S is regularly algebraizable,
2. S and S≤ have the same theorems.

Proof Assume that S is algebraizable with a strong conjunction and S≤ has theorems.
Then for every A ∈ AlgS 〈A,∧A〉 has a greatest element. Suppose that S and S≤
have the same theorems. Let ϕ,ψ be theorems of S. Then in every A ∈ AlgS, for
every valuation v on A, v(ϕ) = v(ψ) = the greatest element of A. Since S is algebra-
izable, this implies that S is regularly algebraizable. Suppose now that S is regularly
algebraizable. Since S is an extension of S≤ it is enough to show that every theorem
of S is a theorem of S≤. To this end assume that 	S ϕ. Let ψ be a theorem of S≤.
Then for every A ∈ AlgS 〈A,∧A〉 has a greatest element and is the interpretation of
ψ in every valuation on A. Since S is an extension of S≤, 	S ψ . Now using the fact
that S is regularly algebraizable we obtain that for every A ∈ AlgS, the interpretation
of ϕ is the greatest element of 〈A,∧A〉. Thus 	S≤ ϕ. ��

A property that implies that S≤ has theorems is protoalgebraic.

Proposition 13 Let S be an algebraizable deductive system with a strong conjunction.
If S≤ is protoalgebraic, then S≤ has theorems.

Proof Assume that S≤ is protoalgebraic and that S≤ does not have theorems. This
implies that S is consistent, because otherwise every algebra in AlgS has only one
element and, therefore, has a greatest element which is the interpretation of every
formula in every element of AlgS. Thus, by Lemma 1, S≤ has theorems, contrary
to the assumption. Now note that the consistency of S implies that S has more than
one nonempty theory. Since S is an extension of S≤, it follows that S≤ also has more
than one nonempty theory, and therefore it is not the quasi-inconsistent deductive sys-
tem. Since this deductive sytem is the only protoalgebraic deductive system without
theorems, it follows that if S is protoalgebraic, then S≤ has theorems. ��
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The converse of the implication in the last proposition does not hold. The semi-
lattice based companion of Łukasiewicz infinite-valued logic has theorems but it is
not protoalgebraic (see [7]).

A corollary to Propositions 12 and 13 is:

Corollary 1 Let S be an algebraizable deductive system with a strong conjunction
and with S≤ protoalgebraic. Then the following are equivalent:

1. S is regularly algebraizable,
2. S and S≤ have the same theorems.

5 Strongly algebraizable deductive systems with a strong conjunction

An algebraizable deductive system S is strongly algebraizable when AlgS is a variety.
In this section we discuss some characterizations of strongly algebraizable deduc-
tive systems with a strong conjunction, study some of their properties, and analyze
conditions on algebraizable deductive systems with a strong conjunction and with a
protoalgebraic semi-lattice based companion that imply strong algebraizability.

From (4) in Proposition 10 it follows that for strongly algebraizable deductive sys-
tems with a strong conjunction the classes of algebras associated with them and with
their semi-lattice based companions are the same.

Proposition 14 Let S be a strongly algebraizable deductive system with a strong
conjunction. Then

Alg∗S = AlgS = Alg∗S≤ = AlgS≤ = KS≤ = KS .

This readily implies that the strongly algebraizable deductive systems with a strong
conjunction are exactly the deductive systems with the same algebraic counterpart as
their semi-lattice based companion. We state this as a theorem.

Theorem 3 Let S be a algebraizable deductive system with a strong conjunction.
Then S is strongly algebraizable if and only if S and its semi-lattice based companion
have the same canonical algebraic counterpart, that is, AlgS = AlgS≤.

Knowing this fact may help in situations where one knows AlgS and AlgS≤ one
independently of the other to conclude that an algebraizable deductive system S with
a strong conjunction is strongly algebraizable, by showing that AlgS≤ ⊆ AlgS.

Before moving on to discuss properties of strongly algebraizable deductive systems
with a strong conjunction we introduce the for this paper auxiliary notion of Leibniz-
linked pair of deductive systems. The concept deserves further study, a task that will
be pursued elsewhere.

Definition 2 A pair of deductive systems (S,S ′) of the same type is Leibniz-linked if

1. S is an extension of S ′,
2. for every A there is a map (.)A : FiS ′A → FiSA such that if F ∈ FiS ′A, then

ΩA(F) = ΩA(F) and is the identity map when restricted to FiSA.
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We call the class of maps (.)A a Leibniz-link between S and S ′.

Some of the properties of the map (.) : FiS ′A → FiSA that follow immediately
from the definition are gathered in the next lemma.

Lemma 3 Let (S,S ′) be a Leibniz-linked pair of deductive systems. For every alge-
bra A

1. the map (.) : FiS ′A → FiSA is onto,
2. the composition of (.) : FiS ′A → FiSA and ΩA : FiSA → ConA is the map

ΩA : FiS ′A → ConA.

Proof Since S is an extension of S ′, FiSA ⊆ FiS ′A, so, since the map (.) : FiS ′A →
FiSA restricted to FiSA is the identity, we have (1). (2) is also an immediate conse-
quence of the definition. ��

Let S be an algebraizable deductive system with a strong conjunction and let τ(x)
be a set of truth-defining equations for S. For every algebra A, and every F ∈ FiS≤A
let

(F)τA = {a ∈ A : τ(a) ⊆ ΩA(F)}.

If S is strongly algebraizable, then for every algebra A the definition gives a map
(.)τA : FiS≤A → FiSA, because by Proposition 14 Alg∗S≤ = Alg∗S and, therefore,
for every F ∈ FiS≤A we have ΩA(F) ∈ ConAlg∗S≤A = ConAlg∗SA; this implies
that (F)τA is an S-filter and ΩA((F)τA) = ΩA(F).

Proposition 15 Let S be a strongly algebraizable deductive system with a strong con-
junction and let τ(x) be a set of truth-defining equations for S. The class of maps (.)τA
is a Leibniz-link between S and S≤.

Proof Suppose that S is a strongly algebraizable deductive system with a strong con-
junction and τ(x) a set of truth-defining equations for S. Let us consider for every
algebra A the map (.)τA : FiS≤A → FiSA as defined above. To show that the class
of maps (.)τA establish a Leibniz-link between S and S≤, it remains to show that if
F ∈ FiSA, then (F)τA = F . Since S is algebraizable and τ(x) is a set of truth-defining
equations for S, it follows that for every F ∈ FiSA, F = {a ∈ A : τ(a) ⊆ ΩA(F)};
so F = (F)τA, for every F ∈ FiSA. ��

From Proposition 15 the next theorem follows.

Theorem 4 Let S be an algebraizable deductive system with a strong conjunction.
Then (S,S≤) is a Leibniz-linked pair if and only if S is strongly algebraizable.

Proof Suppose that (S,S≤) is a Leibniz-linked pair, and let {(.)A : FiS≤A → FiSA :
A is an algebra} be a Leibniz-link between S and S≤. We show that AlgS = AlgS≤,
which implies that S is strongly algebraizable because AlgS≤ is a variety. The fact
that S is an extension of S≤ implies that AlgS = Alg∗S ⊆ Alg∗S≤. We prove the
other inclusion. Let A ∈ Alg∗S≤ and let F ∈ FiS≤A be such that ΩA(F) = ΔA.
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Therefore ΩA(F) = ΔA. Since F is an S-filter, it follows that 〈A, F〉 is a reduced
model of S. Hence, A ∈ Alg∗S. So we obtain that AlgS = Alg∗S≤. Since AlgS≤ is
the closure under subdirect products of Alg∗S≤ and AlgS is closed under subdirect
products, it follows that AlgS = AlgS≤. Suppose now that S is strongly algebraizable.
By Proposition 15 we obtain that (S,S≤) is a Leibniz-linked pair. ��

Thus, for every algebraizable deductive system S with a strong conjunction the fol-
lowing three conditions are equivalent: (S,S≤) is a Leibniz-linked pair, S is strongly
algebraizable, AlgS = AlgS≤.

Proposition 16 Let S be a strongly algebraizable deductive system with a strong
conjunction. The following are equivalent:

1. S≤ is truth-equational,
2. S≤ is weakly algebraizable,
3. S≤ is algebraizable,
4. S≤ is strongly algebraizable
5. S = S≤.

Proof Obviously the implications from (n + 1) to (n) for all 1 ≤ n < 5 hold. Let us
show that (1) implies (5). Suppose that S≤ is truth-equational. Let τ(x) be a set of
truth-defining equations for S. Then for every A ∈ Alg∗S≤, the map ΩA is injective on
the S≤-filters of A. Let A ∈ Alg∗S≤ and let F ∈ FiS≤A be such that ΩA(F) = ΔA.
Since (F)τA is also an S≤-filter and ΩA(F) = ΩA((F)τA) it follows that F = (F)τA,
and therefore that F is an S-filter. So, the class of reduced matrix models of S is the
class of reduced matrix models of S≤. This implies that S = S≤. ��

Other properties, but of a different nature, equivalent to the condition that S = S≤
when S is finitary but not necessarily strongly algebraizable are considered in the next
proposition.

Proposition 17 Let S be a finitary and algebraizable deductive system with a strong
conjunction. Then the following are equivalent:

1. S is fully Fregean,
2. S is Fregean,
3. S is congruential,
4. S has the congruence property,
5. S = S≤.

Proof Since ∧ is a conjunction for S, from Thm. 4.8 in [9] follows that S has the con-
gruence property iff S is congruential. Thus (3) and (4) are equivalent. Moreover, (1)
implies (2) and (3), and (2) implies (4). Now, since S≤ has the congruence property, we
have that (5) implies (4). Let us show that (3) implies (5). Suppose that ϕ1, . . . , ϕn 	S
ϕ. Then ϕ1 ∧ . . .∧ϕn 	S ϕ. Therefore, ϕ1 ∧ . . .∧ϕn �S	 ϕ1 ∧ . . .∧ϕn ∧ϕ. Then for
every A ∈ AlgS and every v ∈ Hom(Fm,A), v(ϕ1 ∧ . . .∧ϕn) = v(ϕ1 ∧ . . .∧ϕn ∧ϕ),
because the relation Λ(FiSA) is the identity. Therefore, v(ϕ1 ∧ . . . ∧ ϕn) ≤A v(ϕ).
It follows that ϕ1, . . . , ϕn 	S≤ ϕ. Now let ϕ be such that 	S ϕ and let p be a prop-
ositional variable not in ϕ. Then p ∧ ϕ �S	 p. Therefore, for every A ∈ AlgS and
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every v ∈ Hom(Fm,A), v(p ∧ ϕ) = v(p) and so v(p) ≤ v(ϕ). It follows that every
A ∈ AlgS has a greatest element and that 	S≤ ϕ. To conclude the proof we show that
(5) implies (1). Suppose that S = S≤. Then S≤ is protoalgebraic and has theorems.
Since it has the congruence property, has a conjunction and is algebraizable, Thm.
4.10 in [14] implies that S≤ is fully Fregean. ��
Proposition 18 Let S be a strongly algebraizable deductive system with a strong
conjunction and τ(x) a set of truth-defining equations for S. Then a matrix 〈A, F〉
is a reduced model of S≤ if and only if A ∈ Alg∗S, F is a semi-lattice filter and
(F)τA = τ(A).

Proof Let 〈A, F〉 be a matrix. Assume that it is a reduced model of S≤. Then ΩA(F) =
ΔA. Moreover A ∈ Alg∗S≤ = Alg∗S and F is an S≤-filter, so a semi-lattice filter of
A. Also (F)τA = τ(A), because ΩA(F) = ΔA and ΩA(τ (A)) = ΔA. Assume now
that A ∈ Alg∗S, F is a semi-lattice filter of A and (F)τA = τ(A). Then A ∈ Alg∗S≤
and F is an S≤-filter of A. Moreover ΩA(F) = ΩA((F)τA) = ΩA(τ (A)) = ΔA. So
〈A, F〉 is a reduced model of S≤. ��

In [10] the concept of Leibniz-filter for a deductive system is introduced and it is
used to define and study the strong version of a protoalgebraic deductive system. The
study of the theory of Leibniz filters and of the strong version of a protoalgebraic
deductive system is developed in [10,13]. Let S be a deductive system and A an alge-
bra. An S-filter F of A is said to be Leibniz if it is included in all the S-filters G of A
such that ΩA(G) = ΩA(F).

Let S be an algebraizable deductive system with a strong conjunction. A natural
question is to characterize when the S-filters of every algebra A are the Leibniz S≤-
filters of A. In other words, when S is the deductive system whose class of matrix
models is

{〈A, F〉 : F is a Leibniz S≤-filter of A}.

The next theorem and corollary answer this question for strongly algebraizable
deductive systems.

Theorem 5 Let S be a strongly algebraizable deductive system with a strong con-
junction and τ(x) a set of truth-defining equations. The following statements are
equivalent:

1. (F)τA ⊆ F, for every A and every F ∈ FiS≤A,
2. (F)τA is a Leibniz S≤-filter, for every A and every F ∈ FiS≤A,
3. F ∈ FiS≤A is a Leibniz S≤-filter iff F ∈ FiSA, for every A and every F ∈ FiS≤A.

Proof (1) implies (2). Assume (1) and let F ∈ FiS≤A. Since (F)τA is an S-filter and
S is an extension of S≤, (F)τA is an S≤-filter. Assume that G ∈ FiS≤A is such that
ΩA(G) = ΩA((F)τA). Then by the assumption (G)τA ⊆ G. Moreover, ΩA((G)τA) =
ΩA(G) = ΩA((F)τA). Since S is algebraizable and (G)τA, (F)

τ
A ∈ FiSA, we obtain

(G)τA = (F)τA. It follows that (F)τA ⊆ G. Therefore (F)τA is a Leibniz S≤-filter. Hence
we obtain (2).
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(2) implies (1). Suppose (2). Then since ΩA(F) = ΩA((F)τA) and (F)τA is Leibniz,
it follows that (F)τA ⊆ F . So we obtain (1).

(2) implies (3). Suppose (2). Let F ∈ FiSA. Then (F)τA = F . So by (2) F is a Leib-
niz S≤-filter. Suppose now that F ∈ FiS≤A is a Leibniz S≤-filter. Since ΩA(F) =
ΩA((F)τA) and (F)τA ∈ FiS≤A, it follows that F ⊆ (F)τA. So, being (F)τA also Leibniz,
(F)τA ⊆ F . Therefore, (F)τA = F . Hence we have (3).

(3) implies (2). Assume now (3). Let F ∈ FiS≤A. Since (F)τA ∈ FiSA, by (3) we
obtain that (F)τA is a Leibniz S≤-filter. ��
Corollary 2 Let S be a strongly algebraizable deductive system with a strong con-
junction and τ(x) a set of truth-defining equations. Then

ModS = {〈A, F〉 : F is a Leibniz S≤-filter of A}

if and only if the equivalent conditions in Proposition 5 hold.

Proof Assume that (F)τA ⊆ F , for every A and every F ∈ FiS≤A. Then for every
algebra A the set of Leibniz S≤-filters of A is the set of S-filters of A, because
FiSA ⊆ FiS≤A and (.)τA restricted to FiSA is the identity. Hence, ModS = {〈A, F〉 :
F is a Leibniz S≤-filter of A}. On the other hand, if this last condition holds then
obviously (2) in Proposition 5 holds. ��

Recall that in [10] it is shown that if a deductive system S ′ is protoalgebraic, then for
every S ′-filter F on an algebra A there is a unique Leibniz S ′-filter on A, denoted by
F+, such that ΩA(F+) = ΩA(F). Moreover, F+ ⊆ F and if F is a Leibniz S ′-filter,
then F+ = F . We show that if S is a strongly algebraizable deductive system with a
strong conjunction and τ(x) is a defining set of equations for S and in addition S≤
is protoalgebraic, then the maps (.)τA and (.)+ are equal if and only if the equivalent
conditions in Proposition 5 hold.

Proposition 19 Let S be a strongly algebraizable deductive system with a strong
conjunction and τ(x) a set of truth-defining equations. If S≤ protoalgebraic, then the
following conditions are equivalent:

1. (F)τA ⊆ F, for every algebra A and every S≤-filter F of A.
2. (F)τA = F+, for every algebra A and every F ∈ FiS≤A.

Proof Assume (1) and let F ∈ FiS≤A. Consider the Leibniz S≤-filter F+, that is,
the unique Leibniz S≤-filter with Leibniz congruence ΩA(F). This filter is

⋂{G ∈
FiS≤A : ΩA(G) = ΩA(F)} and is the unique Leibniz S≤-filter included in F . By
Proposition 5 we have (F)τA is Leibniz and by assumption (F)τA ⊆ F . So, (F)τA = F+.

Suppose now (2). Let A be an algebra. From the fact that F+ ⊆ F for every
F ∈ FiS≤A it follows that (F)τA ⊆ F , for every F ∈ FiS ′A. ��

The strong version (cf. [10]) of a protoalgebraic deductive system S with theorems
is the deductive system S+ defined by the class of matrices {〈A, F+〉 : F ∈ FiSA}.
Equivalently, it can be defined by the class of matrices 〈A, F〉 such that F is a Leibniz
S-filter of A and A ∈ AlgS.
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Corollary 3 Let S be a strongly algebraizable deductive system with a strong conjunc-
tion and with S≤ is protoalgebraic, and let τ(x) be a set of truth-defining equations.
If the equivalent conditions in Proposition 5 hold, then S is the strong version of S≤.

Proof Suppose that the conditions in Proposition 5 hold. Then by Corollary 2 ModS =
{〈A, F〉 : F is a Leibniz S≤-filter of A}. Therefore, S is the strong version of S≤. ��

In fact the converse of the corollary is true, as we show in Theorem 6. In the way
to prove it we consider the following condition

for every A ∈ AlgS≤ the least S≤-filter of A is an S-filter. (5.1)

In the setting of Corollary 3 this condition is equivalent to S being the strong version
of S≤. With regard to this it is useful to observe the following general fact:

Lemma 4 Let S and S ′ be two deductive systems an let S ′ be protoalgebraic. Then
the following statements are equivalent:

1. for every A, the least S ′-filter of A is an S-filter,
2. for every A ∈ AlgS ′, the least S ′-filter of A is an S-filter,

Proof Obviously (1) implies (2). The Correspondence Theorem for protoalgebraic
logics implies that (1) follows from (2). Assume (2) and let A be an algebra and let
F be the least S ′-filter of A. Consider the algebra A/ΩA(F). This algebra belongs
to Alg∗S ′. Since S ′ is protoalgebraic, by the Correspondence Theorem there is an
isomorphism between the lattices FiS ′A and FiS ′A/ΩA(F), given by the canonical
onto homomorphism π : A → A/ΩA(F). By (2) the least element of FiS ′A/ΩA(F),
say G, is an S-filter, so the least element of FiS ′A, namely F , should be an S filter
because F = π−1[G]. ��
Theorem 6 Let S be a strongly algebraizable deductive system with a strong con-
junction and τ(x) a set of truth-defining equations. If S≤ is protoalgebraic, then the
following statements are equivalent:

1. S is the strong version of S≤,
2. for every A ∈ AlgS≤, the least S≤-filter of A is an S-filter,
3. for every A the least S≤-filter of A is an S-filter,
4. for every A and every F ∈ FiS≤A, (F)τA ⊆ F.

Proof By the lemma above, (2) and (3) are equivalent. To prove that (1) implies (3)
suppose that S is the strong version of S≤. Let A be an algebra. By Prop. 18 in [10],
the least S-filter of A is the least S≤-filter of A. Thus we have (3). Let us show that
(3) implies (4). Let A be an algebra and let F ∈ FiS≤A. Consider its Leibniz S≤-filter
F+. Let θ := ΩA(F). Then 〈A/θ, F+/θ〉 is a reduced matrix model of S≤, because
ΩA(F) = ΩA(F+). Moreover, by Prop. 10 in [10], F+/θ is the least S≤-filter of A/θ .
So from (3) it follows that F+/θ is an S-filter. So 〈A/θ, F+/θ〉 is a reduced matrix
model of S. Therefore, F+/θ = τ(A/θ). Since (F)τA = {a ∈ A : τ(a) ⊆ ΩA(F)}
it follows that a ∈ F+ iff a/θ ∈ F+/θ iff a/θ ∈ τ(A/θ) iff τ(a) ⊆ θ iff a ∈ (F)τA.
Now from the fact that F+ ⊆ F we obtain that (F)τA ⊆ F . Finally, from Corollary 3
follows that (4) implies (1). ��

123



Algebraizable logics with a strong conjunction 857

Before continuing, let us show that if S is an algebraizable deductive system with
strong conjunction, S≤ is protoalgebraic and condition (5.1) holds, then S is strongly
algebraizable.

Proposition 20 Let S be an algebraizable deductive system with a strong conjunction
and with S≤ protoalgebraic. If for every A ∈ AlgS≤ the least S≤-filter of A is an
S-filter, then

1. S and S≤ have the same theorems,
2. S is strongly algebraizable,
3. S is regularly algebraizable.

Proof (1) Every theorem of S≤ is a theorem of S, because S is an extension of S≤.
Lemma 4 and the assumption imply that the least S≤ filter of Fm is an S-filter because
S≤ is protoalgebraic, and so contains all the theorems of S. Therefore S and S≤ have
the same theorems.

(2) By Proposition 3 it is enough to show that AlgS = AlgS≤. The inclusion from
left to right follows from Proposition 10. To prove the other inclusion, let A ∈ AlgS≤
and let F be the least S≤-filter of A. Since S≤ is protoalgebraic, AlgS≤ = Alg∗S≤.
So, A ∈ Alg∗S≤. This and protoalgebraicity implies that ΩA(F) is the identity.
Therefore, 〈A, F〉 is a reduced matrix model of S and so A ∈ AlgS.

(3) It follows from (1) and Proposition 12. ��
A consequence of theorems 6 and 20 is the following characterization of when for

an algebraizable deductive system S with a strong conjunction and a protoalgebraic
semi-lattice based companion, S is the strong version of this companion.

Theorem 7 Let S be an algebraizable deductive system with a strong conjunction
and with S≤ protoalgebraic. Then, S is the strong version of S≤ if and only if the least
S≤-filter of every A ∈ AlgS≤ is an S-filter.

Proof First we prove the implication from right to left. Assume that for every A ∈
AlgS≤, the least S≤-filter of A is an S-filter. From Theorem 20 it follows that S is
strongly algebraizable. Then, Theorem 6 implies that S is the strong version of S≤.

To prove the other implication, assume that S is the strong version of S≤. Then
by Prop. 18 in [10], Alg∗S = AlgS = AlgS≤ = Alg∗S≤. Hence S is strongly
algebraizable. Thus from Theorem 6 we obtain the desired conclusion. ��

We can summarize and slightly strengthen our last results as follows:

Theorem 8 Let S be an algebraizable deductive system with a strong conjunction
and with S≤ protoalgebraic. The following statements are equivalent:

1. for every A ∈ AlgS≤, the least S≤-filter of A is an S-filter,
2. S is strongly algebraizable and S≤ and S have the same theorems,
3. S is the strong version of S≤,
4. AlgS≤ is pointed, the interpretation of the constant term 1 on every A ∈ AlgS≤

is the ≤A-greatest element, and S is the 1-assertional logic of AlgS and the
1-assertional logic of AlgS≤.
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Proof Theorem 7 gives the equivalence between (1) and (3). The implication from (1)
to (2) follows from Theorem 20. We show that (2) implies (4). Assume (2). Then from
Corollary 1 follows that S is regularly algebraizable. So, AlgS is pointed with constant
term, say 1. Moreover, by Proposition 11, since S and S≤ have the same theorems,
	S ⇒(p, 1). This implies that for every A ∈ AlgS and every a ∈ A, a ≤A 1A. Since
S is the 1-assertional logic of AlgS and AlgS = AlgS≤, (4) follows. To conclude
the proof we show that (4) implies (1). If AlgS≤ is pointed, since AlgS ⊆ AlgS≤,
AlgS is pointed too. Let S(AlgS≤, 1) and S(AlgS, 1) be the 1-assertional logics of
AlgS≤ and AlgS, respectively. By assumption both are S. Since S is algebraizable, so
is S(AlgS≤, 1), and since AlgS≤ is a variety, AlgS≤ = AlgS(AlgS≤, 1). Therefore
the least S≤-filter of each A ∈ AlgS≤, which is {1A}, is an S(AlgS≤, 1)-filter, thus
an S-filter. ��

Note that for algebraizable deductive systems S with a strong conjunction and with
a protoalgebraic semi-lattice based companion, Theorem 8 shows that the conjunction
of conditions (1)-(2) in Proposition 20 is in fact equivalent to condition (5.1), and
therefore imply that S is regularly algebraizable.

One condition that easily entails condition (5.1) is stated in the next proposition.
The proposition captures for example one of the features of normal modal logics.

Proposition 21 Let S be an algebraizable deductive system with a strong conjunc-
tion and a protoalgebraic semi-lattice based companion. Suppose that there is a set
of formulas in one variable Ψ (p) such that for every algebra A and every S≤-filter
F of A the set

F◦ = {a ∈ A : Ψ A(a) ⊆ F}

is an S-filter of A and F◦ ⊆ F. Then for every algebra A ∈ AlgS≤ the least S≤-
filter is an S-filter, and therefore S is the strong version of S≤ and S is strongly
algebraizable with the same theorems as S≤.

Proof We show that for every algebra A ∈ AlgS≤ the least S≤-filter is an S-filter.
Let G be the least S≤-filter of A. Then G = G◦ because G◦ ⊆ G, G◦ is an S-filter
and every S-filter is an S≤-filter. Therefore, G is an S-filter. Now we apply Theorem
8 and obtain that S is strongly algebraizable with the same theorems as S≤ and is the
strong version of S≤. ��

Let S be a strongly algebraizable deductive system with a strong conjunction and let
τ be a set of defining equations. We say that the links (.)τA are definable by a set of formu-
lasΨ (p) if for every algebra A and every S≤-filter F , (F)τA = {a ∈ F : Ψ A(a) ⊆ F}.

The proof of the next proposition is almost immediate.

Proposition 22 Let S be a strongly algebraizable deductive system with a strong con-
junction an let τ be a set of truth-defining equations. If the links (.)τA are definable by
a set of formulas Ψ (p), then S≤ is equivalential.

Proof Let Δ(x, y) be a set of equivalence formulas for S. Consider the set of for-
mulas Ψ (Δ(x, y)) := ⋃{Ψ (ψ) : ψ ∈ Δ(x, y)}. We show that this set defines the
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Leibniz congruences of the S≤-filters. Let A be an algebra and F ∈ FiS≤A. Then
〈a, b〉 ∈ ΩA(F) iff 〈a, b〉 ∈ ΩA((F)τA) iff Δ(a, b) ⊆ (F)τA iff Ψ (Δ(a, b)) ⊆ F .
Thus, S≤ is equivalential. ��

In Proposition 21 it is assumed that the semi-lattice based companion of S is protoal-
gebraic and that F◦ ⊆ F . Next proposition shows, among other things, that without
these assumptions but with an additional assumption about the set Ψ (p), it follows
that S≤ is equivalential, and so also protoalgebraic.

Proposition 23 Let S be an algebraizable deductive system with a strong conjunction
and τ(x) a set of truth-defining equations for S. Suppose that there is a set of formulas
in one variable Ψ (p) such that for every algebra A and every S≤-filter F of A the set

F◦ = {a ∈ A : Ψ A(a) ⊆ F}

is an S-filter of A. Let us assume in addition that

p, Ψ (⇔(p, q)) 	S≤ q.

Then, S is strongly algebraizable, the links (.)τA : FiS≤A → FiSA are definable by Ψ
and S≤ is equivalential.

Proof First of all we will show that the map (.)◦ : FiS≤A → FiSA is a Leibniz-link
from S to S≤. From the assumption we have (.)◦ : FiS≤A → FiSA. Now we show
that for every algebra A and every S≤-filter F of A, ΩA(F) = ΩA(F◦). To this
end we prove that ΩA(F) is compatible with F◦. This implies ΩA(F) ⊆ ΩA(F◦).
Assume that 〈a, b〉 ∈ ΩA(F) and that a ∈ F◦. Then,Ψ A(a) ⊆ F . Thus,Ψ A(b) ⊆ F ;
hence b ∈ F◦. To prove the other inclusion we show that ΩA(F◦) is compatible
with F . Assume that 〈a, b〉 ∈ ΩA(F◦) and that a ∈ F . Since F◦ is an S-filter,
⇔A(a, b) ⊆ F◦. Therefore,Ψ A(⇔A(a, b)) ⊆ F . Thus, since p, Ψ (⇔(p, q)) 	S≤ q
and F is an S≤-filter, b ∈ F . Therefore ΩA(F◦) ⊆ ΩA(F). It remains to prove that
if F is an S-filter of A, then F◦ = F . Assume that F ∈ FiSA. Since F◦ is also an
S-filter and ΩA(F◦) = ΩA(F), from the algebraizability of S it follows that F = F◦.
From Theorem 4 follows that S is strongly algebraizable. We show now that for every
algebra A, the maps (.)◦ : FiS≤A → FiSA and (.)τA : FiS≤A → FiSA are equal. Let
F ∈ FiS≤A. Then F◦ ∈ FiSA and ΩA(F) = ΩA(F◦). Since τ defines truth, F◦ =
{a ∈ A : τ(a) ⊆ ΩA(F◦). Therefore, F◦ = {a ∈ A : τ(a) ⊆ ΩA(F)} = (F)τA.
Finally, Proposition 22 implies that S≤ is equivalential. ��

When S is the strong version of S≤ we have the converse. Let us recall from [10]
that a protoalgebraic logic S has Leibniz filters explicitly definable if there is a set of
formulas in one variableΦ(x) such that for every algebra A and every F ∈ FiSA, the
Leibniz S-filter F+ associated with F is {a ∈ A : ΦA(a) ⊆ F}.
Proposition 24 Let S be a strongly algebraizable deductive system with a strong con-
junction and S≤ protoalgebraic. And let τ(p) be a set of truth-defining equations for
S Assume that S is the strong version of S≤. Then the following are equivalent:
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1. the Leibniz-links (.)τA are definable by a set of formulas Ψ (p),
2. S≤ has Leibniz filters explicitly definable,
3. S≤ is equivalential.

Proof Since S is the strong version of S≤, by Theorem 6 we have that for every A and
every F ∈ FiS≤A, (F)τA ⊆ F . So, by Proposition 5 follows that the S-filters are the
Leibniz S≤-filters. This implies the equivalence between (1) and (2). Proposition 22
shows that (1) implies (3). Assume now that (3) holds. Then, since S is algebraizable
and is the strong version of S≤, Thm. 35 in [10] implies that S≤ has Leibniz filters
explicitly definable, that is, we have (2). ��

To conclude the paper we prove that if a strongly algebraizable deductive system S
with a strong conjunction is the strong version of S≤ and satisfies any of the equivalent
conditions of the last proposition, then there is a set of formulas Ψ (x) such that S is
the extension of S≤ obtained by adding the rules in {p 	 ϕ : ϕ ∈ Ψ }.
Proposition 25 Let S be a strongly algebraizable deductive system with a strong con-
junction and let τ(p) be a set of truth-defining equations for S. Suppose that Ψ (x) is
a set of formulas that defines the Leibniz- links (.)τA : FiS≤A → FiSA and that S is
the strong version of S≤. Then S is the least extension of S≤ such that p 	S ϕ, for
every ϕ ∈ Ψ (p).
Proof First of all we prove that for every A and every F ∈ FiS≤A, F = (F)τA if
and only if for every a ∈ A, if a ∈ F , then Ψ (a) ⊆ F . Assume that F is a S≤-fil-
ter of A such that F = (F)τA. Then since Ψ (x) defines the Leibniz-links, we have
F = (F)τA = {a ∈ A : Ψ (a) ⊆ F}. It follows that for every a ∈ F , Ψ (a) ⊆ F . Sup-
pose now that for every a ∈ F , Ψ (a) ⊆ F . We show that F = (F)τA. That (F)τA ⊆ F
follows from Theorem 6. To prove the other inclusion let a ∈ F . Then Ψ (a) ⊆ F and
since (F)τA = {a ∈ A : Ψ (a) ⊆ F}, it follows that a ∈ (F)τA. So F ⊆ (F)τA. Thus, it
follows that for every algebra A and every F ⊆ A, 〈A, F〉 is a model of S if and only
if it is a model of S≤ and of the rules in {p 	 ϕ : ϕ ∈ Ψ }. This implies that S is the
least extension of S≤ such that p 	S ϕ, for every ϕ ∈ Ψ (p). ��
Remark 8 Note that if S is a deductive system that satisfies the conditions of the
proposition, then Ψ (p) 	S p, because since Ψ (p) defines the Leibniz-links (.)τA :
FiS≤A → FiSA, it holds that for every algebra A, every F ∈ FiSA and every a ∈ A,
a ∈ A if and only if Ψ A(a) ⊆ F .

Acknowledgments I thank the members of the Non-classical Logics Seminar at the University of
Barcelona for their comments and questions during my presentation of the results in this paper. In par-
ticular I thank Ventura Verdú for pressing me to find a better name for what in the end I call Leibniz-linked
pairs and for a question that led me to include Proposition 25. I also thank Josep Maria Font for his careful
reading of the paper, his many suggestions to improve its readability and content, the suggestion to add
“Leibniz” in front of “linked” and for simplifying a former definition so that in the end I had to consider
only algebraizable logics with a strong conjunction.

References

1. Blok, W.J., Pigozzi, D.: Algebraizable logics. Memoires of the AMS, vol. 396. The American Mathe-
matical Society, Providence (1986)

123



Algebraizable logics with a strong conjunction 861

2. Bou, F.: Implicación estricta y lógicas subintuicionistas. Master thesis, University of Barcelona (2001)
3. Bou, F., Esteva, F., Font, J.M., Gil, A., Godo, L., Torrens, A., Verdú, V.: Logics preserving degrees of

truth from varieties of residuated lattices. J. Logic Comput. 19, 1031–1069 (2009)
4. Cintula, P., Noguera, C.: Implicational (semilinear) logics I: a new hierarchy. Arch. Math. Logic 49,

417–446 (2010)
5. Czelakowski, J.: Protoalgebraic Logics. Kluwer, Dordrecht (2001)
6. Czelakowski, J.: The Suszko Operator. Part I. Studia Logica, Special Issue on Algebraic Logic II,

vol. 74, pp. 181–231 (2003)
7. Font, J.M.: An abstract algebraic logic view of some multiple-valued logics. In: Fitting, M., Orlowska,

E. (eds.) Beyond Two: Theory and Algebraization of Multiple-Valued Logic, Springer, Heidelberg,
Berlin, New York (2004)

8. Font, J.M.: On semilattice-based logics with an algebraizable assertional companion. Rep. Math.
Logic 46, 109–132 (2011)

9. Font, J.M., Jansana, R.: A General Algebraic Semantics for Sentential Logics. Second revised edition.
Lecture Notes in Logic, vol. 7. Association for Symbolic Logic. Freely available in electronic format
from Project Euclid (2009)

10. Font, J.M., Jansana, R.: Leibniz filters and the strong version of a protoalgebraic logic. Arch. Math.
Logic 40, 437–465 (2001)

11. Font, J.M., Jansana, R., Pigozzi, D.: A Survey of Abstract Algebraic Logic. Studia Logica, Special
Issue on Algebraic Logic II, vol. 74, pp. 13–97 (2003)

12. Font, J.M., Rodríguez, G.: Algebraic study of two deductive systems of relevance logic. Notre Dame
J Formal Logic 35, 369–397 (1994)

13. Jansana, R.: Leibniz filters revisited. Studia Logica 75, 305–317 (2003)
14. Jansana, R.: Selfextensional logics with a conjunction. Studia Logica 84, 63–104 (2006)
15. Pynko, A.: Definitional equivalence and algebraizability of generalized logical systems. Ann. Pure

Appl. Logic 98, 1–68 (1999)
16. Raftery, J.G.: The equational definability of truth predicates. Rep. Math. Logic 41, 95–149 (2006)
17. Raftery, J.G.: Correspondences between Gentzen and Hilbert systems. J. Symb. Logic 71, 903–957

(2006)
18. Wrónski, A.: BCK-algebras do not form a variety. Math. Japonica 28, 211–213 (1983)

123


	Algebraizable logics with a strong conjunction and their semi-lattice based companions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Deductive systems with a strong conjunction
	4 Algebraizable deductive systems with a strong conjunction
	4.1 Algebraizable deductive systems with a strong conjunction
	4.2 The semi-lattice based companion of an algebraizable deductive system with a strong conjunction

	5 Strongly algebraizable deductive systems with a strong conjunction
	Acknowledgments
	References


