
Arch. Math. Logic (2007) 46:385–424
DOI 10.1007/s00153-007-0039-1 Mathematical Logic

Analytic proof systems for λ-calculus:
the elimination of transitivity, and why it matters

Pierluigi Minari

Received: 22 September 2005 / Revised: 27 November 2006 / Published online: 27 February 2007
© Springer-Verlag 2007

Abstract We introduce new proof systems G[β] and Gext[β], which are
equivalent to the standard equational calculi of λβ- and λβη-conversion, and
which may be qualified as ‘analytic’ because it is possible to establish, by pu-
rely proof-theoretical methods, that in both of them the transitivity rule admits
effective elimination. This key feature, besides its intrinsic conceptual signifi-
cance, turns out to provide a common logical background to new and com-
paratively simple demonstrations—rooted in nice proof-theoretical properties
of transitivity-free derivations—of a number of well-known and central results
concerning β- and βη-reduction. The latter include the Church–Rosser theo-
rem for both reductions, the Standardization theorem for β-reduction, as well
as the Normalization (Leftmost reduction) theorem and the Postponement of
η-reduction theorem for βη-reduction.

Keywords Lambda-calculus · Extensionality · Elimination of transitivity ·
Equational proof systems · Lambda reduction

Mathematics Subject Classification (2000) 03B40 · 03F03 · 03F05 · 03F07

1 Introduction

A “standard” equational proof system E over an equational language LE
consists of: (i) certain specific axioms, namely a set AE of LE-equations, clo-
sed under substitutions; (ii) the usual deductive apparatus of equational logic,
which comprises the axiom schema of reflexivity of equality and the inference

P. Minari (B)
Department of Philosophy, University of Florence, Via Bolognese 52, 50139 Firenze, Italy
e-mail: minari@unifi.it

386 P. Minari

rules of symmetry, transitivity and f -congruence of equality w.r. to each term
constructor f of LE—the substitution rule being superfluous in view of the
closure requirement on AE. By Birkhoff’s Completeness theorem, it holds that
�E t = s ⇔ AE |� t = s.

Such syntactic presentations of equational theories are, without saying, very
convenient under most respects. Proof-theoretical investigations, however, are
virtually made impossible because of the presence of the transitivity rule which,
as a matter of fact, cannot be dispensed with (except for trivial cases). Sup-
pose, for instance, that we are interested in finding a syntactic consistency
proof of a given E for which we do not have a natural model ready at hand.
We cannot, arguing by induction on the length of E-derivations, conclude
that �E x = y (x, y two distinct variables) by showing that x = y neither is
a specific axiom (assume it is not) nor it can be obtained as a conclusion
of one of the inference rules: this simple argument trivially breaks down
when the case of the transitivity rule is considered—and in fact in this case
only.

Indeed, the transitivity rule shares with the rule of modus ponens in propo-
sitional and first-order Hilbert-style calculi an intrinsically synthetic character,
which is responsible for the potential loss of relevant information (a term/a
formula) along formal derivations and, ultimately, for the lack of any significant
mathematical structure on the part of the latter.

Given that standard, ‘synthetic’ equational calculi do not lend themselves
directly to proof-theoretical analysis, one might ask the question whether there
are significant cases in which it is both possible and useful to turn a ‘syn-
thetic’ equational proof system into an equivalent ‘analytic’ one, where the
transitivity rule can be actually demonstrated being redundant. In [26] we
addressed this question relatively to a specific class of equational theories
including combinatory logic CL and more general systems C[X] of combi-
nators. The new formal systems G[C], respectively G[X] introduced to this aim
were shown to be equivalent to their synthetic counterparts and to have the
key feature—which qualifies them as analytic—that every derivation can ef-
fectively be transformed into a transitivity-free derivation of the same equa-
tion. As a first consequence, the syntactic consistency of G[C] (in general
of G[X]), and so of CL (C[X]) too, could be immediately established by
the simple inductive argument alluded to above. But also, due to the nice
proof-theoretical behavior of transitivity-free derivations, we were able to
give new demonstrations of well known results concerning CL and weak re-
duction (e.g. the Church–Rosser theorem and the leftmost reduction theo-
rem) and to generalize these results to arbitrary combinatory systems C[X]
as well.

In the present paper, our aim is to show how the “analytic” approach can be
fruitfully extended to λ-calculus, namely to the equational theories λβ and λβη.
This proves to be—perhaps not surprisingly—an intriguingly harder task, as we
will see (a previous, only partially successful attempt of ours in this direction is
sketched in [27]). In Sect. 2 we introduce the analytic proof systems G[β] and
Gext[β]. Their distinguishing feature consists in the pair of symmetrical (left and

Analytic proof systems for λ-calculus 387

right) β-rules

t[x/r]p1 · · · pn = s
(λx.t)rp1 · · · pn = s

[βl] t = s[x/r]p1 · · · pn

t = (λx.s)rp1 · · · pn
[βr] (n ≥ 0)

which replace the β-conversion schema

(λx.t)s = t[x/s]

characteristic of the corresponding synthetic proof systems. As far as the
equational deductive apparatus of the latter is concerned, only the reflexi-
vity schema [�] (restricted to variables) and the rules [ξ] of weak extensiona-
lity (or congruence w.r. to abstraction) and [τ] of transitivity are retained as
they are also in the analytic calculi; instead, the symmetry rule [σ] is dropped,
while the usual pair of app-congruence rules [µ] and [ν] is replaced by a single
parallel application rule. Finally, to obtain Gext[β], the extensionality rule [Ext]
(or [ζ], as it is sometimes called in the literature, see e.g. [18]) is added. The
equivalence between G[β] and λβ, as well as between Gext[β] and λβη, is easily
established.

Sections 3 and 5 are devoted to the demonstration (by purely proof-
theoretical methods) of the central result of the paper, namely the effective
eliminability of the transitivity rule in G[β], respectively Gext[β] (Theorems 3.11
and 5.8). Compared to the corresponding τ -eliminability problem for analytic
combinatory systems G[X] tackled in [26], this task turns out to be considerably
more difficult, as we try to explain in Sect. 3, essentially due to the presence
of the weak extensionality rule [ξ] (and, in Gext[β], of [Ext] as well). As a
consequence, the proof strategy is going to require a considerable number of
steps and technical tools, including one reminiscent of the indexing (or mar-
king) technique familiar from the literature on lambda reduction (see e.g. [3],
Chap. 11).

Just the very fact that analytic, transitivity-free equational proof systems
adequate for λ-calculus can now be exhibited, has in our opinion a certain
conceptual relevance. These systems, in particular, are easily seen to enjoy
a kind of subterm property (Lemmas 2.3 and 2.4)—analogous, in a sense, to
the subformula-property of cut-free sequent calculi—which immediately yields,
without any need to analyze convertibility (equality) through a reduction calculus,
the underivability of equations of the form x = y with x and y distinct variables,
hence also the consistency of the analytic proof systems G[β] and Gext[β] and,
in turn, of their synthetic counterparts λβ and λβη.

More specific applications, presented in the remaining Sects. 4 and 6, are
intended to try and motivate further why analyticity and the elimination of tran-
sitivity matter. The point is that τ -free derivations in G[β] and Gext[β] do have a
non trivial mathematical structure and a number of nice properties, which may
be analyzed and exploited by proof-theoretical methods. As a consequence,
we find at our disposal a sort of unified logical background in which new and
comparatively short proofs of well-known central results concerning β- and

388 P. Minari

βη-reduction can be developed just by reflecting on τ -free provable β- and βη-
equality. This is the case, in particular, of the Church–Rosser property for both
reductions (Theorems 4.3 and 6.3), of the (weak) Standardization theorem for
β-reduction (Theorem 4.7), and finally of the Normalization (or Leftmost re-
duction) theorem and the Postponement of η-reduction theorem (Corollaries
6.8, 6.9) for βη-reduction.

Related work In the last two decades, the issue of transitivity elimination has
been extensively investigated, mainly by computer scientists, in connection with
typed λ-calculi, type theories and programming languages. It is, however, tran-
sitivity elimination for the subtyping relation. Subtyping enriches a type system
by means of a preorder relation ≤ over types (the intended meaning of S ≤ T
being that type S is a subtype of type T, i.e. that all expressions of type S can be
used in any context where an expression of type T is expected) governed by a
set of appropriate subtyping rules (a subtyping system). Usually combined with
other type-theoretic constructs, subtyping gives rise to flexible and powerful
formal environments, which are fruitfully applied to model notions such as e.g.
object inheritance in object-oriented programming, or theory and proof reuse
in proof assistants (see the informative survey [9]).

The explicit presence of the transitivity rule τ≤ for the subtyping relation in a
given subtyping system Σ , especially when combined with type-dependency,
is responsible for serious difficulties in the verification of important meta-
theoretical properties, such as subtyping-checking, subject reduction and de-
cidability; on the other hand, the presence of certain other rules in Σ makes
it impossible to eliminate τ≤ outright. Hence the attempts to devise equivalent
reformulations of Σ (e.g. by a suitable modification of the conflicting rules)
which provably admit elimination of the transitivity rule (TE). A subtyping
system for second-order λ-calculus F enjoying TE has been devised by Curien
and Ghelli [12] by a clever reformulation of the rule for using primitive subty-
ping; in the related work of Longo, Milsted and Soloviev [23] subtyping for F is
presented as logical entailment by means of a sequent calculus Co� enjoying cut
elimination, the latter implying TE. The problem of transitivity elimination in
subtyping extensions of systems with (first or second order) dependent types—
i.e., systems lying on the left and the rear face of Barendregt’s lambda-cube,
cf. [4]—is considerably more difficult. Indeed, once an equivalence on types
(typically: β-conversion) coexists with the subtyping relation between types,
further conflicts between transitivity elimination and other rules, notably the
so-called ‘conversion subtyping rule’ (stating that any two convertible types are
in the subtyping relation), do arise. Just to mention a few important results,
around 1995 a weak form of TE (i.e., TE only at the level of normalized types)
has been proved by Compagnoni (cf. [10]) for Fω∧, an extension of Girard’s sys-
tem Fω with subtyping, bounded quantification and intersection types, and by
Aspinall and Compagnoni (cf. [2]) for λP≤, a subtyping extension of first-order
dependent types system λP. More recently, a considerable improvement has
been achieved with the work of Chen, proving full TE (for arbitrary, hence
possibly non-normalized types) for the system λΠ≤ , equivalent to λP≤ ([6,7]),

Analytic proof systems for λ-calculus 389

as well as for other type theories with subtyping among which λC≤, a subtyping
extension of the strongest system in the lambda-cube, i.e. Coquand’s Calculus
of Constructions CC ([7]; see also [8], proving TE for an extension of λC≤ with
coercions).

It is perhaps worth noticing here that one of the key steps in Chen’s proof
of TE for λΠ≤ consists in the inclusion in the subtyping system of the two
symmetrical rules

Γ � B[x/M1]M2 · · · Mn ≤ C
Γ � (Λx : A.B)M1 · · · Mn ≤ C S-ApSL ,

Γ � C ≤ B[x/M1]M2 · · · Mn

Γ � C ≤ (Λx : A.B)M1 · · · Mn
S-ApSR

dealing with the subtyping derived from β-conversion at the type level (A, B, . . .
vary over pre-types and M, M1 . . . over pre-terms; Γ is a pre-context). These
rules closely resemble our above mentioned β-rules.1 But it has to be stressed
that, working as we do with untyped λ-calculus, we cannot rely on normaliza-
tion, whereas (strong) normalization is enjoyed by the above mentioned typed
systems, a fact that also plays a crucial role in the proofs of TE (indeed, Chen’s
induction measure in the proof of admissibility of transitivity for λΠ≤ is ba-
sed on the maximum number of normalizing reduction steps of the involved
type-expressions).

2 Synthetic versus analytic proof systems for λ-calculus

2.1 Preliminaries

In the following, Λ denotes the set of all pure λ-terms built over the countably
infinite set V = {v0, v1, . . .} of variables:

Λ = V | (λV.Λ) | (ΛΛ) .

The letters x, y, z, . . . and t, s, r, . . . vary over V, respectively Λ. The symbol ≡
denotes syntactic identity between λ-terms. In writing λ-terms and in dealing
with the syntactic operation t, s, x � t[x/s] of substitution we adopt throughout
the standard conventions (see e.g. [3], Chap. 2, Sect. 1); in particular:

• outermost parentheses are not written, and missing ones (e.g. as in tsr) are
to be restored on the left;

• α-congruent terms are syntactically identified;
• all bound variables occurring in the terms t1, t2, . . . taken into consideration

in a certain context (e.g. a statement, a proof, etc.) are assumed to be different
from the free variables occurring in them.

1 Indeed, the idea of doing weak head expansions on the left or on the right side is not new;
e.g. it can be found, although not so explicitly, also in [11], presenting an algorithm for testing
βη-conversion in type theory.

390 P. Minari

Further notational conventions include:

• FV(t, s, . . .) := the set of all variables occurring free in the terms t, s, . . .;
• ‖t‖ := the depth of t, inductively defined as follows:

(a) ‖x‖ = 0 (x ∈ V) ,
(b) ‖sr‖ = max(‖s‖ , ‖r‖) + 1 ,
(c) ‖λx.s‖ = ‖s‖ + 1.

An application (abstraction) term is a term of the form ts (λx.t). A β- (η-) redex
is an application (abstraction) term of the form (λx.t)s (λx.tx, x /∈ FV(t)).

2.2 Synthetic calculi

In the standard presentation, the synthetic equational calculus λβ , or λK-calculus,
consists of the following axiom-schema (β-conversion) and inference rules (re-
flexivity, which by convenience we treat as a 0-premises inference rule, symme-
try, transitivity, right and left app-congruence, and weak extensionality):

(λx.t)s = t[x/s] ,
t = t

[ρ] ,
t = s
s = t

[σ] ,
t = s s = r

t = r
[τ] ,

t = s
rt = rs

[µ] ,
t = s

tr = sr
[ν] ,

t = s
λx.t = λx.s

[ξ] .

The calculus λβη, or extensional λK-calculus, results from the addition to λβ of
the η-conversion schema

λx.tx = t , provided x /∈ FV(t) ,

or, equivalently (see e.g. [3]), of the extensionality rule

tx = sx
t = s

[Ext] , where x /∈ FV(t, s) .

2.3 Analytic calculi

The analytic equational calculus G[β] is determined by the following inference
rules:

(i) Left and right introduction rules (β-rules):

t[x/p0]p1 · · · pn = s
(λx.t)p0 · · · pn = s

[βl] ,
t = s[x/p0]p1 · · · pn

t = (λx.s)p0 · · · pn
[βr] (n ≥ 0) ,

where the (possibly missing) terms p1, . . . pn are said to be the side terms
of the inference;

Analytic proof systems for λ-calculus 391

(ii) Structural rules:
[ρ] restricted to variables, [τ], [ξ] and, instead of [µ] and [ν], the rule

t1 = s1 t2 = s2

t1t2 = s1s2
[App]

of parallel application.

The analytic equational calculus Gext[β] is obtained from G[β] by adding the
(non structural) extensionality rule [Ext].

Note that the reflexivity (0-premises) rule is restricted to variables. It is easily
verified that all equations of the form t = t are derivable by means of structural
rules alone. Also, the symmetry rule is missing; however, it is readily seen that

Fact 2.1 G[β] and Gext[β] are closed under [σ].
In fact, due to the left/right symmetry of the β-rules, to each derivation D

in G(ext)[β] we may associate the dual derivation ˜D by effecting the following
transformations: (i) each node t = s is replaced by s = t; (ii) labels [βr] are
changed into [βl] and conversely; (iii) the premises of a τ -inference, if any, are
interchanged. We clearly have

D � t = s iff ˜D � s = t .

Now, it is easily verifiable that the analytic and synthetic calculi are equivalent.

Proposition 2.2 For every equation t = s:

λβ � t = s ⇔ G[β] � t = s ; λβη � t = s ⇔ Gext[β] � t = s .

2.4 Consistency of τ -free analytic calculi

Let G−[β] (G−
ext[β]) be G[β] (Gext[β]) minus the transitivity rule [τ]. In view of

the peculiar form of the β-rules, G−[β]-derivations enjoy the following simple
yet useful weak subterm property.

Lemma 2.3 Let D be a τ -free derivation of t = s in G[β].
(i) If D contains at least one occurrence of a left (right) β-rule, then the term

t (respectively: s) contains at least one occurrence of a β-redex.
(ii) If both t and s are β-normal forms, then t ≡ s.

Proof (i): straightforward, by induction on the length (number of nodes) of D.
(ii): under the assumptions, it follows by (i) that the only inference rules possibly
occurring in D are [�], [ξ] and [App], and clearly the end–equation of every such
derivation must be of the form r = r.
�
As far as G−

ext[β] is concerned, property (i) does no longer hold (because β-
redex occurrences may be destroyed by the extensionality rule). Yet, we can
easily prove the weaker

392 P. Minari

Lemma 2.4 Let D be a τ -free derivation of t = s in Gext[β].
(i) If D contains at least one occurrence of a left (right) β-rule, then the term

t (resp.: s) contains at least one occurrence of an abstraction term.
(ii) If t and s do not contain occurrences of λ, then t ≡ s.

As an immediate consequence of (ii) of Lemmas 2.3 and 2.4, no equation
x = y with x distinct from y can be proved in G−[β] or G−

ext[β]; that is:

Proposition 2.5 The τ -free analytic calculi G−[β] and G−
ext[β] are consistent.

So, the transitivity elimination theorems we are going to prove in Sect. 3
(Theorem 3.11) and Sect. 5 (Theorem 5.8), entailing the equivalence between
G[β] and G−[β], resp. Gext[β] and G−

ext[β], together with Propositions 2.2 and
2.5 will provide a purely proof-theoretical demonstration of:

Proposition 2.6 The synthetic equational proof systems λβ and λβη are
consistent.

Remark 2.7 Let G[βη] be the calculus obtained from G[β] by adding the follo-
wing (left and right) η-introduction rules:

t = s
λx.tx = s

[ηl] s = t
s = λx.tx

[ηr] (x /∈ FV(t)) .

It is easy to verify that Gext[β] and G[βη] are equivalent. However, differently
from Gext[β], G[βη] doesn’t admit τ -elimination. For instance, the equation

λx.y((λu.u)x) = y

is derivable in G[βη]:

y = y
x = x

(λu.u)x = x βl

y((λu.u)x) = yx App

λx.y((λu.u)x) = λx.yx ξ

y = y
λx.yx = y ηl

λx.y((λu.u)x) = y τ

but is obviously not derivable in G[βη] minus [τ]. By contrast,

y = y
z = z

(λu.u)z = z βl

y((λu.u)z) = yz App

(λx.y((λu.u)x))z = yz βl

λx.y((λu.u)x) = y Ext

is a τ -free derivation of the same equation in Gext[β].

Analytic proof systems for λ-calculus 393

2.5 Preliminaries to τ -elimination

We collect here some notions, notations and auxiliary lemmas which will be
needed in the rest of the paper.

Both in G[β] and Gext[β], derivations D will be measured according to their

• size: s(D) := the number of β- and [Ext]- inferences occurring in D;
• height: h(D) := the maximum length (number of nodes) of the branches in

D, minus 1.

Also, for x ∈ V, we let

• ax(D, x) := the number of occurrences of [�]-inferences x = x in D.

Clearly, w.r. to the dual transformation D �→ ˜D introduced in 2.3, we have

s(D) = s(˜D), h(D) = h(˜D) and ax(D, x) = ax(˜D , x) for x ∈ V.

A derivation D is said to be a left (right) derivation provided that no [βr]
([βl]) inference occurs in D. We will usually write D �L t = s (D �R t = s) to
mean that D is a left (right) derivation of t = s. Obviously,

D �L/R t = s iff ˜D �R/L s = t .

We will also write D �− t = s (D �−
L t = s, D �−

R t = s) to mean that D is a (left,
right) τ -free derivation.

Lemma 2.8 (Parallel substitution) To each pair of derivations

D1 � t = s and D2 � p = q

in G[β] (in Gext[β]) and each variable x ∈ V we can effectively associate a
derivation

subx(D1, D2) � t[x/p] = s[x/q]

in G[β] (in Gext[β]) which is a left (right, τ -free) derivation provided both D1, D2
are left (right, τ -free) derivations. Moreover, for D∗ ≡ subx(D1, D2):

s(D∗) ≤ s(D1) + ax(D1, x) · s(D2) and h(D∗) ≤ h(D1) + h(D2) .

Proof By straightforward induction on the height of D1, taking cases according
to its final inference.
�
Corollary 2.9 To each derivation D � t = s in G[β] (in Gext[β]), each variable
x ∈ V and term p ∈ Λ, we can effectively associate a derivation

subx,p(D) � t[x/p] = s[x/p]

394 P. Minari

in G[β] (in Gext[β]) which is a left (right, τ -free) derivation provided D is a left
(right, τ -free) derivation. Moreover, for D∗ ≡ subx,p(D):

s(D∗) ≤ s(D) and h(D∗) ≤ h(D) + ‖p‖ .

Proof For every term p we can easily construct a derivation Dp �− p = p
containing structural rules only (so with s(Dp) = 0) and such that h(Dp) = ‖p‖.
Then, using Lemma 2.8, we may set subx,p(D) := subx(D, Dp).
�
Remark 2.10 In view of the above Corollary, precisely of the case in which the
term p is a variable, we observe that:

(i) there is no limitation in assuming, given a derivation D and an [Ext]-
inference R occurring in it, that the eigenvariable of R is distinct from
those in an arbitrarily chosen finite set of variables (henceforth, we will
sometimes make a tacit use of this fact);

(ii) the structural rule [ξ] is trivially eliminable in Gext[β]—without making
use of transitivity, but at the cost of using non-structural rules:

...
t = s

t[x/u] = s[x/u] Cor. 2.9, u fresh

(λx.t)u = (λx.s)u βl ,βr

λx.t = λx.s Ext ,

and might therefore be dropped. We will nonetheless keep [ξ] as a primi-
tive rule of Gext[β], since this is essential (as the reader will easily realize)
to make the proof-strategies in Sects. 5 and 6 work.

Finally, we state here a further special case of parallel substitution, which
however will not be used until Sect. 6.

Lemma 2.11 To each pair of τ -free Gext[β]-derivations

D1 �−
L t = s and D2 �− p = q ,

with D1 a left derivation, and to any variable x having at most one free occurrence
in the term s, we can associate a τ -free Gext[β]-derivation

sbx(D1, D2) �− t[x/p] = s[x/q]

such that s(sbx(D1, D2)) ≤ s(D1) + s(D2) , and which moreover is a left deri-
vation provided D2 is such.

Proof It is easily verified that (i) if D �−
L t = s and the variable x has at most

n free occurrences in s, then ax(D, x) ≤ n (for n = 0, we make use of the

Analytic proof systems for λ-calculus 395

fact pointed out in (i) of Remark 2.10). The conclusion follows taking n = 1,
together with Lemma 2.8.

Note that (i) is not in general true for derivations in which [βr] or [τ] do
occur.
�

3 Elimination of transitivity for G[β]

We intend to prove that any given derivation D � t = s in G[β] can effectively
be transformed into a τ -free derivation e(D) of the same end-equation. To
establish this claim, it would be clearly sufficient to demonstrate—by some
kind of inductive argument—that topmost applications of [τ] can be always
removed, i.e.:

(♦) for any given derivation D ≡
D1

{
...

t = r

...
r = s

}

D2

t = s τ , where D1 and

D2 are τ -free, we can construct a τ -free derivation el(D) �− t = s.

This very natural strategy is indeed successful in proving the eliminability of
transitivity for the analytic counterpart G[C] of combinatory logic CL, see [26],
where (♦) is established by transfinite induction on ω2 ·hc(D) + ω ·s(D) + ‖r‖
(hc(D) being a suitable variant of h(D)), taking cases according to the possible
combinations of the final inferences of D1 and D2.

Unfortunately, such a strategy doesn’t seem to be directly feasible in the
present context, as one can easily guess by considering the critical case

D ≡

D′
1

{
...

t = r
λx.t = λx.r ξ

...
p = q

}

D′′
1

(λx.t)p = (λx.r)q App

D′
2

{
...

r[x/q] = s
(λx.r)q = s βl

(λx.t)p = s τ (i)

and the symmetrical one.
On the one side, the only practicable way to get inductively a τ -free deri-

vation of (λx.t)p = s out of the given D in case (i) (and analogously in the
symmetric case) appears to consist first in applying the induction hypothesis to
the derivation

D∗ ≡
sub(D′

1, D′′
1)

{
...

t[x/p] = r[x/q]
...

r[x/q] = s

}

D′
2

t[x/p] = s τ ,

396 P. Minari

whose construction makes an essential use of parallel substitution (Lemma 2.8),
and then in setting:

el(D) :=
el(D∗)

{
...

t[x/p] = s
(λx.t)p = s βl .

On the other side, as a matter of fact it is hard, if not impossible at all, to
single out a complexity measure to reason inductively on, one under which D∗
is “simpler” than the original derivation D. Note in fact that, w.r. to the most
basic complexity parameters such as rank (the depth of the cut-term), size and
height, it may well happen here that ‖r[x/q]‖ > ‖(λx.r)q‖ and, at the same
time, s(D∗) > s(D) as well as h(D∗) > h(D)—see the upper bounds given in
Lemma 2.8.

In consideration of these obstacles, we are forced to follow a more elabo-
rate and less direct approach. First of all, we will show that (i) the rules [βl]
and [βr] admit a general form of transitivity-free inversion (Theorem 3.4); next,
with the aid of (i), we will prove (ii) the analogue of (♦) restricted to the case
in which D1 is a left derivation (Lemma 3.6), having as an immediate conse-
quence (iii) the τ -eliminability for left derivations (Theorem 3.7); further, using
(iii), we will show that (iv) a natural generalization of the two β-introduction
rules is transitivity-free admissible (Theorem 3.9). Finally, by making essen-
tial use of (i) and (iv), we will prove (Lemma 3.10) the unrestricted analogue
of (♦) in which however the original transitivity rule is replaced by the more
general rule

t = s Φ[[s]] = r
Φ[[t]] = r τ∗ , where Φ is a context with one hole .

Whence our initial claim follows as an immediate consequence.
In order to carry out step (i) above, we preliminarily have to introduce

β-marked λ-terms and other related notions. Intuitively, a β-marked term is a
term t in which a number (possibly zero) of occurrences of β-redexes have been
marked in some way, so that it makes sense to speak of the (unmarked) term t∗
obtained from t by simultaneously replacing each marked β-redex (λx.s)r by its
corresponding contractum s[x/r]. Formally, it is convenient to treat β-marked
terms as expressions M, N, . . . taken from the set Λ′ ⊇ Λ, which is defined
inductively as follows over the extension of the original alphabet A by the
symbols � and �:

• V ⊆ Λ′
• M ∈ Λ′, x ∈ V ⇒ (λx.M) ∈ Λ′
• M, N ∈ Λ′ ⇒ (MN) ∈ Λ′
• M, N ∈ Λ′, x ∈ V ⇒ (�(λx.M)N�) ∈ Λ′ .

Analytic proof systems for λ-calculus 397

The usual conventions concerning free and bound variables, α-congruence and
substitution (see Sect. 2) shall apply also to Λ′. Note that β-marked terms of
the form �(λx.M)N� are not application terms (we will call them redβ -terms).

Given a β-marked term M, we denote by |M| the term in Λ which is obtained
from M by leaving out every occurrence of the markers ‘�’ and ‘�’. In case
t ∈ Λ and |M| ≡ t, we also say that M is a β-marking of t. Clearly, if |M| is a
variable, respectively an abstraction term then M is a variable, respectively an
abstraction term, while if |M| is an application term then M is not necessarily
an application term NP, since it might also be a redβ -term �(λx.N)P�.

Given a β-marked term M, the term M∗ ∈ Λ is defined inductively as
expected:

• x∗ := x, for x ∈ V ,
• (λx.M)∗ := λx.M∗ ,
• (MN)∗ := M∗N∗ ,
• (�(λx.M)N�)∗ := M∗[x/N∗] .

One can easily verify, by induction on the construction of β-marked terms
(see e.g. [3], p. 281), that

Fact 3.1 For every M, N and x: (M[x/N])∗ ≡ M∗[x/N∗].
Also, we clearly have

Fact 3.2 For every M ∈ Λ′: FV(M∗) ⊆ FV(|M|) = FV(M) .

Further to marked terms, we shall also make use of contexts with one hole,
i.e. expressions Φ, Ψ , . . . belonging to the set

C = {∗} | V | (λV.C) | (CC)

of unary contexts and containing at most one occurrence of ∗ .
Given t ∈ Λ, Φ[[t]] denotes the λ-term obtained from the one-hole context

Φ by replacing the symbol ∗ with t (caution: variables which are free in t may
become bound in Φ[[t]]).

Lemma 3.3 Every τ -free G[β]-derivation D �− t = s can effectively be transfor-
med, given an arbitrary marking M of t, into a τ -free G[β]-derivation

redM(D) �− M∗ = s

which, moreover, is a right derivation provided D is a right derivation.

Proof We argue by main induction on s(D) and secondary induction on ‖t‖,
taking cases according to the last inference R of D.

Case A: R = [�]. Trivially, redM(D) := D.

398 P. Minari

Case B: R = [ξ]. Then t ≡ λx.t′, s ≡ λx.s′ and M ≡ λx.P with |P| ≡ t′. Also,
M∗ ≡ λx.P∗ and

D ≡
D1

{
...

t′ = s′
λx.t′ = λx.s′ ξ .

Since s(D1) = s(D) and
∥

∥t′
∥

∥ < ‖t‖, we can apply the I.H. to D1 and set:

redM(D) :=
redP(D1)

{
...

P∗ = s′
λx.P∗ = λx.s′ ξ .

Case C: R = [βr]. Immediate by the (main) I.H.
Case D: R = [βl]. Then t ≡ (λx.p)q0 · · · qn (n ≥ 0) and

D ≡
D1

{
...

p[x/q0]q1 · · · qn = s
(λx.p)q0 · · · qn = s βl .

On the other side, M is either (λx.P)Q0 · · · Qn or �(λx.P)Q0� Q1 · · · Qn , with
|P| ≡ p and |Qi| ≡ qi for 0 ≤ i ≤ n. In the first case, M∗ ≡ (λx.P∗)Q∗

0 · · · Q∗
n; in

the second case, M∗ ≡ P∗[x/Q∗
0]Q∗

1 · · · Q∗
n.

Since s(D1) < s(D) and (P[x/Q0]Q1 · · · Qn)∗ ≡ P∗[x/Q∗
0]Q∗

1 · · · Q∗
n by Fact

3.1, by the I.H. we can take:

redM(D) :=
redP[x/Q0]Q1···Qn(D1)

{
...

P∗[x/Q∗
0]Q∗

1 · · · Q∗
n = s

(λx.P∗)Q∗
0 · · · Q∗

n = s βl

in the first case, and

redM(D) := redP[x/Q0]Q1···Qn(D1)

in the second one.

Case E: R = [App]. Then |M| ≡ t is an application term (as well as s ≡ s1s2),
and so we have two subcases to consider.

Subcase E.1: M ≡ PQ with |P| ≡ p, |Q| ≡ q, t ≡ pq. Then M∗ ≡ P∗Q∗ and

D ≡
D1

{
...

p = s1

...
q = s2

}

D2

pq = s1s2
App .

Analytic proof systems for λ-calculus 399

Since s(D1),s(D2) ≤ s(D) and ‖p‖ , ‖q‖ < ‖t‖, by the I.H. we may set:

redM(D) :=
redP(D1)

{
...

P∗ = s1

...
Q∗ = s2

}

redQ(D2)

P∗Q∗ = s1s2
App .

Subcase E.2: M ≡ �(λx.P)Q� with |P| ≡ p, |Q| ≡ q, and t ≡ (λx.p)q. Then
M∗ ≡ P∗[x/Q∗] and

D ≡
D1

{
...

λx.p = s1
R′

...
q = s2

}

D2

(λx.p)q = s1s2
App .

Necessarily, R′ is either [ξ] or [βr].

[E.2.a]: if R′ is [ξ], then s1 ≡ λx.s′
1 and

D ≡

D′
1

{
...

p = s′
1

λx.p = λx.s′
1

ξ

...
q = s2

}

D2

(λx.p)q = (λx.s′
1)s2

App .

Since s(D′
1),s(D2) ≤ s(D) and ‖p‖ , ‖q‖ < ‖t‖, we can apply the I.H. to D′

1
and D2 and take, by making use also of the Parallel substitution Lemma 2.8:

redM(D) :=

redP(D′
1)

{
...

P∗ = s′
1

...
Q∗ = s2

}

redQ(D2)

P∗[x/Q∗] = s′
1[x/s2]

SUB

P∗[x/Q∗] = (λx.s′
1)s2

βr

[E.2.b]: if R′ is [βr], then s1 ≡ (λy.s′′)s′
0 · · · s′

n (n ≥ 0) and

D ≡

D′
1

{
...

λx.p = s′′[y/s′
0]s′

1 · · · s′
n

λx.p = (λy.s′′)s′
0 · · · s′

n
βr

...
q = s2

}

D2

(λx.p)q = (λy.s′′)s′
0 · · · s′

ns2
App .

400 P. Minari

In this case we consider the derivation

D′ ≡
D′

1

{
...

λx.p = s′′[y/s′
0]s′

1 . . . s′
n

...
q = s2

}

D2

(λx.p)q = s′′[y/s′
0]s′

1 . . . s′
ns2

App .

Since s(D′) < s(D), by the I.H. we may set:

redM(D) :=
redM(D′)

{
...

P∗[x/Q∗] = s′′[y/s′
0]s′

1 . . . s′
ns2

P∗[x/Q∗] = (λy.s′′)s′
0 . . . s′

ns2
βr .

By inspecting the whole proof, it is easily verified that the transformation redM
maps right derivations into right derivations (whereas left derivations need not
be transformed into left derivations: consider subcase E.2.a).
�
Theorem 3.4 (generalized β-inversion) Every τ -free G[β]-derivation

D �− Φ[[(λx.t)s0 . . . sn]] = r (Φ a context with one hole; n ≥ 0)

can effectively be transformed into a τ -free G[β]-derivation

invβ(D) �− Φ[[t[x/s0]s1 · · · sn]] = r

which, moreover, is a right derivation provided D is a right derivation.

Proof Given D, we consider the marked term M ≡ Φ[[�(λx.t)s0�s1 · · · sn]] and
take, using Lemma 3.3: invβ(D) := redM(D).
�
Remark 3.5 Note that possibly s(invβ(D)) > s(D), i.e. the size of derivations
is not, and in fact cannot be, preserved in general under the inversion process;
e.g., trivially, (λx.x)y = (λx.x)y has a τ -free derivation of size 0, but there are
no derivations of size 0 of y = (λx.x)y .

We now exploit Theorem 3.4 to prove a partial elimination lemma.

Lemma 3.6 Any given pair

D1 �−
L t = s and D2 �− s = r

of τ -free G[β]-derivations, with D1 a left derivation, can effectively be transfor-
med into a τ -free G[β]-derivation

elL(D1, D2) �− t = r

which, moreover, is a left derivation provided that D2 is a left derivation.

Analytic proof systems for λ-calculus 401

Proof Let R1 and R2 be the final inferences of D1, respectively D2. The proof
runs by induction on ω2 · s(D2) + ω · s(D1) + ‖s‖, taking cases according to
the possible combinations 〈R1, R2〉—under the key assumption that D1 is a left
derivation.
Case A: R1 = [�]. Trivially, we take elL(D1, D2) := D2.
Case B: R2 = [βr]. Then, for a suitable r′, D2 has the form

D′
2

{
...

s = r′
s = r βr , where s(D′

2) < s(D2).

So we can apply the (main) I.H. to D1 and D′
2, and set:

elL(D1, D2) :=
elL(D1, D′

2)

{
...

t = r′
t = r βr .

Case C: R1 = [βl]. Symmetrically (but as the induction measure is not sym-
metric, note that the secondary I.H. is used here).
Case D: R1 = [ξ]. Necessarily, R2 is either [βr] (see case B) or [ξ], in which
case t ≡ λx.t′ , s ≡ λx.s′ , r ≡ λx.r′ and

D1 ≡
D′

1

{
...

t′ = s′
λx.t′ = λx.s′ ξ , D2 ≡

D′
2

{
...

s′ = r′
λx.s′ = λx.r′ ξ ,

where s(D′
1) = s(D1), s(D′

2) = s(D2).
Since

∥

∥s′∥
∥ < ‖s‖, by the (ternary) I.H. we can take

elL(D1, D2) :=
elL(D′

1, D′
2)

{
...

t′ = r′
λx.t′ = λx.r′ ξ .

Case E: R1 = [App]. Taking into account that Case B has been already
discussed, we need to distinguish only two subcases depending on R2.
Subcase E.1: R2 = [App]. Then the conclusion immediately follows by the
(ternary, in the worst case) I.H.
Subcase E.2: R2 = [βl]. Then s ≡ (λx.s′)s0 . . . sn (n ≥ 0) and

D2 ≡
D′

2

{
...

s′[x/s0]s1 · · · sn = r
(λx.s′)s0 · · · sn = r βl , where s(D′

2) < s(D2) .

402 P. Minari

On the other side, from

D1 �−
L t = (λx.s′)s0 · · · sn

it follows that

˜D1 �−
R (λx.s′)s0 · · · sn = t

and so, by Theorem 3.4 (with Φ ≡ ∗)

invβ(˜D1) �−
R s′[x/s0]s1 · · · sn = t

i.e., letting D′
1 := ˜invβ(˜D1),

D′
1 �−

L t = s′[x/s0]s1 · · · sn.

Although in general s(D′
1) � s(D1), the fact that s(D′

2) < s(D2) allows us to
apply the I.H. to the pair D′

1, D′
2, and to set:

elL(D1, D2) := elL(D′
1, D′

2) .

By inspecting the whole proof, it is easily verified that the transformation elL
maps pairs of τ -free left derivations into τ -free left derivations.
�
Theorem 3.7 (Left τ -elimination) Every left G[β]-derivation D can effectively
be transformed into a τ -free left G[β]-derivation eL(D) having the same end-
equation as D.

Proof By induction on the number of occurrences of rule [τ] in D, using
Lemma 3.6 to eliminate a topmost occurrence of [τ].
�
Remark 3.8 Note that the form of β-inversion which is actually used in the
proof of Lemma 3.6 (see case E.2), on which Theorem 3.7 depends, is:

D �−
L t = (λx.p0)p1 · · · pn ⇒ ∃D∗ (D∗ �−

L t = p0[x/p1]p2 · · · pn) .

This is much weaker than what is provided for by Theorem 3.4, and might be
proved without making use of the marking technique. The full generality of
Theorem 3.4 is instead needed in the proof of Lemma 3.10 below.

We can now prove:

Theorem 3.9 (generalized β-introduction) The calculus G−[β] is closed under
the rules:

Φ[[t[x/s0]s1 · · · sn]] = r
Φ[[(λx.t)s0 · · · sn]] = r β+

l
and

r = Φ[[t[x/s0]s1 · · · sn]]
r = Φ[[(λx.t)s0 · · · sn]] β+

r
,

Analytic proof systems for λ-calculus 403

where Φ is a context with one hole and n ≥ 0. Moreover, τ -free left (right)
derivability is closed under β+

l (β+
r).

Proof Given any context Φ, it is easily seen that a left, τ -free derivation

D1 �−
L Φ[[(λx.t)s0 · · · sn]] = Φ[[t[x/s0]s1 · · · sn]]

with s(D1) = 1 can be constructed. So, for any given derivation

D2 �−
(L)

Φ[[t[x/s0]s1 · · · sn]] = r

we have, by Lemma 3.6,

elL(D1, D2) �−
(L)

Φ[[(λx.t)s0 · · · sn]] = r .

The rest of the claim follows by using the dual transformation ˜ .
�
We are finally able to remove from Lemma 3.6 the limitation that D1 be a

left derivation.

Lemma 3.10 (main elimination lemma) To each pair of τ -free G[β]-derivations

D1 �− p = q and D2 �− Φ[[q]] = r

we can effectively associate a τ -free G[β]-derivation

elΦ(D1, D2) �− Φ[[p]] = r .

Proof By main induction on s(D1) and secondary induction on ‖q‖. We let R
be the last inference in D1, and consider all the possible cases.
Case A: R = [�]. Trivially, we take elΦ(D1, D2) := D2.
Case B: R = [ξ]. Then p ≡ λx.p′, q ≡ λx.q′ and

D1 ≡
D′

1

{
...

p′ = q′
λx.p′ = λx.q′ ξ .

Consider the context Ψ := Φ[[λx. ∗]]. Then Φ[[q]] ≡ Φ[[λx.q′]] ≡ Ψ [[q′]], and so

D2 �− Ψ [[q′]] = r.

Now s(D′
1) = s(D1) and

∥

∥q′∥
∥ < ‖q‖, so by applying the I.H. we can take

elΦ(D1, D2) := elΨ (D′
1, D2) ,

since Ψ [[p′]] ≡ Φ[[λx.p′]] ≡ Φ[[p]].

404 P. Minari

Case C: R = [App]. Then p ≡ p1p2, q ≡ q1q2, and

D1 ≡
D′

1

{
...

p1 = q1

...
p2 = q2

}

D′′
1

p1p2 = q1q2
App .

Let Ψ := Φ[[∗ q2]], so that Ψ [[q1]] ≡ Φ[[q]] and

D2 �− Ψ [[q1]] = r .

Since s(D′
1) ≤ s(D1) and ‖q1‖ < ‖q‖, we may apply the I.H. to get:

elΨ (D′
1, D2) �− Ψ [[p1]] = r ,

i.e.

elΨ (D′
1, D2) �− Φ[[p1q2]] = r .

Now, let Θ := Φ[[p1∗]], so that Θ[[q2]] ≡ Φ[[p1q2]] and Θ[[p2]] ≡ Φ[[p]].
Since s(D′′

1) ≤ s(D1) and ‖q2‖ < ‖q‖ , by applying again the I.H. we may set:

elΦ(D1, D2) := elΘ(D′′
1, elΨ (D′

1, D2)).

Case D: R = [βl]. Then p ≡ (λx.p′)p0 · · · pn, and D1 has the form

D′
1

{
...

p′[x/p0]p1 · · · pn = q
(λx.p′)p0 · · · pn = q βl , where s(D′

1) < s(D1).

By applying the I.H. and Theorem 3.9, we may set

elΦ(D1, D2) :=
elΦ(D′

1, D2)

{
...

Φ[[p′[x/p0]p1 · · · pn]] = r

Φ[[(λx.p′)p0 · · · pn]] = r
β+

l

Case E: R = [βr]. Then q ≡ (λx.q′)q0 · · · qn, and D1 has the form

D′
1

{
...

p = q′[x/q0]q1 · · · qn

p = (λx.q′)q0 · · · qn
βr , where s(D′

1) < s(D1).

Analytic proof systems for λ-calculus 405

On the other side, by Theorem 3.4

invβ(D2) �− Φ[[q′[x/q0]q1 · · · qn]] = r ;

so by applying the I.H. we may take

elΦ(D1, D2) := elΦ(D′
1, invβ(D2)) .

�
Theorem 3.11 (τ -elimination for G[β]) Every G[β]-derivation D can effectively
be transformed into a τ -free G[β]-derivation e(D) having the same end–equation
as D.

Proof By induction on the number of occurrences of rule [τ] in D, using the
Main elimination lemma with Φ ≡ ∗ to eliminate a topmost occurrence of [τ].

�

4 Transitivity elimination in G[β] and β-reduction

Throughout this section, derivability (�) means derivability in G[β]. The sym-
bols → and � denote the usual relations on Λ of one-step β-reduction and,
respectively, β-reduction, the latter being the reflexive and transitive closure of
→. The letters σ , ϑ , . . . vary over (possibly empty) reduction paths, i.e. finite or
infinite sequences t0 → t1 → t2 → · · · of one-step reductions, and σ : t � s
means that σ is a finite, possibly empty reduction path starting from t and en-
ding with s. NFβ denotes the set of all terms in β-normal form; a term t has a
β-normal form provided t � s for some s ∈ NFβ .

We will show how two well known, central results concerning β-reduction,
namely the Church–Rosser Theorem and the (weak) Standardization Theorem,
can be quite easily obtained by exploiting the τ -Elimination Theorems 3.11
and 3.7.

Let us start with two simple lemmas, which do not depend on τ -elimination.

Lemma 4.1

(i) If t → s then we can find a τ -free left derivation Dt,s �−
L t = s.

(ii) To each reduction path σ : t � s we can effectively associate a left deriva-
tion lder(σ) �L t = s.

Lemma 4.2 To each τ -free derivation D �− t = s we can associate a term rD
such that t � rD � s.

The easy verification of (i) of Lemma 4.1 runs by induction on the generation
of →β , while (ii) follows from (i) by making use of the transitivity rule. In turn,
Lemma 4.2 is proved by a straightforward induction on the height of τ -free
derivations.

And we are now in a position to get Church–Rosser’s Theorem almost for
free.

406 P. Minari

Theorem 4.3 (CR(β)) � is Church–Rosser.

Proof Suppose s1 � t � s2. By Lemma 4.1 both t = s1 and t = s2 are (left)
derivable in G[β] and so also, by symmetry (which is admissible by Fact 2.1)
and transitivity:

� s1 = s2 .

Then, by the Elimination Theorem 3.11 (notice: Left τ -elimination = Theorem
3.7 is not sufficient here!)

�− s1 = s2 ,

whence the conclusion immediately follows by Lemma 4.2.
�
Remark 4.4 Uniqueness of β-normal forms

(t � r, t � s, r, s ∈ NFβ) ⇒ r ≡ s. (UNFβ)

is usually obtained as a corollary of CR(β). In the present context, also the
following variant proof (which does not pass through CR) of UNFβ should be
noticed.

Assume t � r and t � s, with r, s ∈ NFβ . Then, as above, there exists a τ -free
derivation D of r = s, and the conclusion follows by (ii) of Lemma 2.3.

As a second application of τ -elimination—actually of the weaker Left
τ -elimination Theorem 3.7—a considerably short and simple proof of the
(weak) Standardization theorem can be given. We recall that a β-reduction
path σ from t to s is standard (σ : t �s s) provided it consists in a sequence of
contractions proceeding from left to right, possibly with some jumps. The official
(“geometric”) definition (see e.g. [3], Chap. 11, Sect. 4) in terms of residuals runs
as follows:

• σ : t �s s := σ : t ≡ t0 → t1 → · · · → tn−1 → tn ≡ s (n ≥ 0), where
in each step the contracted redex is not a residual of a redex to the left of a
previously contracted one;

• t �s s := ∃σ(σ : t �s s).

The (weak) Standardization theorem states that if a λ-term t β-reduces to a
λ-term s, then there exists also a standard reduction from t to s. Starting from
the original 1958 proof in Curry and Feys [13], a lot of interesting different
proofs of this theorem (usually providing algorithms for extracting a standard
σ ′ : t �s s out of a given σ : t � s) have been made available in the literature,
among which a well known and very short one due to Mitschke [28] (using a
technique combining internal reduction and head reduction) and, in the last
decade, those by David [15] (where standardization is directly proved in a
sharpened form which readily yields the Finiteness of developments theorem
as a corollary), Takahashi [29] (exploiting Tait – Martin Löf’s notion of parallel

Analytic proof systems for λ-calculus 407

reduction), McKinna and Pollack [24] (formally developed in the LEGO Proof
System), Xi [30] (providing a standardization algorithm ST together with an
upper bound on the number of reduction steps in the standardization ST(σ) of a
given reduction path σ) and Kashima [19] (avoiding the notion of residual, and
using instead a clever inductive characterization of standard reduction paths).
Further proofs, exploiting untyped variants of normalization-by-evaluation, can
be found in Aehlig and Joachimski [1] (working in a syntactic, higher-order
rewriting systems setting) and, at least implicitly, in Filinski and Rohde [16]
(based on a semantical, domain-theoretical approach). Mention should be made
also of the strong version of the Standardization theorem due to Lévy [22] and
relying on the Berry – Lévy notion of strong equivalence between β-reduction
paths (see e.g. [3], Chap. 12, Sect. 1). It states that for every σ : t � s there
is a unique standard reduction σ ′ : t �s s which is strongly equivalent to σ .
Further proofs of this result have been given by Klop [21], Gonthier et al. [17],
Melliès [25].

Let us now come to our proof of the weak version. All we need, besides
Theorem 3.7, are just the following three properties of standard β-reducibility
on Λ:

(S.1) t �s s implies λx.t �s λx.s ,
(S.2) t1 �s s1 and t2 �s s2 implies t1t2 �s s1s2 ,
(S.3) p[x/p0]p1 · · · pk �s s implies (λx.p)p0 · · · pk �s s .

In order to easily verify properties (S.1)–(S.3) (indeed, only the second one
is non trivial) one might e.g. employ Kashima’s [19] residual-free inductive
characterization of �s. Just to make our paper self-contained, we instead propose
a further, convenient characterization of �s which is still residual-free and is
based on the marking technique.

Let Λ′ ⊇ Λ be the set of all terms (which we will still denote by t, s, . . .) which
are obtained from the terms in Λ by replacing some occurrences (possibly none)
of the symbol λ with the symbol λ′. Next, given t ∈ Λ′, let

• t+ be the term obtained by changing every λ occurring in t into λ′ ,
• t− be the term obtained by changing every λ′ occurring in t into λ .

Clearly, t− ∈ Λ and t++ ≡ t+, for every t ∈ Λ′.
We next define inductively the one-step β ′-reduction relation � on Λ′ by

means of the clauses:

• (λx.t)s � t[x/s] ;
• if t � s, then λx.t � λ′x.s, λ′x.t � λ′x.s, tr � sr, rt � r+s .

Finally, we let �� be the reflexive and transitive closure of �. It is then easily
verified that

Fact 4.5 For every term t and s ∈ Λ:

t �s s if and only if t �� s′ for some s′ ∈ Λ′ such that s′− ≡ s.

408 P. Minari

Now, given two arbitrary β ′-reduction paths

σ : t0 � t1 � · · · � tn , ϑ : s0 � s1 � · · · � sm ,

where n, m ≥ 0, ti, si ∈ Λ′ and t0, s0 ∈ Λ, it is clear that the following are
β ′-reduction paths:

• λx(σ) := λx.t0 � λ′x.t1 � · · · � λ′x.tn ,
• σ · ϑ := t0s0 � t1s0 � · · · � tns0 � t+n s1 � t+n s2 � · · · t+n sm

and, for every presentation π of t0 as p[x/p0]p1 · · · pk with k ≥ 0, also

• βπ(σ) := (λx.p)p0 · · · pk � p[x/p0]p1 · · · pk � t1 � · · · � tn .

In view of Fact 4.5, it therefore follows that the properties (S.1)–(S.3) are
satisfied by �s . Thus:

Lemma 4.6 To any given τ -free left derivation D of t = s we can effectively
associate a standard reduction path sp(D) : t �s s.

Proof By straightforward induction on h(D), using (S.1)–(S.3) above; it is clear
that sp(D) may be explicitly presented by means of the operators λx , · and βπ ,
uniformly in D.
�

Finally, for any finite β-reduction path σ , let

std(σ) := sp(eL(lder(σ))) ,

where the operators sp , eL and lder are given, respectively, by Lemma 4.6,
Theorem 3.7 and Lemma 4.1. We have

Theorem 4.7 (Standardization) If σ : t � s then std(σ) : t �s s.

Two important, almost immediate consequences of the (weak) Standardiza-
tion Theorem 4.6, together with the Church–Rosser Theorem 4.3, are worth to
be recalled here (cf. [3], Corollary 13.2.2 and Corollary 11.4.8):

(1) The leftmost reduction strategy is normalizing (Normalization theorem).
(2) t has a head normal form iff the head reduction path of t terminates.

5 Elimination of transitivity for Gext[β]

In order to show the eliminability of the transitivity rule in Gext[β], we will
follow a proof strategy which is structurally similar, although more complex, to
the one we followed in Sect. 3 to show τ -eliminability for G[β].

First of all, we will prove that the statements obtained from those of Lemmas
3.3 and 3.6 and Theorems 3.4 (Generalized β-inversion), 3.7 (Left τ -elimination)
and 3.9 (Generalized β-introduction) by replacing throughout G[β] with Gext[β]
(and to which we shall refer from now on as to Lemmas 3.3∗ and 3.6∗ and

Analytic proof systems for λ-calculus 409

Theorems 3.4∗, 3.7∗ and 3.9∗) still do hold. In fact, as one can readily see, it
will be sufficient to prove Lemmas 3.3∗ and 3.6∗, and this by taking care of
making the necessary integrations to the proofs of the corresponding Lemmas
of Sect. 3.

Proof of Lemma 3.3∗ The proof of Lemma 3.3 has to be supplemented as fol-
lows. First of all, in discussing subcase E.2 we must also consider the possibility
that R′ is [Ext]. So:
[E.2.c] M ≡ �(λx.P)Q� with |P| ≡ p, |Q| ≡ q, and t ≡ (λx.p)q . Moreover,
M∗ ≡ P∗[x/Q∗] and D has the form

D′
1

{
...

(λx.p)u = s1u
λx.p = s1

Ext

...
q = s2

}

D2

(λx.p)q = s1s2
App where u /∈ FV(λx.p, s1).

Let N := �(λx.P)u�. Then |N| ≡ (λx.p)u and N∗ ≡ P∗[x/u].
We have s(D′

1) < s(D) and s(D2) ≤ s(D) , ‖q‖ < ‖(λx.p)q‖. So by the I.H.
and the Parallel substitution Lemma 2.8 we can take

redM(D) :=
redN(D′

1)

{
...

P∗[x/u] = s1u

...
Q∗ = s2

}

redQ(D2)

P∗[x/u][u/Q∗] = (s1u)[u/s2]
SUB .

By the condition on u and Fact 3.2, redM(D) �− P∗[x/Q∗] = s1s2 .
Next, a totally new case has to be considered:

Case F: R = [Ext]. Then, for some variable x /∈ FV(t, s),

D ≡
D1

{
...

tx = sx
t = s Ext.

Let N := Mx. Then |N| ≡ tx and N∗ ≡ M∗x; also, by Fact 3.2, x /∈ FV(M∗).
Since s(D1) < s(D), we may apply the I.H. to D1, and set:

redM(D) :=
redN(D1)

{
...

M∗x = sx
M∗ = s Ext .

�
Proof of Lemma 3.6∗ The proof runs as that of the corresponding Lemma
3.6: since we now know that generalized β-inversion is admissible in G−

ext[β]
(Theorem 3.4∗, which is an immediate consequence of Lemma 3.3∗ above), only
one new case has to be discussed.

410 P. Minari

Case F: R1 = [Ext] or R2 = [Ext]. Then

D1 ≡
D′

1

{
...

tx = sx
t = s Ext or D2 ≡

D′
2

{
...

sx = rx
s = r Ext

where by Remark 2.10 we may assume, without limitations, that x /∈ FV(t, s, r).
In the first case, we consider the derivation

D∗
2 :=

D2

{
...

s = r x = x
sx = rx App

and observe that s(D∗
2) = s(D2) while s(D′

1) < s(D1), so that by the I.H. we
can take:

elL(D1, D2) :=
elL(D′

1, D∗
2)

{
...

tx = rx
t = r Ext .

In the second case we proceed symmetrically (the main I.H. is used).
�

To prove a Main elimination lemma for Gext[β] analogous to Lemma 3.10,
we also need to show that G−

ext[β] is closed under a sort of generalized η-rules
and their inversions.

Lemma 5.1

(i) Every (left) τ -free G−
ext[β]-derivation D �− t = s can effectively be

transformed, for every x /∈ FV(t), into a (left) τ -free G−
ext[β]-derivation

D∗ �− λx.tx = s.
(ii) Every (right) τ -free G−

ext[β]-derivation D �− λx.tx = s, with x /∈ FV(t),
can effectively be transformed into a (right) τ -free G−

ext[β]-derivation
D∗ �− t = s.

Proof (i) Given D �−
(L)

t = s, we take

D∗ :=

D

{
...

t = s u = u
tu = su App

(λx.tx)u = su βl

λx.tx = s Ext (u fresh).

Analytic proof systems for λ-calculus 411

(ii) Given D �−
(R)

λx.tx = s, we consider

D′ ≡
D

{
...

λx.tx = s u = u
(λx.tx)u = su App (u fresh).

By Theorem 3.4∗, we have invβ(D′) �−
(R)

tu = su, so we may set:

D∗ :=
invβ(D′)

{
...

tu = su
t = s Ext

�
Theorem 5.2 (generalized η-introduction in G−

ext[β]) The calculus G−
ext[β] is

closed under the rules:

Φ[[t]] = r
Φ[[λx.tx]] = r η+

l

r = Φ[[t]]
r = Φ[[λx.tx]] η+

r
(x /∈ FV(t))

where Φ is a context with one hole. Moreover, τ -free left (right) G−
ext[β]-derivabili-

ty is closed under η+
l (η+

r).

Proof By �−
L t = t and (i) of Lemma 5.1 we get �−

L λx.tx = t whence, by
structural rules only, a derivation:

D �−
L Φ[[λx.tx]] = Φ[[t]].

Then, for any given derivation

D2 �−
(L)

Φ[[t]] = r

we have, by Lemma 3.6∗,

elL(D, D2) �−
(L)

Φ[[λx.tx]] = r .

The rest of the claim follows by using the dual transformation ˜ .
�
In order to prove an η-inversion lemma corresponding to Theorem 3.4, we

have to introduce η-marked λ-terms, i.e. (in analogy to β-marked terms) ex-
pressions A, B, . . . taken from the set Λ′′ ⊇ Λ, which is defined inductively as
follows over the extended alphabet A ∪ {�, �}:
• V ⊆ Λ′′ ,
• A ∈ Λ′′, x ∈ V ⇒ (λx.A) ∈ Λ′′ ,
• A, B ∈ Λ′′ ⇒ (AB) ∈ Λ′′ ,
• A ∈ Λ′′, x /∈ FV(A) ⇒ (�λx.Ax�) ∈ Λ′′ .

412 P. Minari

Again, the usual conventions concerning free and bound variables, α-con-
gruence and substitution shall apply also to Λ′′. Note that η-marked terms
of the form �λx.Ax� are not abstraction terms.

Given an η-marked term A, we denote by |A| the unmarked term ∈ Λ which
is obtained from A by leaving out every occurrence of the markers ‘�’ and ‘�’.
In case t ∈ Λ and |A| ≡ t, we also say that A is an η-marking of t. Finally, given
an η-marked term A, the term A∗ ∈ Λ is defined inductively as expected:

• x∗ := x, for x ∈ V ,
• (λx.A)∗ := λx.A∗ ,
• (AB)∗ := A∗B∗ ,
• (�λx.Ax�)∗ := A∗ .

The following is easily verified by induction on the construction of η-marked
terms:

Fact 5.3 For every A, B ∈ Λ′′ and x ∈ V: (A[x/B])∗ ≡ A∗[x/B∗].
Also, we clearly have

Fact 5.4 For every A ∈ Λ′′: FV(A) = FV(|A|) = FV(A∗) .

Lemma 5.5 Every τ -free Gext[β]-derivation D �− t = s can effectively be trans-
formed, given an arbitrary η-marking A of t, into a τ -free Gext[β]-derivation

redA(D) �− A∗ = s

which, moreover, is a right derivation provided D is a right derivation.

Proof We argue by main induction on s(D) and secondary induction on ‖t‖,
taking cases according to the last inference R of D.

Case A: R = [�]. Trivially, redA(D) := D.
Case B: R = [ξ]. Then t ≡ λx.t′, s ≡ λx.s′ and

D ≡
D1

{
...

t′ = s′
λx.t′ = λx.s′ ξ ,

where s(D1) = s(D) and
∥

∥t′
∥

∥ < ‖t‖ .
Subcase B.1: A ≡ λx.B with |B| ≡ t′ (and so A∗ ≡ λx.B∗). By applying the
I.H., we set:

redA(D) :=
redB(D1)

{
...

B∗ = s′
λx.B∗ = λx.s′ ξ .

Analytic proof systems for λ-calculus 413

Subcase B.2: A ≡ �λx.Cx� with |C| ≡ t′′, t′ ≡ t′′x, x /∈ FV(t′′). Also, A∗ ≡ C∗.
By applying the I.H. and (ii) of Lemma 5.1 (together with Fact 5.4), we may set:

redA(D) :=

redCx(D1)

{
...

C∗x = s′
λx.C∗x = λx.s′ ξ

C∗ = λx.s′ 5.1.(ii)

Case C: R = [App]. Then t ≡ t1t2, s ≡ s1s2, A ≡ A1A2 with |Ai| ≡ ti. Also,
A∗ ≡ A∗

1A∗
2. By applying the (secondary) I.H., we set

redA(D) :=
redA1(D1)

{
...

A∗
1 = s1

...
A∗

2 = s2

}

redA2(D2)

A∗
1A∗

2 = s1s2
App ,

where D1 and D2 are the subderivations of D ending with t1 = s1, respectively
t2 = s2.
Case D: R = [Ext]. Then

D ≡
D1

{
...

tu = su
t = s Ext where u /∈ FV(t, s) and s(D1) < s(D) .

Since |A| ≡ t, we have |Au| ≡ tu, so by the I.H. and Fact 5.4 we may take:

redA(D) :=
redAu(D1)

{
...

A∗u = su
A∗ = s Ext .

Case E: R = [βr]. Immediate by the I.H.
Case F: R = [βl]. Then t ≡ (λx.p)q0 · · · qn (n ≥ 0) and:
Subcase F.1: A ≡ (λx.B)C0 · · · Cn with |B| ≡ p, |Ci| ≡ qi for 0 ≤ i ≤ n, and

D ≡
D1

{
...

p[x/q0]q1 · · · qn = s
(λx.p)q0 · · · qn = s βl where s(D1) < s(D).

414 P. Minari

Since (B[x/C0]C1 · · · Cn)∗ ≡ B∗[x/C∗
0]C∗

1 · · · C∗
n by Fact 5.3, by the I.H. we may

take:

redA(D)

:=
redB[x/C0]C1···Cn(D1)

{
...

B∗[x/C∗
0]C∗

1 · · · C∗
n = s

(λx.B∗)C∗
0 · · · C∗

n = s βl

Subcase F.2: A ≡ �λx.Dx�C0 · · · Cn with |D| ≡ p′, |Ci| ≡ qi (0 ≤ i ≤ n),
p ≡ p′x and x /∈ FV(p′). Also, A∗ ≡ D∗C∗

0 · · · C∗
n and

D ≡
D1

{
...

(p′x)[x/q0]q1 · · · qn = s
(λx.p′x)q0 · · · qn = s βl

where s(D1) < s(D) .

By the I.H. we may take:

redA(D) := red(Dx)[x/C0]C1···Cn(D1)

since ((Dx)[x/C0]C1 · · · Cn)∗ ≡ (D∗x)[x/C∗
0]C∗

1 · · · C∗
n ≡ D∗C∗

0 · · · C∗
n ≡ A∗.

By inspecting the whole proof, it is easily verified that the transformation
redA maps right derivations into right derivations (whereas left derivations
need not be transformed into left derivations: consider subcase B.2 where we
use (ii) of Lemma 5.1).
�

As an immediate consequence, we have

Theorem 5.6 (generalized η-inversion in G−
ext[β]) Every τ -free Gext[β]-deriva-

tion

D �− Φ[[λx.tx]] = r (Φ a context with one hole; x /∈ FV(t))

can effectively be transformed into a τ -free Gext[β]-derivation

invη(D) �− Φ[[t]] = r

which, moreover, is a right derivation provided D is a right derivation.

We can finally prove, along the lines of the proof of Lemma 3.10:

Lemma 5.7 (main elimination lemma for Gext[β]) To each pair

D1 �− p = q and D2 �− Φ[[q]] = r

Analytic proof systems for λ-calculus 415

of τ -free Gext[β]-derivations we can effectively associate a τ -free Gext[β]-deri-
vation

elΦ(D1, D2) �− Φ[[p]] = r.

Proof The proof runs as that of the corresponding Lemma 3.10 (using, where
appropriate, Theorems 3.4∗ and 3.9∗ in place of Theorems 3.4 and 3.9), except
that the following new case has to be considered:
Case F: R = [Ext]. Then D1 has the form

D′
1

{
...

px = qx
p = q Ext, where x /∈ FV(p, q) and s(D′

1) < s(D1).

Let

D′′
1 :=

D′
1

{
...

px = qx
λx.px = λx.qx ξ

and, by applying Theorem 5.2 to D2, let

D′
2 �− Φ[[λx.qx]] = r .

Since s(D′′
1) < s(D1), by the I.H. we have

elΦ(D′′
1, D′

2) �− Φ[[λx.px]] = r

whence, by Theorem 5.6, we may take:

elΦ(D1, D2) := invη(elΦ(D′′
1, D′

2)) .

�
Theorem 5.8 (τ -elimination for Gext[β]) Every derivation D in Gext[β] can
effectively be transformed into a τ -free Gext[β]-derivation e(D) having the same
end–equation as D.

Proof By induction on the number of occurrences of rule [τ] in D, using the
Main elimination lemma 5.7 with Φ ≡ ∗ to eliminate a topmost occurrence
of [τ].
�
Remark 5.9 Using Theorem 5.8 it is now possible to solve in the positive the
problem left open in [26] (Problem 6.1) concerning the eliminability of the
transitivity rule for the analytic version Gext[C] of extensional combinatory
logic CL + ext. The proof, which is rather complex, cannot be presented here.

416 P. Minari

We just stress that the proof is indirect, hinging on the detour through Gext[β],
and that up to now we have not been able to find a direct one.

6 Transitivity elimination in Gext[β] and βη-reduction

Throughout this section, derivability (�) means derivability in Gext[β], while
the symbols → and � without subscripts refer always to the usual relations
on Λ of one-step βη-reduction and βη-reduction, respectively. Next, we use the
symbol →l to denote the relation of one-step leftmost βη-reduction (t →l s iff
s is obtained by replacing in t the leftmost (β- or η-) redex occurrence with
the corresponding contractum) and the symbol �l to denote its reflexive and
transitive closure (leftmost βη-reduction). Note that it is possible to have terms
like e.g. z((λx.ux)y) in which a β-redex and an η-redex occurrence share the
leftmost λ ; the result of both contractions is however the same, and so we fix
conventionally that in these cases the β-redex is the leftmost one. NFβη denotes
the set of all terms in βη-normal form; a term t has a βη-normal form provided
t � s for some s ∈ NFβη.

As we did in Sect. 4 for β-reduction, we are now going to apply the Full
and the Left τ -Elimination theorems 5.8 and 3.7∗ for Gext[β] to the study
of βη-reduction. In particular, we will present new purely proof-theoretical
demonstrations of the Church–Rosser Theorem on the one side, and of the
Normalization or Leftmost reduction Theorem [21,29] as well as of the so-called
η-postponement Theorem [3,14,29], on the other side. Notice that whereas for
β-reduction the Normalization theorem is an immediate corollary of the Stan-
dardization theorem (see Sect. 4), the same doesn’t hold for βη-reduction, since
e.g. there are standard reductions σ : t �s s with s ∈ NFβη (under an appro-
priate definition of “standard”) which are not leftmost; see the discussion in
[21], Ch. IV. A nice proof of the Standardization theorem for βη-reduction has
been recently given by Kashima [20].

Preliminarily, we collect below some basic facts concerning β-, η- and
βη-reduction, as well as leftmost βη-reduction, which we are going to use
later. To this aim, it is convenient to introduce the abbreviation

Λx := {qx | q ∈ Λ and x /∈ FV(q)} (for x ∈ V).

As a motivation for (ii) below, observe that whereas for leftmost β-reduction
we can infer λx.t �l λx.s from t �l s, this is no longer true for leftmost
βη-reduction; for instance,

(λu.u)vx �l vx

but

λx.((λu.u)vx) →l (λu.u)v →l v ,

and so λx.((λu.u)vx) �l λx.vx is false.

Analytic proof systems for λ-calculus 417

Lemma 6.1

(i) Let the λ-terms t0, . . . , tn , s0, . . . , sn (n ≥ 0) be such that ti �l si and
si ∈ NFβη for 0 ≤ i ≤ n. Then, for every variable x,

xt0 · · · tn �l xs0 · · · sn .

(ii) Assume that t �∗ r , where �∗ ∈ {� , �l }. Then, exactly one of the
following cases does hold:
(a) t ≡ t′x ∈ Λx and r ≡ r′x ∈ Λx and λx.t �∗ t′ �∗ r′ ,
(b) t ≡ t′x ∈ Λx and r /∈ Λx and λx.t �∗ t′ �∗ λx.r ,
(c) t /∈ Λx and r ≡ r′x ∈ Λx and λx.t �∗ r′ ,
(d) t /∈ Λx and r /∈ Λx and λx.t �∗ λx.r .

(iii) If tx �β r and x /∈ FV(t) then:
(a) if r ≡ r′x ∈ Λx then t �β r′ or t �β λx.r ,
(b) if r /∈ Λx then t �β λx.r .

(iv) If tx �η s and x /∈ FV(t) then s ≡ s′x ∈ Λx and t �η s′ .

Proof (i) and (iv): straightforward.
(ii): we assume that �∗ is �l (a similar argument works for �), arguing by
induction on the number n of steps of a given leftmost reduction σ : t �l r. The
conclusion is obvious if n = 0; so let n = k + 1. Then, for some term p,

(1) t →l p and (2) p �l r in k steps.

If t ≡ t′x ∈ Λx and t′x is not a redex then, by (1), p ≡ p′x and λx.t →l
η t′ →l p′,

whence also x /∈ FV(p′) and p ∈ Λx. So we can apply the I.H. to (2), and
conclude that either (a) or (b) holds.

If t ≡ t′x ∈ Λx and t′x is a redex, then the latter is necessarily a β-redex: so
t′ ≡ λu.t′′ and by (1) p ≡ t′′[u/x], whence

λx.t →l
η t′ ≡ λu.t′′ ≡α λx.t′′[u/x] ≡ λx.p .

And the conclusion (a) or (b) follows by applying the I.H. to (2).
Finally, if t /∈ Λx then λx.t →l λx.p , and by applying the I.H. to (2) we have

that either (c) or (d) holds.
(iii): the easy verification, similar to that of (ii), is left to the reader. Note the
difference between point (a) here and point (a) of (ii).
�

In perfect analogy with Lemmas 4.1 and 4.2, we can now establish the follo-
wing links between βη-reductions and Gext[β]-derivations:

Lemma 6.2

(i) If t → s then we can find a τ -free left derivation Dt,s �−
L t = s.

(ii) To each reduction path σ : t � s we can effectively associate a left
derivation lder(σ) �L t = s.

418 P. Minari

(iii) To each τ -free derivation D �− t = s we can associate a term rD such that
t � rD � s .

Proof (i): by induction on the generation of →, using Theorem 5.2 to construct
a derivation Dt,x �−

L λx.tx = t for any given t and x /∈ FV(t).
(ii): follows from (i) and the transitivity rule.
(iii): is easily verified by induction on the height of the given τ -free derivation
D �− t = s , taking cases according to the last inference R. (ii) of Lemma 6.1
shows which term one has to take for rD when R = [Ext].
�
Theorem 6.3 (CR(βη)) � is Church–Rosser.

Proof Immediate, like that of the corresponding Theorem 4.3, using the Elimi-
nation Theorem 5.8 and (ii), (iii) of Lemma 6.2.
�

Let us now turn to applications of Left τ -eliminability.

Definition 6.4 A derivation D in Gext[β] is normal provided:

(i) D is τ -free;
(ii) the left premise of each occurrence of an [App]-inference in D is the conclu-

sion of a structural rule (i.e. [�], [ξ], [App]).
Lemma 6.5 To each left τ -free derivation D �−

L t = s we can effectively associate
a left normal derivation

nor(D) �−
L t = s

satisfying s(nor(D)) ≤ s(D).

Proof By induction on ω · s(D) + h(D), taking cases according to the final
inference R of D.
The conclusion is trivial if R = [�], while it follows easily by the I.H. if R =
[ξ], [βl], [Ext]: simply, we normalize the subderivation of the premise of R, and
then apply R again.

If R = [App], we consider the leftmost branch π of D, letting t′ = s′ be the
lowermost node in π which is the conclusion of an inference rule R′ different
from [App]. Such a node, which of course necessarily exists, is located strictly
above the conclusion t = s of D. We so have t ≡ t′t0 · · · tn, s ≡ s′s0 · · · sn (n ≥ 0),
and:

D ≡

D′
{

...
}

D′′

t′ = s′ R′

...
t0 = s0

}

D0

t′t0 = s′s0
App

. . .

t′t0 · · · tn−1 = s′s0 · · · sn−1

...
tn = sn

}

Dn

t′t0 · · · tn = s′s0 · · · sn
R=App .

We now consider all the possible subcases depending on R′:

Analytic proof systems for λ-calculus 419

• R′ = [�] or [ξ]. By applying the I.H. we may replace in D the subderivations
D0, . . . , Dn by nor(D0), . . . , nor(Dn), and also D′′ by nor(D′′) if R′ = [ξ]: the
resulting derivation satisfies the conclusion.

• R′ = [βl]. Then t′ ≡ (λy.p0)p1 · · · pk (k ≥ 1) and the premise of R′, i.e.
the conclusion of D′′, is p0[y/p1]p2 · · · pk = s′. By replacing in the original
derivation D the subderivation D′ with D′′, we get a derivation

D∗ �−
L p0[y/p1]p2 · · · pkt0 · · · tn = s′s0 · · · sn .

Now s(D∗) < s(D), so by applying the (main) I.H. we can take

nor(D) :=
nor(D∗)

{
...

p0[y/p1]p2 · · · pkt0 · · · tn = s′s0 · · · sn

t′t0 · · · tn = s′s0 · · · sn
βl .

• R′ = [Ext]. Then the premise of R′, i.e. the conclusion of D′′, is t′u = s′u for
some u /∈ FV(t′, s′). The fact that D′′ is a left τ -free derivation and that the
variable u has exactly one occurrence in s′u allows us to apply the special
substitution Lemma 2.11, giving a derivation

sbu(D′′, D0) �−
L t′t0 = s′s0

with s(sbu(D′′, D0)) ≤ s(D′′) + s(D0).
Hence, by replacing in the original derivation D the subderivation ending
with t′t0 = s′s0 by the derivation sbu(D′′, D0), we get a derivation

D∗ �−
L t′t0 · · · tn = s′s0 · · · sn

such that

s(D∗) = s(sbu(D′′, D0)) +
n

∑

i=1

s(Di) < s(D′′)

+ 1 + s(D0) +
n

∑

i=1

s(Di) = s(D).

And the conclusion follows by the I.H.
�

Remark 6.6 With the above Lemma (note that the proof, because of the use
of Lemma 2.11, depends essentially on the assumption that D be a left τ -free
derivation) we have confined ourselves to state just what we are going to need
for the applications we have in mind. Indeed, it is possible to establish—at the

420 P. Minari

cost, however, of a quite lengthy and complex proof—the following general
result:
Every τ -free derivation D in Gext[β] can effectively be transformed into a normal
derivation nor(D) with s(nor(D)) ≤ s(D), and with the additional property that
no β-inference is immediately preceded by an [Ext]-inference.

The following key result shows that a left normal derivation of t = s “encodes”
a reduction path from t to s consisting of a number of β-contractions followed by
a number of η-contractions (the dividing term being in NFβ whenever s ∈ NFβη),
as well as a leftmost reduction path from t to s in case s ∈ NFβη.

Theorem 6.7 (Extraction) From any given left normal derivation D �−
L t = s

we can effectively extract:

(i) a term rD such that t �β rD �η s and s ∈ NFβη ⇒ rD ∈ NFβ ;
(ii) a leftmost reduction path t �l s , provided s ∈ NFβη .

Proof We argue by induction on ω2 ·#λ(s)+ω ·s(D)+h(D), where #λ(r) denotes
the number of occurrences of the symbol ‘λ’ in the term r.
Let R be the final inference in D; since the latter is by assumption a left normal
derivation, the cases to be considered are (apart from the trivial R = [�]) the
following four.
Case A: R = [Ext]. Then

D ≡
D′

{
...

tu = su
t = s Ext , with u /∈ FV(t, s).

Subcase A.1: either s /∈ NFβη , or s ∈ NFβη and s is not an abstraction term.
Then

s ∈ NFβη ⇒ su ∈ NFβη , (∗)

and since #λ(su) = #λ(s) , we can apply the (secondary) I.H. to D′, giving
(a) a term r′ ≡ rD′ s.t. tu �β r′ �η su and su ∈ NFβη ⇒ r′ ∈ NFβ ;
(b) a leftmost reduction tu �l su , provided su ∈ NFβη .
(i) If r′ /∈ Λu then by the first half of (a) and (iii) of Lemma 6.1

t �β λu.r′ �η λu.su →η s ,

and we may take rD := λu.r′ since by (∗) and the second half of (a)

s ∈ NFβη ⇒ su ∈ NFβη ⇒ r′ ∈ NFβ ⇒ λu.r′ ∈ NFβ .

If r′ ≡ r′′u ∈ Λu then by the first half of (a) and (iii), (iv) of Lemma 6.1

t �β r′′ �η s or t �β λu.r′′u →η r′′ �η s ,

Analytic proof systems for λ-calculus 421

and we may take rD := r′′ in the first case, rD := λu.r′ in the second one.
Indeed, as above, we have s ∈ NFβη ⇒ rD ∈ NFβ in both cases.
(ii) if s ∈ NFβη then t �l s follows by (∗), (b) and (ii) of Lemma 6.1.
Subcase A.2: s ∈ NFβη and s is an abstraction term, say s ≡ λy.s′ . Then by
dualization (cf. 2.3), Theorem 3.4∗ and Lemma 6.5 we may transform D′ into a
left normal derivation

D∗ �−
L tu = s′[y/u] , where D∗ ≡ nor(˜invβ(˜D′)) .

By the assumptions on s ≡ λy.s′ , we have

s′, s′[y/u] ∈ NFβη and s′[y/u] /∈ Λu . (∗∗)

Indeed, were s′[y/u] ∈ Λu then we would have (in view of u /∈ FV(s)) s′ ≡ s′′y
and s ≡ λy.s′′y /∈ NFβη : contradiction.

Now, by #λ

(

s′[y/u]) < #λ(s) , we can apply the main I.H. to D∗ (note that,
because of the use of invβ in the construction of D∗, possibly s(D∗) > s(D) !)
and get, together with (∗∗):
(a′) a term r′ ≡ rD∗ such that tu �β r′ �η s′[y/u] and r′ ∈ NFβ ,
(b′) a leftmost reduction tu �l s′[y/u] .
(i) by r′ �η s′[y/u] , (iv) of Lemma 6.1 and (∗∗) we have: r′ /∈ Λu . Therefore,
by (a′) and (iii) of Lemma 6.1,

t �β λu.r′ �η λu.(s′[y/u]) ≡α λy.s′ ≡ s and λu.r′ ∈ NFβ ,

so we may set rD := λu.r′.
(ii) by (b′), (∗∗) and (ii) of Lemma 6.1:

t �l λu.(s′[y/u]) ≡α λy.s′ ≡ s .

Case B: R = [ξ]. Then t ≡ λx.t′, s ≡ λx.s′ and so s ∈ NFβη ⇒ s′ ∈ NFβη. By
applying the (main) I.H. to the subderivation D′ of the premise t′ = s′ of R, we
find a term r′ ≡ rD′ such that

t′ �β r′ �η s′ and s′ ∈ NFβη ⇒ r′ ∈ NFβ ,

and, under the assumption that s′ ∈ NFβη, a leftmost reduction path

t′ �l s′ .

(i) clearly, we can take rD := λx.r′ .
(ii) assuming s ∈ NFβη we have that s′ ∈ NFβη � Λx , so we get the conclusion

t ≡ λx.t′ �l λx.s′ ≡ s

by (ii) of Lemma 6.1.

422 P. Minari

Case C: R = [βl]. We have t ≡ (λx.t′)t0 · · · tn with n ≥ 0 and

D ≡
D′

{
...

t′[x/t0]t1 · · · tn = s
(λx.t′)t0 · · · tn = s βl .

Then both (i), with rD := rD′ , and (ii) readily follow by the (secondary) I.H.
applied to D′, together with

t ≡ (λx.t′)t0 · · · tn →l
β t′[x/t0]t1 · · · tn .

Case D: R = [App]. Then, for some n ≥ 0, t ≡ t′t0 · · · tn, s ≡ s′s0 · · · sn , and
D has the form

D′
{

...
t′ = s′ R′

...
t0 = s0

}

D0

t′t0 = s′s0
App

. . .

t′t0 · · · tn−1 = s′s0 · · · sn−1

...
tn = sn

}

Dn

t′t0 · · · tn = s′s0 · · · sn
App ,

where the inference R′ is different from [App].
Note that by normality of D it must be either R′ = [�] or R′ = [ξ], and that:

s ∈ NFβη ⇒ s′, s0, . . . , sn ∈ NFβη and s′ is not an abstraction term.

(∗)

By the (ternary, in the worst case) I.H. applied to the subderivations D0, . . . , Dn ,
together with (∗), we get for each i with 0 ≤ i ≤ n:
(a) a term ri ≡ rDi such that ti �β ri �η si and si ∈ NFβη ⇒ ri ∈ NFβ ,
and, under the assumption s ∈ NFβη,
(b) a leftmost reduction path ti �l si .
Subcase D.1: R′ = [�], and so t′ ≡ x ≡ s′ for some variable x.
(i): by (a) and (∗), the term

rD := xr1 . . . rn

clearly satisfies both the required conditions.
(ii): by (b) and (∗), together with (i) of Lemma 6.1, we may conclude, under
s ∈ NFβη:

t ≡ xt0 · · · tn �l xs0 · · · sn ≡ s .

Analytic proof systems for λ-calculus 423

Subcase D.2: R′ = [ξ], and so t′ ≡ λx.t′′ , s′ ≡ λx.s′′ . Moreover, by (∗), it is
s /∈ NFβη , which means that in this case only claim (i)—actually, its first half—
has to be verified. To this aim, we apply the (ternary, in the worst case) I.H. also
to the subderivation D′′ of the premise t′′ = s′′ of R′, to get a term r′′ ≡ rD′′ s.t.:

t′′ �β r′′ �η s′′ .

This, combined with (a), gives

t ≡ (λx.t′′)t0 · · · tn �β (λx.r′′)r0 · · · rn

�η (λx.s′′)s0 · · · sn ,

so that we may take rD := (λx.r′′)r0 · · · rn.
�
Corollary 6.8 (Leftmost βη-reduction) The leftmost βη-reduction strategy is
normalizing, i.e.: for every term t, if t has the βη-normal form s, then t �l s.

Proof Given σ : t � s ∈ NFβη, by combining (ii) of Lemma 6.2, Theorem
3.7∗ (Left τ -elimination for Gext[β]) and Lemma 6.5 we obtain the left normal
derivation

nor(eL(lder(σ))) �−
L t = s

whence, by (ii) of Theorem 6.7, a leftmost reduction path t �l s can be extracted.

�

Corollary 6.9 (Postponement of η-reductions) If σ : t � s then there is a term r
such that t �β r �η s .

Proof r is extracted from nor(eL(lder(σ))) �−
L t = s by means of the first half

of (i) of Theorem 6.7.
�
Corollary 6.10 ([5,14]) t has a β normal form ⇔ t has a βη normal form.

Proof From right to left: as above, this time using also the second half of (i) of
Theorem 6.7. From left to right: trivial.
�

References

1. Aehlig, K., Joachimski, F.: Operational aspects of untyped normalization by evaluation. Math.
Struct. Comput. Sci. 14, 587–611 (2004)

2. Aspinall, D., Compagnoni, A.: Subtyping dependent types. Theor. Comput. Sci. 266, 273–309
(2001)

3. Barendregt, H.P.: The Lambda Calculus, its Syntax and Semantics. Revised edition. North-
Holland, Amsterdam (1984)

4. Barendregt, H.P.: Lambda Calculi with Types. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.
(eds.) Handbook of Logic in Computer Science, vol. II, pp. 117–309. Clarendon Press, Oxford
(1992)

424 P. Minari

5. Barendregt, H.P., Bergstra, J., Klop, J.W., Volken, A.: Some notes on lambda reduction. In:
Degrees, reductions and representability in the lambda calculus, pp. 13–53. Preprint n. 22,
University of Utrecht, Department of Mathematics (1976)

6. Chen, G.: Dependent type system with subtyping. Type level transitivity elimination. Technical
Report LIENS-96-27, Laboratoire d’Informatique, Ecole Normale Supérieure, Paris (1996)

7. Chen, G.: Subtyping, type conversions and elimination of transitivity. PhD thesis, Université
Paris VII (1998)

8. Chen, G.: Coercive subtyping for the Calculus of Constructions. In: Conference record of POPL
2003. The 30th SIGPLAN-SIGACT Symposium on Principles in Programming Languages,
New Orleans, January 2003, pp. 150–159. SIGPLAN Notices 38/1 (2003)

9. Chen, G., Longo, G.: Subtyping parametric and dependent types. An introduction.
http://www.di.ens.fr/ ∼longo/download.html (1999)

10. Compagnoni, A.: Higher-order subtyping and its decidability. Inf. Comput. 191, 41–113 (2004)
11. Coquand, T.: An algorithm for testing conversion in type theory. In: Huet, G., Plotkin, G. (eds.)

Logical Frameworks, pp. 255–279. Cambridge University Press, Cambridge (1991)
12. Curien, P.-L., Ghelli, G.: Coherence and subsumption, minimum typing and type-checking in

F≤. Math. Struct. Comput. Sci. 2, 55–91 (1992)
13. Curry, H.B., Feys, R.: Combinatory Logic. vol. I, North-Holland, Amsterdam (1958)
14. Curry, H.B., Hindley, J.R., Seldin, J.P.: Combinatory Logic. vol. II, North-Holland, Amsterdam

(1972)
15. David, R.: Une preuve simple de résultats classiques en λ-calcul. C. R. Acad. Sci. Paris Sér. I

Math. 320, 1401–1406 (1995)
16. Filinski, A., Rohde, H.K.: Denotational aspects of untyped normalization by evaluation. Theor.

Inform. Appl. 39, 423–453 (2005)
17. Gonthier, G., Lévy, J.-J., Melliès, P.-A.: An abstract standardisation theorem. In: Proceedings

of the 7th Annual IEEE Symposium on Logic in Computer Science (LICS’92), Santa Cruz,
California, August 1992, pp. 72–81. IEEE Computer Society Press (1992)

18. Hindley, J.R., Seldin, J.P.: Introduction to Combinators and λ–Calculus. Cambridge University
Press, London (1986)

19. Kashima, R.: A proof of the standardization theorem in λ-calculus. RIMS Kokyuoroku
1217, 37–44 (2001)

20. Kashima, R.: On the standardization theorem for λβη-calculus. Contributed paper, Interna-
tional workshop on Rewriting in Proof and Computation (RPC’01), Sendai, Japan, October
2001.

21. Klop, J.W.: Combinatory reduction systems. Mathematical Center Tracts, 127. Mathematisch
Centrum, Amsterdam (1980)

22. Lévy, J.-J.: Réductions correctes et optimales dans le λ-calcul. PhD thesis, Université Paris VII
(1978)

23. Longo, G., Milsted, K., Soloviev, S.: Coherence and transitivity of subtyping as entailment.
J. Log. Comput. 10, 493–526 (2000)

24. McKinna, J., Pollack, R.: Some Lambda-Calculus and Type Theory formalized. J. Autom.
Reasoning 23, 373–409 (1999)

25. Melliès, P.-A.: Axiomatic rewriting theory I. A diagrammatic standardization theorem. In:
Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms
and Cycles: steps on the road to infinity, pp. 554–638. Lectures Notes in Computer Science
3838, Springer, Berlin (2005)

26. Minari, P.: Analytic combinatory calculi and the elimination of transitivity. Arch. Math.
Logic 43, 159–191 (2004)

27. Minari, P.: Proof-theoretical methods in combinatory logic and λ-calculus. In: Cooper, S.B.,
Löwe, B., Torenvliet, L. (eds.) CiE 2005: New Computational Paradigms, pp. 148–157. ILLC
X-2005-01, Amsterdam (2005)

28. Mitschke, G.: The standardization theorem for the λ-calculus. Z. Math. Logik Grundlagen
Math. 25, 29–31 (1979)

29. Takahashi, M.: Parallel Reductions in λ-Calculus. Inf. Comput. 118, 120–127 (1995)
30. Xi, H.: Upper bounds for standardizations and an application. J. Symb. Log. 64, 291–303

(1999)

	Analytic proof systems for -calculus:the elimination of transitivity, and why it matters
	Abstract
	Introduction
	Synthetic versus analytic proof systems for -calculus
	Preliminaries
	Synthetic calculi
	Analytic calculi
	Consistency of -free analytic calculi
	Preliminaries to -elimination
	Elimination of transitivity for G[]
	Transitivity elimination in G[] and -reduction
	Elimination of transitivity for Gext[]
	Transitivity elimination in Gext[] and -reduction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

