Some consequences of Rado's selection lemma

Marianne Morillon

Received: 21 October 2011 / Accepted: 11 July 2012 / Published online: 24 July 2012 © Springer-Verlag 2012

Abstract We prove in set theory without the Axiom of Choice, that Rado's selection lemma (**RL**) implies the Hahn-Banach axiom. We also prove that **RL** is equivalent to several consequences of the Tychonov theorem for compact Hausdorff spaces: in particular, **RL** implies that every filter on a well orderable set is included in a ultrafilter. In set theory with atoms, the "Multiple Choice" axiom implies **RL**.

Keywords Axiom of choice · Product topology · Compactness · Rado's selection lemma · Hahn-Banach

Mathematics Subject Classification (2000) Primary 03E25 · Secondary 54B10 · 46A22

1 Introduction

We work in set theory without the Axiom of Choice **ZF**. For every set *I* we denote by fin(I) the set of finite subsets of *I*. The following statement was introduced by Rado ([9]):

RL: (*Rado's selection lemma, form 99 of* [3]) "*Given an infinite family of nonempty finite sets* $(X_i)_{i \in I}$, and given any family $(\sigma_J)_{J \in fin(I)}$ such that for every $J \in fin(I)$, $\sigma_J \in \prod_{i \in J} X_i$, there exists $f \in \prod_{i \in I} X_i$ such that for every $J \in fin(I)$, there exists $L \in fin(I)$ satisfying $J \subseteq L$ and $f \upharpoonright J = \sigma_L \upharpoonright J$."

Remark 1 Under the hypotheses of Rado's lemma, the set $X := \prod_{i \in I} X_i$ is non-empty (in **ZF**): indeed, for every $i \in I$, $\sigma_{\{i\}}(i) \in X_i$.

M. Morillon (🖂)

ERMIT, Département de Mathématiques et Informatique, Université de La Réunion, Parc Technologique Universitaire, Bâtiment 2, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde, France e-mail: Marianne.Morillon@univ-reunion.fr

Rado used this statement and the Axiom of Choice (AC) to prove (see ([9]) that two bases of an (infinite) finitary matroid are equipotent. Rado's proof of **RL** relied on **AC** but **RL** is a consequence (see [1,10]) of the following "Tychonov axiom", a consequence of **AC** which does not imply **AC** ([2]):

 \mathbf{T}_2 : "Every family of compact Hausdorff topological spaces has a compact product."

Notice that T_2 has the two following consequences (which are not provable in **ZF**, see [3]):

AC^{fin}: (Finite Axiom of Choice, form 62 of [3]) "Given an infinite family $(X_i)_{i \in I}$ of non-empty finite sets, the set $\prod_{i \in I} X_i$ is non-empty."

AC²: (Axiom of Choice for pairs, form 88 of [3]) "Given an infinite family $(X_i)_{i \in I}$ of two-element sets, the set $\prod_{i \in I} X_i$ is non-empty."

In this paper, we prove (see Sect. 2) that **RL** implies the following statement, which is equivalent (see [6]) to the Hahn-Banach axiom **HB** (form 52 of [3]):

M: (*Measure axiom, form 52A of* [3]) "For every non trivial boolean algebra \mathbb{B} , there exists a measure $m : \mathbb{B} \to [0, 1]$ such that $m(1_{\mathbb{B}}) = 1$."

Here, a *boolean algebra* is a (commutative) unitary ring $(\mathbb{B}, \oplus, \times, 0_{\mathbb{B}}, 1_{\mathbb{B}})$ which is *idempotent* (for every $x \in \mathbb{B}, x.x = x$). If $0_{\mathbb{B}} = 1_{\mathbb{B}}$, then the boolean algebra \mathbb{B} is said to be *trivial*. A (real valued) *measure* on \mathbb{B} is a mapping $m : \mathbb{B} \to [0, 1]$ which is *finitely additive* (for every $x, y \in \mathbb{B}$ satisfying $x.y = 0_{\mathbb{B}}, m(x \oplus y) = m(x) + m(y)$). A measure m on \mathbb{B} is *unitary* if $m(1_{\mathbb{B}}) = 1$. Recall (see [3]) that the Tychonov axiom \mathbf{T}_2 is equivalent to the *Boolean Prime Ideal*:

(BPI, form 14 of [3]): "Every non trivial boolean algebra has a prime ideal."

Remark 2 The statement **HB** is a consequence of T_2 (see [3]) which does not imply T_2 (see [7]).

In Sect. 3, we prove in $\mathbb{Z}F^0$ (set-theory with atoms, a theory weaker than $\mathbb{Z}F$ —see [3, pp. 1–2]—), that the following "Multiple Choice" axiom implies **RL**:

MC: (form 67 of [3]) "Given an infinite family $(X_i)_{i \in I}$ of infinite sets, there exists a family of non-empty finite sets $(F_i)_{i \in I}$ such that for every $i \in I$, $F_i \subseteq X_i$."

In **ZF**, the statement **MC** is equivalent to **AC**, but in **ZF**⁰, **MC** does not imply AC^2 (see [5]). Thus our result implies that every model of ZF^0+MC satisfies **RL**: this enlightens a result due to Howard (see [4]) who built a model of $ZF^0+MC+\neg AC^2$ in which he proved **RL**. However, the following questions seem to stay open:

Question 1 Does **RL** imply T_2 ?

Remark 3 Blass (see [3, Note 33]) noticed that $(\mathbf{RL}+\mathbf{AC^{fin}}) \Leftrightarrow \mathbf{T}_2$, so Question 1 is equivalent to ask whether **RL** implies $\mathbf{AC^{fin}}$.

Even the following Question seems to be open:

Question 2 Does **RL** imply AC^2 ?

We finally provide various equivalents of **RL** in **ZF** (see the recapitulating Diagram in Sect. 4).

2 Rado's selection lemma implies Hahn-Banach

2.1 Boolean algebras

Given a boolean algebra $(\mathbb{B}, \oplus, \times, 0_{\mathbb{B}}, 1_{\mathbb{B}})$, the binary relation \leq on \mathbb{B} defined for every $x, y \in \mathbb{B}$ by the formula " $x \leq y$ if and only if x.y = x" is a partial order; the *poset* (\mathbb{B}, \leq) is a complemented distributive lattice with smallest element $0_{\mathbb{B}}$ and greatest element $1_{\mathbb{B}}$: notice that the *infimum law* \wedge is the multiplicative law of the ring $(\mathbb{B}, \oplus, \times, 0_{\mathbb{B}}, 1_{\mathbb{B}})$, the *supremum* law \vee is defined for every $x, y \in \mathbb{B}$ by $x \vee y :=$ $(x \oplus y) \oplus x.y$, and for every $x \in \mathbb{B}$, the complement of x (i.e., the unique element yof \mathbb{B} satisfying $x \wedge y = 0_{\mathbb{B}}$ and $x \vee y = 1_{\mathbb{B}}$) is $x \oplus 1$.

Remark 4 Conversely, one checks (in **ZF**) that given a complemented distributive lattice $(\mathbb{B}, \lor, \land)$ with first element $0_{\mathbb{B}}$, last element $1_{\mathbb{B}}$ and complementation function .^{*c*}, then one can define the binary law \oplus on \mathbb{B} by $x \oplus y := (x \land y^c) \lor (y \land x^c)$ for every $x, y \in \mathbb{B}$, and the structure $(\mathbb{B}, \oplus, \land, 0_{\mathbb{B}}, 1_{\mathbb{B}})$ is a (commutative) unitary idempotent ring.

Given a boolean algebra \mathbb{B} , an *atom* of \mathbb{B} is a non-null element *a* of \mathbb{B} which is minimal in the *poset* ($\mathbb{B}\setminus\{0_{\mathbb{B}}\}, \leq$): for every $x \in \mathbb{B}$, if $x \leq a$ then ($x = 0_{\mathbb{B}}$ or x = a). If \mathbb{B} is a *finite* boolean algebra, if *A* is the set of atoms of \mathbb{B} , then the canonical mapping $can_{\mathbb{B}} : \mathbb{B} \to \mathcal{P}(A)$ associating to each $x \in \mathbb{B}$ the set of atoms minorating *x* is an isomorphism of boolean algebras.

Recall that a measure (see Sect. 1) on a boolean algebra \mathbb{B} is a mapping $m : \mathbb{B} \to [0, 1]$ satisfying $(x \land y = 0_{\mathbb{B}} \Rightarrow m(x \lor y) = m(x) + m(y))$ for every $x, y \in \mathbb{B}$. Notice that every measure $m : \mathbb{B} \to [0, 1]$ is *ascending*: given $x, y \in \mathbb{B}$ satisfying $x \le y$ then $m(x) \le m(y)$).

For every *finite* set F we denote by |F| the number of elements of F (i.e., the cardinal of the finite set F).

Proposition 1 (uniform probability on a finite boolean algebra) If \mathbb{B} is a finite nontrivial boolean algebra, there exists a unique unitary measure \mathcal{U} on \mathbb{B} associating the same real number to all the atoms of \mathbb{B} . This measure is called the uniform probability on the finite boolean algebra \mathbb{B} .

Proof Let *A* be the (finite) set of atoms of \mathbb{B} . The uniform probability on $\mathcal{P}(A)$ is the unique measure on $\mathcal{P}(A)$ associating to each subset *B* of *A* the (rational) number $\frac{|B|}{|A|}$. This unitary measure can be carried into a unitary measure $\mathcal{U} : \mathbb{B} \to [0, 1]$ using the canonical isomorphism between the boolean algebras \mathbb{B} and $\mathcal{P}(A)$. Notice that for every $x \in \mathbb{B}, \mathcal{U}(x) = \frac{|[a \in A: a \le x]|}{|A|}$.

2.2 RL implies Hahn-Banach

Definition 1 Let $(X_i)_{i \in I}$ an infinite family of non-empty finite sets. Let C be a subset of fin(I). Assume that $(\sigma_F)_{F \in C}$ is a family such that for every $J \in C$, $\sigma_J \in \prod_{i \in J} X_i$. Say that an element $f \in \prod_{i \in I} X_i$ is *Rado-compatible* with $(\sigma_F)_{F \in C}$ if for every $F \in fin(I)$, there exists $G \in C$ such that $F \subseteq G$ and $f \upharpoonright F = \sigma_G \upharpoonright F$.

Rado's lemma says that given an infinite family $(X_i)_{i \in I}$ of non-empty finite sets, and given a family $(\sigma_F)_{F \in fin(I)}$ such that for every $J \in fin(I), \sigma_J \in \prod_{i \in J} X_i$, there exists a mapping $f \in \prod_{i \in I} X_i$ which is Rado-compatible with $(\sigma_F)_{F \in fin(I)}$.

For every $n \in \mathbb{N}$, we denote by D_n the set $\{\frac{k}{2^n} : k \in \mathbb{N}\} \cap [0, 1]$. Given some $n \in \mathbb{N}$, for every $x \in [0, 1]$, there is a unique $k \in \{0, \dots, 2^n\}$ such that $\frac{k}{2^n} \le x < \frac{k+1}{2^n}$; call the number $\frac{k}{2^n}$ the (default) *n*-approximation of x. Notice that $\bigcup_{n \in \mathbb{N}} D_n$ is countable and dense in [0, 1].

Given a subset A of a boolean algebra \mathbb{B} , we denote by $bool_{\mathbb{B}}(A)$ the boolean algebra generated by A in \mathbb{B} .

Theorem 1 RL implies HB.

Proof Let \mathbb{B} be an infinite boolean algebra. For every $n \in \mathbb{N}$, let $\mathbb{B}_n := \mathbb{B} \times \{n\}$, and let $\mathbb{B}_{\omega} := \bigcup_{n \in \mathbb{N}} \mathbb{B}_n$. Thus \mathbb{B}_{ω} is the union of ω pairwise disjoint copies of \mathbb{B} . For every non-empty finite subset F of \mathbb{B}_{ω} , we define σ_F as follows: since F is of the form $\bigcup_{0 \le i \le n} (F_i \times \{i\})$ where $n \in \mathbb{N}$ and F_n is non-empty, consider the uniform probability P_F on $bool_{\mathbb{B}}(\bigcup_{0 \le i \le n} F_i)$, and, for every $(x, i) \in F_i \times \{i\}$, let $\sigma_F((x, i))$ be the i-approximation of $P_F(x)$: thus $|\sigma_F((x, i)) - P_F(x)| \le \frac{1}{2^i}$. For every $F \in fin(\mathbb{B}_{\omega})$, for every $x, y \in \mathbb{B}$ and every $i, j, k, l \in \mathbb{N}$:

- 1. $(1_{\mathbb{B}}, i) \in F \Rightarrow \sigma_F((1_{\mathbb{B}}, i)) = 1 \frac{1}{2^i}$
- 2. $(0_{\mathbb{B}}, i) \in F \Rightarrow \sigma_F((0_{\mathbb{B}}, i)) = 0$
- 3. If $(x, i), (x, j) \in F$ then $|\sigma_F((x, i)) \sigma_F((x, j))| \le \frac{1}{2^i} + \frac{1}{2^j}$
- 4. If $x \wedge y = 0_{\mathbb{B}}$ and if $(x, i), (y, k), (x \vee y, l) \in F$ then: $|\sigma_F((x \vee y, l)) - \sigma_F((x, i)) - \sigma_F((y, k))| \le \frac{1}{2^l} + \frac{1}{2^i} + \frac{1}{2^k}.$

Using **RL**, let $f = (f_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} D_n^{\mathbb{B}_n}$ be a mapping which is Rado-compatible with the family $(\sigma_F)_{F \in fin(\mathbb{B}_\omega)}$. Given $x \in \mathbb{B}$, Condition (3) implies that the sequence $(f_n(x))_{n \in \mathbb{N}}$ is Cauchy: indeed, given some real number $\varepsilon > 0$, let $N \in \mathbb{N}$ such that $\frac{1}{2^N} < \frac{\varepsilon}{2}$; given $p, q \in \mathbb{N}$ such that $p, q \ge N$, let $F := \{(p, x), (q, x)\}$ and let $G \in fin(\mathbb{B}_\omega)$ such that $F \subseteq G$ and $f \upharpoonright F = \sigma_G \upharpoonright F$; then $|f_p(x) - f_q(x)| =$ $|\sigma_G(p, x) - \sigma_G(q, x)| \le \frac{1}{2^p} + \frac{1}{2^q} \le \frac{2}{2^N} < \varepsilon$. Thus the Cauchy sequence $(f_n(x))_{n \in \mathbb{N}}$ of real numbers converges to a real number $m(x) \in [0, 1]$. Conditions (1) and (2) imply that $m(1_{\mathbb{B}}) = 1$ and $m(0_{\mathbb{B}}) = 0$. Condition (4) implies that m is finitely additive: let $x, y \in \mathcal{B}$ such that $x \land y = 0_{\mathbb{B}}$ and let $\varepsilon > 0$. Let $N \in \mathbb{N}$ satisfying $\frac{3}{2^N} < \frac{\varepsilon}{2}$ such that $|m(x) - f_N(x)|, |m(y) - f_N(y)|$ and $|m(x \lor y) - f_N(x \lor y)|$ are all less that $\frac{\varepsilon}{6}$; let $F := \{(x, N), (y, N), (x \lor y, N)\}$; let G be a finite subset of \mathbb{B}_ω such that $F \subseteq G$ and $f \upharpoonright F = \sigma_G \upharpoonright F$; then $|m(x) + m(y) - m(x \lor y)| \le$ $|m(x) - \sigma_G(x, N)| + |m(y) - \sigma_G(y, N)| + |m(x \lor y) - \sigma_G(N, x \lor y)| + |\sigma_G(x, N) + \sigma_G(y, N) - \sigma_G(x \lor y, N)| = |m(x) - f_N(x)| + |m(y) - f_N(y)| + |m(x \lor y) - f_N(x \lor y)|$ $|\sigma_G(x, N) + \sigma_G(y, N) - \sigma_G(x \lor y, N)| \le \frac{3}{2^N} + 3\frac{\varepsilon}{6} \le \varepsilon$ (using 4); this is true for every $\varepsilon > 0$ so $|m(x) + m(y) - m(x \lor y)| = 0$. It follows that the mapping $m : \mathbb{B} \to [0, 1]$ is a unitary measure on \mathbb{B} .

3 In ZF⁰, MC implies RL

3.1 Rado-compatibility and compactness

Remark 5 Let $(X_i)_{i \in I}$ an infinite family of non-empty finite sets. Let C be a *cofinal* subset of the *poset* $(fin(I), \subseteq)$. If $f \in \prod_{i \in I} X_i$ is Rado-compatible with $(\sigma_F)_{F \in C}$, then f is also Rado-compatible with $(\sigma_F)_{F \in fin(I)}$.

Given a family $(X_i)_{i \in I}$ of topological spaces, and denoting by X the product set $\prod_{i \in I} X_i$, for every nonempty subset J of I we denote by $p_J : X \to \prod_{i \in J} X_i$ the canonical mapping $(x_i)_{i \in I} \mapsto (x_i)_{i \in J}$. The *product topology* on the set $X := \prod_{i \in I} X_i$ is the coarsest topology for which all canonical projections $p_{\{i\}} : X \to X_i$ are continuous. Let \mathcal{L}_X be the lattice generated by closed subsets of the form $p_{\{i\}}^{-1}[F]$ where $i \in I$ and F is a closed subset of X_i : elements of \mathcal{L}_X are called *elementary closed* subsets of X. Since every closed subset of X is the intersection of elements of \mathcal{L}_X , the product space X is compact if and only if every filter of the lattice \mathcal{L}_X has a non-empty intersection. More generally, the following (easy) Proposition holds:

Proposition 2 Let X be a topological space. Let C be a family of closed subsets of X, such that every closed subset of X is an intersection of elements of C. If every sub-family of C satisfying the finite intersection property has a non-empty intersection, then X is compact.

Given a set \mathcal{F} of non-empty subsets of a set X, we say that \mathcal{F} is *inf-directed* if for every $F_1, \ldots, F_n \in \mathcal{F}$, there exists $F \in \mathcal{F}$ such that $F \subseteq \bigcap_{1 \le i \le n} F_i$.

Theorem 2 Consider an infinite family $(X_i)_{i \in I}$ of finite sets and assume that C is a cofinal subset of fin(I), and that $(\sigma_F)_{F \in C}$ is a family such that for every $F \in C$, $\sigma_F \in \prod_{i \in F} X_i$. For every finite subset J of I, consider the following set:

$$F_J^{\mathcal{C}} := \left\{ \sigma \in \prod_{i \in J} X_i : \forall K \in fin(I) \exists L \in \mathcal{C} \ K \cup J \subseteq L \ and \ \sigma_L \upharpoonright J = \sigma \right\}$$

- 1. For each $J \in fin(I)$, $F_I^{\mathcal{C}}$ is non-empty;
- 2. If C admits a well order \leq , then there is a mapping associating to each $J \in fin(I)$ and each non-empty subset A of F_J^C an element z_J^A of A: such a choice function is definable from $(\sigma_F)_{F \in C}$ and the well order \leq (and in particular the product $X := \prod_{i \in I} X_i$ is non-empty);
- 3. If $X \neq \emptyset$, then for every $J \in fin(I)$, the (closed) subset $\tilde{F}_J^C := F_J^C \times \prod_{i \in I \setminus J} X_i$ of X is non-empty, and for every finite subsets J, K of I satisfying $J \subseteq K$, then $\tilde{F}_K^C \subseteq \tilde{F}_J^C$; in particular, the family of non-empty sets $\{\tilde{F}_J^C : J \in fin(I)\}$ is inf-directed: in this case we denote by \mathcal{F}^C the filter of the lattice \mathcal{L}_X generated by this family;

- 4. Given an element f of X, the following statements are equivalent:
 (a) f is Rado-compatible with (σ_J)_{J∈C};
 (b) f ∈ ∩_{J∈C} F_J^C;
- 5. If C admits a well order \leq then there exists $f \in X$ which is Rado-compatible with $(\sigma_F)_{F \in C}$ and which is definable from \leq and $(\sigma_F)_{F \in C}$.

Proof (1) Given some $J \in fin(I)$, the set $F_J^{\mathcal{C}}$ is non-empty: seeking for a contradiction, assume that for each $\sigma \in \prod_{i \in J} X_i$, there exists $K_{\sigma} \in fin(I)$ such that for every $L \in \mathcal{C}, (K_{\sigma} \cup J \subseteq L \Rightarrow \sigma_L \upharpoonright J \neq \sigma)$; then consider the *finite* set $K := \bigcup_{\sigma \in \prod_{i \in J} X_i} K_{\sigma}$; since \mathcal{C} is cofinal in fin(I), consider some element $L \in \mathcal{C}$ such that $(J \cup K) \subseteq L$; then for every $\sigma \in \prod_{i \in J} X_i, \sigma_L \upharpoonright J \neq \sigma$: since $\sigma_L \upharpoonright J \in \prod_{i \in J} X_i$ this is contradictory!

(2) Assume that C is well-orderable. Given $J \in fin(I)$ and some non-empty subset A of F_J^C , let C be the first element of C (*w.r.t.* this well-order of C) such that $z_J^A := \sigma_C \upharpoonright J \in A$: then $(z_J^A)_{J \in fin(I), \emptyset \neq A \subseteq F_J^C}$ is a choice function satisfying the required conditions.

(3) and (4): the proofs are easy.

(5) Since C is well-orderable, X is non-empty: we shall show that there is an element of $\cap \mathcal{F}^{C}$ which is definable from $(\sigma_{F})_{F \in C}$ and the well-order \leq on C. Let $J \in fin(I)$. Since J is finite, $\prod_{i \in J} X_i$ is compact thus the set $A_J := \bigcap_{Z \in \mathcal{F}^{C}} p_J[Z]$ is non-empty. We shall define by recursion on the well order \leq a family $(\tau_J)_{J \in C}$ of pairwise compatible finite functions, such that for every $J \in C$, $\tau_J \in A_J$: it will follow that $\tau := \bigcup_{J \in C} \tau_J$ is a mapping defined on I and that $\tau \in \cap \mathcal{F}^{C}$. Given $J \in C$, τ_J is defined from $(\tau_F)_{F \prec J}$ as follows: consider the filter \mathcal{G}_J of \mathcal{L}_X generated by \mathcal{F}^{C} and the elementary closed sets $p_F^{-1}[\{\tau_F\}]$ for $F \prec J$; then $A := \bigcap_{Z \in \mathcal{G}_J} p_J[Z]$ is a non-empty subset of A_J ; we define $\tau_J := z_J^A$ (see point (2)). The finite functions τ_J are pairwise compatible because given distinct elements $J, K \in C$ such that $J \preceq K, \tau_K \in p_K[\{f \in X : f \mid J = \tau_J\}]$. Then $\tau := \bigcup_{J \in C} \tau_J \in \cap \mathcal{F}^{C}$.

3.2 **RL** implies a weak form of T_2

Consider the following consequence of T_2 :

RL₀: "Given a set I and a non-empty inf-directed set \mathcal{F} of non-empty elementary closed subsets of $\{0, 1\}^I$, if \mathcal{F} has a choice function then $\cap \mathcal{F}$ is non-empty."

Proposition 3 $RL \Rightarrow RL_0$.

Proof Let *I* be an infinite set. Let *X* be the topological product $\{0, 1\}^I$. Let \mathcal{F} be a non-empty inf-directed set of non-empty elementary closed subsets of *X*, having a choice function $(\tau_Z)_{Z \in \mathcal{F}}$. Without loss of generality, we may assume that $\{0, 1\}^I \in \mathcal{F}$. Since \mathcal{F} is inf-directed, for every finite subset *F* of *I*, the set of subsets *A* of $\{0, 1\}^F$ such that $A \times \{0, 1\}^{I\setminus F} \in \mathcal{F}$ has a smallest element, that we denote by A_F . For every $F \in fin(I)$, let $\sigma_F := \tau_{A_F \times \{0, 1\}^{I\setminus F}}$. Using **RL**, let $f \in \{0, 1\}^I$ which is Rado-compatible with $(\sigma_F)_{F \in fin(I)}$. Let us show that $f \in \cap \mathcal{F}$. Given some $Z \in \mathcal{F}$, let $F \in fin(I)$ and let $A \subseteq \{0, 1\}^F$ such that $A \times \{0, 1\}^{I\setminus F} = Z$; since *f* is Rado-compatible with $(\sigma_F)_{F \in fin(I)}$, let $G \in fin(I)$ such that $F \subseteq G$ and $f \upharpoonright F = (\sigma_G) \upharpoonright F$; then $A_G \subseteq A_F \times \{0, 1\}^{G\setminus F}$ thus $(\sigma_G) \upharpoonright F \in A_F \subseteq A$ so $f \upharpoonright F \in A$ i.e., $f \in Z$.

3.3 A statement which is intermediate between T_2 and RL

It is known (see [3]) that \mathbf{T}_2 is equivalent to the fact that for every set *I*, the product space $\{0, 1\}^I$ is compact, or, equivalently, to the following fact: "*Given a set I and a non-empty set* \mathcal{F} of non-empty elementary closed subsets of $\{0, 1\}^I$ satisfying the finite intersection property, $\cap \mathcal{F}$ is non-empty." Consider now the following statement:

RLT: "Given a set I and a non-empty set \mathcal{F} of non-empty elementary closed subsets of $\{0, 1\}^I$ satisfying the finite intersection property, if \mathcal{F} has a choice function then $\cap \mathcal{F}$ is non-empty."

Then $\mathbf{T}_2 \Rightarrow \mathbf{RLT} \Rightarrow \mathbf{RL}_0$.

Question 3 Is **RLT** equivalent to T_2 or to **RL**₀?

3.4 \mathbf{RL}_0 implies \mathbf{RL} , and in \mathbf{ZF}_0 , \mathbf{MC} implies \mathbf{RL}

In this Section, we shall show that conversely, \mathbf{RL}_0 implies \mathbf{RL} ; the same idea allows to prove (in \mathbf{ZF}^0) that MC implies \mathbf{RL} .

Corollary 1 *1*. **RL**⁰ \Leftrightarrow **RL**. 2. In **ZF**⁰, **MC** implies **RL**.

Proof The implication **RL** ⇒ **RL**₀ has been proved in Proposition 3. We now prove **RL**₀ ⇒ **RL** and **MC** ⇒ **RL**: in both cases, we consider an infinite family $(X_i)_{i \in I}$ of non-empty finite sets, and we assume that for every finite subset *J* of *I*, $\sigma_J \in \prod_{i \in J} X_i$. In particular, $X := \prod_{i \in I} X_i$ is non-empty: let $a = (a_i)_{i \in I} \in X$. As in Theorem 2, for each $J \in fin(I)$ we define the non-empty set $F_J := \{\sigma \in \prod_{i \in J} X_i : \forall K \in fin(I) \exists L \in fin(I) (K \cup J \subseteq L and <math>\sigma_L \upharpoonright J = \sigma)\}$, and the closed subset $\tilde{F}_J :=$ $F_J \times \prod_{i \in I \setminus J} X_i$ of *X*. The family $(\tilde{F}_J)_{J \in fin(I)}$ of non-empty elementary closed subsets of $\{0, 1\}^I$ is inf-directed; moreover, $(\tilde{F}_J)_{J \in fin(I)}$ has a choice function: indeed for every $J \in fin(I), \sigma_J \frown (a_i)_{i \in I \setminus J} \in \tilde{F}_J$.

 $\mathbf{RL}_0 \Rightarrow \mathbf{RL}$: using \mathbf{RL}_0 , consider some $f \in \bigcap_{J \in fin(I)} \tilde{F}_J$. Using Theorem 2–(4), the mapping f is Rado-compatible with $(\sigma_J)_{J \in fin(I)}$.

MC \Rightarrow **RL**: using **MC**, consider an ordinal α and a family $(I_{\lambda})_{\lambda \in \alpha}$ of non-empty pairwise disjoint finite sets such that $I = \bigcup_{\lambda \in \alpha} I_{\lambda}$. Let C be the set of elements $F \in fin(I)$ of the form $\bigcup_{t \in Z} I_t$ where $Z \in fin(\alpha)$: the subset C of fin(I) is cofinal in the *poset* $(fin(I), \subseteq)$, and C is well-orderable (because there is a one-to-one mapping from C into the well-orderable set $fin(\alpha)$). Thus Theorem 2–(5) implies that there exists $f \in \prod_{i \in I} X_i$ which is Rado-compatible with $(\sigma_J)_{J \in fin(I)}$ since C is cofinal in $(fin(I), \subseteq)$ (see Remark 5).

4 Some equivalent forms of RL

Given set *I*, consider the following statement:

 $AC^{fin(I)}$: "Every infinite family of finite non-empty subsets of I has a non-empty product."

Every mapping ϕ associating to each non-empty finite subset *F* of *I*, an element $\phi(F)$ of *F* is called a *witness of* **AC**^{*fin*(*I*)}.

Remark 6 Given a set *I*, if $AC^{fin(I)}$ holds, then there is a mapping associating to each $F \in fin(I)$ a linear order \leq_F on *F* (and thus also a linear order on $\{0, 1\}^F$).

We shall now show that the two following consequences of T_2 (or the equivalent statement **BPI**) are equivalent to **RL**:

RL₁: "For every set I satisfying $AC^{fin(I)}$, the topological product space $\{0, 1\}^{I}$ is compact."

RL₂: "Given a boolean algebra \mathbb{B} satisfying **AC**^{fin(\mathbb{B})}, every proper filter of \mathbb{B} is included in a ultrafilter."

Proposition 4 (support of an elementary closed subset of a product space) Let I be an infinite set. For every non-empty elementary closed subset Z of $\{0, 1\}^I$, there exists a smallest finite subset S of I, such that Z is of the form $A \times \{0, 1\}^{I \setminus S}$ where $A \subseteq \{0, 1\}^S$: we call this set S the support of Z, and we denote it by supp(Z).

Proof Let Z be a non-empty elementary closed subset of $\{0, 1\}^I$. For every $f \in \{0, 1\}^I$, every $i_0 \in I$ and every $\varepsilon \in \{0, 1\}$, denote by $f_{i_0 \to \varepsilon}$ the mapping $g : I \to \{0, 1\}$ such that $g(i_0) = \varepsilon$ and g(i) = f(i) for every $i \in I \setminus \{i_0\}$. Let $S := \{i \in I : \exists f \in Z \ (f_{i\to 0} \notin Z \text{ or } f_{i\to 1} \notin Z)\}$. Then S is the smallest subset T of I satisfying $Z = p_T[Z] \times \{0, 1\}^{I\setminus T}$ so S is finite.

Theorem 3 *The following statements are equivalent:* \mathbf{RL} *,* \mathbf{RL}_1 *and* \mathbf{RL}_2 *.*

Proof The equivalence $\mathbf{RL}_0 \Leftrightarrow \mathbf{RL}$ has been proved in Sect. 3.4.

RL ⇒ **RL**₁. Let *I* be an infinite set satisfying $\mathbf{AC}^{fin(I)}$: then one can choose some linear order on every $F \in fin(I)$. Let \mathcal{L}_X be the set of elementary closed subsets of $X := \{0, 1\}^I$ (i.e., sets of the form $A \times \prod_{i \in I \setminus F} X_i$ where $F \in fin(I)$ and $A \subseteq \{0, 1\}^F$). Let \mathcal{F} be a filter of the lattice \mathcal{L}_X : let us show that $\cap \mathcal{F}$ is non-empty. Using $\mathbf{AC}^{fin(I)}$, for every $F \in fin(I)$, choose some element σ_F in the non-empty subset $\bigcap_{Z \in \mathcal{F}} p_F[Z]$ of $\{0, 1\}^F$. Using **RL**, consider some $f \in X$ which is Rado-compatible with $(\sigma_F)_{F \in fin(I)}$; then for every $F \in fin(I)$, there exists $G \in fin(I)$ such that $F \subseteq G$ and $f \upharpoonright F = \sigma_G \upharpoonright F$; this implies that $f \upharpoonright F = p_F(\sigma_G) \in \bigcap_{Z \in \mathcal{F}} p_F[p_G[Z]] = \bigcap_{Z \in \mathcal{F}} p_F[Z]$, so $f \in \cap \mathcal{F}$.

RL₁ \Rightarrow **RL**. Let $(X_i)_{i \in I}$ be an infinite family of finite sets and assume that $(\sigma_F)_{F \in fin(I)}$ is a family such that for every $F \in fin(I)$, $\sigma_F \in \prod_{i \in F} X_i$. Then $(\sigma_F)_{F \in fin(I)}$ is a witness of **AC**^{fin(I)}, so by **RL**₁, the (non-empty) space $X := \prod_{i \in I} X_i$ is compact so $\cap_{J \in fin(I)} \tilde{F}_J$ is non-empty—see the notation used in Theorem 2–(3)—; now any element f of $\cap_{J \in fin(I)} \tilde{F}_J$ is Rado-compatible with $(\sigma_J)_{J \in fin(I)}$ —see Theorem 2–(4)—.

RL₁ ⇒ **RL**₂. Let \mathbb{B} be a boolean algebra satisfying **AC**^{*fin*(\mathbb{B})} and let *G* be a proper filter of \mathbb{B} . For every elements *x*, *y* ∈ \mathbb{B} , consider the following closed subsets of *X* := {0, 1}^{\mathbb{B}}:

 $F_x := \{h \in X : (x \in \mathcal{G} \Rightarrow h(x) = 1)\}$ $G_{x,y} := \{h \in X : (x \land y = 0_{\mathbb{B}} \Rightarrow h(x \lor y) = \max(h(x), h(y)))\}$ $H_{x,y} := \{h \in X : h(x \land y) = \min(h(x), h(y))\}$

The following set of closed subsets of *X* satisfies the finite intersection property: $\mathcal{F} := \{F_x : x \in \mathbb{B}\} \cup \{G_{x,y} : x, y \in \mathbb{B}\} \cup \{H_{x,y} : x, y \in \mathbb{B}\}; \text{ using } \mathbf{RL}_1, X \text{ is compact}$ so there exists some element $h \in \cap \mathcal{F}$: such an element *h* is a boolean morphism $h : \mathbb{B} \to \{0, 1\}$ and $\mathcal{U} := h^{-1}(\{1\})$ is a ultrafilter of \mathbb{B} including \mathcal{G} .

RL₂ ⇒ **RL**₁. Given an infinite set *I* satisfying **AC**^{*fin*(*I*)}, consider the topological product space *X* := {0, 1}^{*I*}. Denote by B the set of elementary closed subsets of *X*: B is a boolean sub-algebra of $\mathcal{P}(I) = \{0, 1\}^I$. Using **AC**^{*fin*(*I*)}, **AC**^{*fin*(B)} also holds: indeed, given a non-empty finite subset *F* of B, then $Z := \bigcup_{x \in F} supp(x)$ is a finite subset of *I*; using **AC**^{*fin*(*I*)}, we choose a linear order on {0, 1}^{*Z*}, which implies a linear order on *F*, which allows to choose an element in *F*. Assume that \mathcal{F} is a family of elementary closed subsets of *X* satisfying the finite intersection property; using **RL**₂, consider a ultrafilter \mathcal{U} of B including \mathcal{F} ; then for every *i* ∈ *I*, the projection of \mathcal{U} on the *i*th factor is a singleton { ε_i }; and $\varepsilon := (\varepsilon_i)_{i \in I}$ belongs to $\cap \mathcal{U} \subseteq \cap \mathcal{F}$.

Remark 7 The equivalence $\mathbf{RL} \Leftrightarrow \mathbf{RL}_1$ is a slight generalization of Blass's Remark about the equivalence $\mathbf{T}_2 \Leftrightarrow (\mathbf{RL} + \mathbf{AC^{fin}})$ (see Remark 3).

Consider the following statements:

UF_{lo}: "Every proper filter on a linearly orderable boolean algebra is included in a ultrafilter."

UFwo: "Every filter on a well-orderable set is included in a ultrafilter."

 \mathbf{UF}_{ω} : "Every filter on ω is included in a ultrafilter."

 \mathbf{U}_{ω} : "There exists a non-trivial ultrafilter on ω ."

Corollary 2 RL \Rightarrow UF₁₀ \Rightarrow UF_{wo} \Rightarrow UF_{ω} \Rightarrow U_{ω}.

Proof $\mathbf{RL} \Rightarrow \mathbf{UF}_{\mathbf{lo}}$: Given a boolean algebra \mathbb{B} which is linearly orderable, then $\mathbf{AC}^{fin(\mathbb{B})}$ holds thus \mathbf{RL}_2 implies that every proper filter of \mathbb{B} is contained in a ultra-filter.

 $\mathbf{UF_{lo}} \Rightarrow \mathbf{UF_{wo}}$: Given a well-ordered set (X, \preceq) , the set $\mathcal{P}(X) = \{0, 1\}^X$ is linearly orderable (with the lexicographic order) thus $\mathbf{UF_{lo}}$ implies that every filter of the linearly orderable boolean algebra $\mathcal{P}(X)$ is included in a ultrafilter. The implications $\mathbf{UF_{wo}} \Rightarrow \mathbf{UF}_{\omega} \Rightarrow \mathbf{U}_{\omega}$ are trivial.

Question 4 Does UF₁₀ imply RL? Does UF_{w0} imply UF₁₀ or RL?

Remark 8 In $\mathbb{Z}\mathbf{F}^0$ (set theory with atoms described in [3,5]), $\mathbf{U}\mathbf{F}_{wo}$ does not imply **HB** (and thus does not imply **RL**): in a Fraenkel-Mostowski model of $\mathbb{Z}\mathbf{F}^0$, for every well-orderable set *X*, the set $\mathcal{P}(X)$ is also well-orderable thus $\mathbf{U}\mathbf{F}_{wo}$ holds, however some of these models do not satisfy the Hahn-Banach axiom (see the model $\mathcal{N}51$ described in [3]).

Remark 9 In **ZF**, **HB** does not imply U_{ω} (see [8]) and thus **HB** does not imply **RL**.

Consider the following statement, which is intermediate between T_2 and AC^{fin} :

H (Hall's marriage theorem, form 107 of [3]): "Let I be an infinite set of finite sets such that for each finite subset F of I, there is an injective choice function on F. Then there is an injective choice function on I."

The following implications hold:

The following questions seem to be open:

Question 5 Does HB+H imply BPI? Does HB+H+UF_{wo} imply BPI?

References

- 1. Gottschalk, W.H.: Choice functions and Tychonoff's theorem. Proc. Am. Math. Soc. 2, 172 (1951)
- Halpern, J.D., Lévy, A.: The Boolean prime ideal theorem does not imply the axiom of choice. In: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 83–134. American Mathematical Society, Providence (1971)
- Howard, P., Rubin, J.E.: Consequences of the Axiom of Choice. Vol. 59, American Mathematical Society, Providence (1998)

- Howard, P.E.: Rado's selection lemma does not imply the Boolean prime ideal theorem. Z. Math. Logik Grundlag. Math. 30(2), 129–132 (1984)
- 5. Jech, T.J.: The Axiom of Choice. North-Holland Publishing Co., Amsterdam (1973)
- Luxemburg, W.A.J.: Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem. In: Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), pp. 123–137. Holt, Rinehart and Winston, New York (1969)
- Pincus, D. The strength of the Hahn-Banach theorem. In: Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C., 1972). Lecture Notes in Math., Vol. 369, pp. 203–248. Springer, Berlin (1974)
- 8. Pincus, D., Solovay, R.M.: Definability of measures and ultrafilters. J. Symb. Log. 42, 179–190 (1977)
- 9. Rado, R.: Axiomatic treatment of rank in infinite sets. Can. J. Math. 1, 337-343 (1949)
- Rice, N.M.: A general selection principle, with applications in analysis and algebra. Can. Math. Bull. 11, 573–584 (1968)