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Abstract Along the same line as that in Ono (Ann Pure Appl Logic 161:246–250,
2009), a proof-theoretic approach to Glivenko theorems is developed here for substruc-
tural predicate logics relative not only to classical predicate logic but also to arbitrary
involutive substructural predicate logics over intuitionistic linear predicate logic with-
out exponentials QFLe. It is shown that there exists the weakest logic over QFLe
among substructural predicate logics for which the Glivenko theorem holds. Negative
translations of substructural predicate logics are studied by using the same approach.
First, a negative translation, called extended Kuroda translation is introduced. Then a
translation result of an arbitrary involutive substructural predicate logics over QFLe is
shown, and the existence of the weakest logic is proved among such logics for which
the extended Kuroda translation works. They are obtained by a slight modification
of the proof of the Glivenko theorem. Relations of our extended Kuroda translation
with other standard negative translations will be discussed. Lastly, algebraic aspects
of these results will be mentioned briefly. In this way, a clear and comprehensive
understanding of Glivenko theorems and negative translations will be obtained from
a substructural viewpoint.

Authors would like to thank anonymous referees for their useful comments. Also the first author would
like to thank Prof. E. Turunen for accepting him at TUT-Finland in 2010 and for introducing him to
problems on Glivenko theorem.

H. Farahani
Department of Mathematics, Shahid Beheshti University, G.C., Evin, Tehran, Iran
e-mail: hadi.g.farahani@gmail.com

H. Ono (B)
Japan Advanced Institute of Science and Technology, Ishikawa, Japan
e-mail: ono@jaist.ac.jp

123



696 H. Farahani, H. Ono

Keywords Glivenko’s theorem · Negative translations · Double negation shift ·
Substructural predicate logics · Proof-theoretic methods

Mathematics Subject Classification 03B47 · 03F03

1 Introduction

In [10], the second author has developed a proof-theoretic approach to Glivenko the-
orems for substructural propositional logics and gave alternative proofs of results in
[6]. We will discuss in this paper Glivenko theorems and negative translations in
substructural predicate logics along the same line as [10].

Results on Glivenko theorems for substructural propositional logics obtained in [6]
and [10] can be naturally extended to those for substructural predicate logics. It is
shown that the following double negation shift scheme (DNS) plays an essential role:
∀x¬¬ϕ(x) → ¬¬∀xϕ(x). Among others, the Glivenko theorem relative to classical
predicate logic is shown for a logic G�(QCl), which has (DNS) as an axiom scheme
and which is an extension of intuitionistic linear predicate logic without exponentials
QFLe. Moreover, this is the weakest logic over QFLe among substructural predicate
logics for which the Glivenko theorem holds. A classical result on the Glivenko the-
orem for predicate logics over intuitionistic logic relative to classical predicate logic
by Umezawa [15] and Gabbay [3] follows from this.

Using the same proof-theoretic approach, we study negative translations of sub-
structural predicate logics in the second part. After introducing a particular negative
translation, called extended Kuroda translation, we show that a formula is provable
in classical predicate logic iff its translation is provable in an extension N�(QCl) of
QFLe. The logic N�(QCl) is properly weaker than G�(QCl), and moreover N�(QCl)
is the weakest logic among such logics for which the extended Kuroda translation
works. It is verified easily that some other standard negative translations including
Kolmogorov translation and Gödel-Gentzen translation are equivalent to extended
Kuroda translation over QFLe. Therefore we can give a unified view of Glivenko
theorems and negative translations through a substructural perspective. Throughout
the present paper, we assume familiarities with the arguments and techniques in [10].

To begin with, we give a brief historical sketch of Glivenko theorems for predicate
logics over intuitionistic logic relative to classical predicate logic. We say the Glivenko
theorem holds for a logic L relative to another logic K, when

for any formula α, α is provable in K iff ¬¬α is provable in L.

In his book [8], Kleene discussed the Glivenko theorem for intuitionistic logic relative
to classical logic. While the Glivenko theorem holds between them for the proposi-
tional logics, Kleene pointed out that the theorem does not hold for the predicate case,
as the following formula

(K) ¬¬∀x(ϕ(x) ∨ ¬ϕ(x))

is not provable in intuitionistic predicate logic. The axiom scheme (K) is shown to be
equivalent over intuitionistic predicate logic to the following (see e.g. [14]), which is
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Glivenko theorems and negative translations 697

sometimes called the Kuroda’s formula (see [9]), or the double negation shift scheme
(DNS):

(DNS) ∀x¬¬ϕ(x) → ¬¬∀xϕ(x).

In the same book, Kleene pointed out the following fact.

Proposition 1 For all formulas α not containing any universal quantifier, α is prov-
able in classical predicate logic iff ¬¬α is provable in intuitionistic predicate logic.

Later, Umezawa [14] and Gabbay [3] showed that in fact the Glivenko theorem holds
in the following form. See also [4].

Proposition 2 For all formulas α, α is provable in classical predicate logic QCl iff
¬¬α is provable in the predicate logic obtained from intuitionistic predicate logic
QInt by adding the axiom scheme (DN S).

Suppose that the Glivenko theorem holds for an intermediate predicate logic L
(i.e. a predicate logic between intuitionistic logic and classical logic) relative to
classical predicate logic. Then, clearly the scheme (K) must be provable in L since
∀x(ϕ(x)∨¬ϕ(x)) is provable in classical logic. Therefore, Proposition 2 implies that
the logic QInt with (DNS) is the weakest intermediate logic for which the Glivenko
theorem holds relative to classical predicate logic. Our first step in generalizing the
above proposition is to see what will happen if we consider also substructural predicate
logics.

2 Glivenko theorems relative to classical logic

For this purpose, we will introduce here key results on Glivenko theorems for substruc-
tural propositional logics shown in [10]. Let FLe be the sequent calculus obtained from
the sequent calculus LJ for intuitionistic propositional logic by deleting both weaken-
ing rules and contraction rule, and then adding rules for the fusion (or multiplicative
conjunction) ·. Define FLe

† is the sequent calculus obtained from FLe by adding the
following (A1), (A2), (AC) and (AW) as axiom schemes (i.e., initial sequents).

(A1) ¬(α → β) ⇒ ¬(¬¬α → ¬¬β),
(A2) ¬(α ∧ β) ⇒ ¬(¬¬α ∧ ¬¬β),
(AC) ¬(α · α) ⇒ ¬α,
(AW) ¬β ⇒ ¬(α · β).

Similarly to [10], we use the word ”logics” in an ambiguous way, sometimes denoting
calculi and sometimes sets of formulas, since only the set of formulas provable in a
given calculus does matter to Glivenko’s theorem. Now, we can show the following
(see Theorems 3 and 5 in [10]).

Proposition 3 The Glivenko theorem holds for FLe
† relative to classical proposi-

tional logic Cl. In fact, FLe
† is the weakest substructural propositional logic over

FLe for which the Glivenko theorem holds relative to Cl.
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698 H. Farahani, H. Ono

In Theorem 1 below, we show an extension of Proposition 3. In the following, the
logic obtained from a given logic L by adding axiom schemes ϕ1, . . . , ϕm is denoted
by L[ϕ1, . . . , ϕm]. As an axiom scheme, we may take either a formula scheme (like
α → β) or an equivalent sequent scheme (like α ⇒ β) as long as it does not cause
any confusion.

Now define QFLe to be the minimum predicate extension of FLe. Also define
QFLe

† and QFLe
‡ as follows.

QFLe
† = QFLe[(A1), (A2), (AC), (AW)],

QFLe
‡ = QFLe[(A1), (A2), (AC), (AW), (DNS)].

To be precise, we give here the sequent calculus QFLe explicitly. It consists of three
initial sequents below and rules in the following.

α ⇒ α ⇒ 1 0 ⇒

It has weakening rules for constants 1 and 0, exchange rule and cut;

� ⇒ γ

1, � ⇒ γ
(1 weakening)

� ⇒
� ⇒ 0

(0 weakening)

�, α, β,� ⇒ γ

�, β, α,� ⇒ γ
(exchange)

� ⇒ α α,� ⇒ γ

�,� ⇒ γ
(cut)

and also rules for logical connectives and quantifiers;

α, � ⇒ γ β, � ⇒ γ

α ∨ β, � ⇒ γ
(left∨)

� ⇒ α

� ⇒ α ∨ β
(right ∨ 1)

� ⇒ β

� ⇒ α ∨ β
(right ∨ 2)

� ⇒ α� ⇒ β

� ⇒ α ∧ β
(right∧)

α, � ⇒ γ

α ∧ β, � ⇒ γ
(left ∧ 1)

β, � ⇒ γ

α ∧ β, � ⇒ γ
(left ∧ 2)

α, β, � ⇒ γ

α · β, � ⇒ γ
(left·) � ⇒ α � ⇒ β

�,� ⇒ α · β
(right·)

� ⇒ α β,� ⇒ γ

α → β, �,� ⇒ γ
(left →)

α, � ⇒ β

� ⇒ α → β
(right →)

ϕ(z), � ⇒ �

∃xϕ(x), � ⇒ �
(left∃)

� ⇒ �,ϕ(t)

� ⇒ �, ∃xϕ(x)
(right∃)

ϕ(t), � ⇒ �

∀xϕ(x), � ⇒ �
(left∀)

� ⇒ �,ϕ(z)

� ⇒ �,∀xϕ(x)
(right∀)

In (right ∃) and (left ∀), t is an arbitrary term. Also in (left ∃) and (right ∀), z is any
variable which has no free occurrences in the lower sequent (eigenvariable condition)
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Glivenko theorems and negative translations 699

(For more information on sequent calculi, see e.g. [13]). The constant 0 is used to
define the negation ¬α of a formula α by α → 0. The following are derived rules
for ¬.

� ⇒ α

¬α, � ⇒ (left¬)
α, � ⇒
� ⇒ ¬α

(right¬)

The following Lemma is an extension of Proposition 2 of [10] to predicate case,
which is essential to the proof of Proposition 3.

Lemma 1 For any sequent � ⇒ �, if it is provable in the sequent calculus LK for
classical predicate logic then the sequent ¬�,� ⇒ is provable in QFLe

‡.

Proof This is shown by using induction on the height of the proof of � ⇒ �.
In addition to the proof of Proposition 2 in [10], we need to consider cases where the
last inference I of the proof � ⇒ � is one of rules for quantifiers. Clearly our Lemma
holds when it is either of left rules for quantifiers. Now consider the case where I is
(right ∀):

� ⇒ �,ϕ(z)

� ⇒ �,∀xϕ(x)

By the hypothesis of induction, ¬ϕ(z),¬�,� ⇒ is provable in QFLe
‡. Using

(right ¬) and then (right ∀), ¬�,� ⇒ ∀x¬¬ϕ(x) is provable. Since (DNS) is
an axiom scheme of QFLe

‡, we can show that ¬�,� ⇒ ¬¬∀xϕ(x) and hence
¬∀xϕ(x),¬�,� ⇒ are also provable in QFLe

‡. Thus our Lemma holds for this
case. The case where I is (right ∃) can be treated in the same way. Note that the
sequent ∃x¬¬ϕ(x) ⇒ ¬¬∃xϕ(x) is provable in QFLe. �	
Theorem 1 (1) The Glivenko theorem holds for QFLe

‡ relative to the classical
predicate logic QCl. In fact, QFLe

‡ is the weakest substructural predicate logic
over QFLe for which the Glivenko theorem holds relative to QCl.

(2) For all formulas α not containing any universal quantifier, α is provable in clas-
sical predicate logic QCl iff ¬¬α is provable in QFLe

†.

Proof The first statement of our Theorem follows immediately from Lemma 1. To
show that QFLe

‡ is the weakest among logics over QFLe for which the Glivenko
theorem holds relative to QCl, it is enough to show that (DNS) must hold always in
such logics (see also the proof of Theorem5 in [10]). So suppose that the Glivenko
theorem holds for L relative to QCl where L is a predicate logic over QFLe. As
∀x¬¬ϕ(x) → ∀xϕ(x) is provable in QCl, ¬¬(∀x¬¬ϕ(x) → ∀xϕ(x)) is provable
in L. Since in general ¬¬(α → β) ⇒ α → ¬¬β is provable in QFLe and hence
in L, (DNS) is provable in L. The second part of our Theorem is shown in almost
the same way as the first part, simply by neglecting the case analysis for universal
quantifiers. �	

We have not mentioned the logical connective fusion · explicitly in the above. But
the presence of fusion does not cause any problem, since ¬(α · β) ⇒ ¬(¬¬α · ¬¬β)
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is provable in QFLe, as shown in [10]. We note also that α · β is equivalent to α ∧ β

for all α and β in every logic over QFLeci.
As the scheme (A2) is equivalent to the scheme: ¬¬α ∧ ¬¬β ⇒ ¬¬(α ∧ β),

the scheme (DNS) can be regarded as an infinite analogue of (A2). In defining the
logic QFLe

‡ we took (DNS) instead of (K). The scheme (K) is provable in QFLe
‡.

Conversely, (DNS) follows from (K) in QFLew, i.e. QFLe with weakening rules, but
it is unlikely that (DNS) is derived from (K) in QFLe

† without using weakening rules
(see discussions after Theorem 3).

Recall that (AC) and (AW) are restricted forms of contraction rule and left-weak-
ening rule, respectively. Also, (A1) (and (A2)) follows from weakening rules and
(AC) (and left-weakening rule and (AC), respectively) over QFLe, as shown in [10].
So as an immediate consequence of Theorem 1, we can see how the conditions will
change when we consider logics with weakening rules or with contraction rule. As
typical examples, let us consider QFLew and QFLeci which are minimum predicate
extensions of FLew and FLeci, respectively. The logic QFLeci is known as minimal
predicate logic. This logic has both contraction rule and left-weakening rule. Hence
(A2), (AC) and (AW) are derived in it. In this way, we can show the following.

Corollary 1 The logic QFLew[(AC), (DN S)] is the weakest substructural predicate
logic over QFLew, and the logic QFLeci[(A1), (DN S)] is the weakest substructural
predicate logic over QFLeci, respectively, for which the Glivenko theorem holds rel-
ative to the logic QCl.

In [7], a natural deduction system MQC+ was introduced and its computational
aspect was discussed. It is an extension of minimal predicate logic with (DNS), for
which the Glivenko theorem relative to QCl was shown. The above Corollary implies
that (A1) is provable in MQC+.

3 Glivenko theorems for substructural predicate logics

We show next Glivenko theorems for substructural predicate logics over QFLe relative
to an arbitrary involutive substructural predicate logic K over QFLe, by modifying
the proof of Theorem 1. We discuss these Glivenko theorems briefly since proofs go
almost in the same way as those in [10].

First, we introduce the deducibility in logics over QFLe. For an arbitrary substruc-
tural predicate logic K over QFLe, define the deducibility relation 
K as follows. For
any set of closed formulas 	 and any formula ϕ, 	 
K ϕ holds if and only if the
sequent ⇒ ϕ can be provable in the system obtained from K by adding ⇒ δ as new
initial sequent for each δ ∈ 	. Then the following local deduction theorem for QFLe
is shown essentially in the same way as that for FLe. For a proof of the local deduction
theorem for FLe, see e.g. in §2.4 of [5]. We note here that since all formulas in 	

are closed, they will not disturb eigenvariable conditions in an application of either
(left ∃) or (right ∀). Thus the following holds. Here, (α ∧ 1)m denotes the formula
obtained by multiplying α ∧ 1 by fusion for m times.

Theorem 2 For every substructural predicate logic K, 	,α 
K ϕ if and only if
	 
K (α ∧ 1)m → ϕ for some m.
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Glivenko theorems and negative translations 701

Following [6], we introduce three kinds of involutiveness and three kinds of
Glivenko theorems. A logic K is involutive whenever ¬¬α → α is provable in it
for every formula α. It is weakly involutive whenever ¬¬α 
K α holds for every
formula α. It is Glivenko involutive when for every formula α if ¬¬α is provable in
K then so is α. Clearly, involutiveness implies weak involutiveness, which implies
Glivenko involutiveness.

As for Glivenko theorems, the first one is the Glivenko theorem which we have
discussed already. We say that the deductive Glivenko theorem holds for a logic L
relative to another logic K if

for any set 	 of closed formulas and any formula α, 	 
K α if and only if
	 
L ¬¬α.

We say that the equational Glivenko theorem holds for L relative to K if

for all formulas α and β, α ↔ β is provable in K if and only if ¬¬α ↔ ¬¬β

is provable in L.

It can be shown that this condition is equivalent to the following:

for all formulas α and β, α → β is provable in K if and only if α → ¬¬β is
provable in L.

We can show that if the equational Glivenko theorem holds for L relative to K then
the deductive Glivenko theorem holds for L relative to K, by using the local deduc-
tion theorem (Theorem 2). Obviously the deductive Glivenko theorem implies the
Glivenko theorem.

It was shown in [10] that for a given (Glivenko) involutive substructural proposi-
tional logic K there exists the weakest logic G(K) among substructural propositional
logics over FLe for which the Glivenko theorem holds relative to K. This result can
be extended to the predicate case.

For any logic K over QFLe, let G�(K) to be the logic obtained from QFLe by
adding axiom schemes {¬¬β : β is a closed formula which is provable in K}, in
addition to axiom schemes (A1), (A2) and (DNS). For instance, G�(QCl) is equal to
QFLe

‡. Clearly, G�(K) is finitely axiomatizable when K is so. Now theorems in §3
of [10] can be extended as follows.

Theorem 3 (1) Suppose that K is a Glivenko involutive substructural predicate
logic over QFLe. Then, for each substructural predicate logic L over QFLe, the
Glivenko theorem holds for L relative to K if and only if L is an extension of
G�(K) and is included by K.

(2) The same statement on the deductive Glivenko theorem (the equational Glivenko
theorem) holds for a weakly involutive (involutive, respectively) logic K.

Obviously, the logic QCl is involutive. Thus it follows from Theorem 3 that Theo-
rem 1 can be extended to the equational Glivenko theorem for QFLe

‡ relative to QCl.
In fact, this is obtained immediately from Lemma 1.

Now consider the involutive logic InQFLe obtained from QFLe by adding the
axiom of involutiveness ¬¬α → α, which is known as linear predicate logic
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702 H. Farahani, H. Ono

without exponentials. Then, the above Theorem 3 implies that the equational Gli-
venko theorem relative to InQFLe holds for G�(InQFLe), i.e. QFLe[(A1), (A2),
(DNS)].

We show here that (DNS) can not be replaced by the scheme (K) in the definition of
G�(InQFLe). Suppose that (K) is provable in G�(InQFLe). Then ∀x(ϕ(x) ∨ ¬ϕ(x))

must be provable in InQFLe, since the Glivenko theorem holds for G�(InQFLe) rela-
tive to InQFLe. On the other hand, it can be shown that QFLe with ∀x(ϕ(x)∨¬ϕ(x))

is equal to classical logic (see e.g. §5 of [11]). But this is a contradiction.
In [14], Umezawa gave several schemes including (DNS) which are equivalent to

the scheme (K) in QInt. We note here that among others the following schemes are
equivalent to (DNS) even in QFLe.

(1) ¬∀xϕ(x) → ¬¬∃x¬ϕ(x),
(2) ¬¬(∀x¬¬ϕ(x) → ¬¬∀xϕ(x)),
(3) ¬¬(¬∀xϕ(x) → ¬¬∃x¬ϕ(x)).

4 Substructural aspect of negative translations

We have developed proof-theoretic analysis of Glivenko theorems so far by focusing
on roles of structural rules. Along the same line, we discuss negative translations
among substructural predicate logics. Various negative translations of QCl into QInt
have been introduced and studied (see e.g. [2]). A common feature among them is
to attach double negations to some or all subfomulas of a given formula. Then it is
shown that a given formula is provable in QCl if and only if its translation is provable
in QInt.

Here we consider negative translations not only of classical logic QCl into QInt,
but also of arbitrary involutive substructural predicate logics into another substruc-
tural predicate logic over QFLe which lacks the involutiveness. We introduce first a
particular negative translation, which we call extended Kuroda translation, and show
its close connection with Glivenko theorems. Then, we show that some of standard
negative translations will be reduced to this translation.

Let us begin with negative translations of QCl into QInt (see e.g. [2] for various
translations). Among others, we first focus on a translation ◦, called Kuroda trans-
lation, which is defined as follows. (In the rest of our paper, we assume always that
(¬α)τ = ¬(ατ ) for any negative translation τ ).

p◦ = p, for atomic p (α ∧ β)◦ = α◦ ∧ β◦
(α ∨ β)◦ = α◦ ∨ β◦ (α → β)◦ = α◦ → β◦
(∀xα)◦ = ∀x¬¬α◦ (∃xα)◦ = ∃xα◦

Recall that our Theorem 1 says that the Glivenko theorem holds for QFLe
‡ relative

to QCl, where QFLe
‡ = QFLe[(A1), (A2), (AC), (AW), (DNS)]. Since all (A1),

(A2), (AC) and (AW) but (DNS) are provable in QInt, Proposition 2 follows from this
theorem if we restrict our attention only to logics over QInt.

The reason why we need (DNS) in this Proposition 2 comes from the induction
step for the case of (right ∀), as noted in the proof of Lemma 1. To resolve this
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Glivenko theorems and negative translations 703

difficulty and to get a translation of QCl into QInt, Kuroda introduced ◦ by defining
(∀xα)◦ = ∀x¬¬α◦, and proved the following in his paper [9].

Proposition 4 For all formulas α, α is provable in QCl iff ¬¬α◦ is provable in the
predicate logic QInt.

Proposition 4 can be obtained as a corollary of the following stronger result.
We note that all of (A1), (A2), (AC) and (AW) are provable in QInt.

Theorem 4 For all formulas α, α is provable in QCl iff ¬¬α◦ is provable in the logic
QFLe

†, where QFLe
† = QFLe[(A1), (A2), (AC), (AW )].

Theorem 4 can be derived from the following Lemma 2 (cf. Lemma 1). Here, �◦
denotes the sequence of formulas (γ1)

◦, . . . , (γm)◦ when � is γ1, . . . , γm , and similarly
¬�◦ denotes the sequence of formulas ¬(δ1)

◦, . . . ,¬(δm)◦ when � is δ1, . . . , δm .

Lemma 2 For any sequent � ⇒ �, if it is provable in LK then the sequent
¬�◦, �◦ ⇒ is provable in QFLe

†.

Proof To see this, it is enough to check this for the induction step of the case of
(right ∀). It goes similarly to the proof of Lemma 1. By the hypothesis of induc-
tion, ¬ϕ(z)◦,¬�◦, �◦ ⇒ is provable in QFLe

†. Using (right ¬) and then (right ∀),
¬�◦, �◦ ⇒ ∀x¬¬ϕ(x)◦ is provable. Thus, ¬(∀xϕ(x))◦,¬�◦, �◦ ⇒ is provable in
QFLe

†.

Before extending Kuroda translation, we give the following preliminary lemma
which is sometimes used in the rest of this section. It is obvious that the converse of
each of the following sequents is also provable in QFLe.

Lemma 3 The following sequents are provable in QFLe.

(1) ¬¬(¬¬α ∧ ¬¬β) ⇒ ¬¬α ∧ ¬¬β,
(2) ¬¬(¬¬α ∨ ¬¬β) ⇒ ¬¬(α ∨ β),
(3) ¬¬(¬¬α · ¬¬β) ⇒ ¬¬(α · β),
(4) ¬¬(¬¬α → ¬¬β) ⇒ ¬¬α → ¬¬β,
(5) α → ¬¬β ⇒ ¬¬α → ¬¬β,
(6) ¬¬∀x¬¬α ⇒ ∀x¬¬α,
(7) ¬¬∃x¬¬α ⇒ ¬¬∃xα.

The essential role of the Kuroda translation is to trivialize the scheme (DNS). Sim-
ilarly, by modifying the translation of formulas of the form α → β and α ∧ β, we can
also trivialize both schemes (A1) and (A2). This idea leads us to another translation
•, called extended Kuroda translation:

p• = p, for atomic p
(α ∧ β)• = ¬¬α• ∧ ¬¬β• (α ∨ β)• = α• ∨ β•
(α → β)• = α• → ¬¬β• (α · β)• = α• · β•
(∀xα)• = ∀x¬¬α• (∃xα)• = ∃xα•
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It can be easily verified that ¬¬α◦ is equivalent to ¬¬α• in QInt for any formula α

without fusion, and that ¬¬α• is equivalent to α in every involutive logic.
In the case of the extended Kuroda translation double negations are put exactly at

places in subformulas so that consideration to (A1), (A2) and (DNS) is not necessary
any more. Thus, we can show the following Theorem 5, which strengthens Theorem 4.

Theorem 5 (1) For all formulas α, α is provable in QCl iff ¬¬α• is provable in the
predicate logic QFLe[(AC), (AW )].

(2) Let L be a predicate logic over QFLe which is included by QCl. Moreover sup-
pose that for all formulas α, α is provable in QCl iff ¬¬α• is provable in L.
Then L is an extension of the logic QFLe[(AC), (AW )].

(3) For all formulas α, α is provable in QCl iff ¬¬α• is provable in minimal predicate
logic QFLeci.

(4) For all formulas α, α is provable in InQFLe iff ¬¬α• is provable in the predicate
logic QFLe.

Proof The statement (1) is shown similarly to Theorem 4. The statement (3) is a cor-
ollary of (2). To show (2), let us suppose that a logic L satisfies the above condition.
Since the instance of the axiom for weakening q → (p → q) is provable in QCl
where p and q are atomic formulas, ¬¬(q → (p → q))• must be provable in L.
But this formula is equal to ¬¬(q → ¬¬(p → ¬¬q)). By using Lemma 3 (3),
(4) and their converses, the subformula ¬¬(p → ¬¬q) is shown to be equivalent to
p → ¬¬q. Thus, ¬¬(q → ¬¬(p → ¬¬q)) is equivalent to ¬¬(q → (p → ¬¬q))

and hence to ¬¬((p·q) → ¬¬q). From this it follows that the formula ¬q → ¬(p·q)

is provable in L. Since every logic is closed under substitution, each formula of the
form ¬β → ¬(α · β) is provable in L. Similarly, (AC) is shown to be provable in
L. The statement (4) can be shown similarly to (1). Since InQFLe contains neither
contraction rule nor weakening rules, both (AC) and (AW) are dispensable. �	

As Lemma 2 suggests, every statement of Theorem 5 still holds if we replace every
occurrence of α by β → α and every occurrence of ¬¬α• by β• → ¬¬α• where
α and β are arbitrary formulas. We notice also that we can keep the translation of
formulas of the form α ∧ β unchanged in Kuroda negative translation only to get the
statement (2) of the above theorem (cf. Corollary 1). The result is mentioned in the
last paragraph of §6.3 of [2]. Also, compare • with a translation M ′ in §6.1 of [2].

We will show next a connection of extended Kuroda negative translation with other
standard negative translations like Kolmogorov translation κ and Gödel-Gentzen trans-
lation γ . They are defined as follows. (See also [6] for discussions on a generalization
of Kolmogorov translation in the substructural setting).

pκ = ¬¬p, for atomic p
(α ∧ β)κ = ¬¬(ακ ∧ βκ) (α ∨ β)κ = ¬¬(ακ ∨ βκ)

(α → β)κ = ¬¬(ακ → βκ) (α · β)κ = ¬¬(ακ · βκ)

(∀xα)κ = ¬¬(∀xακ) (∃xα)κ = ¬¬(∃xακ)

pγ = ¬¬p, for atomic p
(α ∧ β)γ = αγ ∧ βγ (α ∨ β)γ = ¬¬(αγ ∨ βγ )

(α → β)γ = αγ → βγ (α · β)γ = ¬¬(ακ · βγ )

(∀xα)γ = ∀xαγ (∃xα)γ = ¬¬(∃xαγ )
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The first statement (1) in the next lemma is a folklore, but an important point is
the fact that the equivalence holds in QFLe. Both statements are proved by using the
induction on the length of the formula α.

Lemma 4 (1) For any formula α, ακ is equivalent to αγ in QFLe.
(2) For any formula α, ¬¬α• is equivalent to ακ in QFLe.

We can extend our idea to Krivine-type negative translation (see e.g. [12] and [1]).
Let us define a translation  as follows.

p = ¬p, for atomic p
(α ∧ β) = α ∨ β (α ∨ β) = ¬¬α ∧ ¬¬β

(α → β) = ¬α · β (α · β) = ¬α → ¬¬β

(∀xα) = ∃xα (∃xα) = ∀x¬¬α

Lemma 5 For any formula α, αγ is equivalent to ¬α in QFLe.

Now we can conclude that Theorem 5 holds also when we replace ¬¬α• by any of
ακ , αγ and ¬α of α. Thus, we have the following.

Corollary 2 Let ατ be any one of Kolmogorov translation ακ , Gödel-Gentzen trans-
lation αγ and Krivine-type negative translation ¬α for any formula α. Then the
following (1) and (2) are mutually equivalent for each extension L of the logic QFLe
which is included by QCl:

(1) For all formulas α, α is provable in QCl iff ατ is provable in L.
(2) L is an extension of the logic QFLe[(AC), (AW )].

Similarly to Theorem 3 in the previous section, we can state our result in a general
form. Take any negative translation τ in Corollary 2. For any logic K over QFLe, let
N�(K) to be the logic obtained from QFLe by adding axiom schemes {βτ : β is a
closed formula which is provable in K}. (Note that the set of these axiom schemes
does not depend on the choice of τ ). We can show that N�(K) is properly weaker than
G�(K) for every consistent involutive substructural predicate logic K over QFLe, and
that N�(K) is finitely axiomatizable when K is so. Also it can be shown that N�(QCl)
and N�(InQFLe) are equal to QFLe[(AC), (AW)] and QFLe, respectively. (See also
§7 of [6] for Kolmogorov translation among substructural propositional logics).

Corollary 3 Let K be an involutive substructural predicate logic over QFLe and L
be a substructural predicate logic over QFLe which is included by K. Moreover sup-
pose that for each formula α, α is provable in K iff ατ is provable in L. Then L is an
extension of N�(K). Hence, N�(K) is the weakest logic among such logics.

5 Algebraic view of negative translations

Lastly, we will mention briefly algebraic meaning of these negative translations. Only
for the simplicity’s sake, we restrict our attention only to the propositional part. The
following remarks are essentially described in §7 of [6] but in a slightly different
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way. We assume some familiarity with algebraic notions related to substructural log-
ics, e.g. in [6] or [5]. An algebra A = 〈A,∨,∧, ·,→, 1, 0〉 is a an F Le-algebra if
〈A,∨,∧, ·,→, 1〉 is a commutative residuated lattice and 0 is a fixed element in A.
F Le-algebras are algebraic structures for the propositional logic FLe, and algebraic
operations ∨,∧, · and → will give an interpretation of the corresponding logical con-
nectives. (By abuse of symbols, we use the same symbols for algebraic operations and
for logical connectives). We define the algebraic operation ¬ by ¬x = x → 0, which
gives an interpretation of the negation.

For a given F Le-algebra A, an operation c on A is a nucleus iff it is a clo-
sure operator satisfying that c(x) · c(y) ≤ c(x · y). Let Ac be the set of all
c-closed elements of A, i.e. elements x such that c(x) = x holds. For c-closed
x and y, either of x ∨ y and x · y is not always c-closed, while both x ∧ y and
x → y are c-closed. We define operations ∨c and ·c on A by x ∨c y = c(x ∨ y)

and x ·c y = c(x · y), respectively. Define an algebra Ac = 〈Ac,∨c,∧, ◦c,→,

c(1), c(0)〉. Then Ac is an F Le-algebra in which c(z) = z holds always. The algebra
Ac is called the c-retraction of A.

Suppose that an operation c is defined by a unary F Le-term for which all the con-
ditions of nuclei and the condition that c(0) = 0 hold. We define αc for each term α

as follows. (Compare the definition with the definition of Gödel-Gentzen translation.
We identify formulas with algebraic terms in the following).

pc = c(p), for atomic p
(α ∧ β)c = αc ∧ βc (α ∨ β)c = c(αc ∨ βc)

(α → β)c = αc → βc (α · β)c = c(αc · βc)

By using induction of the length of α, we can show that for any term α, αc is valid
in an F Le-algebra A if and only if α is valid in its c-retraction Ac.

Let us define g(x) = ¬¬x for all x in A. Then the double negation g is shown to
be a nucleus satisfying g(0) = 0. The g-retraction Ag is an F Le-algebra satisfying
¬¬z = z. Moreover as a particular case of the above result, we have that for any term
α, α is valid in the g-retraction Ag if and only if αg is valid in an F Le-algebra A. From
this it follows that Ag is a Boolean algebra if and only if A satisfies both ¬(x ·x) ≤ ¬x
and ¬y ≤ ¬(x · y). Using this, we can derive that for any term α, α is valid in every
Boolean algebra if and only if αg (= αγ ) is valid in every F Le-algebra satisfying
¬(x · x) ≤ ¬x and ¬y ≤ ¬(x · y). Note that these two inequalities are algebraic
counterparts of (AC) and (AW), respectively. Thus they are the algebraic contents of
(the propositional part of) the result in Corollary 2 and the statements just below it.
In fact, our arguments mentioned above give an algebraic proof of these results. See
also related arguments in §5 and §7 of [6].
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