
Arch. Math. Logic (2009) 48:257–263
DOI 10.1007/s00153-009-0126-6 Mathematical Logic

Random closed sets viewed as random recursions

R. Daniel Mauldin · Alexander P. McLinden

Received: 7 July 2008 / Published online: 26 March 2009
© Springer-Verlag 2009

Abstract It is known that the box dimension of any Martin-Löf random closed set
of {0, 1}N is log2(

4
3 ). Barmpalias et al. [J Logic Comput 17(6):1041–1062, 2007] gave

one method of producing such random closed sets and then computed the box dimen-
sion, and posed several questions regarding other methods of construction. We outline
a method using random recursive constructions for computing the Hausdorff dimen-
sion of almost every random closed set of {0, 1}N, and propose a general method for
random closed sets in other spaces. We further find both the appropriate dimensional
Hausdorff measure and the exact Hausdorff dimension for such random closed sets.
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Mathematics Subject Classification (2000) Primary 60D05 · Secondary 60B05

1 Introduction

In [1], a specific method of producing random closed sets of {0, 1}N is proposed and
the box dimension of every Martin-Löf random closed set is shown to be η = log2(

4
3 ).

Our goal will be to outline a method from [6] for computing Hausdorff dimension
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258 R. Daniel Mauldin, A. P. McLinden

and Hausdorff measure in that dimension, and moreover a method to find the exact
Hausdorff dimension functions for random recursions from [5], and to show how this
method can be used to compute the Hausdorff dimension and exact Hausdorff dimen-
sion of almost every random closed set. More specifically, our main goal will be to
prove the following theorem:

Theorem 1 For almost every random closed set Q, dim H (Q) = η. Moreover,

Hη(Q) = 0 almost surely. Let h(t) = tη log(| log(t)|)2− log(4)
log(3) . Then, for almost every

Q, 0 < Hh(Q) < ∞.

First we will outline a definition for random closed sets. Note that this differs from
the definition given in [1], for two reasons. Firstly, Barmpalias et al. were concerned
primarily with Martin-Löf randomness, whereas we will construct our closed sets
based on probability. Secondly, we will not be concerned about coding a construc-
tion which is not one-to-one (i.e. we may have multiple codes for a single set). If
S is a set, define S∗ as the set of all finite sequences from S, including the empty
sequence ∅. If α = (a1, . . . , an) ∈ S∗, and β = (b1, . . . , bm) ∈ S∗, then let |α| = n
and α ∗ β = (a1, . . . , an, b1, . . . , bm). The general setting for a random closed set
construction is {0, 1}N, with the ultrametric ρ(σ, τ ) = 1

2|σ∧τ |+1 , where for distinct

σ, τ ∈ {0, 1}N, σ ∧τ is the longest finite string which agrees with both of τ and σ . We
have a probability space (�,�, P), and a collection of Qσ indexed by σ ∈ {0, 1}∗,
so that

(1) each Qσ : � → K({0, 1}N), where K({0, 1}N) denotes the space of compact
subsets of {0, 1}N

(2) Q∅ = {0, 1}N with probability 1
(3) for each σ ∈ {0, 1}∗, P(Qσ∗0 = [σ ∗0], Qσ∗1 = [σ ∗1]|Qσ �= ∅) = P(Qσ∗0 =

[σ ∗ 0], Qσ∗1 = ∅|Qσ �= ∅) = P(Qσ∗0 = ∅, Qσ∗1 = [σ ∗ 1]|Qσ �= ∅) = 1
3 ,

where [τ ] is the set of words in {0, 1}N which agree with τ for the entire length
of τ .

Define Q(ω) = ⋂
n≥0

⋃
|σ |=n Qσ (ω). For each ω ∈ �, Q(ω) is called a random

closed set.
In comparison, the general model from [6] is as follows.
Fix a Euclidean space R

m , and a nonempty compact subset J ⊂ R
m , so that

cl(int (J )) = J . Assume that we have a probability space (�,�, P) and a family of
random subsets of R

m ,

J = {
Jσ |σ ∈ N

∗},

satisfying three properties:

(1) J∅(ω) = J for almost all ω ∈ �. For every σ ∈ N
∗ and for almost all ω, if Jσ (ω)

is nonempty, then Jσ (ω) is geometrically similar to J .
(2) For almost every ω and for every σ ∈ N

∗, Jσ∗1(ω), Jσ∗2(ω), . . . is a sequence of
nonoverlapping subsets of Jσ (ω). (By “A and B are nonoverlapping” we mean
that int A ∩ int B = ∅.)
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Random closed sets viewed as random recursions 259

(3) The random vectors τσ = 〈Tσ∗1, Tσ∗2, . . . 〉, σ ∈ N
∗, are i.i.d., where Tσ∗n(ω)

is the ratio of the diameter of Jσ∗n(ω) to the diameter of Jσ (ω) if Jσ (ω) is
nonempty. (For convenience, let T∅(ω) = diameter of J ).

We call such a system J a construction. Our constructions require only a “stochastic
ratio self similarity”, and also allow for infinite branching. We now define the random
set K by

K (ω) =
⋂

n≥1

⋃

σ∈Nn

Jσ (ω).

For convenience, let 00 = 0. Then
∑

p≥1 T 0
σ∗p(ω) counts the number of nonempty

Jσ∗p(ω), if Jσ (ω) is itself nonempty. For β ≥ 0, define 
 : [0,∞) → [0,∞)

by 
(β) = E
( ∑

n≥1 T β
n

) = E
( ∑

n≥1 T β
σ∗n

)
. Note that the assumption “
(0) > 1”,

well known from branching processes, as explained in [6], guarantees that with positive
probability, K �= ∅.

The following theorems are some results from random recursive constructions that
we will use to examine random closed sets. In these theorems we use the follow-
ing notation: if (X, ρ) is a metric space, and E ⊂ X , then dimH,ρ(E) denotes the
Hausdorff dimension of E with respect to the ρ metric (For a reference on Hausdorff
dimension/measure, try [7] or [3]. For a reference on exact Hausdorff dimension/mea-
sure, try [8]). Similarly, Hα

ρ is the dimension α Hausdorff measure with respect to ρ,
and H

g
ρ is the Hausdorff measure with respect to the gauge function g and metric ρ.

In the case where ρ is understood, we omit the subscript ρ.

Theorem 2 Suppose 
(0) > 1. Then, with positive probability, K is nonempty. More-
over, if α is the least β so that 
(β) ≤ 1, then if K �= ∅, α is almost surely the Hausdorff
dimension of K ; i.e. P(dimH (K ) = α|K �= ∅) = 1.

The proof of this, just as the setup outlined above, is contained in [6].
In the case |S| = n < ∞, the construction is called an n-ary construction. In this

case, much more is known. We give two examples of what is known which can be
applied to the main model given in [1].

Theorem 3 With α defined as in Theorem 2, if P(
∑

1≤i≤n T α
i �= 1) > 0, then

Hα(K ) = 0 almost surely.

This is Theorem 7.7 from [4].

Theorem 4 Suppose that J is an n-ary construction with 
(0) > 1, and suppose that
each Ti takes only finitely many values P − a.e. and that P(

∑
1≤i≤n T α

i �= 1) > 0.
Then, for P—a.e. ω, if K (ω) �= ∅, then

0 < Hh(K (ω)) < ∞,

where h(t) = tα(log | log(t)|)1− α
m .

This is only a specific case using Theorems 5.1–5.4 from [5].
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Next is a lemma which will be necessary to convert from random closed sets to
random recursions. It is primarily concerned with how Hausdorff dimension and mea-
sure change under Hölder (and hence bi-Hölder) maps.

Lemma 5 Let (X, ρ), (Y, r) be metric spaces, and φ : X → Y , with φ Hölder of
order d. That is, for some m, r(φ(x), φ(y)) ≤ m · ρ(x, z)d for all x, y ∈ X. Then,
for β ≥ 0, H

β
r (φ(E)) ≤ mβH

dβ
ρ (E) for each E ⊂ X. Moreover, if E ⊂ X, then

dim H,ρ(E) ≥ d · dim H,r (φ(E)).

Proof Let E ⊂ X . If G is a δ-mesh cover of E (meaning each set in G has diameter
≤ δ), then if A ∈ G, diam(φ(A)) ≤ mδd , so φ(G) := {φ(A) : A ∈ G} is an
mδd -mesh cover of φ(E). Thus,

H
β

mδd ,r
(φ(E)) = inf

⎧
⎨

⎩

∑

I∈I

|I |β : I is an mδβ -mesh cover of φ(E)

⎫
⎬

⎭

≤ inf

{
∑

A∈G

|φ(A)|β : A ∈ G, G is a δ-mesh cover of E

}

≤ inf

{
∑

A∈G

mβ |A|dβ : A ∈ G, G is a δ-mesh cover of E

}

= mβ · inf

{
∑

A∈G

|A|dβ : A ∈ G, G is a δ-mesh cover of E

}

= mβH
dβ
δ,ρ(E).

Letting δ → 0, Hβ
r (φ(E)) ≤ mβH

dβ
ρ (E). Also, note that if H

β
r (φ(E)) = ∞, then

H
dβ
ρ (E) = ∞, and hence dim H,ρ(E) ≥ d · dim H,r (φ(E)). ��
Note that in the case φ is bi-Hölder of order d, i.e. m1 ·ρ(x, z)d ≤ r(φ(x), φ(z)) ≤

m2 · ρ(x, z)d , for some m1, m2 > 0, then there is equality in the last statement of
Lemma 5.

2 Random closed sets without dying

We say the construction outlined from [1] is “without dying”, since there is 0 prob-
ability that a node in the tree has no children. In order to compute the almost-sure
Hausdorff dimension of these random closed sets, we will transfer the problem to a
random recursive construction and then use Lemma 5 to relate the two. In order to do
this, we will map each Q to a random subset of Cantor’s middle third set (call it C), and
we will find the Hausdorff dimension with respect to the standard Euclidean metric. If
φ : {0, 1}N → C is defined by φ(σ) = ∑

i≥1
2σ(i)

3i , then φ is a bijection. Translating
(1)–(3) from the above description of random closed sets, define J∅(ω) = [0, 1], then
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Random closed sets viewed as random recursions 261

for each σ ∈ {0, 1}∗, if Jσ (ω) �= ∅, define Jσ∗0(ω) as the left third of the interval
Jσ (ω) if Qσ∗0(ω) �= ∅ and Jσ∗0(ω) = ∅ otherwise. Similarly define Jσ∗1(ω) as the
right third. This is simply a random recursive construction, where the reduction ratios
are, with equal probability, one of three things: Tσ∗0 = Tσ∗1 = 1

3 , Tσ∗0 = 0 and
Tσ∗1 = 1

3 , or Tσ∗0 = 1
3 and Tσ∗1 = 0. Also, by construction, φ(Q(ω)) = K (ω)

almost surely.
Then, if β ≥ 0, 
(β) = E(T β

0 +T β
1 ) = 2 2

3 ( 1
3 )β , which is 1 only for β = log(4)

log(3)
−1,

so by Theorem 2, the Hausdorff dimension of K is almost surely α = log(4)
log(3)

− 1.

Also notice that if σ , τ ∈ {0, 1}N, then

ρ(σ, τ )d ≤ |φ(σ) − φ(τ)| ≤ 3ρ(σ, τ )d ,

where d = log 3
log 2 , since

|φ(σ) − φ(τ)| =
∣
∣
∣
∣
∣
∣

∑

i≥1

2(σ (i) − τ(i))

3i

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

i>|σ∧τ |

2(σ (i) − τ(i))

3i

∣
∣
∣
∣
∣
∣

≤
∑

i>|σ∧τ |

2

3i
= 1

3|σ∧τ | = 3ρ(σ, τ )d

and

|φ(σ) − φ(τ)| =
∣
∣
∣
∣
∣
∣

∑

i>|σ∧τ |

2(σ (i) − τ(i))

3i

∣
∣
∣
∣
∣
∣

≥ 2

3|σ∧τ |+1 −
∑

i>|σ∧τ |+1

2

3i
= 2

3|σ∧τ |+1 − 1

3|σ∧τ |+1 = ρ(σ, τ )d .

By Lemma 5 and the remarks that follow it, this bi-Hölder inequality implies that,
with regard to the ρ metric, the Hausdorff dimension of Q is almost surely d · α =
( ln 4

ln 3 −1)( ln 3
ln 2 ) = log2(

4
3 ) = η. Moreover, Theorem 3 gives us that Hα(K ) = 0 almost

surely, and so Lemma 5 implies that Hη(Q) = 0 almost surely.
Note that similar results can be found for packing dimension and upper box dimen-

sion by the results contained in [2]. Specifically, one could use Theorem 3.1, which
says that if K �= ∅, dimP (K ) = dimB(K ) = dimH (K ) = α almost surely.

Moreover, we can find the almost-sure exact Hausdorff dimension for Q, but first
we need the following extension of Lemma 5.

Lemma 6 Let (X, ρ), (Y, r) be metric spaces, and φ : X → Y , with φ bi-Hölder of
order d. That is, there are constants m1, m2 > 0 so that m1ρ(x, z)d ≤ r(φ(x), φ(z)) ≤
m2ρ(x, z)d . Let g(t) = tα log(| log(t)|)p, and h(t) = tαd log(| log(t)|)p, where
p > 0. If E ⊂ X satisfies 0 < H

g
r (φ(E)) < ∞, then 0 < Hh

ρ(E) < ∞.

The proof of this is similar to the proof of Lemma 5, using the small additional fact

that limδ→0+ log(| log(mδd )|)p

log(| log(δ)|)p = 1.
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Now, to complete the proof of Theorem 1, we set h(t) = tη log(| log(t)|)1−α =
t log2(

4
3 ) log(| log(t)|)2− log(4)

log(3) and combine Lemmas 4 and 6, to show that if Q is a
random closed set in the above construction, then P(0 < Hh

ρ(Q) < ∞) = 1. ��

3 Random closed sets of {0, 1}N with dying

In [1], a question is proposed, where, instead of a random closed set being defined
by taking equal probabilities for each node to have both a left and right child, just
a left child, or just a right child, we also allow them to have no children. More-
over, we might allow different probabilities for each of “splitting”, “keeping the left”,
“keeping the right”, or “dying”. That is, when (3) from above is changed to (3) for
each σ ∈ {0, 1}∗, P(Qσ∗0 = [σ ∗ 0], Qσ∗1 = [σ ∗ 1]|Qσ �= ∅) = pboth, P(Qσ∗0 =
[σ ∗0], Qσ∗1 = ∅|Qσ �= ∅) = pleft, P(Qσ∗0 = ∅, Qσ∗1 = [σ ∗1]|Qσ �= ∅) = pright,
and P(Qσ∗0 = ∅, Qσ∗1 = ∅|Qσ �= ∅) = pdie.

Theorem 7 For the model of constructing random closed sets of {0, 1}N just described,
the following hold, if pboth > pdie:

(i) P(Q �= ∅) > 0
(ii) P(dimH (Q) = log2(1 + pboth − pdie)|Q �= ∅) = 1

(iii) Hlog2(1+pboth−pdie)(Q) = 0 almost surely
(iv) If Q �= ∅, then 0 < Hh(Q) < ∞ almost surely, where

h(t) = t log2(1+pboth−pdie)(log(| log(t)|)1−log3(1+pboth−pdie)

Proof In this case, we again view this as a random subset of C, in the following
manner: J∅(ω) = [0, 1], and for each σ ∈ {0, 1}∗, if Jσ (ω) �= ∅, define Jσ∗0(ω)

as the left third of the interval Jσ (ω) if Qσ∗0(ω) �= ∅ and Jσ∗0(ω) = ∅ otherwise.
Similarly define Jσ∗1(ω) as the right third. In this case, the reductions ratios are,
one of four things: Tσ∗0 = Tσ∗1 = 1

3 , Tσ∗0 = 0 and Tσ∗1 = 1
3 , Tσ∗0 = 1

3 and

Tσ∗1 = 0, or Tσ∗0 = Tσ∗1 = 0. Then, if β ≥ 0, 
(β) = E(T β
0 + T β

1 ) = pboth ·
2 · ( 1

3 )β + pleft · ( 1
3 )β + pright · ( 1

3 ) = (2pboth + pleft + pright)(
1
3 )β = (1 + pboth −

pdie)(
1
3 )β , so 
(0) > 1 ⇐⇒ pboth > pdie, hence we can assured that K , and

hence Q, is nonempty with positive probability. Also, by Theorem 2 we know that
P(dimH (K ) = log3(1+ pboth − pdie)|K �= ∅) = 1 and hence by Lemma 5, we know
that P(dimH (Q) = log3(1 + pboth − pdie) · d = log2(1 + pboth − pdie)|Q �= ∅) = 1,
i.e. if Q is nonempty, dimH (Q) = log2(1 + pboth − pdie) almost surely. Also by
Theorem 3 and Lemma 5, we know that Hlog2(1+pboth−pdie)(Q) = 0 almost surely.

Theorem 4 implies that if g(t) = t log3(1+pboth−pdie)(log(| log(t)|)1−log3(1+pboth−pdie),
then P(0 < Hg(K ) < ∞|K �= ∅) = 1, and hence by Lemma 6, P(0 < Hh(Q) <

∞|Q �= ∅) = 1. ��

4 An additional general model

One can analyze the following general model. Let P be a probability distribution on
the sets of all finite trees, S∗. The process begins by choosing a tree according to P ,
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Random closed sets viewed as random recursions 263

and then for each end node of the tree, independently choose trees according to P and
append it to those nodes. This is the specific model outlined in [1], and it could be
viewed as a random recursive construction by using

∏
i∈N

(S∗, P). Because random
recursive fractal constructions can use words from N

∗; one could view the process of
appending a random tree from S∗ as simply another random recursion, one could define
the J s in a way so that the number of children produced is not done node-by-node,
but instead is done tree-by-tree.
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