
Arch. Math. Logic (2007) 46:281–287
DOI 10.1007/s00153-007-0043-5 Mathematical Logic

Distinguishing non-standard natural numbers in a set
theory within Łukasiewicz logic

Shunsuke Yatabe

Received: 26 February 2006 / Revised: 25 September 2006 /
Published online: 21 February 2007
© Springer-Verlag 2007

Abstract In H, a set theory with the comprehension principle within
Łukasiewicz infinite-valued predicate logic, we prove that a statement which
can be interpreted as “there is an infinite descending sequence of initial seg-
ments of ω” is truth value 1 in any model of H, and we prove an analogy of
Hájek’s theorem with a very simple procedure.
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1 Introduction

In this paper, we investigate an arithmetic defined in H, a set theory with
the comprehension principle within ŁQ, Łukasiewicz infinite-valued predicate
logic. We base on a result in [6]: the theory H is ω-inconsistent. Informally
speaking, this means that a statement which can be interpreted as “ω must
contain a non-standard natural number” is valid in H, i.e. it has the truth value
1 in every model of H. Its proof is by constructing a formula ϕ(x) such that,
if n is a standard natural number then the truth value of ϕ(n) is 0, and that of
(∃n)ϕ(n) is 1 in any model of H. This suggests that we can distinguish standard
and non-standard natural numbers to some extent in H. Using this, we prove
two corollaries of this theorem.
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First we can prove an “overspill” result: if τ(x) defines a set {x : τ(x)} of
elements of ω in each model of H and τ(n) is valid in H for infinitely many
standard numbers n, then (∃x ∈ ω)(τ(x) & ϕ′(x)) is valid in H for the formula
ϕ′ which is very similar to ϕ. Moreover, iterating this argument, we can show
that a statement which can be interpreted as “there is an infinite descending
sequence of initial segments of ω” is valid in H.

Unlike PA, we can distinguish some non-standard natural numbers in H.
This proves a difference: the induction scheme on ω implies a contradiction in
H. We prove this in the very simple way as the second corollary. We note that
this is an analogy of the theorem proved by Hájek [3].

The first corollary suggests that an arithmetic in H is somehow similar to one
in “non-standard models” of PA. However the second shows that they are very
different in spots. We should study further how different they are.

2 Preliminaries

We work within ŁQ, Łukasiewicz infinite-valued predicate logic with its stan-
dard semantics. It is known that ŁQ is not recursively axiomatizable. So, for
simplicity, we introduce ŁQ by defining its models. As for syntactic character-
ization of H, see [7].

Given M = 〈M, (rP)P predicate, (mc)c constant〉 where M �= ∅, mc ∈ M, rP :
Mn → [0, 1] (if P is n-ary relation) and a valuation v i.e. v : (object variables) →
M, let ‖ϕ‖M,v be the truth value of ϕ in M, v iff

– ‖P(x, . . . , c . . .)‖M,v = rP(v(x), . . . , mc, . . .),
– ‖A → B‖M,v = ‖A‖M,v 
⇒ ‖B‖M,v and ‖A&B‖M,v = ‖A‖M,v ∗ ‖B‖M,v,
– ‖(∀x)ϕ‖M,v = inf{‖ϕ‖M,v′ : v′(y) = v(y) for all variable y except possibly x},
where x 
⇒ y = min(1, 1 − x + y) and x ∗ y = max(0, x + y − 1). The rest
connectives are defined by using → and constant 0̄ (for example ‖¬A‖M,v =
‖A → 0̄‖M,v = ‖A‖M,v 
⇒ 0 and ‖A ∧ B‖M,v = ‖¬(A → ¬(A → B))‖M,v).

Set ‖ϕ‖M = inf{‖ϕ‖M,v : v is a valuation on M}.
Definition 1 For T a theory within ŁQ, M = 〈M, (rP)P predicate, (mc)c constant〉 is
a model of T (or a natural Tarskian semantics for T) if ‖ϕ‖M = 1 for any axiom
ϕ ∈ T.

We call ϕ is valid in T when ϕ has truth value 1 in any model of T.
We note that, Hájek defined the Łukasiewicz logic Ł∀ in more general seman-

tics [2]. Ł∀ considers models over all linearly ordered MV-algebras and it is
recursively axiomatizable. The above natural Tarskian semantics is called a
([0, 1], ∗, 
⇒, 0, 1)-structure M where ([0, 1], ∗, 
⇒, 0, 1) forms the standard
MV-algebra: The strength of Ł∀ is between Grišin logic and ŁQ.

Definition 2 (Set theory H) Let H be the set theory within ŁQ

– which has a binary predicate ∈, and terms of the form {x : ϕ(x)},
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– whose only axiom scheme is the comprehension principle: For any ϕ not
containing u freely,

(∀u)[u ∈ {x : ϕ(x, . . .)} ≡ ϕ(u, . . .)]

This theory is consistent (see [7]). Next we develop an arithmetic within H in
the track of Hájek’s paper [3].

Definition 3 ∅ is the term defined as {x : x �= x}.
Theorem 1 (Recursion theorem) For any formula ϕ(x, . . . , y),

H � (∃z)(∀x)[x ∈ z ≡ ϕ(x, . . . , z)]

In particular, there is a term θ such that θ =ext {u : ϕ(u, . . . , θ)}.
We note that X =ext Y iff (∀x)[x ∈ X ≡ x ∈ Y]. For the proof, see [1]. Using this,
we can define a term which represents a set of all natural numbers as follows:

Definition 4 ω is a term such that by

ω =ext {z : z = ∅ ∨ (∃y)[y ∈ ω ∧ z = {y}]}

We define natural number n > 0 to be ∅ within n iterate of {}. For simplicity,
we write n + 1 instead of {n} hereafter. We note that ‖n ∈ ω‖M = 1 for any
standard natural number n. Next we summarize a theorem in [6].

Theorem 2 The theory H is ω-inconsistent.
Informally speaking, a statement which can be interpreted as “there is a non-

standard natural number” is valid in H.

Proof First let us define a term θ by

〈n, x〉 ∈ θ ⇐⇒ [n = ∅ ∧ x �∈ x]
∨[(∃ k ∈ ω) [n = {k} ∧ (x ∈ x → 〈k, x〉 ∈ θ)]]

Claim For any standard natural number n, ‖〈n, x〉 ∈ θ‖M = min{(n + 1)(1 −
‖x ∈ x‖M), 1} in any model M of H.

Next we produce the Russell-like set Rω = {x : (∃n ∈ ω)〈n, x〉 ∈ θ}.
Lemma 1 ‖Rω ∈ Rω‖M = 1.

Proof Let p = ‖Rω ∈ Rω‖M ∈ [0, 1]. Then we have

‖Rω ∈ Rω‖M = sup{‖n ∈ ω ∧ 〈n, Rω〉 ∈ θ‖M : n ∈ M}
≥ min{sup{(n + 1)(1 − p) : n ∈ N}, 1}

Assume p �= 1, then there must be some j ∈ N such that j · (1 − p) ≥ 1, so p
must be 1, a contradiction. ��
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We note that ‖〈n, Rω〉 ∈ θ‖M = 0 for any standard natural number n. So
the statement “〈n, Rω〉 ∈ θ” can be interpreted as “n is a non-standard natural
number”, and “Rω ∈ Rω” means that (∃n ∈ ω)〈n, Rω〉 ∈ θ , so it can be inter-
preted as “there is a non-standard natural number”, and it has truth value 1 in
any model of H. ��

This theorem is an analogy of Greg Restall’s result [5]: He proved
ω-inconsistency of some system of arithmetic with addition, multiplication and
truth predicate within Łukasiewicz infinite-valued predicate logic by using a
diagonalization argument.

The above proof is a generalization of the derivation of Moh’s paradox [4]:
the comprehension principle implies a contradiction within Łm, Łukasiewicz
m-valued propositional logic, for any finite natural number m > 2. Its deriva-
tion is that the truth value of the sentence “Rm ∈ Rm” can’t be decided within
Łm, where

Rm = {x : x ∈ x → (x ∈ x → (x ∈ x · · · (x ∈ x →
︸ ︷︷ ︸

m−2 times

x �∈ x) · · · ))}

The proof of Theorem 2 itself doesn’t work within Ł∀ which admits models
over non-archimedean linearly ordered MV-algebras. However, since Moh’s
argument works to show that the comprehension principle implies a contradic-
tion within any finite BCK-logic (this is a logic whose model is a finite BCK
algebra), Yuichi Komori suggested that an analogy of Theorem 2 could be
proved probably within BCK logic.

3 Overspill

In the proof of Theorem 2, we show ‖〈n, Rω〉 ∈ θ‖M = 0 for any standard
natural number n. Next question is whether the converse, ‖〈n, Rω〉 ∈ θ‖M = 0
implies n is a standard natural number, holds or not. If this holds, then ω′ =
{n ∈ ω : 〈n, Rω〉 �∈ θ} is similar to the set of standard natural numbers. However,
it is easy to see that the statement which can be interpreted as “ω′ must contain
non-standard numbers” is valid in H: By defining Rω′ = {x : (∃n ∈ ω′)〈n, x〉 ∈ θ},
we can prove this in a very similar way to Theorem 2. Moreover, we can prove
the overspill-like phenomenon as mentioned in the introduction. Assume τ(x)

defines a set {x : τ(x)} of elements of ω in each model of H and τ(n) is valid in
H for infinitely many standard natural numbers. Let us define a set R′

ω as

R′
ω = {x : (∃n ∈ ω) [〈n, x〉 ∈ θ & τ(n)]}

then just the same argument shows ‖R′
ω ∈ R′

ω‖ = 1. Let us define ϕ′(n) by
〈n, R′

ω〉 ∈ θ . We can see that (∃x ∈ ω)(τ(x) & ϕ′(x)) is valid in H.
Next we investigate the order-type of ω. By iterating the overspill-like argu-

ment infinitely-many times, we can easily prove an analogy of Cantor’s theorem
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which says that the order-type of the domain of any countable non-standard
model of PA is isomorphic to N + Z × Q. Let us formalize this within H, and
construct a concrete term which corresponds to them.

First let us present our argument implicitly. We define subsets of ω inductively
as follows:

– ω(0) = ω, Rω(0) = Rω

– · · ·
– ω(n+1) = {k ∈ ω(n) : 〈k, Rω(n)〉 �∈ θ}, Rω(n+1) = {x : (∃j ∈ ω(n+1)) 〈j, x〉 ∈ θ}
– · · ·
As above, we can prove a negative answer.

Lemma 2 For any model M of H and any standard natural number n, a statement
which can be interpreted as “there is a non-standard natural number in ω(n)” has
truth value 1 in M.

Proof Here we only prove the case n = 1. Let M be any model of H. Let us
consider the truth value of Rω(1) ∈ Rω(1) : We can see, for any standard natural
number n, ‖〈n, Rω(1)〉 ∈ θ‖M = 0, and ‖Rω(1) ∈ Rω(1)‖M = 1. This means, the
statement which can be interpreted as “there is a non-standard natural number
in ω(1)” has truth value 1 in M. ��

This proof shows the followings: for any natural number m, k, j,

– ‖m ∈ ω(k)‖M ≥ ‖m ∈ ω(k+1)‖M holds (in this sense ω(n+1) is an initial
segment of ω),

– if ‖Rω(k) ∈ Rω(k)‖ = 1, then ‖j ∈ ω(k+1)‖M = ‖m ∈ ω(k+1)‖M = ‖m + 1 ∈
ω(k+1)‖M where m = j + 1.

In particular, for any standard natural number n,

– ‖k ∈ ω(n)‖M = 1 holds for any standard natural number k,
– for any non-standard natural number d, if ‖〈d, Rω(n)〉 ∈ θ‖M = 1 holds,

then ‖d ∈ ω(n + 1)‖M = 0 holds: In this sense ω(n + 1) is a cutoff of some
non-standard natural numbers in ω(n),

– ‖Rω(n) ∈ Rω(n)‖ = 1 holds: this sentence can be interpreted as “ω(n) must
contain some non-standard natural numbers”, and furthermore this means
“there is a descending sequence ω(0) ⊇ · · · ⊇ ω(n + 1)” by construction.

So we can take an infinite “downward” sequence 〈ω(n)〉 of initial segments of ω

such that ω(n+1) is an initial segment of ω(n).
Next we formalize this argument: Let us construct a formula which corre-

sponds to “the existence of an infinite downward sequence”.

Theorem 3 The statement which can be interpreted as “there is a infinite descend-
ing sequence of initial segments of ω” is valid in H.

Proof Let us formalize the argument in the proof of Lemma 2. First we define
the term � such that
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– 〈0, 〈n, x〉〉 ∈ � iff x ∈ ω(n),
– 〈1, 〈n, x〉〉 ∈ � iff x ∈ Rω(n) (so Rω(n) = {y : (∃j)〈0, 〈n, j〉〉 ∈ � ∧ 〈j, y〉 ∈ θ}),

for any standard natural number n. In concrete terms,

〈i, 〈n, x〉〉 ∈ � ⇐⇒ [i = 0 ∧ [(n = ∅ ∧ x ∈ ω)

∨(∃ k ∈ ω)(n = {k} ∧ 〈0, 〈k, x〉〉 ∈ �

∧〈x, {y : (∃j)〈0, 〈n, j〉〉 ∈ � ∧ 〈j, y〉 ∈ θ}〉 �∈ θ)]]
∨[i = 1 ∧ [(∃l)(〈0, 〈n, l〉〉 ∈ � ∧ 〈l, x〉 ∈ θ)]]

Theorem 1 guarantees the existence of �: This means the term Rω(n) is definable
for every natural number n.

We have seen that ‖Rω(n) ∈ Rω(n)‖ = 1 for every standard natural number
n. Then, by overspill, we can show the following:

‖(∃x)ϕ′(x) & (Rω(x) ∈ Rω(x))‖M = 1

As we see, this sentence can be interpreted as “there is a infinite descending
sequence of initial segments of ω”. ��

4 An analogy of Hájek’s theorem

In PA, it is well-known that we can never distinguish standard and non-standard
natural numbers. It is because of the induction scheme on ω. On the other hand,
‖〈d, Rω〉 ∈ θ‖M > 0 implies that d is a non-standard natural number in H. This
gives a way of distinguishing them, and this causes a big difference between an
arithmetic in H and PA.

Definition 5 The induction scheme on ω is a scheme of the form: for any for-
mula ϕ,

ϕ(0) ∧ (∀n ∈ ω)[ϕ(n) ≡ ϕ(n + 1)] infer (∀x)[x ∈ ω → ϕ(x)]

Theorem 4 The induction scheme on ω implies a contradiction in H.
This means that the induction scheme is valid in no model of H.

Proof Let us assume the induction scheme on ω. It is easy to see that
‖〈0, Rω〉 �∈ θ‖ = ‖Rω ∈ Rω‖ = 1. And

‖〈n + 1, Rω〉 �∈ θ‖ = 1 − (min{1 − ‖Rω ∈ Rω‖ + ‖〈n, Rω〉 ∈ θ‖, 1})
= ‖〈n, Rω〉 �∈ θ‖

So the induction scheme proves that (∀x)[〈x, Rω〉 �∈ θ ], but this contradicts to
Theorem 2. ��
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Last we note about the definability of arithmetical functions in H. For exam-
ple, is addition + definable in H? The graph Plus(x, y, z) of addition (x + y = z)
itself is definable in H by using Theorem 1. However, Theorem 1 is not strong
enough to show the following:

– Plus is a crisp relation, i.e. ‖Plus(x, y, z)‖ = 0 or 1 for any x, y, z,
– we can define a function plus : ω × ω → ω (where plus(x, y) means x + y),
– the totality of the function plus (if we can define it),
– (ω, ≤) becomes a linear ordering where x ≤ y iff (∃z)[x + z = y] for any

x, y ∈ ω.

We probably need the stronger axioms or rules.
Hájek [3] investigated how much we can develop an arithmetic in more gen-

eral semantics. He works in CŁ0, a set theory with the comprehension principle
within Ł∀, and he showed that, for example, ω becomes a crisp set and plus
can be defined as a total crisp function using the induction scheme. So (ω, ≤)

becomes a linear ordering. However, he eventually proved that the induction
scheme on ω implies a contradiction. His original proof was very complex: he
constructed a truth predicate which commutes with connectives by using the
induction scheme, and such a predicate implies a contradiction.

Theorem 4 is an analogy of Hájek’s theorem, and this shows that we can’t
assume any Hájek’s style arithmetic with the induction scheme in H. And we do
not know that an arithmetic with the axiom that ω is crisp is consistent. Hájek
himself raised a question as follows:

can we add consistently to the theory axioms guaranteeing the existence
of the crisp structure ω of natural numbers and further add all the axioms
of Peano arithmetic for ω?
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