Homogeneous iteration and measure one covering relative to HOD

Natasha Dobrinen · Sy-David Friedman

Received: 2 July 2007 / Revised: 9 July 2008 / Published online: 24 September 2008 © Springer-Verlag 2008

Abstract Relative to a hyperstrong cardinal, it is consistent that measure one covering fails relative to HOD. In fact it is consistent that there is a superstrong cardinal and for every regular cardinal κ , κ^+ is greater than κ^+ of HOD. The proof uses a very general lemma showing that homogeneity is preserved through certain reverse Easton iterations.

Keywords HOD · Homogeneity · Measure one covering

Mathematics Subject Classification (2000) 03E35 · 03E40 · 03E45 · 03E55

1 Introduction

Assuming that there is no inner model with a Woodin cardinal, Steel constructs in [\[8\]](#page-7-0) a certain inner model *Kc*, from which the "true" core model *K* for a Woodin cardinal is obtained. An important lemma in the derivation of K from K^c is the following.

Lemma 1 (Measure one covering relative to *Kc*, see [\[8\]](#page-7-0)) *Assume there is no inner model with a Woodin cardinal. If* κ *is a measurable cardinal with a normal measure* μ *then* $\{\alpha < \kappa \mid \alpha^+ = \alpha^+ \text{ of } K^c\}$ *has* μ -measure one.

N. Dobrinen (\boxtimes)

S.-D. Friedman KGRC, Universität Wien, Währinger Strasse 25, 1090 Vienna, Austria e-mail: sdf@logic.univie.ac.at

This work was supported by FWF grants P 16334-N05 and P 16790-N04.

Department of Mathematics, University of Denver, 2360 S Gaylord St., Denver, CO 80208, USA e-mail: dobrinen@logic.univie.ac.at

A natural question is whether such a result will hold in the context of stronger large cardinal properties, such as superstrength or supercompactness. The inner model *K^c* is contained in HOD, the universe of hereditarily ordinal definable sets, and therefore it is natural to ask:

Question Can measure one covering fail relative to HOD? I.e., is it consistent that for some measurable cardinal κ with normal measure μ , the set { $\alpha < \kappa$ | $\alpha^+ = \alpha^+$ of HOD} has μ -measure zero?

Theorem 1 *Relative to a hyperstrong cardinal, it is consistent that measure one covering fails relative to HOD. In fact it is consistent that there is a superstrong cardinal and for every regular cardinal* κ , κ^+ *is greater than* κ^+ *of HOD.*

Definition 1 κ is *superstrong* iff κ is the critical point of a *j* : $V \rightarrow M$ with $H(j(\kappa)) \in M$. κ is *hyperstrong* iff κ is the critical point of a *j* : $V \to M$ with *H*($j(k)^{+}$) $\in M$.

In the hierarchy of consistency strengths we have: Measurable \lt Strong \lt Woodin \lt Superstrong \lt κ^+ supercompact \lt Hyperstrong \lt κ^{++} supercompact.

Along the way to obtaining Theorem [1,](#page-1-0) we prove two very general lemmas showing that different weak forms of homogeneity are preserved in reverse Easton iterations (see Lemmas [5](#page-6-0) and [6\)](#page-6-1). At the end we mention a further application of homogeneitypreservation in reverse Easton iterations to the study of morasses (due to Brooke-Taylor and Friedman).

2 Proof of Theorem [1](#page-1-0)

This section will culminate in the proof of Theorem [1.](#page-1-0) Starting with a hyperstrong cardinal κ (or just a cardinal κ which is κ^+ -supercompact), we show in Lemma [2](#page-1-1) that a certain class-length iterated forcing *P*, a reverse Easton iteration of collapses, keeps at least a superstrong cardinal in the extension universe. Next, we note in Lemma [3](#page-3-0) that any open-dense homogeneous forcing (see Definition [2\)](#page-2-0) preserves HOD. Finally, we prove in Lemma [5](#page-6-0) that *P* is open-dense homogeneous, in fact weakly homogeneous (see Definition [2\)](#page-2-0). Theorem [1](#page-1-0) then follows.

Lemma 2 *Suppose* κ *is hyperstrong and GCH holds. Let P be the class-length reverse Easton iteration where at each stage* α *which is regular after the first* α *iteration stages,* α^+ *is collapsed to* α *by the collapse Coll*(α , α^+) (*and the iteration is trivial at stages* α *not of this form*)*. Then* κ *remains superstrong after forcing with P.*

Proof This is a standard master condition argument (see [\[2\]](#page-7-1)) combined with the hyper-ultrapower methods of [\[3\]](#page-7-2) and [\[4\]](#page-7-3). For cofinally many successor cardinals γ , *P* can be written as $P(\leq \gamma) * P(\geq \gamma)$ where $P(\leq \gamma)$ has size less than γ and $P(\geq \gamma)$ is γ -closed. It follows that *P* preserves ZFC.

Let $j: V \to M$ witness the hyperstrength of κ . We may assume that every element of *M* is of the form $j(f)(a)$ where $f : H(\kappa^+) \to V$ and *a* belongs to $H(j(\kappa)^+)$. Let *G* be *P*-generic over *V*. To show that κ is superstrong in *V*[*G*] it suffices to show

that there is a P^M -generic G^M over M such that $j[G] \subseteq G^M$, G^M is definable in $(V[G], G)$ and such that the $H(j(k))$ of $V[G]$ is in $M[G^M]$. Here, P^M denotes M's version of *P*.

Choose $G_{j(k)}^M$ to be $G_{j(k)}$, the generic for the first $j(k)$ stages of the iteration. At stage $j(\kappa)$ in the iteration P^M we must choose $G^M(j(\kappa))$ to contain the pointwise image under (the lifting to $V[G_{\kappa}]$ of) *j* of $G(\kappa)$. But $j[G(\kappa)]$ is a compatible set of conditions in $P^M(j(\kappa))$ which belongs to $M[G_{i(\kappa)}]$ (as $j \upharpoonright H(\kappa^+)$ belongs to *M*) and has size κ^+ of *V*, less than $j(\kappa)$. As the forcing $P^M(j(\kappa))$ is $j(\kappa)$ -directed closed, there is a single condition *p* in $P^M(j(\kappa))$ which is stronger than all conditions in *j*[$G(k)$] (a "master" condition). By the homogeneity of the forcing $P^M(j(k)) =$ Coll($j(\kappa)$, $j(\kappa)^+$), in $V[G_{i(\kappa)}][G(j(\kappa))]$ we can choose a generic $G^M(j(\kappa))$ for *P*^{*M*}($j(\kappa)$) which contains the condition *p*. Thus we have $j[G_{\kappa+1}] \subseteq G_{j(\kappa)+1}^M$, providing a lifting of *j* to $V[G_{k+1}]$, which we continue to write as *j*.

The forcing $P(\geq \kappa)$ is κ^+ -closed in $V[G_{\kappa+1}]$ and κ^+ of *V* is collapsed in $V[G_{\kappa+1}]$. Now we claim that if $D \in M[G_{j(\kappa)+1}^M]$ is a set-sized maximal antichain in the forcing $P^{M}(>j(\kappa))$ then *D* is met by an element of $j[G(\geq \kappa)]$. Indeed, *D* can be written as $j(f)(a)^{G_{j(k)+1}^M}$ where $f : H(\kappa^+ \text{ of } V) \to V$, *a* belongs to $H(j(\kappa)^+)$ and $H(\kappa^+)$ of *V* has cardinality κ in $V[G_{\kappa+1}]$. By the κ^+ closure of the forcing $P(\geq \kappa)$, there is a condition $\bar{p} \in G(\geq \kappa)$ which meets each maximal antichain \bar{D} on $P(\geq \kappa)$ of the form $f(\bar{a})^{\bar{G}_{k+1}}, \bar{a} \in H(\kappa^+)$ of *V*; but then $j(\bar{p}) = p \in j[G(\geq \kappa)]$ meets each maximal antichain *D'* on $P^M(>j(\kappa))$ of the form $j(f)(a')^{H_{j(\kappa)+1}}$, $a' \in H(j(\kappa^+))$ of $M = H(j(\kappa^+))$. In particular, *p* meets the original $D = j(f)(a)^{G^M_{j(\kappa)+1}}$. A similar argument works for definable dense classes *D* and not just set-sized maximal antichains.

Thus we can take $G^M(> j(\kappa))$ to be the class of conditions extended by some condition in *j*[G (> κ)]. The resulting $G^M = G^M_{\kappa+1} * G^M$ (> κ) is the desired P^M generic containing the pointwise image of *G* under *j*.

Thus if *G* is *P*-generic over *V* and *V* has a hyperstrong, then in $V[G]$ we have that the *V*-successor of every regular cardinal is collapsed and there is a superstrong cardinal. It remains only to show that HOD of *V*[*G*] is contained in *V*.

Remark 1 In fact, in Lemma [2,](#page-1-1) we could have started with a cardinal κ which is just κ^+ -supercompact. After the forcing, κ will remain the limit of superstrong cardinals (although κ itself may not be superstrong).

We now define three versions of weak homogeneity.

Definition 2 Let *P* be a set partial ordering.

- 1. [\[5](#page-7-4),[6\]](#page-7-5) *P* is *weakly homogeneous* iff for any two conditions *p*, *q* in *P* there is an automorphism π of *P* such that $\pi(p)$, *q* are compatible.
- 2. *P* is *open-dense homogeneous* iff for any two conditions *p*, *q* in *P*, there is an open dense set $D \subseteq P$, an isomorphism $\pi : D \to D$, and a p' in *D* such that $p' \leq p$ and $\pi(p')$, *q* are compatible.
- 3. For $p \in P$, let Cone(p) denote $\{r \in P : r \leq p\}$, the cone of conditions in P below *p*. *P* is *cone homogeneous* iff for any two conditions $p, q \in P$, there exist $p' \leq p, q' \leq q$, and an isomorphism $\pi : \text{Cone}(p') \to \text{Cone}(q')$.

Remark 2 Weakly homogeneous is called *almost homogeneous* in [\[7\]](#page-7-6).

Fact 1 *Let P be a set partial ordering.*

- *1. If P is weakly homogeneous, then P is open-dense homogeneous.*
- *2. If P is open-dense homogeneous, then P is cone homogeneous.*
- *3. Suppose for each* $p \in P$ *, there are two incompatible elements of P below p* (*P being separative and atomless is sufficient*)*. Then cone homogeneity of P implies open-dense homogeneity of P.*

Proof 1. is immediate from the definitions.

Suppose P is a set partial ordering which is open-dense homogeneous. Let $p, q \in P$. There exist an open dense set $D \subseteq P$, $p' \leq p, q' \leq q$ in *D*, and an isomorphism π : $D \rightarrow D$ such that $\pi(p') = q'$. Claim: $\pi \restriction \text{Cone}(p')$: Cone(p') \rightarrow Cone(q') is a cone isomorphism. Certainly π is 1–1 and order preserving. $\pi \restriction \text{Cone}(p')$ is onto $\text{Cone}(q')$, since given $r \leq q', \pi^{-1}(r) \leq \pi^{-1}(q') = p'$, and $\pi(\pi^{-1}(r)) = r$. Therefore, $\pi \restriction \text{Cone}(p')$ is a cone isomorphism between $\text{Cone}(p')$ and $Cone(q')$.

Now suppose *P* is a cone homogeneous set partial ordering such that for each *p* ∈ *P*, there are two incompatible elements of *P* below *p*. Let *p*, *q* ∈ *P*. We will find an open dense set *D*, an isomorphism π of *D*, and $p_0 \leq p$, $q_0 \leq q$ in *D* such that $\pi(p_0) = q_0.$

First take $p' \leq p$ and $q' \leq q$ such that p' and q' are incompatible. The existence of such p' and q' follows easily from our assumption that below any element of P there are two incompatible elements. By cone homogeneity, there exist $p_0 \leq p'$ and $q_0 \leq q'$ and an isomorphism σ_0 : Cone(p_0) \rightarrow Cone(q_0). Since p_0 and q_0 are incompatible, we obtain for free an isomorphism π_0 : Cone(p_0) ∪ Cone(q_0) → Cone(p_0) ∪ Cone(q_0) by defining $\pi_0 \restriction \text{Cone}(p_0) = \sigma$ and $\pi_0 \restriction \text{Cone}(q_0) = \sigma^{-1}$.

Let $X_0 = \{p_0, q_0\}$. By induction, for each $\alpha < |P|^+$, build an antichain X_α and π_{α} an isomorphism of $D_{\alpha} := \{s \in P : \exists r \in X_{\alpha}(s \leq r)\}\$ such that for all $\beta < \alpha$, $X_\beta \subseteq X_\alpha$ and $\pi_\alpha \restriction D_\beta = \pi_\beta$ (actually, by enumerating *P* at the beginning, one can do this construction in $\leq |P|$ steps). Let $\alpha < |P|$ ⁺. If X_{α} is a maximal antichain in *P*, then π_{α} is the desired automorphism witnessing open-dense homogeneity of *P*. If X_{α} is not a maximal antichain in *P*, then there exist $p'_{\alpha+1}, q'_{\alpha+1}$ incompatible with each other and with every element in X_α , since for each $p \in P$ there are two incompatible elements of *P* below *p*. There exist $p_{\alpha+1} \leq p'_{\alpha+1}$ and $q_{\alpha+1} \leq q'_{\alpha+1}$ and a cone isomorphism $\sigma_{\alpha+1}$: Cone($p_{\alpha+1}$) \rightarrow Cone($q_{\alpha+1}$). Let $X_{\alpha+1} = X_{\alpha} \cup \{p_{\alpha+1}, q_{\alpha+1}\}\$ and $D_{\alpha+1} = \{s \in P : \exists r \in X_{\alpha+1}(s \leq r)\}\)$. Let $\pi_{\alpha+1}$ be $\pi_{\alpha} \cup \sigma_{\alpha+1} \cup \sigma_{\alpha+1}^{-1}$. Then $\pi_{\alpha+1}$ is an isomorphism on $D_{\alpha+1}$ as π_α , $\sigma_{\alpha+1}$ and $\sigma_{\alpha+1}^{-1}$ are defined on incompatible sets of conditions. At limit ordinals α , let $X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$, $D_{\alpha} = \bigcup_{\beta < \alpha} D_{\beta}$ and $\pi_\alpha = \bigcup_{\beta < \alpha} \pi_\beta.$

At some ordinal $\alpha < |P|$ ⁺, X_{α} will be a maximal antichain of *P*. Let $D = D_{\alpha}$ and $\pi = \pi_{\alpha}$. Then *D* is an open dense subset of *P*, $p_0, q_0 \in D$, π is an isomorphism of *D*, and $\pi(p_0) = q_0$. Hence, *P* is open-dense homogeneous.

Lemma 3 *Suppose that P is a cone homogeneous set forcing, P belongs to HOD and G is P-generic over V . Then HOD of V*[*G*] *is contained in HOD of V .*

Proof The following argument can be found in [\[5\]](#page-7-4). It suffices to show that if *a* is a set of ordinals in $V[G]$ which is definable in $V[G]$ with ordinal parameters then *a* belongs to *V*. Write $x = {\alpha \mid V[G] \models \varphi(\alpha, \beta)}$. Then $\alpha \in x$ iff $p \Vdash \varphi(\alpha, \beta)$ for some $p \in G$. We claim that if $p \Vdash \varphi(\alpha, \beta)$ then in fact $q \Vdash \varphi(\alpha, \beta)$ for all $q \in P$. Indeed, suppose $p \Vdash \varphi(\alpha, \beta)$ and $q \in P$. By cone homogeneity there are $p' \leq p$ and $q' \leq q$ and an isomorphism π : Cone $(p') \to \text{Cone}(q')$. Since $p' \Vdash \varphi(\alpha, \beta)$, also $q' \vDash \varphi(\alpha, \beta)$. Hence, there is a dense set of elements which force $\varphi(\alpha, \beta)$. So we have $x = \{ \alpha \mid p \Vdash \varphi(\alpha, \beta) \text{ for some } p \in P \}$, and since P and its forcing relation are ordinal-definable in *V*, it follows that *x* belongs to HOD of *V*.

In the rest of the paper, we will show that forcings like that used in Lemma [2](#page-1-1) are weakly homogeneous. We first consider iterations of length equal to some ordinal.

Definition 3 Let $\lambda \in \text{Ord.}$ We say that $\langle P_{\alpha} | \alpha \leq \lambda \rangle$ is an *iteration* with support $\mathcal{S} = \langle \mathcal{S}_\alpha | \alpha \leq \lambda \rangle$ if

- 1. For each $\alpha < \lambda$, $\mathscr{S}_{\alpha} \subset \mathscr{P}(\alpha)$;
- 2. For each $\alpha \leq \lambda$, $x \subseteq y$ and $y \in \mathscr{S}_{\alpha} \to x \in \mathscr{S}_{\alpha}$;
- 3. For all $\beta < \alpha \leq \lambda$, $\mathscr{S}_{\beta} \subseteq \mathscr{S}_{\alpha}$;
- 4. If $x, y \in \mathscr{S}_{\alpha}$, then $x \cup y \in \mathscr{S}_{\alpha}$.
- 5. *P*_{$\alpha+1$} is the preorder $P_{\alpha} * \dot{Q}_{\alpha}$, where $P_{\alpha} \Vdash \dot{Q}_{\alpha}$ is a set partial ordering;

6. For limit α , P_α is the preorder consisting of all α -sequences p such that for $\beta < \alpha$, $p \restriction \beta \Vdash_{P_{\beta}} p(\beta) \in Q_{\beta}$, and supp $(p) \in \mathscr{S}_{\alpha}$.

For $q, p \in P_\lambda, q \leq p$ iff for each $\alpha < \lambda, q \restriction \alpha \Vdash_\alpha q(\alpha) \leq p(\alpha)$.

Let $\langle P_\alpha \mid \alpha \leq \lambda \rangle$ be an iteration with support *S*. For $\beta < \alpha \leq \lambda$ and $a_\alpha \in P_\alpha$, a_{α} | β denotes the restriction of a_{α} to P_{β} . For $a_{\alpha}, c_{\alpha} \in P_{\alpha}$, define $a_{\alpha} \sim_{\alpha} c_{\alpha}$ iff $a_{\alpha} \leq c_{\alpha}$ and $c_{\alpha} \leq a_{\alpha}$. P_{α}/\sim_{α} is a partial ordering.

Definition 4 A total function $\pi_{\alpha}: P_{\alpha} \to P_{\alpha}$ is a *pre-automorphism* of a preorder P_{α} iff π_{α} satisfies the following:

- 1. For all $a_{\alpha}, c_{\alpha} \in P_{\alpha}, c_{\alpha} \leq a_{\alpha} \leftrightarrow \pi_{\alpha}(c_{\alpha}) \leq \pi_{\alpha}(a_{\alpha}).$
- 2. For each $c_{\alpha} \in P_{\alpha}$, there is an $a_{\alpha} \in P_{\alpha}$ such that $\pi_{\alpha}(a_{\alpha}) \sim_{\alpha} c_{\alpha}$.

If π_α is a pre-automorphism of P_α , then $\tilde{\pi}_\alpha$ is an automorphism of P_α/\sim_α , where $\tilde{\pi}_{\alpha}([a_{\alpha}]_{\sim_{\alpha}}) = [\pi_{\alpha}(a_{\alpha})]_{\sim_{\alpha}}$. For P_{α} -names σ , $\pi_{\alpha}(\sigma)$ is inductively defined to be $\{\langle \pi_{\alpha}(\tau), \pi_{\alpha}(p) \rangle : \langle \tau, p \rangle \in \sigma\}.$

Lemma 4 (Weak Homogeneity Preservation Lemma) *Suppose that* $\langle P_{\alpha} | \alpha \leq \lambda \rangle$ $(\lambda \in Ord)$ *is an iteration with support S*, where $P_0 = {\mathbb{1}_0}$ *and for each* α , $P_{\alpha+1} =$ $P_{\alpha} * \dot{Q}_{\alpha}$, where P_{α} *forces* \dot{Q}_{α} *to be a weakly homogeneous partial ordering. Also suppose that for each* α *and each pre-automorphism* π_{α} *of* P_{α} *,* $P_{\alpha} \Vdash \pi_{\alpha}(\dot{Q}_{\alpha}) = \dot{Q}_{\alpha}$ *. Then* $P_{\lambda}/_{\sim_{\lambda}}$ *is weakly homogeneous.*

Proof Fix $p, r \in P_\lambda$. By induction, we obtain for each $\alpha \leq \lambda$ a pre-automorphism π_α of P_α and a $t_\alpha \in P_\alpha$ such that

1. For all $\beta \leq \alpha$ and all $a_{\beta} \in P_{\beta}$, $supp(\pi_{\beta}(a_{\beta})) = supp(a_{\beta})$;

- 2. For all $\gamma < \beta \le \alpha$ and all $a_{\beta} \in P_{\beta}, \pi_{\gamma}(a_{\beta} \restriction \gamma) = \pi_{\beta}(a_{\beta}) \restriction \gamma$;
- 3. For all $\gamma < \beta \leq \alpha$, $t_{\gamma} = t_{\beta} \upharpoonright \gamma$;
- 4. For all $\beta \leq \alpha$, if both $p \restriction \beta \Vdash p(\beta) = 1$ _β and $r \restriction \beta \Vdash r(\beta) = 1$ _β, then $t(\beta)$ is a *P*^β-name for the trivial condition $\mathbb{1}_{\beta}$ in Q_{β} ;
- 5. For all $\beta \leq \alpha$, $t_\beta \leq \pi_\beta(p \restriction \beta)$, $r \restriction \beta$.

 $P_0 = \{\mathbb{1}_0\}$. Let π_0 denote the automorphism of P_0 , and let $t_0 = \mathbb{1}_0$. (1)–(5) are trivially satisfied.

Let $0 < \alpha \leq \lambda$, and assume for all $\beta < \alpha$, π_{β} is a pre-automorphism of P_{β} and π_{β} , t_{β} satisfy (1)–(5).

Case 1 $\alpha = \beta + 1$. Let $p \restriction \alpha$ be $\langle p_\beta, \dot{q}_\beta \rangle$, where p_β is $p \restriction \beta$, and let $r \restriction \alpha$ be $\langle r_\beta, \dot{s}_\beta \rangle$, where r_β is $r \upharpoonright \beta$. π_β is a pre-automorphism of P_β and $p_\beta \upharpoonright \dot{q}_\beta \in Q_\beta$, so $\pi_\beta(p_\beta) \Vdash \pi_\beta(\dot{q}_\beta) \in \pi_\beta(\dot{Q}_\beta)$. By hypothesis, $P_\beta \Vdash \pi_\beta(\dot{Q}_\beta) = \dot{Q}_\beta$, so $\pi_\beta(p_\beta) \Vdash$ $\pi_\beta(\dot{q}_\beta) \in \dot{Q}_\beta$. Hence $t_\beta \Vdash \pi_\beta(\dot{q}_\beta), \dot{s}_\beta \in \dot{Q}_\beta$. Since $P_\beta \Vdash \dot{Q}_\beta$ is weakly homogeneous, there is a P_β -name $\dot{\sigma}_\beta$ such that $P_\beta \Vdash \dot{\sigma}_\beta$ is an automorphism of \dot{Q}_β , and t_β $\Vdash \dot{\sigma}_\beta(\pi_\beta(\dot{q}_\beta))$ is compatible with \dot{s}_β . Let \dot{u}_β be a P_β -name for an element of \dot{Q}_β such that $t_{\beta} \Vdash \dot{u}_{\beta} \leq \dot{\sigma}_{\beta}(\pi_{\beta}(\dot{q}_{\beta}))$, \dot{s}_{β} . If both $p_{\beta} \Vdash \dot{q}_{\beta} = \mathbb{1}_{\beta}$ and $r_{\beta} \Vdash \dot{s}_{\beta} = \mathbb{1}_{\beta}$, then t_β \mathbf{F} $\dot{\sigma}_\beta(\pi_\beta(\dot{q}_\beta)) = \dot{s}_\beta = \mathbb{1}_\beta$. In this case, let \dot{u}_β be a P_β -name for the trivial condition $\mathbb{1}_{\beta} \in \dot{Q}_{\beta}$. Let $t_{\alpha} = \langle t_{\beta}, u_{\beta} \rangle$. Given $\langle a_{\beta}, b_{\beta} \rangle \in P_{\beta} * \dot{Q}_{\beta}$, define $\pi_{\alpha}(\langle a_{\beta}, b_{\beta} \rangle) =$ $\langle \pi_\beta(a_\beta), \dot{\sigma}_\beta(\pi_\beta(b_\beta)) \rangle$. π_α is a total function on P_α , and $t_\alpha \leq \pi_\alpha(p \restriction \alpha)$, $r \restriction \alpha$. π_α and t_{α} satisfy (1)–(5).

Case 2 α is a limit ordinal. Define π_α on P_α by $\pi_\alpha(a_\alpha) = \langle \pi_0(a_0), \dot{\sigma}_0(\pi_0(\dot{b}_0)), \dot{\sigma}_1(\pi_1) \rangle$ (\dot{b}_1) ,...,, for each $a_\alpha = \langle a_0, \dot{b}_0, \dot{b}_1, \dots \rangle \in P_\alpha$. Note that for each $\beta < \alpha, \pi_\beta(a_\alpha)$ β) = $\pi_{\alpha}(a_{\alpha})$ | β . Let $t_{\alpha} = \bigcup_{\beta < \alpha} t_{\beta}$. By (4) of the induction hypothesis and Defi-nition [3](#page-4-0) (3), $t_\alpha \in P_\alpha$, since $\text{supp}(t_\alpha) = \text{supp}(p \restriction \alpha) \cup \text{supp}(r \restriction \alpha)$. For all $\beta < \alpha$, t_{α} \upharpoonright $\beta = t_{\beta} \leq \pi_{\alpha}(p \upharpoonright \alpha)$ \upharpoonright β , $r \upharpoonright$ β . Therefore, $t_{\alpha} \leq \pi_{\alpha}(p \upharpoonright \alpha)$, $r \upharpoonright \alpha$. Hence, $(1)–(5)$ hold.

Now we show that π_{α} is a pre-automorphism.

Claim 1 For all $a_{\alpha}, c_{\alpha} \in P_{\alpha}, c_{\alpha} \leq a_{\alpha}$ iff $\pi_{\alpha}(c_{\alpha}) \leq \pi_{\alpha}(a_{\alpha})$.

Proof Suppose $\alpha = \beta + 1$. Let $\langle c_{\beta}, \dot{d}_{\beta} \rangle$ denote c_{α} and $\langle a_{\beta}, \dot{b}_{\beta} \rangle$ denote a_{α} . Suppose $c_{\alpha} \le a_{\alpha}$. Then $c_{\beta} \le a_{\beta}$ and $c_{\beta} \Vdash d_{\beta} \le b_{\beta}$. It follows that $\pi_{\beta}(c_{\beta}) \le \pi_{\beta}(a_{\beta})$ and $\pi_\beta(c_\beta) \Vdash \pi_\beta(\dot{d}_\beta) \leq \pi_\beta(\dot{b}_\beta)$, since π_β is a pre-automorphism of P_β . $\pi_\beta(c_\beta) \Vdash$ $\dot{\sigma}_{\beta}(\pi_{\beta}(\dot{d}_{\beta})) \leq \dot{\sigma}_{\beta}(\pi_{\beta}(\dot{b}_{\beta}))$, since $P_{\beta} \Vdash \dot{\sigma}_{\beta}$ is an automorphism of \dot{Q}_{β} . Therefore, $\langle \pi_\beta(c_\beta), \dot{\sigma}_\beta(\pi_\beta(d_\beta)) \rangle \leq \langle \pi_\beta(a_\beta), \dot{\sigma}_\beta(\pi_\beta(b_\beta)) \rangle.$

Now assume that $c_{\alpha} \nleq a_{\alpha}$. Then either $c_{\beta} \nleq a_{\beta}$, or else ($c_{\beta} \leq a_{\beta}$ and $c_{\beta} \nparallel \phi \nleq a_{\beta}$ \dot{b}_{β}). If $c_{\beta} \nleq a_{\beta}$, then $\pi_{\beta}(c_{\beta}) \nleq \pi_{\beta}(a_{\beta})$, since π_{β} is a pre-automorphism. Otherwise, there is some $e_{\beta} \leq c_{\beta}$ such that $e_{\beta} \Vdash \dot{d}_{\beta} \not\leq \dot{b}_{\beta}$. Since π_{β} is a pre-automorphism of P_{β} , $\pi_{\beta}(e_{\beta}) \Vdash \pi_{\beta}(\dot{d}_{\beta}) \nleq \pi_{\beta}(\dot{b}_{\beta})$. Since $P_{\beta} \Vdash \dot{\sigma}_{\beta}$ is an automorphism of \dot{Q}_{β} , it follows that $\pi_\beta(e_\beta) \Vdash \dot{\sigma}_\beta(\pi_\beta(\dot{d}_\beta)) \nleq \dot{\sigma}_\beta(\pi_\beta(\dot{b}_\beta))$. Therefore, $\pi_\beta(c_\beta) \Vdash \dot{\sigma}_\beta(\pi_\beta(\dot{d}_\beta)) \leq$ $\dot{\sigma}_{\beta}(\pi_{\beta}(\dot{b}_{\beta}))$. In both cases, $\langle \pi_{\beta}(c_{\beta}), \dot{\sigma}_{\beta}(\pi_{\beta}(d_{\beta})) \rangle \n\leq \langle \pi(a_{\beta}), \dot{\sigma}_{\beta}(\pi_{\beta}(\dot{b}_{\beta})) \rangle$.

Now suppose α is a limit ordinal. $c_{\alpha} \le a_{\alpha} \leftrightarrow$ for all $\beta < \alpha$, $c_{\alpha} \restriction \beta \le a_{\alpha} \restriction \beta \leftrightarrow$ for all $\beta < \alpha$, $\pi_{\beta}(c_{\alpha} \restriction \beta) \leq \pi_{\beta}(a_{\alpha} \restriction \beta) \leftrightarrow$ for all $\beta < \alpha$, $\pi_{\alpha}(c_{\alpha}) \restriction \beta \leq \pi_{\alpha}(a_{\alpha}) \restriction \beta$ $\Leftrightarrow \pi_{\alpha}(c_{\alpha}) \leq \pi_{\alpha}(a_{\alpha}).$ *Claim 2* For each $a_{\alpha} \in P_{\alpha}$, there is a $c_{\alpha} \in P_{\alpha}$ such that $a_{\alpha} \sim_{\alpha} \pi_{\alpha}(c_{\alpha})$.

Proof Let $a_{\alpha} \in P_{\alpha}$. We construct such a $c_{\alpha} \in P_{\alpha}$ by induction on $\beta \leq \alpha$. Let $c_0 = a_\alpha(0) = 1_0$. Suppose $\beta < \alpha$ and $c_\beta \in P_\beta$ satisfies $\pi_\beta(c_\beta) \sim_\beta a_\alpha \upharpoonright \beta$. $\pi_{\beta+1}$ is a pre-automorphism of $P_{\beta+1}$, so there exists an $e_{\beta+1} = \langle e_{\beta}, f_{\beta} \rangle \in P_{\beta+1}$ such that $\pi_{\beta+1}(e_{\beta+1}) \sim_{\beta+1} a_{\alpha} \upharpoonright (\beta+1)$. $\pi_{\beta+1}(e_{\beta+1}) = \langle \pi_{\beta}(e_{\beta}), \dot{\sigma}_{\beta}(\pi_{\beta}(f_{\beta})) \rangle$. So, $\pi_\beta(e_\beta) \sim_\beta a_\alpha \restriction \beta \sim_\beta \pi_\beta(c_\beta)$. Hence, $e_\beta \sim_\beta c_\beta$, since π_β is a pre-automorphism. Let $c_{\beta+1} = \langle c_{\beta}, \dot{f}_{\beta} \rangle$. Then $\pi_{\beta+1}(c_{\beta+1}) \sim_{\beta+1} a_{\alpha} \upharpoonright (\beta+1)$, and $c_{\beta+1} \upharpoonright \beta = c_{\beta}$.

If $\beta \leq \alpha$ is a limit ordinal, let $c_{\beta} = \bigcup_{\gamma < \beta} c_{\gamma}$. Since π_{β} is support-preserving, $\text{supp}(c_{\beta}) = \text{supp}(\pi_{\beta}(c_{\beta})) = \text{supp}(a_{\beta})$; so $c_{\beta} \in P_{\beta}$. For all $\gamma < \beta$, $\pi_{\beta}(c_{\beta}) \upharpoonright \gamma = \gamma$ $\pi_\gamma(c_\gamma) \sim_\gamma a_\gamma$. This implies that $\pi_\beta(c_\beta) \sim_\beta a_\beta$, since $\pi_\beta(c_\beta) = \bigcup_{\gamma < \beta} \pi_\gamma(c_\gamma)$. \Box

Hence, π_{α} is a pre-automorphism of P_{α} .

The previous lemma also applies to iterations of length Ord.

Definition 5 We say that $\langle P_{\alpha} | \alpha \leq \text{Ord} \rangle$ is an *iteration* with supports \mathscr{S}_{α} , $\alpha \in \text{Ord}$, if

- 1. For each $\alpha \in \text{Ord}, \mathscr{S}_{\alpha} \subseteq \mathscr{P}(\alpha);$
- 2. For all $\beta < \alpha \in \text{Ord}, \mathscr{S}_{\beta} \subseteq \mathscr{S}_{\alpha};$
- 3. If $x, y \in \mathscr{S}_{\alpha}$, then $x \cup y \in \mathscr{S}_{\alpha}$;
- 4. *P*_{$\alpha+1$} is the preorder $P_{\alpha} * \dot{Q}_{\alpha}$, where $P_{\alpha} \Vdash \dot{Q}_{\alpha}$ is a set partial ordering;
- 5. For limit α , P_{α} is the preorder consisting of all α -sequences p such that for $\beta < \alpha$, $p \restriction \beta \Vdash_{P_{\beta}} p(\beta) \in \mathcal{Q}_{\beta}$, and supp $(p) \in \mathcal{S}_{\alpha}$;
- 6. *P*_{Ord} = $\bigcup_{\alpha \in \text{Ord}} P_{\alpha}$ ordered by $q \leq p$ iff supp $(q) \supseteq \text{supp}(p)$ and for each $\alpha \in$ $\supp(p), q \restriction \alpha \Vdash q(\alpha) \leq p(\alpha).$

p ∼_{Ord} *q* iff *p* ∼_α *q* for sufficiently large α . We say that $\langle P_{\alpha} : \alpha \leq Ord \rangle$ is *weakly or open-dense homogeneous* iff for each ordinal λ , $\langle P_\alpha : \alpha \leq \lambda \rangle$ is weakly or open-dense homogeneous, respectively.

Lemma 5 (Weak Homogeneity Preservation Lemma for Ordinal Length Iteration) *Suppose that* $\langle P_\alpha \mid \alpha \leq Ord \rangle$ *is an iteration with supports* \mathscr{S}_α , $\alpha \in Ord$, where $P_0 = \{1_0\}$ *and for each* α , $P_{\alpha+1} = P_{\alpha} * Q_{\alpha}$, where P_{α} forces Q_{α} to be a weakly *homogeneous set partial ordering. Also suppose that for each* α *and each pre-automorphism* π_{α} *of* P_{α} , $P_{\alpha} \Vdash \pi_{\alpha}(\dot{Q}_{\alpha}) = Q_{\alpha}$. Then $P = P_{\text{Ord}}/_{\sim_{\text{Ord}}}$ is weakly homogeneous.

The above proof also works for iterations of open-dense homogeneous partial orderings.

Lemma 6 (Open Dense Homogeneity Preservation Lemma) *Suppose that* $\langle P_\alpha | \alpha \leq$ $λ$ *), where* $λ ≤ Ord$ *, is an iteration with supports* $\mathcal{S}_α$ *, α* ∈ $λ$ *, where* $P_0 = \{1_0\}$ *and for each* α , $P_{\alpha+1} = P_{\alpha} * \dot{Q}_{\alpha}$, where P_{α} *forces* \dot{Q}_{α} *to be an open-dense homogeneous set partial ordering. Also suppose that for each* α *, each open dense* $D_{\alpha} \subseteq P_{\alpha}$ *, and each pre-isomorphism* π_{α} *of* D_{α} *,* $P_{\alpha} \Vdash \pi_{\alpha}(\dot{Q}_{\alpha}(D_{\alpha})) = \dot{Q}_{\alpha}(D_{\alpha})$ *, where* $\dot{Q}_{\alpha}(D_{\alpha})$ *denotes the collection of D_α-names for elements in* \dot{Q}_α . *Then* $P = P_\lambda/\sim$ *is open-dense homogeneous.*

Finally, we prove the main theorem.

Proof of Theorem 1.3 Suppose κ is hyperstrong and $V \models GCH$. Let P denote the forcing used in Lemma [2.](#page-1-1) By Lemma [5,](#page-6-0) the partial ordering *P* is weakly homogeneous. Let *G* be *P*-generic over *V*. Then replacement holds in $V[G]$ with *G* as a predicate. It follows that any element of HOD of *V*[*G*] belongs to HOD of *V*[G_{λ}] for some $\lambda <$ Ord. By Lemma [3,](#page-3-0) HOD of $V[G_\lambda]$ is contained in HOD of *V*. By Lemma [2,](#page-1-1) κ is still superstrong in *V*[*G*].

In a forthcoming paper, Brooke-Taylor and Friedman make essential use of Lemma [6](#page-6-1) to prove the following theorem for preserving large cardinals while adding morasses.

Theorem 2 [\[1](#page-7-7)] *Let V be a model of ZFC + GCH. Then there is a class generic extension V*[*G*] *of V such that cardinals are preserved, n-superstrong cardinals are preserved for all n in* $\omega + 1$ *, hyperstrong cardinals are preserved, and in* $V[G]$ *there is a gap-1 morass at every regular cardinal.*

We conclude this paper with the following open problem.

Open Problem Is it consistent that (κ^{+}) HOD be less than κ^{+} for all infinite cardinals κ ?

Cummings and Woodin (unpublished) have established the consistency of $(k+1)HOD < k^+$ for a closed unbounded class of cardinals k .

References

- 1. Brooke-Taylor, A., Friedman, S.-D.: Large cardinals and morasses (to appear)
- 2. Cummings, J.: Iterated forcing and elementary embeddings. In: Foreman, M., Kanamori, A., Magidor, M. (eds.) Handbook of Set Theory. Kluwer, Dordrecht (to appear)
- 3. Dobrinen, N., Friedman, S.-D.: Internal consistency and global co-stationarity of the ground model. J. Symbolic Logic **73**(2), 512–521 (2008)
- 4. Friedman, S.-D.: Large cardinals and L-like universes. In: Set theory: recent trends and applications, Quaderni di Matematica, vol. 17, pp. 93–110. Dept. Math., Seconda Univ. Napoli, Caserta (2006)
- 5. Jech, T.: Set Theory, the 3rd millennium edn. Springer, Berlin (2003)
- 6. Kanamori, A.: The Higher Infinite, 2nd edn. Springer, Berlin (2003)
- 7. Kunen, K.: Set Theory, an Introduction to Independence Proofs. North-Holland, Amsterdam (1980)
- 8. Steel, J.R.: The core model iterability problem. In: Lecture Notes in Logic, vol. 8. Springer, Berlin (1996)