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Abstract We study a system, µŁ�, obtained by an expansion of Ł� logic with
fixed points connectives. The first main result of the paper is that µŁ� is standard
complete, i.e., complete with regard to the unit interval of real numbers endowed with
a suitable structure. We also prove that the class of algebras which forms algebraic
semantics for this logic is generated, as a variety, by its linearly ordered members and
that they are precisely the interval algebras of real closed fields. This correspondence
is extended to a categorical equivalence between the whole category of those algebras
and another category naturally arising from real closed fields. Finally, we show that
this logic enjoys implicative interpolation.
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1 Introduction

Expansions of first order logic (FOL) with fixed point operators have been largely
studied, both to better understand inductive properties and to increase the expressi-
veness of FOL. To our knowledge, so far there is no study in this direction in many
valued logic. In this paper we explore this path, in the particular case of Ł� logic,
showing that it bears to nice properties of the system as well as links with other well
established fields of Mathematics.
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742 L. Spada

The aim is twofolds. On the one hand adding fixed points is stimulating from the
algebraic point of view, since it adds new structure to Ł�-algebras, leading to structures
similar to real closed fields. On the other hand, it is well known that fixed points
in logic are strictly related with inductive definitions, whence considering a many-
valued system whit fixed points explicitly present may give a new insight on inductive
definition as well as it may stimulate interesting topics in approximate reasoning.

Ł� logic is a combination of two important many-valued logics, Łukasiewicz and
Product logic. It was introduced in [10] and deeply explored from the algebraic point
of view in [21]. It has been extensively studied, having acquired importance for many
reasons: it has been used for formalizing conditional probability [12,16] and seems to
be a good compromise between the foundational formalism of logic and the flexibility
of fuzzy logic [26,27]. Finally, it is the most expressive among the t-norm based
logics: it faithfully interprets Łukasiewicz, Product and Gödel Logic. Rational Pavelka
Logic (when restricted to finite deductions) is interpretable in Ł� 1

2 logic, which is an
expansion of Ł� with a constant 1

2 and the axiom 1
2 ↔ ¬ 1

2 . Finally, as shown in [18],
every logic based on a continuous t-norm with a finite number of idempotents can be
defined in Ł� 1

2 .
Fixed point theories appear in many different fields of Mathematics, standing at the

heart of computer science and being involved in many foundational aspects. The first
idea of expanding a logical system by adding fixed points can be found in a proposal
by Aho and Ulmann [1]. The first system introduced was the expansion of FOL with
minimum fixed points. Several important results were obtained since then, among
which some notable links between the expressivity of these logics and the problem
P = NP (see, for instance, [9]).

The main obstacle when introducing fixed points in a logical system is to guaran-
tee the existence of a semantical interpretation. Classically this problem is tackled
considering formulae as increasing operator over some structure.

Differently from FOL, in the case of many-valued logics based on continuous
t-norms there are at least two ways to find a semantics for fixed points operators,
grounded on the two known algebraic semantics for those logics. In a classical pers-
pective, one could look at the Kripke semantics of the logic under consideration and
define the fixed point of a formula precisely as in modal logic (µ-calculus, see [17];
for details on Kripke semantics for many-valued logic see [4,24]).

The second way to approach the problem is considering that, in suitable cases,
many valued connectives can be considered as functions from [0, 1]n into [0, 1], that
are continuous. Therefore Brouwer’s theorem ensures a semantical interpretation of
the fixed point of a formula.

Theorem 1.1 (Brouwer 1909) Every continuous function from the closed unit ball
Dn to itself has a fixed point.

Despite the fact that many interesting notions (such as inductive definitions) may
appear more easily using the former method, in this article we bias for the latter because
of its originality. Still we believe that both approaches deserve consideration and we
plan to investigate, at some point, differences and similarities between them.

The paper is organized as follow. In the next section we give a short comparison of
the methods used here and the classical approach; in Subsect. 2.1 we introduce basic
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Ł� logic with fixed points 743

definitions useful throughout the paper, furthermore in Subsect. 2.2 the definition of
Ł� logic and Ł�-algebras are given. In Sect. 3 we present µL� logic and its alge-
braic counterpart, in Subsect. 3.1 algebraic completeness is proved (Theorem 3.10). In
Sect. 4 we show thatµL� logic enjoys standard completeness (Theorem 4.10), establi-
shing a link between linearly ordered µŁ�-algebras and real closed fields (Corollary
4.9). Section 5 is devoted to the proof that the class of algebras that form the algebraic
semantics for the above logic is categorically equivalent to a class of structures arising
as a generalization of real closed fields (see Definition 5.5 and Theorem 5.13). In
Sect. 6 we prove that µŁ� logic enjoys implicative interpolation (Corollary 6.3). We
conclude the paper with Sect. 7, in which we outline our future lines of research.

2 Preliminaries

In order to compare the classical approach with the one used in this work, we give a
sketch of the ideas used to construct a semantics for FOL with minimum fixed points,
similar constructions are used to form different expansions of FOL with fixed points.
We suggest to the reader interested in the argument to read [23] for a detailed treatment
of the argument and [9] for a perspective on the recent developments.

The various expansions of FOL with fixed point sit between first and second order
logic. Given a second order formula ϕ(R, x) such that no second order quantifier
appears in ϕ, x and R are the only free variables and R is the only second order
variable in ϕ, we can associate an operator F , from the subsets of a structure A to
subsets of A, by the the following definition

F(S) = {a ∈ A | A |� ϕ([S/R], [a/x])}

where ϕ[x/y] denotes the formula ϕ in which all free occurrences of y are substituted
by x .

An occurrence of a variable x is said to appear positively if it is under the scope
of an even number of negations. If ϕ has only positive occurrences of the symbol R
then the associated operator is monotone increasing and the set F = ⋃

α Fα defined
inductively as follows:

F0 = ∅
Fα+1 = {a ∈ A | A |� ϕ([Fα/R], [a/x])}

is its (least) fixed point, given by the famous Tarski’s theorem.

Theorem 2.1 [28] Let L = 〈L ,≤〉 be any complete lattice. Suppose f : L −→ L
is monotone increasing, i.e., for all x, y in L, x ≤ y implies f (x) ≤ f (y). Then f
has a least fixed point.

Such fixed point will be the interpretation of the symbol µR, x .ϕ, more precisely
we will have that

A |� µR, x .ϕ(t/x) iff tA ∈ F.
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744 L. Spada

In the settings of many-valued logics the domains are still lattice-ordered but the
interpretations of formulae are seldom monotone increasing, hence Tarski’s theorem
becomes too weak. In this paper we propose a different approach which becomes
available when one has to deal with many-valued logics.

The most natural semantics for many-valued logics, and in particular for the logic
we study here, is a semantics which interprets formulae as functions from [0, 1]n

to [0, 1]. Such semantics of many-valued logics is often called standard semantics.
Roughly speaking (but see forward for a formal definition) this amount to say that
every formula can be seen as a term of a particular algebra based on the real interval
[0, 1] and vice-versa; furthermore such a correspondence commutes with truth, in the
sense that a formula is a tautology in the logic if, and only if, any interpretation of the
corresponding term in that particular algebra is equal to 1.

Since in the case of Ł� logic, but also for BL, Łukasiewicz logic and other ones,
many of those terms are in fact compositions of continuous operations on [0, 1],
Brouwer’s theorem ensures that there exists a fixed point for those terms. In our
approach we will generalize this introducing explicitly operations which give the
minimum fixed point of their associated terms. We will prove this new class of algebras
to be exactly the algebraic semantics of the logic introduced and to be generated as a
variety by the Ł�-algebra [0, 1], endowed with the operations which give the minimum
fixed point of their corresponding terms.

2.1 BL, its algebraic semantics and notable extensions

Henceforth we work in the realm of continuous t-norm based logics. To formally
specify what this means we need a number of concepts which we will only sketch.
The reader not familiar with them may want to check the book [15] for an ample
survey on the subject.

Definition 2.2 A continuous t-norm is a function ∗ from [0, 1]2 to [0, 1] which is
continuous, commutative, associative and non-decreasing, i.e., such that if x ≤ y then
x ∗ z ≤ y ∗ z and finally: x ∗ 0 = 0 and x ∗ 1 = 1.

The residuum ⇒ of a t-norm is the unique operation which satisfy the following
adjunction:

x ≤ y ⇒ x if, and only if, x ∗ y ≤ z

Example 2.3 The most important continuous t-norms and their residua present in the
literature are:

The Łukasiewicz t-norm:

x∗L y = max{0, x+y−1} and its residuum: x ⇒∗L y =
{

min{1, 1−x+y} if y ≤ x

1 otherwise.

The product t-norm: x ∗� y = xy1 and its residuum: x ⇒∗� y =
{

y
x if y ≤ x

1 otherwise.

1 The ordinary product between real numbers.
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Ł� logic with fixed points 745

The Gödel t-norm: x ∗G y = min{x, y} and its residuum: x ⇒∗G y =
{

y if y < x

1 otherwise.

Many motivations, which are out of the scope of this article, make reasonable to study
logics whose connectives “conjunction” and “implication” can be interpreted as a
continuous t-norm and its residuum.

In [15], Hájek introduced BL as a common system to cope with the logics based
on continuous t-norms.

Definition 2.4 Basic logic (BL) is a propositional system, with connectives → and
& and a constant symbol ⊥ for falsity, axiomatized by the following formulae:

1. (ϕ → ψ) → ((ψ → θ) → (ϕ → θ)),
2. (ϕ&ψ) → ϕ,
3. (ϕ&ψ) → (ψ&ϕ),
4. (ϕ&(ϕ → ψ)) → (ψ&(ψ → ϕ)),
5. (ϕ → (ψ → θ)) → ((ϕ&ψ) → θ),
6. ((ϕ → ψ) → θ) → (((ψ → ϕ) → θ) → θ),
7. ⊥ → ϕ.

The only rule of the system is modus ponens.

In the modern approach, the three most known t-norm based logics can be described
as extensions of BL as follows.

Definition 2.5
Łukasiewicz logic is BL plus the axiom: ϕ = ¬¬ϕ, where ¬ϕ stands for ϕ → ⊥;

Gödel logic is BL plus the axiom: (ϕ ∧ϕ) → (ϕ&ϕ), where ϕ ∧ψ stands for
ϕ&(ϕ → ψ).

Product logic is BL plus the axiom: ¬ψ ∨ ((ψ → ϕ&ψ) → ϕ), where ϕ ∨ ψ
stands for ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ);

We introduce now the concept of evaluation, this will allow to see the links between
t-norms, logical systems and classes of algebras. In particular it will be possible to
give a formal explanation of what we mean by “t-norm based logic”. We only sketch
the ideas, the reader interested on the abstract correspondence may consult [3].

Given a propositional system L as above consider a class of algebras A whose type
corresponds to the one of the language of L . Once a bijective correspondence between
connectives of the language and operations of the algebras is established one can easily
define a function, which sends formulae to terms of the algebras and vice-versa. If, for
instance, the logical language has as set of connective the symbols &,→,⊥ as above
and the class of algebra has type 〈&̄, →̄, ⊥̄〉 then such a translation can be recursively
defined as:

• e(ϕ&ψ) = e(ϕ)&̄e(ψ),
• e(ϕ → ψ) = e(ϕ)→̄e(ψ),
• e(⊥) = ⊥̄.

Where e sends different propositional variables pi , p j in different individual variables
xi , x j . If we indicate with the symbol �L the logical consequence in the system L and
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746 L. Spada

with |�A the equational consequence relation in A, then we will say that the logic L
is algebraically complete w.r.t. A if for any set of formulae {ϕ} ∪ �:

� �L ϕ if, and only if, � |�A e(ϕ) = 1.

If there exists an algebra S in A whose underlying set is the real interval [0, 1] and
whose operations &̄, →̄, ⊥̄ are respectively a t-norm, its residuum and 0, then we will
say that L is standard complete if

�L ϕ if, and only if, |�S e(ϕ) = 1.

When this happens we call S standard algebra and we say that L is “t-norm based”.
We also say that a system is “the logic of a particular (set of) t-norm”. The following
result motivates the choices of names used so far.

Theorem 2.6 [7,15]

Łukasiewicz logic is the logic of the Łukasiewicz t-norm ∗L .
Product logic is the logic of the product t-norm ∗�.
Gödel logic is the logic of the Gödel t-norm ∗G.

In [14] Hájek conjectured that BL were the logic of all continuous t-norms; this
turned out to be true, as shown in [6].

Being so strictly tied to the logic, the algebraic semantics turned out to be a major
instrument of study.

Definition 2.7 A BL-algebra is an algebra A = 〈A, ∗,⇒,∧,∨, 0, 1〉 that satisfies

• 〈A,∧,∨, 0, 1〉 is a lattice with greatest and least element,
• 〈A, ∗, 1〉 is a commutative monoid,
• ∗ and ⇒ form an adjoint pair, i.e., z ≤ (x ⇒ y) iff x ∗ z ≤ y,
• x ∧ y = x ∗ (x ⇒ y) (divisibility),
• (x ⇒ y) ∨ (y ⇒ x) = 1 (pre-linearity).

Writing ¬x for x ⇒ 0, an MV-algebra is a BL-algebra that satisfies: ¬¬x = x and
a �-algebra is a BL-algebra the satisfies: ¬x ∨ ((x ⇒ x ∗ y) ⇒ y).

Note that if we have a logic L which is standard complete w.r.t. a standard algebra
S, L will be algebraically complete w.r.t. the variety generated by S. The following
result establishes the missing link among the concepts we have introduced so far.

Theorem 2.8
[7] The variety of MV-algebras is generated by the standard algebra 〈[0,1], ∗L ,

⇒∗L , 0〉.
[15] The variety of �-algebras is generated by the standard algebra 〈[0,1], ∗�,

⇒∗�, 0〉.
[15] The variety of Gödel algebras is generated by the standard algebra 〈[0,1], ∗G ,

⇒∗G , 0〉.
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Ł� logic with fixed points 747

2.2 Ł� Logic

Ł� Logic was introduced in [10] to deal at the same time with Łukasiewicz and
Product logics, its language contains two conjunctions and their respective residua.
Its axiomatization was simplified as follows in [8].

Definition 2.9 The language of Ł� is built from propositional variables, combined
with the following connectives: &L and →L , &� and →� and ⊥.
Ł� denotes the theory whose axioms and rules are the following:

1. All the axioms of Łukasiewicz logic for &L and →L

2. All the axioms of Product logic for &� and →�

3. ϕ&�¬L(ψ →L θ) ↔L ¬L ((ϕ&�ψ) →L (ϕ&�θ))

4. �(ϕ →L ψ) →L (ϕ →� ψ)

5. The rules Modus Ponens and necessitation ( ϕ
�(ϕ)

)

where, following Definition 2.5 we define ¬Lϕ = ϕ →L ⊥ and ¬�ϕ = ϕ →� ⊥.
Furthermore �ϕ = ¬�(¬Lϕ). Lattice operations are also definable as in Definition
2.5. In particular axiom 4 states that the lattice operations defined by &�,→� and
the ones defined by &L ,→L are the same.

Ł� 1
2 denotes the logic obtained from Ł� by adding a propositional constant 1

2
together with the axiom 1

2 ↔L ¬L
1
2 .

In order to study this logic from an algebraic point of view, the following class of
algebras were introduced:

Definition 2.10 A Ł�-algebra is a structure A = 〈A, ∗L ,⇒L , ∗�,⇒�, 0, 1〉
where:

1. 〈A, ∗L ,⇒L , 0, 1〉 is a MV-algebra
2. 〈A, ∗�,⇒�, 0, 1〉 is a � algebra
3. x ∗� (y � z) = (x ∗� y)� (x ∗� z)
4. �(x ⇒L y) ⇒L (x ⇒� y) = 1A

where x � y = ¬L(x ⇒L y), x ⊕ y = ¬L x ⇒L y and �(x) is a shorthand for
¬�¬L x .

In order to simplify the notation we will often drop the symbol L both from the connec-
tives and from the operations. Moreover we will use the symbol · or juxtaposition for
∗�, so x ∗� y = x · y = xy.

Every linearly ordered Ł�-algebra with more than two elements is necessarily
infinite and has one element such that ¬x ⇔ x [21, Lemma 4.3]. So, modulo an
expansion of the language, every infinite linearly ordered Ł�-algebra is a member of
the algebraic semantics of Ł� 1

2 logic, and it is called Ł� 1
2 algebra.

3 µŁ� Logic

In FOL, and in general in the first approach presented above, fixed points are restricted
to formulae having only positive occurrences of the relation free variable. Thanks to

123



748 L. Spada

our different approach this restriction does not apply here: even the formula ¬p has a
fixed point, namely 1

2 .
Nevertheless, in order to meet the requirements in Brower’s theorem (Theorem 1.1),

we need to restrict only to formulae whose interpretation is continuous. In particular
the →� connective may cause problems because its functional interpretation has a
discontinuity on the point (0, 0). Of course there are formulae whose interpretation
is continuous and present occurrences of →�, but we do not have any syntactical
characterisation for all the formulae whose interpretation is continuous. Hence, to be
sure of the existence of a semantical counterpart for the fixed point, we shall restrict
ourselves only to formulae in which the symbol →� does not occur, we will call those
formulae continuous formulae.

Notice that another approach could be based on Ł�q -algebras, introduced in [25].
There the discontinuity of →� is overcome by defining a new connective →q which
approximates →� as precisely as wanted, still being continuous.

It should also be noted that, in this approach, µ has to “bind” the propositional
variable which is under its scope. This is because the formula resulting from an ap-
plication of µ to a continuous formula it is not necessarily continuous and then it
is not suitable for a further application of µ. For this reason, loosely speaking, the
same rules of first order logic apply here for substitutions; however, we do not have
to worry about this because, as we will see in a moment, there is another suitable way
of introducing fixed point in the logic.

To circumvent the problems above we will introduce in the language a new connec-
tiveµϕ(x,ȳ)(ȳ) for any continuous formula ϕ. This will allow us, when switching to the
algebraic semantics of the logic, to consider fixed points as functions on the algebra,
rather then operator. If one think of any term t (x, ȳ) as a generalized connective then
it is easy to look also at µxt (x,ȳ)(ȳ) as a connective whose arity is the arity of t (x, ȳ)
minus one.

When we write t (x, ȳ), we mean that the variables x, ȳ actually occur in t . We will
use this notation for formulae, terms and functions.

It should made precise that µxt (x,ȳ)(ȳ) is hence a function which takes a tuple of
elements of a structure (the interpretation of ȳ) to another element of the structure (the
minimum fixed point of the function represented by t (x, ȳ) under that interpretation).
Nevertheless, in order to simplify the exposition we will often refer by an abuse of
notation to µxt (x,ȳ)(ȳ) as the fixed point of t (x, ȳ).

Definition 3.1 The Fixed Point Ł� Logic (µŁ� logic for short) has the following
theory:
The language is an expansion of Ł� language by an infinity of new connectives
µxϕ(x,ȳ), where ϕ is any continuous formula and the arity of µxϕ(x,ȳ) is the length
of ȳ.
The axioms are:2

1. All axioms and rules from Ł� Logic
2. µxϕ(x,ȳ)(ȳ) ↔L ϕ(µxϕ(x,ȳ)(ȳ), ȳ)

2 Since the µ connectives have different arieties we will use for them the prefix notation, whereas, to not
confuse the reader, we will keep the infix notation for the other connectives.
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Ł� logic with fixed points 749

3. �(ϕ(z, ȳ) ↔L z) →L (µxϕ(x,ȳ)(ȳ) →L z)
4.

∧
i≤n �(ψi ↔L ξi ) → (µxϕ(x,ȳ)(ψ1, ..., ψn) ↔L µxϕ(x,ȳ)(ξ1, ..., ξn))

All axioms have a rather clear meaning: axiom 2 says that µxϕ(x,ȳ)(ȳ) is a fixed point
of ϕ(x, ȳ); axiom 3 guarantees that the µ-connectives give the minimum fixed point;
finally axiom 4 says that we can substitute equivalent subformulae also under the scope
of a µ-connective.

Now we turn to an algebraic approach to this logic, introducing its algebraic coun-
terpart. Following the notation introduced so far we will call continuous term a term
t in which ⇒� does not appear; we will call Cterm the set of continuous terms.

Definition 3.2 A µŁ� algebra is an algebra of type

L = 〈L , ∗,⇒,⇒�, ·, {µxt (x,ȳ)}t (x,ȳ)∈Cterm, 0, 1〉,

such that it satisfies the following conditions.

1. L = 〈L , ∗,⇒,⇒�, ·, 0, 1〉 is a Ł�-algebra
2. µxt (x,ȳ)(ȳ) = t (µxt (x,ȳ)(ȳ), ȳ)
3. If t (s, ȳ) = s then µxt (x,ȳ)(ȳ) ≤ s

Obviously this axiomatization is not finite, still it is worthwhile to note that µŁ�-
algebras form a variety. Indeed from the axiomatization it is evident thatµŁ�-algebras
are a quasivariety, but the � operator makes possible to define a discriminator (see
[20], for the definition) and, as proved in [19], any quasivariety with a discriminator
is a variety.

We give now some example to clarify the concepts of µ connectives.

Example 3.3 For sake of simplicity let us confine in this example to linearly ordered
µŁ�-algebras (we will see in next section that this is not a very restrictive condition).
Consider the term x ∗ y, then it is easily seen that µxx∗y = 0 because 0 ∗ a = 0 for
any a. Note that also the term µxx = 0, but while the former is a unary term sending
any interpretation of y to 0 the latter is an actual constant.

Modulo an expansion of the languageµŁ�-algebras form a subvariety of the variety
of Ł� algebras. Since the axioms of µŁ�-algebras force the existence of an element
x satisfying ¬x ⇔ x in every algebra of the variety, they are also, again modulo an
expansion of the language, a subvariety of the variety of Ł� 1

2 . It is important to keep
in mind these relations as in the rest of the paper we will speak freely of Ł� and Ł� 1

2
reduct for this class of algebras.

Example 3.4 To construct a concrete example of µŁ�-algebra we consider the stan-
dard Ł�-algebra: 〈[0, 1], ∗,⇒,⇒�, ·, 0, 1〉. To endow it with a family of functions
{µxt (x,ȳ) | t (x, ȳ) ∈ Cterm} we consider the function associating to any tuple
ā ∈ [0, 1]n , the minimum fixed point of the polynomial t (x, ā/ȳ), given by Theo-
rem 1.1. If we call ft (x,ȳ) such functions, then it is easily see that the algebra

〈[0, 1], ∗,⇒,⇒�, ·, { ft (x,ȳ)}t (x,ȳ)∈Cterm, 0L , 1L 〉,

satisfies the conditions of Definition 3.2
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750 L. Spada

We conclude this section with a proposition which can also be seen as a little exercise
to get acquaintance with fixed points.

One may wonder whether the introduction of a maximum fixed point would have
changed the setting. The following proposition answers negatively to the question.

Proposition 3.5 Given any continuous formula ϕ its maximum fixed point is definable
in the language of µŁ�.

Proof Let ϕ(x, ȳ) any continuous formula with ȳ possibly empty. We claim that
m(ȳ) = ¬µxψ(x)(ȳ), where ψ(x, ȳ) = ¬(ϕ(¬x, ȳ)), gives the maximum fixed point
of ϕ. Let us first prove that it is a fixed point of ϕ.

Fix any tuple ȳ so that we can omit it in the following. We have m = ¬µxψ(x)
so ¬m ↔ µxψ(x), i.e., ¬m is a fixed point of ψ(x): ¬m ↔ ψ(¬m). Hence ¬m ↔
¬ϕ(¬¬m) which implies m ↔ ϕ(m). To show that m is the maximum among fixed
points let v be such that ϕ(v) ↔ v, then ψ(¬v) ↔ ¬v, so ¬v → µxψ(x) therefore
v → ¬µxψ(x) ↔ µx¬ϕ(¬(x)) ↔ m.

3.1 Algebraic completeness

The presence of the operator � enhances drastically the expressibility of a logic.
Whereas in Ł� logic� is definable due to the presence of both ¬L and ¬�, it can be
introduced independently by an axiomatic extension. We present such an extension in
the case of MV-algebra for further use.

Definition 3.6 [15] A MV�-algebra is a MV-algebra with an operator� that satisfies:

(1) �(1) = 1.
(2) �(x ⇒ y) ≤ �(x) ⇒ �(y).
(3) �(x) ∨ ¬�(x) = 1.
(4) �(x) ≤ x .
(5) �(�(x)) = �(x).
(6) �(x ∨ y) = �(x) ∨�(y).
Notice that, on a linearly ordered structure the behavior of � is the following:

�(y) =
{

1 if y = 1

0 otherwise
,

so, in a logical perspective, it can be seen as a “crisp” operator stating that a given
formula is a theorem.

Example 3.7 Even if pleonastic, we give a further example on the use of fixed point,
showing how the delta operator can be defined in a linearly ordered Ł�-algebra only
using the connectives ¬,⊕.

Using the fact that, in a linearly ordered structure,

µxx⊕y(y) =
{

0 if y = 0

1 otherwise
,
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Ł� logic with fixed points 751

it is easy to see that ¬µxx⊕¬y(y) behaves exactly has the delta operator �(y).

Lemma 3.8 Any µŁ�-algebra has the same congruences of its underlying MV�-
algebra.

Proof Obviously, every µŁ� congruence is a MV� congruence. For the other direc-
tion note that the property, xθy if, and only if, (x ⇔ y)θ1, holds for both kinds of
congruences. Suppose, for some n and i ≤ n, xi , yi are in a MV� congruence, θ . Then
(xi ⇔ yi )θ1, hence �(xi ⇔ yi )θ�(1) = 1 and since congruences are closed under
∧ we have

∧
i≤n(�(xi ⇔ yi ))θ1. Note now that since �(z) ≤ z we also have that

∧

i≤n

(�(xi ⇔ yi )) ≤ (xi ⇔ yi ) = µzt (z,w̄)(x1, ..., xn) ⇔ µzt (z,w̄)(y1, ..., yn),

whence:

µzt (z,w̄)(x1, ..., xn) ⇔ µzt (z,w̄)(y1, ..., yn)θ1

that is equivalent to

µzt (z,w̄)(x1, ..., xn)θµzt (z,w̄)(y1, ..., yn).

��
Theorem 3.9 Any µŁ�-algebra is isomorphic to a subdirect product of linearly
ordered µŁ�-algebras.

Proof By Birkoff subdirect representation Theorem, every µŁ�-algebra is isomor-
phic to a subdirect product of subdirectly irreducible µŁ�-algebras. Since irredu-
cibility is completely determined by the lattice of congruences, by Lemma 3.8 a
µŁ�-algebra is subdirectly irreducible if, and only if, its underlying MV�-algebra is
subdirectly irreducible. But a MV�-algebra which is subdirectly irreducible must be
linearly ordered, whence the statement of the theorem. ��
Theorem 3.10 If ϕ is a formula in the language of µŁ� logic, then the following are
equivalent:

(i) ϕ is provable in µŁ�;
(ii) For each linearly ordered µŁ�-algebra A, A |� e(ϕ) = 1;

(iii) For each µŁ�-algebra A, A |� e(ϕ) = 1;

where e is the canonical evaluation which sends formulae of the µŁ� logic to their
correspondent terms in the language of µŁ�-algebras.

Proof (i) implies (ii) is easy to prove. For (ii) implies (iii) we argue by contraposition.
Suppose that for some µŁ�-algebra A � e(ϕ) = 1, since validity of e(ϕ) = 1
is preserved under subdirect product by Theorem 3.9 some subdirectly irreducible
factor Ai does not satisfies e(ϕ) = 1 but Ai is linearly ordered and the claim follows.

123



752 L. Spada

(iii) implies (i) is proved by the usual construction of the Lindenbaum algebra.
Indeed, if a formula ϕ is not provable then e(ϕ) = 1 fails in the Lindenbaum algebra.
Since the Lindenbaum algebra of µŁ� logic is a µŁ�-algebra this implies that there
exists at least one µŁ�-algebra in which e(ϕ) = 1 does not hold. ��

4 Standard completeness

In order to prove standard completeness, in this section we will establish a link between
linearly ordered µŁ�-algebras and real closed fields. This result will be generalized
in the next section. Nevertheless, considered the importance and the good properties
that real closed fields enjoy, this preliminary result has an interest in its own. In Sect. 6,
for instance, it will be used to prove the implicative interpolation of µŁ� logic.

Our construction is based on the results contained in [11], for the reader’s ease we
replicate here some definitions.

Definition 4.1 Given a linearly ordered Ł� 1
2 algebra A, consider the structure

	(A) = 〈K ,+,−,×,≤, 0K , 1K 〉 defined in the following way:

K = {(z, x) | z ∈ Z , x ∈ A, x �= 1}, 0K = (0, 0), 1K = (1, 0)

(n, x)+ (m, y) =
{
(n + m, x ⊕ y) if x ⊕ y < 1

(n + m + 1, x ∗ y) if x ⊕ y = 1

−(n, x) =
{
(−n, 0) if x = 0

(−(n + 1),¬x) if 0 < x < 1

(n, x) ≤ (m, y) if n < m or n = m and x ≤ y

(n, x)× (m, y) = (nm, x · y)+ m(0, x)+ n(0, y)

Where m(0, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, x)+ · · · + (0, x)
︸ ︷︷ ︸

m−times

if m ≥ 0

−(0, x)+ · · · + (−(0, x))
︸ ︷︷ ︸

m−times

if m < 0

	(A) is a linearly ordered, commutative, domain of integrity and it can be extended
to a linearly ordered field by taking its field of fractions. The interval algebra of the
resulting field is A.

Vice-versa, given a linearly ordered field it is easy to construct a Ł�-algebra: for
what said before, such a an algebra can be seen as a Ł� 1

2 as soon as it has more than
two elements.

Definition 4.2 Given a linearly ordered field K we define an Ł�-algebra A, called
the Ł�-interval algebra of K, in the following way
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A = {x ∈ K | 0 ≤ x ≤ 1}
x ∗ y = max(0, x + y − 1) x ⇒ y = min{1, 1 − x + y} x · y = x × y

x ⇒� y =
{

1 if x ≤ y

z otherwise

where z is the only element such that y = x ∗ z.

For a complete proof that the previous definitions are correct (i.e., they define
respectively a linearly ordered field and a linearly ordered Ł�-algebra) see Theorem
7 in [11]:

Theorem 4.3 Every linearly ordered Ł� 1
2 algebra is isomorphic to the Ł� 1

2 -interval
algebra of a linearly ordered field.

Our aim is now to find a similar result for µŁ�-algebras. Obviously we need to
enrich the structure of linearly ordered fields with something corresponding to fixed
points. The natural choice are real closed fields.

Definition 4.4 A real closed field is a linearly ordered field such that:

• every positive element is a square: ∀x∃y(x = y2)

• every polynomial of odd degree has a solution: ∀a1, ..., an∃x0(a0x0
0 + · · · +

an xn
0 = 0)

The next lemma shows how the behavior of a polynomial can be locally replicated
in the unit interval by another suitable polynomial.

Lemma 4.5 Given a polynomial f (x) with coefficients in a real closed field F , there
exists another polynomial g(x), with coefficients in the same structure, such that:

(i) the coefficients, the sum of their moduli and the roots of g(x) are all in the unit
interval of F ;

(ii) there exists an m ∈ F such that g(t) = 0 if, and only if, f (2mt − m) = 0.

Proof Let f (x) = an xn +· · ·+ a1x + a0 and call x1, . . . , xn its roots. By a Cauchy’s
theorem [5] we have that

max
i≤n

|x |i ≤ max
i≤n−1

(n · |ai |) 1
n−i .

Set m = max{(n · |ai |) | 1 ≤ i ≤ n}. Note that we can assume, without loss of
generality, that at least one of the absolute values of the coefficients is greater than 1,
otherwise one could pass to the following step, then

max
{
(n · ai )

1
n−i | i ≤ n − 1

}
≤ m.

Let g′(x) the polynomial obtained by f (x) by the substitution x �→ x+m
2m . If z is a root

of g′(x) then for some solution xī of f (x):

z = xī + m

2m
≤ m + m

2m
= m,
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and

z = xī + m

2m
≥ 0 as |xī | ≤ m.

Hence all roots of g′(x) are in the unit interval of F , notice that x �→ x+m
2m is a bijection

and g′(t) = 0 if, and only if, f (2mt−m) = 0. So condition (ii) is satisfied. As next step
we normalize the coefficients of g′(x) by dividing all of them by

∑
i≤n |ai |. Calling

the resulting polynomial g(x), it is readily seen that it meets condition (i), while the
transformation from g′(x) to g(x) does not interfere with condition (ii).

��
We are ready now to spell out to construct a real closed field starting from a µŁ�-
algebra. By Theorem 4.3 we know that given a Ł� 1

2 -algebra it is possible to build a
linearly ordered field. Since any µŁ�-algebra has a (definable) Ł� 1

2 -reduct, one can,
with the same construction, associate to any µŁ�-algebra a linearly ordered field. Let
us call it the field associated to a µŁ�-algebra.

Theorem 4.6 Any field associated to a µŁ�-algebra is a real closed field.

Proof Let K be the linearly ordered field given by the µŁ�-algebra A. We will begin
by proving that K satisfies the second condition of Definition 4.4. To this end we will
first restrict to a particular class of polynomials, which we call [0, 1]-polynomials.

An [0, 1]-polynomial is a polynomial of the form P(x) = an xn + · · · + a1x + a0
such that the sum of the absolute values of the coefficients as well as all its solutions
are contained in the set {k ∈ K | 0K ≤ k ≤ 1K}.

Given any [0, 1]-polynomial of odd degree P(x)we will prove that it has a solution
in K by looking at the image under the embedding of interpretation of the fixed point
of a particular µŁ�-term. Indeed notice that if we are able to find a µŁ�-term, p′(x),
such that p′(x) = 0 iff P(x) = 0, then letting p(x) = p′(x) ⊕ x we have that
µx .(p(x)) is the wanted element.

We explain now how to construct such a p′(x). Given a polynomial P(x), as above,
we first arrange it in the form P ′(x) = | ∑i∈J ai xi − ∑

i∈K ai xi | where all ai are
positive. After such arrangement we can safely replace every occurrence of + with ⊕
and the sign minus with |x − y| (defined as (x � y)∨ (y � x)). If we call āi the inverse
image under the embedding of ai and we put

p′(x) =
∣
∣
∣
∣
∣

⊕

i∈J

āi � xi −
⊕

i∈K

āi � xi

∣
∣
∣
∣
∣
.

Then we have that p′(x) = 0 exactly when P(x) = 0, hence is the µŁ�-term we
were looking for.

This proves that all [0, 1]-polynomial of odd degree have a solution in K. Now, by
Lemma 4.5, given any polynomial P(x), of odd degree, with coefficients in K we can
associate to it a [0, 1]-polynomial, which has a solution in K. Since the solutions of
the two polynomials are linked by the correspondence x �→ x+m

2m , this guarantees that
also P(x) has a solution in K.
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The proof that K satisfy also the first condition of Definition 4.4, i.e that every
element of K is a square of an element in K, is similar. One has only to notice that in
a µŁ�-algebra every element a can be written as b · b where b = µx|x ·x−a|⊕x . ��
Corollary 4.7 Every linearly ordered Ł� 1

2 -algebra can be embedded in at most one
linearly ordered µŁ�-algebra (up to isomorphism).

Proof Suppose that a linearly ordered Ł� 1
2 -algebra A can be embedded in two non-

isomorphic linearly ordered µŁ�-algebras B and C. Since the fields FA,FB and FC ,
associated respectively to A,B and C are definable in the language of Ł�-algebras,
FB and FC are not isomorphic and FA embeds in both of them. This is a contradiction,
for both FB and FC are real closed fields. ��
The correspondence between linearly ordered µŁ�-algebras and real closed fields,
holds also in the other direction, i.e.

Theorem 4.8 The Ł� 1
2 interval algebra of every real closed field is a reduct of a

µŁ�-algebra.

Proof We need to prove that if we take the unitary interval of a real closed field this
can be endowed with the structure of a µŁ�-algebra. Take a real closed field R and
call A the Ł� 1

2 algebra given by Theorem 4.3. The only thing that has to be checked
is that µ can be defined in A for any term t (x) not containing ⇒�. To this end note
that t (x) can be represented in the R as

∨

i∈I

∧

j∈J

Pi j (x),

where Pi j are polynomial in R. So our problem reduces to prove that in R holds:

∃x

⎛

⎝0 ≤ x ≤ 1 and

⎛

⎝
∨

i∈I

∧

j∈J

Pi j (x)

⎞

⎠ = x

⎞

⎠ . (1)

But this formula is true in the reals (by Theorem 1.1) and every real closed field is
elementary equivalent to the reals hence the formula holds also in R. So µx .t (x) is
defined as the minimum witness of Eq. (1). ��
Corollary 4.9 Every linearly ordered µŁ�-algebra is isomorphic to the interval
algebra of some real closed field. Conversely every real closed field is isomorphic
to a real closed field associated to a linearly ordered µŁ�-algebra.

Proof By construction everyµŁ�-algebra is isomorphic to theµŁ�-interval algebra
of its associated real closed field. In the same way, every real closed field is isomorphic
to the real closed field associated to its µŁ�-interval algebra. ��
Theorem 4.10 µŁ� is standard complete, i.e., a formula ϕ is provable in µŁ� if,
and only if, e(ϕ) = 1 is true on the µŁ�-algebra on [0, 1].
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Proof One direction is obvious. For the other one let us reason by contraposition and
suppose that a formula ϕ is not provable in µŁ�, then by Theorem 3.10 the equation
e(ϕ) = 1 does not hold in some linearly ordered µŁ�-algebra A. Denote by R the
field associated to A, which is real closed by Theorem 4.6. Call ψ the first order
formula, which express the failure of e(ϕ) = 1 in the unitary interval of R. Since R
is a elementary equivalent to the reals, ψ fails in the reals, witnessing the failure of
e(ϕ) = 1 in its interval algebra. ��

5 Categorical equivalence

In this section we strengthen the result contained in Corollary 4.9. If we want to extend
such a representation to anyµŁ�-algebra we have to face the fact that real closed fields
are linearly ordered. Hence such structures must be substituted by a more general ones
which allow a lattice-order structure. Note that the Naïve idea to use just subdirect
product of real closed fields does not suit, for in a subdirect product some solution of
some polynomial can be missing.

After recalling some necessary definitions we will cope with the problem described
above. We will describe some “characteristic” terms which will serve to axiomatize
the structures that we need.

Definition 5.1 (cf [2]) A lattice ordered abelian group, 
-group for short, is a structure
G = 〈G,+,−,∨,∧, 0〉 such that 〈G,+,−, 0〉 is an abelian group and 〈G,∨,∧〉 is a
lattice. Furthermore if ≤ is the partial order induced by ∨,∧ then for all a, b, x ∈ G
if a ≤ b then a + x ≤ b + x .

In an 
-group G, an element u is called strong unit, if for every g ∈ G there is a
natural number n such that g ≤ u + · · · + u︸ ︷︷ ︸

n times

.

A lattice ordered ring is a structure R = 〈R,+,−,×,∨,∧, 0〉 such that:

〈R,+,−,×, 0〉 is a ring,
〈R,+,−,∨,∧, 0〉 is a 
-group and
for all a, b, x ∈ R if a ≤ b and x ≥ 0 then a × x ≤ b × x .

An f-ring is a lattice ordered ring which is the subdirect product of linearly ordered
rings.

In the following a commutative f-ring with strong unit will be called c-1-f-ring.

In [21] a class of particular c-1-f-rings was introduced.

Definition 5.2 An f-semifield is a c-1-f-ring equipped with an additional operation −1

that satisfies:

1. x2 × x−1 = x
2. 0−1 = 0
3. |x−1 − y−1| ≤ |x − y| × (|x−1 × y−1| + |x − y|−1 × (|x−1| + |y−1|))
Remark 5.3 Note that, the concept of linearly ordered f-semifield and linearly orde-
red field are equivalent even if they formally differ by the explicit presence of the
operator −1.
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In the same article Ł� 1
2 -algebras were proved to be categorical equivalent to

f-semifields. We want to lift this result to µŁ�-algebras.
In this general setting we will call f-polynomial every combination of meets and

joins of polynomials. In order to cope with f-polynomial we will need terms which can
give us information on the value that they can take. One of such terms, already used in
literature is ∇. It is defined as ∇(x) = x ×x−1, hence, in a linearly ordered f-semifield,
it takes value 0, if x = 0 and 1 otherwise. For this reason ∇ can be seen as the dual of
the � of Ł�-algebras. Whence it makes sense to define: δ(x) as 1 − ∇(1 − x).

Finally we define N (x) = 1−∇(x +|x |), its meaning become more clear looking at
its value in a linearly ordered f-semifield. Indeed in every linearly ordered f-semifield
we have that

δ(x) =
{

1 if x = 1

0 otherwise
N (x) =

{
1 if x ≤ 0

0 otherwise

We are now ready to give the definition of the structure that will substitute real
closed field in our further results. In order to stress the similarity with real closed
fields, we give an equivalent version of Definition 4.4, from which the definition of
real closed f-semifield was inspired.

Definition 5.4 A real closed field is a linearly ordered field in which every polynomial
which changes its sign in the interval [a, b] has a root in the interval [a, b].
Definition 5.5 A real closed f-semifield is a structure:

F = 〈F,+,−,×,−1, { fn}n∈N,∨,∧, 0, 1〉
which enjoys the following properties:

• F = 〈F,+,−,×,−1,∨,∧, 0, 1〉 is a f-semifield.

• for every f-polynomial p(x) = ∨
j∈J

∧
k∈K

∑

i≤n
ai jk xi and every ai , bi , t ∈ F :

1. N (p(x)p(y))× N (x − y) ≤ N (x − f (x, y, p))× N ( f (x, y, p)− y)
× [1 − ∇(p( f (x, y, p)))]

2. [1 − ∇(p(t))] × N (t − y)× N (x − t) ≤ N [ f (x, y, p)− t]
3.

∨n
i=0(∇(|ai − bi |)) ≥ ∇(| fn(an, ..., a0)− fn(bn, ..., b0)|)

where f (x, y, p) is a shorthand for fn(x, y, a000, . . . , ai jk)with fn of the suitable
arity.

The reader may check that in the case of a linearly ordered f-semifield the meaning
of the axioms is the following. Axiom 1 gives the intended role of the family of
functions fn , namely to force the existence of zeros also in a subdirect product of
those structures, for all polynomials which change their sign; axiom 2 guarantees that
the solutions given by the f is minimal; axiom 3 ensures that the family of functions
is compatible with the congruences of the underlying f-semifield.

Note that a linearly ordered real closed f-semifield only differs from a real closed
field by the explicit presence of the family of functions fi , as proved in the following
proposition.
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Proposition 5.6 In a real closed field every f-polynomial which changes its sign in a
given interval has a solution it that interval.

Proof The proof is by induction on the number of polynomials composing the
f-polynomial. If this is 1, then the f-polynomial is a polynomial and the statement
follows from the axioms of real closed fields.

Suppose now that the f-polynomial, call it f (x), is formed by n polynomials and it
is equal to f ′(x) ∧ p(x) where f (x) is a f-polynomial formed by n − 1 polynomials
and p(x) is a polynomial. To prove the theorem let us assume that f (x) changes its
sign in an interval [a, b] and suppose, to fix the ideas, that f (a) > 0 and f (b) < 0.

The proof now splits in several subcases.
If f (a) = f ′(a) and f (b) = f ′(b) then by induction hypothesis there exists t such

that f ′(t) = t . If f (t) = f ′(t) there is nothing to prove, otherwise, since we are in
a linearly ordered structure, we have that f (t) = p(t) < f ′(t) = 0, so p(a) ≥ 0
and p(t) < 0, which again implies the existence of a t ′ �= t such that p(t ′) = 0. If
f (t ′) �= p(t ′) then f ′(t ′) < p(t ′) = 0, hence f ′(t ′) < 0 and f ′(a) ≥ 0 which in
turns implies the existence of a t ′′ �= t ′ (and different from t) for which f ′(t ′′) = 0.
But this reasoning must stop after a finite number of times, thus leading to a zero for
f (x) in the interval.

The case in which f (a) = p(a) and f (b) = p(b) is identical. Also the case where
f (a) = f ′(a) and f (b) = p(b) or f (a) = p(a) and f (b) = f ′(b) are easy to reduce
to the same reasoning. Finally for the case in which f (x) = f ′(x) ∨ p(x) the proof
works dually. ��

Lemma 5.7 Every real closed f-semifield has the same congruences of its underlying
f-semifield.

Proof One way is obvious. For the other direction, given a real closed f-semifield F ,
we only have to check that the family of functions fi is compatible with the congruence
of the underlying f-semifield F−. First of all let us note that given an ideal J , x ∈ J
if, and only if ∇(x) ∈ J (because x = x∇(x)). Suppose now that aiθbi for any i ≤ n
then this means that there exists an ideal of F , call it J , such that ai − bi ∈ J , hence
∇(|ai − bi |) ∈ J so even

∨n
i=0(∇(ai − bi )) ∈ J and by axiom 3 of Definition 5.5 we

have ∇| fn(an, ..., a0)− fn(bn, ..., b0)| ∈ J , hence fn(an, ..., a0)θ fn(bn, ..., b0). ��

From this and Proposition 5.6 it easily comes the following proposition.

Proposition 5.8 Every real closed f-semifield has a reduct which is the subdirect
product of linearly ordered real closed f-semifields.

Our next aim is to link µŁ�-algebras to real closed f-semifields. To this end we need
some preliminary facts on how to manipulate f-polynomials on real closed f-semifields.

Lemma 5.9 Given a f-polynomial f (x) on an f-semifield F which changes its sign in
the interval [0, 1], there exist a term p(x) of the Ł� 1

2 interval algebra of F and an
interpretation i such that f (t) = 0 iff i(p(t)) = 0.
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Proof Given f (x) = ∨
j∈J

∧
k∈K

∑
i≤n ai jk xi , let m = ∑

i≤n, j∈J,k∈K ai jk and
consider the f- polynomial

g(x) =
∨

j∈J

∧

k∈K

∑

i≤n

ai jk

m
xi =

∨

j∈J

∧

k∈K

∑

i≤n

bi jk xi .

Arranging every polynomial in g(x) as

∑

i≤n

(bi jk ∨ 0)xi −
∑

i≤n

(bi jk ∧ 0)xi

it is easy to realize that f (t) = 0 if, and only if, in the interval algebra of F holds

i

⎛

⎝
∨

j∈J

∧

k∈K

∣
∣
∣
∣
∣
∣

⊕

i≤n

(yi jk ∨ 0)� t i −
⊕

i≤n

(yi jk ∧ 0)� t i

∣
∣
∣
∣
∣
∣

⎞

⎠ = 0

where i is an interpretation which sends each variable yi jk in bi jk . ��
Theorem 5.10 Every µŁ�-algebra is isomorphic to the interval algebra of some
closed f-semifield.

Proof Given aµŁ�-algebra A consider the f-semifield F associated to its Ł� reduct.
We will construct a family of definable fn in order to make F a real closed f-semifield.

Given P(x), an f-polynomial and an interval [a, b] in F consider the bijection
σ : [0, 1] −→ [a, b] given by σ(x) = (b − a)x + a, and the new f-polynomial
P ′(x) = P(σ (x)), then by the construction of Lemma 5.9 we get a Ł� 1

2 term, p(x),
associated to P ′(x) and an interpretation i . Let f (a, b, P) = σ−1(i(µx .[(p(x)⊕x])).

To show that indeed those f satisfy the axioms in Definition 5.5, let Pi (x) be the
i th projection of P(x) in the subdirect representation of F . In the factors of the repre-
sentation, both parts of the inequality of axioms 1 are evaluated either to 0 or to 1. Let
a, b ∈ Ai , if N (Pi (a)Pi (b))×N (a−b) = 0 then there is nothing to check. Otherwise,
supposing a ≤ b, we have to show that a ≤ f (a, b, Pi ) ≤ b and Pi ( f (a, b, Pi )) = 0.
The first two inequalities hold, because a ≤ σ(x) ≤ b. For the last one, note that by
Lemma 5.9 P ′(i(µx .[p(x)⊕ x])) = 0 hence P(σ−1(i(µx .[(p(x))⊕ x]))) = 0.

Axiom 2 is satisfied because, by axiom 2 of Definition 3.2, µx .[p(x) ⊕ x] is the
smallest element for which p(x) = 0 and σ preserves the order.

Axiom 3 directly follows from the fact that the fn are definable. ��
The established link holds also in the other direction

Theorem 5.11 Every real closed f-semifield contains a µŁ�-interval algebra.

Proof If F is a real closed f-semifield then it has a Ł�-interval algebra, A. To prove
that A can be endowed with the structure of aµŁ�-algebra we need to find a fixed point
for every term t (x) in A that is ⇒�-free. Let T (x) the corresponding f-polynomial in
F . If T (0) = 0, then set µx .t (x) = 0, otherwise consider T ′(x) = T (x) − x . Note
that T ′(0) = T (0) − 0 > 0 and T ′(1) = T (1) − 1 ≤ 0 hence T ′(0)T ′(1) ≤ 0 so,
letting t = f (0, 1, T ′), we have T ′(t) = 0 which means T (t) = t . ��
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Definition 5.12 Let 	̄ the functor from the category of µŁ�-algebras to the one of
real closed f-semifields. 	̄ assigns to each µŁ�-algebra, the real closed f-semifield
constructed as in Theorem 5.10.

Let ̄ the functor from the category of real closed f-semifields to the one of µŁ�-
algebras. ̄ assigns to every real closed f-semifield, theµŁ�-algebra of Theorem 5.11.

To define 	̄ and ̄ on morphisms just note that a function is a morphism of µŁ�-
algebras if, and only if, it is a morphism of Ł�-algebras. Then 	̄ and ̄ act as 	 and
 the functors defined as in [21].

Theorem 5.13 The category of µŁ�-algebras and the category of real closed
f-semifields are equivalent.

Proof We have to prove that there are natural isomorphisms,

η : 	̄̄ ∼= idF and β : ̄	̄ ∼= idLP.

In other words we have to show that for any pair A,B of µŁ�-algebras, and any
f : A −→ B a morphism, and for every pair F ,G of real closed f-semifields with
a morphism g : F −→ G there exist two pairs of morphisms, βA, βB and ηF , ηF
such that the following diagrams commute:

A f ��

βA

��

B

βB

��
̄	̄(A)

̄	̄( f )
�� ̄	̄(B)

F f ��

ηF

��

G

ηG

��
	̄̄(F)

	̄̄(g)
�� 	̄̄(G)

Considering the Ł� 1
2 reducts, βA and βB exist and they are also morphisms of

µŁ�-algebras. Moreover A and ̄	̄(A), as well as B and ̄	̄(B) are isomorphic as
Ł� 1

2 -algebras by construction and since all the constructions involved in ̄ and 	̄ are
definable, they are isomorphic as µŁ�-algebras. The case of real closed f-semifields
is similar. ��

6 Amalgamation

We conclude this work with an easy application of the ideas contained in [22]. In
this article the relation between amalgamation and interpolation are pointed out and
explored in the most important cases. A key remark is that, due to the absence of a
deduction theorem for most of these logic, deductive interpolation and implicative
interpolation are not equivalent in this framework.

Given a class of structures K, let Klin be the linearly ordered members of K. In
[22], Lemma 3.3 and 3.4 the following result is proved.
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Lemma 6.1 Let K a quasi-variety of BL-algebras possibly with additional operators
such that Klin has the amalgamation property. Then K has the amalgamation property.

Theorem 6.2 Linearly ordered µŁ�-algebras enjoy amalgamation.

Proof For sake of simplicity we show only that for every A,B and C linearly ordered
µŁ�-algebras such that A = B ∩C, there exist D and embeddings h and k of B and C
respectively into D such that the restriction of h and k to A coincide. This will readily
implies the theorem. Let I,J and K be the real closed fields built respectively from
A,B and C, we can safely suppose I = J ∩ K. By the amalgamation property for
real closed fields we know that there is a real closed field L and embeddings h and k
from J ,K into L such that h and k coincide on I, but then h and k coincide also on
A. Hence the interval algebra of L plus the restrictions of h and k to J and K is the
amalgam we were looking for. ��
Since in commutative residuated lattices the amalgamation property is equivalent to
the interpolation for the correspondent logic (see [13]), this proves:

Corollary 6.3 µŁ� logic enjoys deductive interpolation.

7 Conclusions and open problems

We expanded Ł� logic with new connectives which allow to define fixed points of
a subset of formulae in the language of Ł�. In Theorem 3.10 we proved that the
algebraic structures defined in Definition 3.2 are precisely the algebraic semantics of
this logic. This result helped us to prove Theorem 4.10 which states that µŁ� logic
enjoys standard completeness.

The proof of Theorem 4.10 sheds light on the tight relation between the algebraic
semantics of µŁ� logic and real closed fields. This correspondence is explored and
generalized in Sect. 5 where, in Theorem 5.13, we proved that the class of algebras
that form the algebraic semantics for the above logic is categorically equivalent to the
class of real closed f-semifields (see Definition 5.5).

Real closed f-semifields can be seen as the meeting point of real closed fields
and f-rings. Indeed, to generalize the correspondence between linearly ordered
Ł�-algebras and real closed fields, one needs new structures with the properties of
both classes above. On one hand the result established in Proposition 3.9 tells that
the structures suitable for a generalization of the above correspondence need all to
be subdirect product of linearly ordered structures; on the other hand the presence of
fixed point functions in µŁ�-algebras forces the existence of solutions for a suitable
class of polynomials which must be kept when taking subdirect product. The methods
we used to guarantee that both properties are met at the same time is to include in the
language of real closed fields, explicit functions which give the solutions of their asso-
ciated polynomial. The relation between real closed fields and real closed f-semifields
can be found through Propositions 5.6 and 5.8.

The last result of the paper uses, as a simple application, the correspondence between
linearly ordered Ł�-algebras and real closed fields, to show that µŁ� logic enjoys
implicative interpolation (Corollary 6.3).
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We wish to stress once more that our approach to fixed points in logic is radically
different from the classical one, and that this is possible just because we deal with
many-valued logics. Working with a new modus operandi, during our research we
found many interesting questions which we did not have the time to answer. We
propose some of them here both to present our future lines of research and with the
ambition to stimulate the interest of other researches.

We are exploring at the moment the results of adding a (min or max) fixed point
operator to BL, or Łukasiewicz logics. Note that the only extension of BL logic
having a continuous residuum and standard completeness is Łukasiewicz logic.
Whereas in Łukasiewicz logic all connectives have a continuous interpretation, in
the case of BL the fixed points which are are guaranteed to exist are for formulae in
which only the symbols ∗,∨,∧ occur.
We had to menage an annoying connective here (namely →�) would be possible to
develop the same work in PMV-algebras? Note that in Łukasiewicz logic� is already
definable as µx¬(¬y&x), so µPMV and µŁ� should have interesting relations.
µŁ� logic is decidable, due to the elimination of quantifiers in real closed fields,
but which is its complexity? (The problem is not trivial since a sharp bound on the
complexity of Ł� is unknown)
Does µŁ� Logic enjoys deductive interpolation or, putting in a semantical pers-
pective, does the class of µŁ�-algebras enjoys the strong amalgamation property?
Characterize the free algebra of µŁ� (i.e., find an equivalent of McNaughton’s
theorem for µŁ�).
Is it possible to lift all the machinery to first order many-valued logic?

Acknowledgments I wish to thank Franco Montagna for the original ideas and the time he dedicated to
me, speaking about many details of this article. His help was invaluable.

References

1. Aho, A.V., Ulmann, J.D.: Universality of data retrieval languages. In: 6th ACM symposium on prin-
ciples of programming languages, pp. 110–117 (1979)

2. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes at Anneaux Reticulés. Lectures Notes in Mathematics,
vol. 608. Kluwer, Dordrecht (1977)

3. Blok, W.J., Pigozzi, D.: Algebraizable logics. Memoirs of Am. Math. Soc. 396(77) (1989)
4. Beckmann, A., Preining, N.: Linear Kripke frames and Gödel logic. J. Symbol. Logic 71(1), 26–44

(2007)
5. Cauchy, A.: In: Oevres (2), vol. 9, Chapter Sur la resolution des equations numeriques et sur la theorie

de l’elimination, pp. 87–161. Gauthier-Villars, Paris (1891)
6. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of t-norms and their residua.

Soft Comput. 4, 106–112 (2000)
7. Chang, C.C.: Algebraic analysis of many valued logic. Trans. Am. Math. Soc 88, 467–490 (1958)
8. Cintula, P.: A note on the definition of L� algebras. Soft Comput. 9(8), 575–578 (2005)
9. Dawar, A., Gurevich, Y.: Fixed points logics. Bull. Symbol. Logic 8, 65–90 (2002)

10. Esteva, F., Godo, L.: Putting together Łukasiewiczand product logic. Mathw Soft Comput. 6,
219–234 (1999)

11. Esteva, F., Godo, L., Montagna, F.: The L� and L� 1
2 logics: two complete fuzzy systems joining

Łukasiewicz and product logics. Arch. Math. Logic 40, 39–67 (2001)
12. Flaminio, T., Montagna, F.: A logical and algebraic treatment of conditional probability. Arch. Math.

Logic 44, 245–262 (2005)

123



Ł� logic with fixed points 763

13. Galatos, N., Ono, H.: Algebraization, parametrized local deduction theorem and interpolation for
substructural logics over fl. Stud. Logica 83(1–3), 279–308 (2006)

14. Hájek, P.: Basic fuzzy logic and BL algebras. Soft Comput. 2, 124–128 (1998)
15. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, Studia Logica Library, vol. 4. Kluwer,

Berlin (1998)
16. Hájek, P., Godo, L., Esteva, F.: Reasoning about probability in fuzzy logic. Neural Network World

10(5), 811–824 (2000)
17. Kozen, D.: Results on the propositional mu-calculus. Theor. Comp. Sci. 27, 333–354 (1983)
18. Marchioni, E., Montagna, F.: Complexity and definability issues in Ł� 1

2 . J. Logic Comput. 17(2),
311–331 (2007)

19. McKenzie, R.: On spectra, and the negative solution of the decision problem for identities having a
finite nontrivial mode. J. Symbol. Logic 40, 186–196 (1975)

20. McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices, Varieties. Wadsworth and Brooks/Cole,
Monterey (1987)

21. Montagna, F.: An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inf. 9, 91–124 (2000)
22. Montagna, F.: Interpolation and Beth’s property in propositional many-valued logics: a semantic in-

vestigation. Ann. Pure Appl. Logic 149(1–2), 148–179 (2006)
23. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North Holland, Amsterdam (1974)
24. Montagna, F., Sacchetti, L.: Kripke-style semantics for many-valued logics. Math. Logic Quart. 49(6),

629–641 (2003)
25. Montagna, F., Spada, L.: Continuous approximations of MV-algebras with product and product resi-

duation. Soft Comput. 9/3, 149–154 (2005)
26. Mundici, D.: If-then-else and rule extraction from two sets of rules. J. Symbol. Logic 59(2), 596–602

(1994)
27. Mundici, D.: Tensor product and the Loomis Sikorski theorem for MV algebras. Adv. Appl. Math. 22,

227–248 (1999)
28. Tarski, A.: A lattice-theoretical fixed point theorem and its applications. Pac. J. Math. 5, 285–309 (1955)

123


	L logic with fixed points
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 BL, its algebraic semantics and notable extensions
	2.2 LP Logic

	3 muLP Logic
	3.1 Algebraic completeness

	4 Standard completeness
	5 Categorical equivalence
	6 Amalgamation
	7 Conclusions and open problems
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


