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Abstract We prove in set theory without the Axiom of Choice, that Rado’s selection
lemma (RL) implies the Hahn-Banach axiom. We also prove that RL is equivalent
to several consequences of the Tychonov theorem for compact Hausdorff spaces: in
particular, RL implies that every filter on a well orderable set is included in a ultrafilter.
In set theory with atoms, the “Multiple Choice” axiom implies RL.
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1 Introduction

We work in set theory without the Axiom of Choice ZF. For every set I we denote by
fin(I) the set of finite subsets of 1. The following statement was introduced by Rado

(9D

RL: (Rado’s selection lemma, form 99 of [3]) “Given an infinite family of non-
empty finite sets (X;)ier, and given any family (o) je fin(1) Such that for every
J € fin(I), oy € [;c; Xi, there exists f € [[;c; Xi such that for every J €
fin(l), there exists L € fin(I) satisfying J C Land f| J =or] J.”

Remark 1 Under the hypotheses of Rado’s lemma, the set X := [
(in ZF): indeed, for every i € I, oy;;(i) € X;.

;<7 Xiis non-empty
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740 M. Morillon

Rado used this statement and the Axiom of Choice (AC) to prove (see ([9]) that
two bases of an (infinite) finitary matroid are equipotent. Rado’s proof of RL relied
on AC but RL is a consequence (see [1,10]) of the following “Tychonov axiom”, a
consequence of AC which does not imply AC ([2]):

Ts: “Every family of compact Hausdorff topological spaces has a compact prod-
uct.”

Notice that T, has the two following consequences (which are not provable in ZF,
see [3]):

ACH™: (Finite Axiom of Choice, form 62 of [31) “Given an infinite family (X;)icr
of non-empty finite sets, the set [ |;.; X; is non-empty.”
AC?: (Axiom of Choice for pairs, form 88 of [31) “Given an infinite family
(Xi)ier of two-element sets, the set Hie, X; is non-empty.”

In this paper, we prove (see Sect. 2) that RL implies the following statement, which
is equivalent (see [6]) to the Hahn-Banach axiom HB (form 52 of [3]):

M: (Measure axiom, form 52A of [3]) “For every non trivial boolean algebra B,
there exists a measure m : B — [0, 1] such that m(1g) = 1.”

Here, a boolean algebra is a (commutative) unitary ring (B, @, x, Og, 1g) which
is idempotent (for every x € B, x.x = x). If Og = 1p, then the boolean algebra B is
said to be trivial. A (real valued) measure on B is a mapping m : B — [0, 1] which is
finitely additive (for every x, y € B satisfying x.y = Og, m(x ® y) = m(x) + m(y)).
A measure m on B is unitary if m(1g) = 1. Recall (see [3]) that the Tychonov axiom
T, is equivalent to the Boolean Prime Ideal:

(BPI, form 14 of [3]): “Every non trivial boolean algebra has a prime ideal.”

Remark 2 The statement HB is a consequence of T» (see [3]) which does not imply
T, (see [7)).

In Sect. 3, we prove in ZF? (set-theory with atoms, a theory weaker than ZF—see
[3, pp. 1-2]—), that the following “Multiple Choice” axiom implies RL:

MC: (form 67 of [3]) “Given an infinite family (X;);c of infinite sets, there exists
a family of non-empty finite sets (F;);cy such that for everyi € I, F; C X;.”

In ZF, the statement MC is equivalent to AC, but in ZF°, MC does not imply AC?
(see [5]). Thus our result implies that every model of ZF'+MC satisfies RL: this
enlightens a result due to Howard (see [4]) who built a model of ZF'+MC+—-AC?
in which he proved RL. However, the following questions seem to stay open:

Question I Does RL imply T»?

Remark 3 Blass (see [3, Note 33]) noticed that (RL+ACfi") < T5, so Question 1 is
equivalent to ask whether RL implies ACfi".

Even the following Question seems to be open:
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Some consequences of Rado’s selection lemma 741

Question 2 Does RL imply AC??

We finally provide various equivalents of RL in ZF (see the recapitulating Diagram
in Sect. 4).

2 Rado’s selection lemma implies Hahn-Banach
2.1 Boolean algebras

Given a boolean algebra (B, @, x, Op, 1), the binary relation < on B defined for
every x,y € B by the formula “x < y if and only if x.y = x” is a partial order;
the poset (B, <) is a complemented distributive lattice with smallest element Og and
greatest element 1p: notice that the infimum law A is the multiplicative law of the ring
(B, &, x, 0p, 1), the supremum law V is defined for every x,y € Bby x vV y :=
(x ®y) & x.y, and for every x € B, the complement of x (i.e., the unique element y
of B satisfyingx Ay =0gandx Vy = 1p)isx @ 1.

Remark 4 Conversely, one checks (in ZF) that given a complemented distributive
lattice (B, v, A) with first element Op, last element 1 and complementation function
.¢, then one can define the binary law @ on Bby x ® y := (x A y°) V (y A x€) for every
x,y € B, and the structure (B, &, A, Op, 1) is a (commutative) unitary idempotent
ring.

Given a boolean algebra B, an atom of B is a non-null element a of B which is
minimal in the poset (B\{0p}, <): for every x € B, if x < a then (x = Op or x = a).
If B is a finite boolean algebra, if A is the set of atoms of B, then the canonical mapping
canp : B — P(A) associating to each x € B the set of atoms minorating x is an
isomorphism of boolean algebras.

Recall that a measure (see Sect. 1) on a boolean algebra B is a mapping m : B —
[0, 17 satisfying (x Ay =0 = mxVvy =mkx)+ m(y)) for every x,y € B.
Notice that every measure m : B — [0, 1] is ascending: given x, y € B satisfying
x < ythenm(x) < m(y)).

For every finite set F we denote by |F| the number of elements of F (i.e., the
cardinal of the finite set F).

Proposition 1 (uniform probability on a finite boolean algebra) If B is a finite non-
trivial boolean algebra, there exists a unique unitary measure U on B associating the
same real number to all the atoms of B. This measure is called the uniform probability
on the finite boolean algebra B.

Proof Let A be the (finite) set of atoms of B. The uniform probability on P(A) is
the unique measure on P(A) associating to each subset B of A the (rational) number
%. This unitary measure can be carried into a unitary measure I/ : B — [0, 1] using
the canonical isomorphism between the boolean algebras B and P(A). Notice that for

acA:a<x}|

every x € B,U(x) = I TAl
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742 M. Morillon

2.2 RL implies Hahn-Banach

Definition 1 Let (X;);<; an infinite family of non-empty finite sets. Let C be a subset
of fin(I). Assume that (o) pec is a family such that forevery J € C, 07 € [[;o; Xi.
Say that an element f € [],.; X; is Rado-compatible with (oF)fec if for every
F € fin(I), there exists G € C suchthat F C G and f| F = og]| F.

Rado’s lemma says that given an infinite family (X;);c; of non-empty finite sets,
and given a family (67) Fe fin(r) such that forevery J € fin(I),0; € [];c; Xi, there
exists a mapping f € Hi <7 Xi which is Rado-compatible with (6F) e fin(1)-

For every n € N, we denote by D, the set {% :k e N}JNJ[O0, 1]. Given somen € N,
for every x € [0, 1], there is a unique k£ € {0, ..., 2"} such that 2% <x < kz#; call
the number 25,, the (default) n-approximation of x. Notice that U,cn D), is countable
and dense in [0, 1].

Given a subset A of a boolean algebra B, we denote by boolg(A) the boolean
algebra generated by A in B.

Theorem 1 RL implies HB.

Proof Let B be an infinite boolean algebra. For every n € N, let B,, := B x {n}, and
let B, := U,,cnB,,. Thus B, is the union of w pairwise disjoint copies of B. For every
non-empty finite subset F' of B, we define of as follows: since F is of the form
Uo<i<n(F; x {i}) where n € N and F), is non-empty, consider the uniform probabil-
ity Pr on boolg(Up<i<n Fi), and, for every (x,i) € F; x {i}, let op((x, 7)) be the
i-approximation of Pr(x): thus |or((x,i)) — Pr(x)| < 21—, Forevery F € fin(B,),
forevery x, y € B andevery i, j, k,/ € N:

(I, i) € F = or((Ip, i) =1—

(OB, i) € F = oF((0p, i) =0

If (x, ), (x, j) € F then |op((x, ) — or((x, )| < 5 +
If x Ay =0p and if (x,1), (v, k), (x V y,I) € F then:
lor((x v 3, D) = op((x, 1)) — or((y, k)| < 3 + 2 + 5.

b

L
2J

Using RL, let f = (fu)neN € [1,en D,I,B" be a mapping which is Rado-compatible
with the family (o) re fines,,)- Given x € B, Condition (3) implies that the sequence
(fn(x))nen is Cauchy: indeed, given some real number ¢ > 0, let N € N such
that 2LN < %; given p,q € N such that p,g > N, let F := {(p, x), (¢, x)} and
let G € fin(B,) such that /¥ € G and f| F = og| F; then |f,(x) — f,(x)| =
log(p, x) —og(q, x)| < zip + zlq < 2% < ¢&. Thus the Cauchy sequence (f;, (x)),eN
of real numbers converges to a real number m(x) € [0, 1]. Conditions (1) and (2)
imply that m(1g) = 1 and m(0Og) = 0. Condition (4) implies that m is finitely addi-
tive: let x,y € B such that x Ay = Op and let ¢ > 0. Let N € N satisfying
2% < 5 such that |m(x) — fy ()|, [m(y) — fn(y)| and [m(x Vv y) — fn(x V y)|
are all less that %; let F := {(x,N),(y,N),(x Vy, N} let G be a finite subset
of By, such that F € G and f[| F = og| F; then |m(x) + m(y) — m(x V y)| <
m(x) — 06 (x, N)|+1m(y) — o6 (v, N)| +1m(x V y) =06 (N, x vV y)| + oG (x, N) +

0G(y, N)=oG(x vy, N)[=|m(x)—=fn () |[+|m(y)—fn W)+Hm(x vV y)—fn(xVy)l+
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Some consequences of Rado’s selection lemma 743

log(x, N)+og(y, N)—og(xVy,N)| < 2‘%—1—3% < ¢ (using 4); this is true for every
e > 0so|m(x)+m(y) —m(x Vv y)| =0.It follows that the mapping m : B — [0, 1]
is a unitary measure on B.

3 In ZF°, MC implies RL
3.1 Rado-compatibility and compactness

Remark 5 Let (X;)ies an infinite family of non-empty finite sets. Let C be a cofinal
subset of the poset (fin(I), ©). If f € [[;c; Xi is Rado-compatible with (o) pec,
then f is also Rado-compatible with (6F) re fin(1)-

Given a family (X;);<; of topological spaces, and denoting by X the product set
[1;c; X, for every nonempty subset J of I we denote by p; : X — [[;c; X; the
canonical mapping (x;)ie; +> (x;)ics. The product topology on the set X =[], aX
is the coarsest topology for which all canonical projections pyy : X — X are con-
tinuous. Let Lx be the lattice generated by closed subsets of the form Py '[F] where
i € I and F is a closed subset of X;: elements of Ly are called elementary closed
subsets of X. Since every closed subset of X is the intersection of elements of Ly, the
product space X is compact if and only if every filter of the lattice Lx has a non-empty
intersection. More generally, the following (easy) Proposition holds:

Proposition 2 Let X be a topological space. Let C be a family of closed subsets of X,
such that every closed subset of X is an intersection of elements of C. If every sub-fam-
ily of C satisfying the finite intersection property has a non-empty intersection, then
X is compact.

Given a set F of non-empty subsets of a set X, we say that F is inf-directed if for
every Fi, ..., F, € F, there exists F € F such that F C Ni<;<, F;.

Theorem 2 Consider an infinite family (X;)icy of finite sets and assume that C is a
cofinal subset of fin(I), and that (oF)pec is a family such that for every F € C,
or € [l;cp Xi. For every finite subset J of I, consider the following set:

F§ = oe[][Xi: VK e finl)ALeCKUJ S LandoL| J =
ieJ

~

Foreach J € fin(I), Ff is non-empty;

2. IfC admits awell order <, then there is a mapping associating to each J € fin(I)
and each non-empty subset A of FJC an element zj‘ of A: such a choice function
is definable from (oF)pec and the well order < (and in particular the product
X = [l;e; Xi is non-empty);

3. IfX # &, then forevery J € fin(l), the (closed) subset FC = FC X HIGI\J X

of X is non-empty, and for every finite subsets J, K of 1 satlsfymg J C K, then

Flg C FJC in particular, the family of non-empty sets {FC J e fin(l)} is

inf-directed: in this case we denote by F C the filter of the lattice Lx generated by

this family;
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4. Given an element f of X, the following statements are equivalent:
(a) fis Rado-gompatible with (oj) jecs
(b) f€Necky:

5. IfC admits a well order < then there exists f € X which is Rado-compatible with
(oF) Fec and which is definable from < and (o) pec.

Proof (1) Given some J € fin(l), the set FJc is non-empty: seeking for a contradic-
tion, assume that for each o € [];.; X;, there exists K, € fin([I) such that for every
LeC,(KsUJ C L= or]J # 0);thenconsider the finite set K := UJGH[‘GJ x; Ko
since C is cofinal in fin(I), consider some element L € C such that (JUK) C L;then
forevery o € Hie] Xi,o J £o:sinceo| J € Hie] X; this is contradictory!
(2) Assume that C is well-orderable. Given J € fin(Il) and some non-empty sub-
set A of FJC, let C be the first element of C (w.r.t. this well-order of C) such that
z’}‘ = oc| J € A: then (z’}‘)Jefin(,)’@;éAgFJc is a choice function satisfying the
required conditions.

(3) and (4): the proofs are easy.

(5) Since C is well-orderable, X is non-empty: we shall show that there is an element
of NFC which is definable from (0F) Fec and the well-order < onC. Let J € fin([).
Since J is finite, Hi < Xi is compact thus the set A; := Nz zc ps[Z] is non-empty.
We shall define by recursion on the well order < a family (t;) j<c of pairwise compati-
ble finite functions, such that forevery J € C, 7y € A;:itwill follow thatt := U 1y
is amapping defined on I and that t € NFC.Given J € C, ty is defined from (tp) p< s
as follows: consider the filter G; of Lx generated by F C and the elementary closed sets
p;1 [{rr}lfor F < J;then A := Nzcg, ps[Z]is anon-empty subsetof A ;; we define
Ty = z? (see point (2)). The finite functions t; are pairwise compatible because given
distinct elements J, K € C suchthat J < K, tx € pg[{f € X : f| J = 7;}]. Then
T :=Ujecty € NFC.

3.2 RL implies a weak form of T,

Consider the following consequence of T:

RLy: “Given a set I and a non-empty inf-directed set F of non-empty elementary
closed subsets of {0, 1}, if F has a choice function then NF is non-empty.”

Proposition 3 RL = RLy.

Proof Let I be an infinite set. Let X be the topological product {0, 1}/. Let F be
a non-empty inf-directed set of non-empty elementary closed subsets of X, having a
choice function (77) zc 7. Without loss of generality, we may assume that {0, 1}/ € F.
Since F is inf-directed, for every finite subset F' of I, the set of subsets A of {0, 1}F
such that A x {0, 1}'\f' € F has a smallest element, that we denote by Af. For
every F € fin(l), let o = TApx{0.1)/\F- Using RL, let f € {0, 1}1 which is
Rado-compatible with (0 F) Fe fin(r)- Let us show that f € NF. Given some Z € F,
let F € fin(I) andlet A C {0, 1}¥ such that A x {0, 1}/\F = Z; since f is Rado-
compatible with (0F) Fe fin(r),1et G € fin(I)suchthat F C Gand f| F = (o6)[ F;
then Ag C Ar x {0, 116\ thus (o) F € Ar CAso f| FeAie., f € Z.
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Some consequences of Rado’s selection lemma 745

3.3 A statement which is intermediate between T, and RL

It is known (see [3]) that T, is equivalent to the fact that for every set /, the product
space {0, 1}/ is compact, or, equivalently, to the following fact: “Given a set I and a
non-empty set F of non-empty elementary closed subsets of {0, 1}! satisfying the finite
intersection property, NF is non-empty.” Consider now the following statement:

RLT: “Given a set I and a non-empty set F of non-empty elementary closed
subsets of {0, 1}! satisfying the finite intersection property, if F has a choice
function then NF is non-empty.”

Then T, = RLT = RLy.
Question 3 Is RLT equivalent to T, or to RLg?

3.4 RL implies RL, and in ZF(, MC implies RL

In this Section, we shall show that conversely, RLq implies RL; the same idea allows
to prove (in ZF°) that MC implies RL.

Corollary 1 /. RLg < RL.
2. InZF°, MC implies RL.

Proof The implication RL = RL has been proved in Proposition 3. We now prove
RL(y = RL and MC = RL: in both cases, we consider an infinite family (X;);e; of
non-empty finite sets, and we assume that for every finite subset J of 1,07 € [[;; Xi.
In particular, X := Hie ; Xi is non-empty: let a = (a;);e; € X. As in Theorem 2,
for each J € fin(I) we define the non-empty set F; := {0 € Hiej X;: VK €
fin(I) AL € fin(I) (KU J C L and or| J = o)}, and the closed subset ﬁj =
Fj;x HieI\J X; of X. The family (ﬁj)]eqf'l‘n(]) of non-empty elementary closed sub-
sets of {0, 1}{ is inf-directed; moreover, (P: 7)Jefin(r) has a choice function: indeed
for every J e fin(I), aj ™ (Cll‘)[E]\j € Fj.

RLy = RL: using RLg, consider some f € ﬂjefi,,(l)ﬁj. Using Theorem 2—(4), the
mapping f is Rado-compatible with (07) ye fin(r)-

MC = RL: using MC, consider an ordinal & and a family (/;)eq of non-empty pair-
wise disjoint finite sets such that I = U) ¢, I). Let C be the set of elements F € fin([l)
of the form U;czI; where Z € fin(a): the subset C of fin([) is cofinal in the
poset (fin(I), ), and C is well-orderable (because there is a one-to-one mapping
from C into the well-orderable set fin(«)). Thus Theorem 2—(5) implies that there
exists f € [];c; Xi which is Rado-compatible with (0) je fin(r) since C is cofinal in
(fin(I), ©) (see Remark 5).

4 Some equivalent forms of RL

Given set I, consider the following statement:

AC/ "D “Every infinite family of finite non-empty subsets of I has a non-empty
product.”
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Every mapping ¢ associating to each non-empty finite subset F of /, an element ¢ (F')
of F is called a witness of ACT"(D.

Remark 6 Givenaset I,if AC/™) holds, then there is a mapping associating to each
F € fin(I) alinear order <y on F (and thus also a linear order on {0, 1}7).

We shall now show that the two following consequences of T, (or the equivalent
statement BPI) are equivalent to RL:

RL;: “For every set I satisfying AC/" D the topological product space {0, 1}
is compact.”

RL;: “Given a boolean algebra B satisfying AC in®), every proper filter of B
is included in a ultrafilter.”

Proposition 4 (support of an elementary closed subset of a product space) Let [
be an infinite set. For every non-empty elementary closed subset Z of {0, 1}/, there
exists a smallest finite subset S of I, such that Z is of the form A x {0, 1}/\S where
A C {0, 1}5: we call this set S the support of Z, and we denote it by supp(Z).

Proof Let Z be anon-empty elementary closed subset of {0, 1}/. Forevery f {0, 1}/,
every ig € I and every ¢ € {0, 1}, denote by f;,_. . the mapping g : I — {0, 1} such
that g(ip) = ¢ and g(i) = f(i) foreveryi € I\{ip}. Let S :={i e I : Af € Z
(fiso ¢ Z or fis1 ¢ Z)}. Then S is the smallest subset T of [ satisfying Z =
priZ] x {0, 1}'\T so S is finite.

Theorem 3 The following statements are equivalent: RL, RL| and RLo>.

Proof The equivalence RL(y < RL has been proved in Sect. 3.4.

RL = RL;. Let I be an infinite set satisfying AC/?"(!): then one can choose some
linear order on every F € fin(I). Let Lx be the set of elementary closed sub-
sets of X := {0, 1}’ (i.e., sets of the form A x HieI\F X; where F € fin(I)
and A C {0, I}F). Let F be a filter of the lattice Lx: let us show that NF is
non-empty. Using AC/"*)_ for every F € fin(I), choose some element o in
the non-empty subset Nzcrpr[Z] of {0, 1}F. Using RL, consider some f € X
which is Rado-compatible with (6F)Fefin(r); then for every F € fin(l), there
exists G € fin(I) such that F € G and f[| F = og]| F; this implies that
fIF = pr(oc) € NzerprlpclZ]l = NzerprlZ], so f € NF.

RL; = RL. Let (X;)ic; be an infinite family of finite sets and assume that
(0F)Fefinay is a family such that for every F € fin(I), of € HieF X;. Then
(0F)Fefin(ny is a witness of ACTin) o by RL, the (non-empty) space X :=
Hie ; Xi is compact so Nje f,-,,(I)F 7 1s non-empty—see the notation used in
Theorem 2—(3)—; now any element f of Nj¢ fmu)ﬁ 7 is Rado-compatible with
(07) Je fin(y—-see Theorem 2—(4)—.

RL; = RL,. Let B be a boolean algebra satisfying AC/ n®) and let G be a proper
filter of B. Igor every elements x, y € B, consider the following closed subsets of
X :=1{0, 1}":
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Some consequences of Rado’s selection lemma 747

Fo:=heX: xeg=hkx)=1)}
Gyy:={heX: xAy=0 = h(xVvy) =max(h(x), h(y)))}
Hyy:={heX: h(x Ay) =min(h(x), h(y))}

The following set of closed subsets of X satisfies the finite intersection property:
Fi={Fx:x € BJU{Gy,y : x,y € BJU{H\ y : x,y € B}; using RL;, X is compact
so there exists some element 4 € NF: such an element 4 is a boolean morphism
h:B — {0, 1} and U := h~'({1}) is a ultrafilter of B including G.

RL, = RL;. Given an infinite set I satisfying AC/"*!), consider the topological
product space X := {0, 1}/. Denote by B the set of elementary closed subsets of X:
B is a boolean sub-algebra of P (1) = {0, 1. Using Ac/in) ACT"®) 4150 holds:
indeed, given a non-empty finite subset F of B, then Z := U,crsupp(x) is a finite
subset of ; using AC/Sind ), we choose a linear order on {0, 1}Z , which implies a linear
order on F, which allows to choose an element in F'. Assume that F is a family of
elementary closed subsets of X satisfying the finite intersection property; using RL,,
consider a ultrafilter / of B including F; then for every i € I, the projection of I/ on
the ith factor is a singleton {¢;}; and € := (&;);es belongs to " € NF.

Remark 7 The equivalence RL < RL is a slight generalization of Blass’s Remark
about the equivalence Ty < (RL4ACf™) (see Remark 3).

Consider the following statements:

UFyo: “Every proper filter on a linearly orderable boolean algebra is included
in a ultrafilter.”

UFyo: “Every filter on a well-orderable set is included in a ultrafilter.”
UF,,: “Every filter on w is included in a ultrafilter.”
U, “There exists a non-trivial ultrafilter on w.”

Corollary 2 RL = UF}, = UFy, = UF, = U,

Proof RL = UF),e: Given a boolean algebra B which is linearly orderable, then
AC/"®) holds thus RL> implies that every proper filter of B is contained in a ultra-
filter.

UF}, = UFy,: Given a well-ordered set (X, <), the set P(X) = {0, 1}¥ is linearly
orderable (with the lexicographic order) thus UF}, implies that every filter of the lin-
early orderable boolean algebra P(X) is included in a ultrafilter.

The implications UFy, = UF, = U, are trivial.

Question 4 Does UF}, imply RL? Does UFy, imply UF), or RL?

Remark 8 In ZF° (set theory with atoms described in [3,5]), UFy, does not imply
HB (and thus does not imply RL): in a Fraenkel-Mostowski model of ZF? , for every
well-orderable set X, the set P(X) is also well-orderable thus UF, holds, however
some of these models do not satisfy the Hahn-Banach axiom (see the model A/51
described in [3]).
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748 M. Morillon

Remark 9 In ZF, HB does not imply U,, (see [8]) and thus HB does not imply RL.

Consider the following statement, which is intermediate between T, and ACfin.

H (Hall’s marriage theorem, form 107 of [3]): “Let I be an infinite set of finite
sets such that for each finite subset F of I, there is an injective choice function
on F. Then there is an injective choice function on 1.”

The following implications hold:

AC
t
I
T, & (RL+ACH?) & BPI
RLT
RL H
Theo.l l
Cor.2
HB UFlo ACﬁn
i
I
UF ., AC?
/
UF,,
//

The following questions seem to be open:

Question 5 Does HB+-H imply BPI? Does HB-+H+-UFy,, imply BPI?
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