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Abstract We prove in set theory without the Axiom of Choice, that Rado’s selection
lemma (RL) implies the Hahn-Banach axiom. We also prove that RL is equivalent
to several consequences of the Tychonov theorem for compact Hausdorff spaces: in
particular, RL implies that every filter on a well orderable set is included in a ultrafilter.
In set theory with atoms, the “Multiple Choice” axiom implies RL.
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1 Introduction

We work in set theory without the Axiom of Choice ZF. For every set I we denote by
f in(I ) the set of finite subsets of I . The following statement was introduced by Rado
([9]):

RL: (Rado’s selection lemma, form 99 of [3]) “Given an infinite family of non-
empty finite sets (Xi )i∈I , and given any family (σJ )J∈ f in(I ) such that for every
J ∈ f in(I ), σJ ∈ ∏

i∈J Xi , there exists f ∈ ∏
i∈I Xi such that for every J ∈

f in(I ), there exists L ∈ f in(I ) satisfying J ⊆ L and f � J = σL� J .”

Remark 1 Under the hypotheses of Rado’s lemma, the set X := ∏
i∈I Xi is non-empty

(in ZF): indeed, for every i ∈ I , σ{i}(i) ∈ Xi .
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740 M. Morillon

Rado used this statement and the Axiom of Choice (AC) to prove (see ([9]) that
two bases of an (infinite) finitary matroid are equipotent. Rado’s proof of RL relied
on AC but RL is a consequence (see [1,10]) of the following “Tychonov axiom”, a
consequence of AC which does not imply AC ([2]):

T2: “Every family of compact Hausdorff topological spaces has a compact prod-
uct.”

Notice that T2 has the two following consequences (which are not provable in ZF,
see [3]):

ACfin: (Finite Axiom of Choice, form 62 of [3]) “Given an infinite family (Xi )i∈I

of non-empty finite sets, the set
∏

i∈I Xi is non-empty.”

AC2: (Axiom of Choice for pairs, form 88 of [3]) “Given an infinite family
(Xi )i∈I of two-element sets, the set

∏
i∈I Xi is non-empty.”

In this paper, we prove (see Sect. 2) that RL implies the following statement, which
is equivalent (see [6]) to the Hahn-Banach axiom HB (form 52 of [3]):

M: (Measure axiom, form 52A of [3]) “For every non trivial boolean algebra B,
there exists a measure m : B → [0, 1] such that m(1B) = 1.”

Here, a boolean algebra is a (commutative) unitary ring (B,⊕,×, 0B, 1B) which
is idempotent (for every x ∈ B, x .x = x). If 0B = 1B, then the boolean algebra B is
said to be trivial. A (real valued) measure on B is a mapping m : B → [0, 1] which is
finitely additive (for every x, y ∈ B satisfying x .y = 0B, m(x ⊕ y) = m(x) + m(y)).
A measure m on B is unitary if m(1B) = 1. Recall (see [3]) that the Tychonov axiom
T2 is equivalent to the Boolean Prime Ideal:

(BPI, form 14 of [3]): “Every non trivial boolean algebra has a prime ideal.”

Remark 2 The statement HB is a consequence of T2 (see [3]) which does not imply
T2 (see [7]).

In Sect. 3, we prove in ZF0 (set-theory with atoms, a theory weaker than ZF—see
[3, pp. 1–2]—), that the following “Multiple Choice” axiom implies RL:

MC: (form 67 of [3]) “Given an infinite family (Xi )i∈I of infinite sets, there exists
a family of non-empty finite sets (Fi )i∈I such that for every i ∈ I , Fi ⊆ Xi .”

In ZF, the statement MC is equivalent to AC, but in ZF0, MC does not imply AC2

(see [5]). Thus our result implies that every model of ZF0+MC satisfies RL: this
enlightens a result due to Howard (see [4]) who built a model of ZF0+MC+¬AC2

in which he proved RL. However, the following questions seem to stay open:

Question 1 Does RL imply T2?

Remark 3 Blass (see [3, Note 33]) noticed that (RL+ACfin) ⇔ T2, so Question 1 is
equivalent to ask whether RL implies ACfin.

Even the following Question seems to be open:
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Some consequences of Rado’s selection lemma 741

Question 2 Does RL imply AC2?

We finally provide various equivalents of RL in ZF (see the recapitulating Diagram
in Sect. 4).

2 Rado’s selection lemma implies Hahn-Banach

2.1 Boolean algebras

Given a boolean algebra (B,⊕,×, 0B, 1B), the binary relation ≤ on B defined for
every x, y ∈ B by the formula “x ≤ y if and only if x .y = x” is a partial order;
the poset (B,≤) is a complemented distributive lattice with smallest element 0B and
greatest element 1B: notice that the infimum law ∧ is the multiplicative law of the ring
(B,⊕,×, 0B, 1B), the supremum law ∨ is defined for every x, y ∈ B by x ∨ y :=
(x ⊕ y) ⊕ x .y, and for every x ∈ B, the complement of x (i.e., the unique element y
of B satisfying x ∧ y = 0B and x ∨ y = 1B) is x ⊕ 1.

Remark 4 Conversely, one checks (in ZF) that given a complemented distributive
lattice (B,∨,∧) with first element 0B, last element 1B and complementation function
.c, then one can define the binary law ⊕ on B by x ⊕ y := (x ∧ yc)∨ (y ∧ xc) for every
x, y ∈ B, and the structure (B,⊕,∧, 0B, 1B) is a (commutative) unitary idempotent
ring.

Given a boolean algebra B, an atom of B is a non-null element a of B which is
minimal in the poset (B\{0B},≤): for every x ∈ B, if x ≤ a then (x = 0B or x = a).
If B is a finite boolean algebra, if A is the set of atoms of B, then the canonical mapping
canB : B → P(A) associating to each x ∈ B the set of atoms minorating x is an
isomorphism of boolean algebras.

Recall that a measure (see Sect. 1) on a boolean algebra B is a mapping m : B →
[0, 1] satisfying

(
x ∧ y = 0B ⇒ m(x ∨ y) = m(x) + m(y)

)
for every x, y ∈ B.

Notice that every measure m : B → [0, 1] is ascending: given x, y ∈ B satisfying
x ≤ y then m(x) ≤ m(y)).

For every finite set F we denote by |F | the number of elements of F (i.e., the
cardinal of the finite set F).

Proposition 1 (uniform probability on a finite boolean algebra) If B is a finite non-
trivial boolean algebra, there exists a unique unitary measure U on B associating the
same real number to all the atoms of B. This measure is called the uniform probability
on the finite boolean algebra B.

Proof Let A be the (finite) set of atoms of B. The uniform probability on P(A) is
the unique measure on P(A) associating to each subset B of A the (rational) number
|B|
|A| . This unitary measure can be carried into a unitary measure U : B → [0, 1] using
the canonical isomorphism between the boolean algebras B and P(A). Notice that for
every x ∈ B, U(x) = |{a∈A:a≤x}|

|A| .
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742 M. Morillon

2.2 RL implies Hahn-Banach

Definition 1 Let (Xi )i∈I an infinite family of non-empty finite sets. Let C be a subset
of f in(I ). Assume that (σF )F∈C is a family such that for every J ∈ C, σJ ∈ ∏

i∈J Xi .
Say that an element f ∈ ∏

i∈I Xi is Rado-compatible with (σF )F∈C if for every
F ∈ f in(I ), there exists G ∈ C such that F ⊆ G and f � F = σG� F .

Rado’s lemma says that given an infinite family (Xi )i∈I of non-empty finite sets,
and given a family (σF )F∈ f in(I ) such that for every J ∈ f in(I ), σJ ∈ ∏

i∈J Xi , there
exists a mapping f ∈ ∏

i∈I Xi which is Rado-compatible with (σF )F∈ f in(I ).
For every n ∈ N, we denote by Dn the set { k

2n : k ∈ N}∩ [0, 1]. Given some n ∈ N,
for every x ∈ [0, 1], there is a unique k ∈ {0, . . . , 2n} such that k

2n ≤ x < k+1
2n ; call

the number k
2n the (default) n-approximation of x . Notice that ∪n∈N Dn is countable

and dense in [0, 1].
Given a subset A of a boolean algebra B, we denote by boolB(A) the boolean

algebra generated by A in B.

Theorem 1 RL implies HB.

Proof Let B be an infinite boolean algebra. For every n ∈ N, let Bn := B × {n}, and
let Bω := ∪n∈NBn . Thus Bω is the union of ω pairwise disjoint copies of B. For every
non-empty finite subset F of Bω, we define σF as follows: since F is of the form
∪0≤i≤n(Fi × {i}) where n ∈ N and Fn is non-empty, consider the uniform probabil-
ity PF on boolB(∪0≤i≤n Fi ), and, for every (x, i) ∈ Fi × {i}, let σF ((x, i)) be the
i-approximation of PF (x): thus |σF ((x, i)) − PF (x)| ≤ 1

2i . For every F ∈ f in(Bω),
for every x, y ∈ B and every i, j, k, l ∈ N:

1. (1B, i) ∈ F ⇒ σF ((1B, i)) = 1 − 1
2i

2. (0B, i) ∈ F ⇒ σF ((0B, i)) = 0
3. If (x, i), (x, j) ∈ F then |σF ((x, i)) − σF ((x, j))| ≤ 1

2i + 1
2 j

4. If x ∧ y = 0B and if (x, i), (y, k), (x ∨ y, l) ∈ F then:
|σF ((x ∨ y, l)) − σF ((x, i)) − σF ((y, k))| ≤ 1

2l + 1
2i + 1

2k .

Using RL, let f = ( fn)n∈N ∈ ∏
n∈N

DBn
n be a mapping which is Rado-compatible

with the family (σF )F∈ f in(Bω). Given x ∈ B, Condition (3) implies that the sequence
( fn(x))n∈N is Cauchy: indeed, given some real number ε > 0, let N ∈ N such
that 1

2N < ε
2 ; given p, q ∈ N such that p, q ≥ N , let F := {(p, x), (q, x)} and

let G ∈ f in(Bω) such that F ⊆ G and f � F = σG� F ; then | f p(x) − fq(x)| =
|σG(p, x) − σG(q, x)| ≤ 1

2p + 1
2q ≤ 2

2N < ε. Thus the Cauchy sequence ( fn(x))n∈N

of real numbers converges to a real number m(x) ∈ [0, 1]. Conditions (1) and (2)
imply that m(1B) = 1 and m(0B) = 0. Condition (4) implies that m is finitely addi-
tive: let x, y ∈ B such that x ∧ y = 0B and let ε > 0. Let N ∈ N satisfying

3
2N < ε

2 such that |m(x) − fN (x)|, |m(y) − fN (y)| and |m(x ∨ y) − fN (x ∨ y)|
are all less that ε

6 ; let F := {(x, N ), (y, N ), (x ∨ y, N )}; let G be a finite subset
of Bω such that F ⊆ G and f � F = σG� F ; then |m(x) + m(y) − m(x ∨ y)| ≤
|m(x)−σG(x, N )|+ |m(y)−σG(y, N )|+ |m(x ∨ y)−σG(N , x ∨ y)|+ |σG(x, N )+
σG(y, N )−σG(x ∨ y, N )|=|m(x)− fN (x)|+|m(y)− fN (y)|+|m(x ∨ y)− fN (x ∨ y)|+
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Some consequences of Rado’s selection lemma 743

|σG(x, N )+σG(y, N )−σG(x ∨ y, N )| ≤ 3
2N +3 ε

6 ≤ ε (using 4); this is true for every
ε > 0 so |m(x) + m(y) − m(x ∨ y)| = 0. It follows that the mapping m : B → [0, 1]
is a unitary measure on B.

3 In ZF0, MC implies RL

3.1 Rado-compatibility and compactness

Remark 5 Let (Xi )i∈I an infinite family of non-empty finite sets. Let C be a cofinal
subset of the poset ( f in(I ),⊆). If f ∈ ∏

i∈I Xi is Rado-compatible with (σF )F∈C ,
then f is also Rado-compatible with (σF )F∈ f in(I ).

Given a family (Xi )i∈I of topological spaces, and denoting by X the product set∏
i∈I Xi , for every nonempty subset J of I we denote by pJ : X → ∏

i∈J Xi the
canonical mapping (xi )i∈I �→ (xi )i∈J . The product topology on the set X := ∏

i∈I Xi

is the coarsest topology for which all canonical projections p{i} : X → Xi are con-
tinuous. Let LX be the lattice generated by closed subsets of the form p−1

{i} [F] where
i ∈ I and F is a closed subset of Xi : elements of LX are called elementary closed
subsets of X . Since every closed subset of X is the intersection of elements of LX , the
product space X is compact if and only if every filter of the lattice LX has a non-empty
intersection. More generally, the following (easy) Proposition holds:

Proposition 2 Let X be a topological space. Let C be a family of closed subsets of X,
such that every closed subset of X is an intersection of elements of C. If every sub-fam-
ily of C satisfying the finite intersection property has a non-empty intersection, then
X is compact.

Given a set F of non-empty subsets of a set X , we say that F is inf-directed if for
every F1, . . . , Fn ∈ F , there exists F ∈ F such that F ⊆ ∩1≤i≤n Fi .

Theorem 2 Consider an infinite family (Xi )i∈I of finite sets and assume that C is a
cofinal subset of f in(I ), and that (σF )F∈C is a family such that for every F ∈ C,
σF ∈ ∏

i∈F Xi . For every finite subset J of I , consider the following set:

FC
J :=

{

σ ∈
∏

i∈J

Xi : ∀K ∈ f in(I ) ∃L ∈ C K ∪ J ⊆ L and σL� J = σ

}

1. For each J ∈ f in(I ), FC
J is non-empty;

2. If C admits a well order �, then there is a mapping associating to each J ∈ f in(I )
and each non-empty subset A of FC

J an element z A
J of A: such a choice function

is definable from (σF )F∈C and the well order � (and in particular the product
X := ∏

i∈I Xi is non-empty);
3. If X �= ∅, then for every J ∈ f in(I ), the (closed) subset F̃C

J := FC
J ×∏

i∈I\J Xi

of X is non-empty, and for every finite subsets J, K of I satisfying J ⊆ K , then
F̃C

K ⊆ F̃C
J ; in particular, the family of non-empty sets {F̃C

J : J ∈ f in(I )} is
inf-directed: in this case we denote by FC the filter of the lattice LX generated by
this family;
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744 M. Morillon

4. Given an element f of X, the following statements are equivalent:
(a) f is Rado-compatible with (σJ )J∈C;
(b) f ∈ ∩J∈C F̃C

J ;
5. If C admits a well order � then there exists f ∈ X which is Rado-compatible with

(σF )F∈C and which is definable from � and (σF )F∈C .

Proof (1) Given some J ∈ f in(I ), the set FC
J is non-empty: seeking for a contradic-

tion, assume that for each σ ∈ ∏
i∈J Xi , there exists Kσ ∈ f in(I ) such that for every

L ∈ C, (Kσ ∪ J ⊆ L ⇒ σL� J �= σ); then consider the finite set K := ∪σ∈∏
i∈J Xi Kσ ;

since C is cofinal in f in(I ), consider some element L ∈ C such that (J ∪K ) ⊆ L; then
for every σ ∈ ∏

i∈J Xi , σL� J �= σ : since σL� J ∈ ∏
i∈J Xi this is contradictory!

(2) Assume that C is well-orderable. Given J ∈ f in(I ) and some non-empty sub-
set A of FC

J , let C be the first element of C (w.r.t. this well-order of C) such that
z A

J := σC� J ∈ A: then (z A
J )J∈ f in(I ),∅�=A⊆FC

J
is a choice function satisfying the

required conditions.
(3) and (4): the proofs are easy.
(5) Since C is well-orderable, X is non-empty: we shall show that there is an element
of ∩FC which is definable from (σF )F∈C and the well-order � on C. Let J ∈ f in(I ).
Since J is finite,

∏
i∈J Xi is compact thus the set AJ := ∩Z∈FC pJ [Z ] is non-empty.

We shall define by recursion on the well order � a family (τJ )J∈C of pairwise compati-
ble finite functions, such that for every J ∈ C, τJ ∈ AJ : it will follow that τ := ∪J∈CτJ

is a mapping defined on I and that τ ∈ ∩FC . Given J ∈ C, τJ is defined from (τF )F≺J

as follows: consider the filter GJ of LX generated by FC and the elementary closed sets
p−1

F [{τF }] for F ≺ J ; then A := ∩Z∈GJ pJ [Z ] is a non-empty subset of AJ ; we define
τJ := z A

J (see point (2)). The finite functions τJ are pairwise compatible because given
distinct elements J, K ∈ C such that J � K , τK ∈ pK [{ f ∈ X : f � J = τJ }]. Then
τ := ∪J∈CτJ ∈ ∩FC .

3.2 RL implies a weak form of T2

Consider the following consequence of T2:

RL0: “Given a set I and a non-empty inf-directed set F of non-empty elementary
closed subsets of {0, 1}I , if F has a choice function then ∩F is non-empty.”

Proposition 3 RL ⇒ RL0.

Proof Let I be an infinite set. Let X be the topological product {0, 1}I . Let F be
a non-empty inf-directed set of non-empty elementary closed subsets of X , having a
choice function (τZ )Z∈F . Without loss of generality, we may assume that {0, 1}I ∈ F .
Since F is inf-directed, for every finite subset F of I , the set of subsets A of {0, 1}F

such that A × {0, 1}I\F ∈ F has a smallest element, that we denote by AF . For
every F ∈ f in(I ), let σF := τAF ×{0,1}I\F . Using RL, let f ∈ {0, 1}I which is
Rado-compatible with (σF )F∈ f in(I ). Let us show that f ∈ ∩F . Given some Z ∈ F ,
let F ∈ f in(I ) and let A ⊆ {0, 1}F such that A × {0, 1}I\F = Z ; since f is Rado-
compatible with (σF )F∈ f in(I ), let G ∈ f in(I ) such that F ⊆ G and f � F = (σG)� F ;
then AG ⊆ AF × {0, 1}G\F thus (σG)� F ∈ AF ⊆ A so f � F ∈ A i.e., f ∈ Z .
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Some consequences of Rado’s selection lemma 745

3.3 A statement which is intermediate between T2 and RL

It is known (see [3]) that T2 is equivalent to the fact that for every set I , the product
space {0, 1}I is compact, or, equivalently, to the following fact: “Given a set I and a
non-empty set F of non-empty elementary closed subsets of {0, 1}I satisfying the finite
intersection property, ∩F is non-empty.” Consider now the following statement:

RLT: “Given a set I and a non-empty set F of non-empty elementary closed
subsets of {0, 1}I satisfying the finite intersection property, if F has a choice
function then ∩F is non-empty.”

Then T2 ⇒ RLT ⇒ RL0.

Question 3 Is RLT equivalent to T2 or to RL0?

3.4 RL0 implies RL, and in ZF0, MC implies RL

In this Section, we shall show that conversely, RL0 implies RL; the same idea allows
to prove (in ZF0) that MC implies RL.

Corollary 1 1. RL0 ⇔ RL.
2. In ZF0, MC implies RL.

Proof The implication RL ⇒ RL0 has been proved in Proposition 3. We now prove
RL0 ⇒ RL and MC ⇒ RL: in both cases, we consider an infinite family (Xi )i∈I of
non-empty finite sets, and we assume that for every finite subset J of I , σJ ∈ ∏

i∈J Xi .
In particular, X := ∏

i∈I Xi is non-empty: let a = (ai )i∈I ∈ X . As in Theorem 2,
for each J ∈ f in(I ) we define the non-empty set FJ := {σ ∈ ∏

i∈J Xi : ∀K ∈
f in(I ) ∃L ∈ f in(I ) (K ∪ J ⊆ L and σL� J = σ)}, and the closed subset F̃J :=
FJ ×∏

i∈I\J Xi of X . The family (F̃J )J∈ f in(I ) of non-empty elementary closed sub-

sets of {0, 1}I is inf-directed; moreover, (F̃J )J∈ f in(I ) has a choice function: indeed
for every J ∈ f in(I ), σJ � (ai )i∈I\J ∈ F̃J .
RL0 ⇒ RL: using RL0, consider some f ∈ ∩J∈ f in(I ) F̃J . Using Theorem 2–(4), the
mapping f is Rado-compatible with (σJ )J∈ f in(I ).
MC ⇒ RL: using MC, consider an ordinal α and a family (Iλ)λ∈α of non-empty pair-
wise disjoint finite sets such that I = ∪λ∈α Iλ. Let C be the set of elements F ∈ f in(I )
of the form ∪t∈Z It where Z ∈ f in(α): the subset C of f in(I ) is cofinal in the
poset ( f in(I ),⊆), and C is well-orderable (because there is a one-to-one mapping
from C into the well-orderable set f in(α)). Thus Theorem 2–(5) implies that there
exists f ∈ ∏

i∈I Xi which is Rado-compatible with (σJ )J∈ f in(I ) since C is cofinal in
( f in(I ),⊆) (see Remark 5).

4 Some equivalent forms of RL

Given set I , consider the following statement:

AC f in(I ): “Every infinite family of finite non-empty subsets of I has a non-empty
product.”
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746 M. Morillon

Every mapping φ associating to each non-empty finite subset F of I , an element φ(F)

of F is called a witness of AC f in(I ).

Remark 6 Given a set I , if AC f in(I ) holds, then there is a mapping associating to each
F ∈ f in(I ) a linear order ≤F on F (and thus also a linear order on {0, 1}F ).

We shall now show that the two following consequences of T2 (or the equivalent
statement BPI) are equivalent to RL:

RL1: “For every set I satisfying AC f in(I ), the topological product space {0, 1}I

is compact.”

RL2: “Given a boolean algebra B satisfying AC f in(B), every proper filter of B

is included in a ultrafilter.”

Proposition 4 (support of an elementary closed subset of a product space) Let I
be an infinite set. For every non-empty elementary closed subset Z of {0, 1}I , there
exists a smallest finite subset S of I , such that Z is of the form A × {0, 1}I\S where
A ⊆ {0, 1}S: we call this set S the support of Z, and we denote it by supp(Z).

Proof Let Z be a non-empty elementary closed subset of {0, 1}I . For every f ∈{0, 1}I ,
every i0 ∈ I and every ε ∈ {0, 1}, denote by fi0→ε the mapping g : I → {0, 1} such
that g(i0) = ε and g(i) = f (i) for every i ∈ I\{i0}. Let S := {i ∈ I : ∃ f ∈ Z
( fi→0 /∈ Z or fi→1 /∈ Z)}. Then S is the smallest subset T of I satisfying Z =
pT [Z ] × {0, 1}I\T so S is finite.

Theorem 3 The following statements are equivalent: RL, RL1 and RL2.

Proof The equivalence RL0 ⇔ RL has been proved in Sect. 3.4.
RL ⇒ RL1. Let I be an infinite set satisfying AC f in(I ): then one can choose some
linear order on every F ∈ f in(I ). Let LX be the set of elementary closed sub-
sets of X := {0, 1}I (i.e., sets of the form A × ∏

i∈I\F Xi where F ∈ f in(I )

and A ⊆ {0, 1}F ). Let F be a filter of the lattice LX : let us show that ∩F is
non-empty. Using AC f in(I ), for every F ∈ f in(I ), choose some element σF in
the non-empty subset ∩Z∈F pF [Z ] of {0, 1}F . Using RL, consider some f ∈ X
which is Rado-compatible with (σF )F∈ f in(I ); then for every F ∈ f in(I ), there
exists G ∈ f in(I ) such that F ⊆ G and f � F = σG� F ; this implies that
f � F = pF (σG) ∈ ∩Z∈F pF [pG[Z ]] = ∩Z∈F pF [Z ], so f ∈ ∩F .
RL1 ⇒ RL. Let (Xi )i∈I be an infinite family of finite sets and assume that
(σF )F∈ f in(I ) is a family such that for every F ∈ f in(I ), σF ∈ ∏

i∈F Xi . Then
(σF )F∈ f in(I ) is a witness of AC f in(I ), so by RL1, the (non-empty) space X :=
∏

i∈I Xi is compact so ∩J∈ f in(I ) F̃J is non-empty—see the notation used in
Theorem 2–(3)—; now any element f of ∩J∈ f in(I ) F̃J is Rado-compatible with
(σJ )J∈ f in(I )—-see Theorem 2–(4)—.
RL1 ⇒ RL2. Let B be a boolean algebra satisfying AC f in(B) and let G be a proper
filter of B. For every elements x, y ∈ B, consider the following closed subsets of
X := {0, 1}B:
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Some consequences of Rado’s selection lemma 747

Fx : = {h ∈ X : (x ∈ G ⇒ h(x) = 1)}
Gx,y : = {h ∈ X : (x ∧ y = 0B ⇒ h(x ∨ y) = max(h(x), h(y)))}
Hx,y : = {h ∈ X : h(x ∧ y) = min(h(x), h(y))}

The following set of closed subsets of X satisfies the finite intersection property:
F := {Fx : x ∈ B}∪ {Gx,y : x, y ∈ B}∪ {Hx,y : x, y ∈ B}; using RL1, X is compact
so there exists some element h ∈ ∩F : such an element h is a boolean morphism
h : B → {0, 1} and U := h−1({1}) is a ultrafilter of B including G.
RL2 ⇒ RL1. Given an infinite set I satisfying AC f in(I ), consider the topological
product space X := {0, 1}I . Denote by B the set of elementary closed subsets of X :
B is a boolean sub-algebra of P(I ) = {0, 1}I . Using AC f in(I ), AC f in(B) also holds:
indeed, given a non-empty finite subset F of B, then Z := ∪x∈F supp(x) is a finite
subset of I ; using AC f in(I ), we choose a linear order on {0, 1}Z , which implies a linear
order on F , which allows to choose an element in F . Assume that F is a family of
elementary closed subsets of X satisfying the finite intersection property; using RL2,
consider a ultrafilter U of B including F ; then for every i ∈ I , the projection of U on
the i th factor is a singleton {εi }; and ε := (εi )i∈I belongs to ∩U ⊆ ∩F .

Remark 7 The equivalence RL ⇔ RL1 is a slight generalization of Blass’s Remark
about the equivalence T2 ⇔ (RL+ACfin) (see Remark 3).

Consider the following statements:

UFlo: “Every proper filter on a linearly orderable boolean algebra is included
in a ultrafilter.”

UFwo: “Every filter on a well-orderable set is included in a ultrafilter.”

UFω: “Every filter on ω is included in a ultrafilter.”

Uω: “There exists a non-trivial ultrafilter on ω.”

Corollary 2 RL ⇒ UFlo ⇒ UFwo ⇒ UFω ⇒ Uω.

Proof RL ⇒ UFlo: Given a boolean algebra B which is linearly orderable, then
AC f in(B) holds thus RL2 implies that every proper filter of B is contained in a ultra-
filter.
UFlo ⇒ UFwo: Given a well-ordered set (X,�), the set P(X) = {0, 1}X is linearly
orderable (with the lexicographic order) thus UFlo implies that every filter of the lin-
early orderable boolean algebra P(X) is included in a ultrafilter.
The implications UFwo ⇒ UFω ⇒ Uω are trivial.

Question 4 Does UFlo imply RL? Does UFwo imply UFlo or RL?

Remark 8 In ZF0 (set theory with atoms described in [3,5]), UFwo does not imply
HB (and thus does not imply RL): in a Fraenkel-Mostowski model of ZF0 , for every
well-orderable set X , the set P(X) is also well-orderable thus UFwo holds, however
some of these models do not satisfy the Hahn-Banach axiom (see the model N 51
described in [3]).
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Remark 9 In ZF, HB does not imply Uω (see [8]) and thus HB does not imply RL.

Consider the following statement, which is intermediate between T2 and ACfin:

H (Hall’s marriage theorem, form 107 of [3]): “Let I be an infinite set of finite
sets such that for each finite subset F of I , there is an injective choice function
on F. Then there is an injective choice function on I .”

The following implications hold:

The following questions seem to be open:

Question 5 Does HB+H imply BPI? Does HB+H+UFwo imply BPI?
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