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Abstract. IMTL logic was introduced in [12] as a generalization of the infinitely-valued
logic of Lukasiewicz, and in [11] it was proved to be the logic of left-continuous t-norms with
an involutive negation and their residua. The structure of such t-norms is still not known.
Nevertheless, Jenei introduced in [20] a new way to obtain rotation-invariant semigroups
and, in particular, IMTL-algebras and left-continuous t-norm with an involutive negation,
by means of the disconnected rotation method. In order to give an algebraic interpretation to
this construction, we generalize the concepts of perfect, bipartite and local algebra used in
the classification of MV-algebras to the wider variety of IMTL-algebras and we prove that
perfect algebras are exactly those algebras obtained from a prelinear semihoop by Jenei’s
disconnected rotation. We also prove that the variety generated by all perfect IMTL-algebras
is the variety of the IMTL-algebras that are bipartite by every maximal filter and we give
equational axiomatizations for it.

1. Introduction

MV-algebras were introduced by C.C. Chang in [5, 6] as an algebraic tool to study
the infinitely-valued logic of Lukasiewicz. They form a variety that gives an alge-
braic semantics for this multivalued logic. Furthermore, since Lukasiewicz logic
is a finitary algebraizable logic in the sense of Blok and Pigozzi (see [3]), there
is a correspondence between its axiomatic extensions and the subvarieties of MV-
algebras. In fact, this lattice of subvarieties was intensively studied and finally fully
described, obtaining thus a classification of all axiomatic extensions of Lukasiewicz
logic (see [22]).

Some years after, some logics weaker than Lukasiewicz logic were introduced,
namely the logic BL defined by Hájek in [18], and the logics MTL and IMTL defined
by Esteva and Godo in [12]. In particular, IMTL proves, as Lukasiewicz logic, the
law of involution of the negation, ¬¬ϕ → ϕ, and it is complete with respect to the
semantics given by involutive left-continuous t-norms and their residua (see [11]).
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The structure of such t-norms is still not known. There are only partial results by
Jenei giving some methods to construct left-continuous involutive t-norms. They
are summarized in [21].

IMTL is also an algebraizable logic whose equivalent algebraic semantics, the
variety of IMTL-algebras, contains the variety of MV-algebras. Therefore, the study
of all axiomatic extensions of IMTL, or equivalenty the study of all subvarieties of
IMTL-algebras, will be a generalization of the work done for MV-algebras. Some
of these subvarieties have been studied in [7, 16, 17].

In this paper we do a new step towards this aim, extending the work done in [1,
2, 9] for the perfect, bipartite and local MV-algebras to IMTL-algebras. As it was
done for BL-algebras in [10], we translate these notions into the language of IMTL
using the multiplicative conjunction instead of the multiplicative disjunction and
using the notion of filter instead of the notion of ideal, since the concept of filter
is useful in the whole variety of MTL-algebras. Indeed, for MTL-algebras there is
a correspondence between filters and congruences. This will help in extending the
work done here for IMTL-algebras to all MTL-algebras in future research. We also
use some of the methods introduced by S. Jenei in [20] for obtaining IMTL-algebras
and put them in relation with the concept of perfect algebras.

2. Preliminaries

In this section we will introduce some definitions and facts needed for the discussion
of the paper. For any unexplained notion on Universal Algebra see [4].

IMTL logic is presented in [12] by means of a Hilbert-style calculus in the
language L = {∗,→,∧, 0} of type (2, 2, 2, 0). The only inference rule is Modus
Ponens and the axiom schemata are the following (taking → as the least binding
connective):

(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

(A2) ϕ ∗ ψ → ϕ

(A3) ϕ ∗ ψ → ψ ∗ ϕ
(A4) ϕ ∧ ψ → ϕ

(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ ∗ (ϕ → ψ) → ϕ ∧ ψ
(A7a) (ϕ → (ψ → χ)) → (ϕ ∗ ψ → χ)

(A7b) (ϕ ∗ ψ → χ) → (ϕ → (ψ → χ))

(A8) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(A9) 0 → ϕ

(A10) ¬¬ϕ → ϕ

The usual defined connectives are introduced as follows:

ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ);
ϕ ↔ ψ := (ϕ → ψ) ∗ (ψ → ϕ);

¬ϕ := ϕ → 0;
ϕ ⊕ ψ := ¬(¬ϕ ∗ ¬ψ);

1 := ¬0.
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We denote the set of L-formulas by FmL. Given � ∪ {ϕ} ⊆ FmL, we write
� 	IMTL ϕ if ϕ is provable from � in the system IMTL.

In order to give an algebraic semantics for IMTL, the following algebras are
also introduced in [12]:

Definition 1 ([12]). Let A = 〈A, ∗,→,∧,∨, 0, 1〉 be an algebra of type (2, 2, 2,
2, 0, 0). We define a unary operation by ¬a := a → 0. A is an IMTL-algebra if it
is a bounded residuated lattice satisfying the prelinearity equation:

(x → y) ∨ (y → x) ≈ 1,

and the involution equation:

¬¬x ≈ x.

The algebra has negation fixpoint if there is a ∈ A such that ¬a = a. In [19]
it is proved that there is at most one fixpoint.

If the lattice order is total we will say that A is an IMTL-chain.
IMTL will denote the variety of all IMTL-algebras.

Definition 2. Let EqL be the set of L-equations, i.e. the set of expressions of the
form ϕ ≈ ψ where ϕ,ψ ∈ FmL. Let � ∪ {ϕ ≈ ψ} ⊆ EqL. We define:

� �IMTL ϕ ≈ ψ if for every A ∈ IMTL and every evaluation v in A, it holds:
If for every α ≈ β ∈ �, v(α) = v(β), then v(ϕ) = v(ψ).

Now, having this notion of equational consequence, we can state the strong link
existing between the logic IMTL and the variety IMTL:

Theorem 1. The relation of derivability in IMTL and the equational consequence
determined by the variety IMTL are mutually translatable. Indeed, given�∪{γ } ⊆
FmL and � ∪ {ϕ ≈ ψ} ⊆ EqL, we have:

1. � 	IMTL γ iff {ψ ≈ 1 : ψ ∈ �} �IMTL γ ≈ 1.
2. � �IMTL ϕ ≈ ψ iff {α ↔ β : α ≈ β ∈ �} 	IMTL ϕ ↔ ψ .

Moreover, each one of these translations is the inverse of the other one in the
following sense:

3. ϕ ≈ ψ �IMTL ϕ ↔ ψ ≈ 1 and ϕ ↔ ψ ≈ 1 �IMTL ϕ ≈ ψ .
4. γ 	IMTL γ ↔ 1 and γ ↔ 1 	IMTL γ .

In the terminology of [3] this means that IMTL is an algebraizable logic whose
equivalent algebraic semantics is IMTL.As a consequence, there is an order-revers-
ing isomorphism between the axiomatic extensions of IMTL and the subvarieties
of IMTL, given by the translations of the above theorem.

Some IMTL-algebras are well-known. For instance, Boolean algebras are those
IMTL-algebras where the equation of the excluded middle, x ∨ ¬x ≈ 1, is valid,
and MV-algebras are those IMTL-algebras satisfying the equation of divisibility
x∧y ≈ x ∗ (x → y). Another interesting class of IMTL-algebras are the so-called
NM-algebras. They were defined in [12] as those IMTL-algebras satisfying the
following equation:

(x ∗ y → 0) ∨ (x ∧ y → x ∗ y) ≈ 1
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There is, up to isomorphism, only one NM-algebra defined over the real unit
interval [0, 1], given by the nilpotent minimum t-norm (introduced by Fodor in
[14]):

a ∗NM b =
{

min{a, b} if a > 1 − b,

0 otherwise.

and its residuated implication:

a →NM b =
{

1 if a ≤ b,

max{1 − a, b} otherwise.

We will denote this algebra as [0, 1]NM . It generates the whole variety of NM-
algebras ([12]).

For a general study of IMTL-algebras we need some definitions.

Definition 3. If A is an IMTL-algebra, the sets of positive and negative elements
are respectively defined as:

A+ := {a ∈ A : a > ¬a}
A− := {a ∈ A : a ≤ ¬a}
The following characterization of these sets will be useful.

Proposition 1. Let A be an IMTL-algebra. Then:
A+ = {a ∨ ¬a : a ∈ A, a �= ¬a}
A− = {a ∧ ¬a : a ∈ A}

Proof. If a ∈ A+ then a = a ∨ ¬a. Conversely, if a is not a fixpoint, we have
a ∨ ¬a > ¬(a ∨ ¬a) = a ∧ ¬a, since a ∨ ¬a ≥ a,¬a ≥ a ∧ ¬a. The other
equality is provable with a similar reasoning. ��

Recall that a filter in an IMTL-algebra is any set F such that:

– 1 ∈ F .
– If a ∈ F and a ≤ b, then b ∈ F .
– If a, b ∈ F , then a ∗ b ∈ F .

F is proper if 0 /∈ F . F is a prime filter if it is proper and for every a, b ∈ A if
a ∨ b ∈ F , then a ∈ F or b ∈ F .

Using Zorn’s Lemma one can prove that for any proper filter F there is a maxi-
mal proper filterG such that F ⊆ G. Moreover, every maximal filter is prime. The
radical of A is defined as Rad(A) = ⋂{M ⊆ A : M is a maximal filter}. Notice
that in a chain the set of filters is totally ordered, hence the radical is the maximum
proper filter.

Recall this known property of maximal filters:

Proposition 2. Let A be an IMTL-algebra and M ⊆ A a maximal filter. Then for
every a ∈ A, a /∈ M if, and only if, there exists n such that ¬an ∈ M .

We state also, for the reader’s convenience, the known correspondence between
filters and congruences in IMTL-algebras.
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Proposition 3. Let A be an IMTL-algebra. For every filter F ⊆ A, we define
	(F) := {〈a, b〉 ∈ A2 : a ↔ b ∈ F }, and for every congruence θ of A we define
Fi(θ) := {a ∈ A : 〈a, 1〉 ∈ θ}. Then, 	 is an order isomorphism from the set of
filters onto the set of congruences and Fi is its inverse.

Recall also that all IMTL-algebras are representable as a subdirect product of
IMTL-chains, as proved in [12].

Now, in order to introduce some methods for constructing IMTL-algebras de-
fined by Jenei (see [20]), we need first to define the notion of prelinear semihoop.

Definition 4 ([13]). An algebra A = 〈
A, ∗A,→A,∧A, 1A〉

of type (2, 2, 2, 0) is
a semihoop if it satisfies the following conditions:

– A = 〈
A,∧A, 1A〉

is an inf-semilattice with upper bound.
–

〈
A, ∗A, 1A〉

is a commutative monoid isotonic w.r.t. the inf-semilattice order.
– For every a, b ∈ A, a ≤A b if, and only if, a →A b = 1A.
– For every a, b, c ∈ A a ∗A b →A c = a →A (b →A c).

If in addition it satisfies the prelinearity equation, it is a prelinear semihoop.1

A semihoop A is a hoop if A |= x ∗ (x → y) ≈ y ∗ (y → x).
A hoop A is cancellative ifa∗Ab ≤ c∗Ab impliesa ≤A c, for everya, b, c ∈ A.
A Wajsberg hoop is a hoop satisfying (x → y) → y ≈ (y → x) → x.

In [13] is proved that cancellative hoops coincide with unbounded Wajsberg
hoops.

Definition 5. Let A be a prelinear semihoop. We define an algebra, A∗, called the
disconnected rotation of A. LetA×{0} be a disjoint copy ofA. For every a ∈ Awe
write a′ instead of 〈a, 0〉. Consider

〈
A′ = {a′ : a ∈ A},≤〉

with the inverse order
and letA∗ := A∪A′. We extend these orderings to an order inA∗ by putting a′ < b

for every a, b ∈ A. Finally, we take the following operations in A∗:
1A∗

:= 1A, 0A∗
:= (1A)′, ∧A∗

the minimum w.r.t. the ordering, ∨A∗
the

maximum w.r.t. the ordering,

¬A∗
a :=

{
a′ if a ∈ A
b if a = b′ ∈ A′

a ∗A∗
b :=



a ∗A b if a, b ∈ A
¬A∗

(a →A ¬A∗
b) if a ∈ A, b ∈ A′

¬A∗
(b →A ¬A∗

a) if a ∈ A′, b ∈ A
0A∗

if a, b ∈ A′

a →A∗
b :=



a →A b if a, b ∈ A
¬A∗

(a ∗A ¬A∗
b) if a ∈ A, b ∈ A′

1A∗
if a ∈ A′, b ∈ A

¬A∗
b →A ¬A∗

a if a, b ∈ A′

Proposition 4 ([20]). Disconnected rotations are IMTL-algebras without fixpoint.

1 In [13] that kind of semihoops are called basic semihoops, but here we prefer to use
the more descriptive adjective prelinear.
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3. Main results

Let A be an IMTL-algebra.

Definition 6. For a ∈ A we define a0 := 1, a1 := a and for every n > 1 an :=
an−1 ∗ a. Using this notation we can define the order of a ∈ A as:

ord(a) =
{
min{n : an = 0} if it exists,

∞ otherwise.

Note that:

– ord(1) = ∞.
– If F is a proper filter and a ∈ F , then ord(a) = ∞.
– If a ∈ A−, then ord(a) < ∞.

The definition of order gives rise to the notion of perfect algebra.

Definition 7. A is perfect if for every a ∈ A, ord(a) < ∞ if, and only if,
ord(¬a) = ∞.

Some easy examples of perfect IMTL-algebras are the Boolean algebra of two
elements B2, the Chang MV-algebra defined in [5] and all NM-chains without
negation fixpoint. In all these algebras one can check that all positive elements
have infinite order.

We also want to extend the notion of bipartite MV-algebra to the class of all
IMTL-algebras. To this end, we need a previous proposition.

Proposition 5. Let F ⊆ A be a filter of A. Then the subuniverse ofA generated by
F is F ∪ ¬F , where ¬F = {¬a : a ∈ F }.
Proof. Let X be the subuniverse of A generated by F . We must see that X =
F ∪¬F . The inclusion from right to left is obvious, so we only prove the other one.
Note that F ⊆ F ∪ ¬F , thus it is enough to show that F ∪ ¬F is a subuniverse.
This is easily done by proving that it is closed under all the operations. ��
Definition 8. A is bipartite if there is a maximal filterF ⊆ A such thatA = F∪¬F ,
i.e., such that F generates A. In this case we will say that A is bipartite by F .

The filterF in the previous definition need not to be unique; it is possible to have
an algebra bipartite by more than one maximal filter. In fact, we define a special
class of bipartite IMTL-algebras, BP0, as those that are bipartite by all maximal
filters.

Definition 9. A ∈ BP0 if for every maximal filter F ⊆ A, A = F ∪ ¬F .

All the examples given above of perfect algebras are also algebras of BP0. But
not all the algebras in BP0 are perfect, for instance take the Boolean algebra of four
elements: B4 ∈ BP0 but is not perfect. L3 × B2 (where L3 denotes the MV-algebra
of three elements) is a bipartite algebra that is not in BP0. Notice that perfect and
bipartite algebras do not have negation fixpoint.

The notions so far presented coincide in the case of IMTL-chains. Indeed we
can prove:
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Theorem 2. Let A be an IMTL-chain. The following are equivalent:

(1) A is bipartite.
(2) A ∈ BP0.
(3) A = Rad(A) ∪ ¬Rad(A).
(4) Rad(A) = A+ and A has no fixpoint.
(5) A is perfect.
(6) A is isomorphic to the disconnected rotation of a linearly ordered semihoop.
(7) A |= (¬(¬x)2)2 ≈ ¬(¬x2)2.
(8) A/Rad(A) ∼= B2.

Proof. (1) ⇒ (2), (2) ⇒ (3), (3) ⇒ (4) and (4) ⇒ (5) are straightforward.
[(5) ⇒ (6)]: If the chain is perfect, then all positive elements have infinite

order, hence A+ is closed under ∗. Therefore, if B is the prelinear semihoop given
by A+, then A ∼= B∗, since the operation ∗ restricted to A+ determines the whole
operation in A.

[(6) ⇒ (7)]: Suppose that there is a totally ordered semihoop B such that A ∼=
B∗. An easy computation shows that for every a ∈ A+ (¬(¬a)2)2 = ¬(¬a2)2 = 1
and for every a ∈ A− (¬(¬a)2)2 = ¬(¬a2)2 = 0.

[(7) ⇒ (8)]: Suppose that A validates the equation. Note that in this case the
set of positives is a proper filter. Indeed, if a ∈ A+, then ¬a ∈ A−, so (¬a)2 = 0.
Therefore (¬(¬a)2)2 = 1 = ¬(¬a2)2 and this implies a2 ∈ A+. Now, take
a, b ∈ A+ such that a ≤ b. Then a2 ≤ a∗b and a2 ∈ A+, so a∗b ∈ A+. ThusA+ =
Rad(A). Consider the algebra A/Rad(A) and take a ∈ A. If a is positive, then
a → 1 = 1 ∈ Rad(A) and 1 → a = a ∈ Rad(A), so a/Rad(A) = 1/Rad(A).
If a is negative, then a → 0 = ¬a ∈ Rad(A) and 0 → a = 1 ∈ Rad(A), so
a/Rad(A) = 0/Rad(A). Therefore A/Rad(A) ∼= B2.

[(8) ⇒ (1)]: Suppose that the quotient by the radical is the two-element Bool-
ean algebra. It will be enough to prove that for every a ∈ A (a ∈ Rad(A) ⇔ ¬a /∈
Rad(A)). Indeed: a is in the radical iff a/Rad(A) = 1/Rad(A) iff ¬a/Rad(A) =
0/Rad(A) iff ¬a /∈ Rad(A). ��

3.1. The radical of IMTL-algebras

In this section we will extend to IMTL the characterization of the radical given in
[15] for MV-algebras.

Lemma 1. Let A be an IMTL-chain. Then:
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

Proof. If a ∈ Rad(A), then for every n ≥ 1, an ∈ Rad(A) ⊆ A+. Since an ≤ a,
we obtain ¬a ≤ ¬an < an. Conversely, take a ∈ A such that for every n ≥ 1,
an > ¬a. Then, in particular, for every n, an �= 0, so the filter generated by a,
Fi(a), is proper. Thus, a ∈ Fi(a) ⊆ Rad(A), since in chains the filters are totally
ordered. ��
Lemma 2. Let A and B be IMTL-algebras and h : A → B a homomorphism.

(a) If F ⊆ B is a filter, then h−1[F ] is a filter.
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(b) If F ⊆ B is a proper filter, then h−1[F ] is a proper filter.
(c) If F ⊆ B is a prime filter, then h−1[F ] is a prime filter.
(d) If F ⊆ B is a maximal filter, then h−1[F ] is a maximal filter.
(e) If F ⊆ B is a filter, then h−1[¬F ] = ¬(h−1[F ]).

Proof. All the proofs are routine. ��
Now we can generalize the characterization of the radical to all IMTL-algebras.

Theorem 3. Let A be an IMTL-algebra. Then:
Rad(A) = {a ∈ A : an > ¬a ∀n ≥ 1}.

Proof. Suppose first that a belongs to the set on the right side. If there is a maximal
filterM such that a /∈ M , then, by Proposition 2 there exists n ≥ 1 such that ¬an ∈
M . But, since an > ¬a, we have ¬an < a, so a ∈ M and this is absurd. To prove
the other inclusion, consider a representation of A as a subdirect product of IMTL-
chains, ϕ : A ↪→ �i∈IAi . For every i ∈ I , let ϕi be the i-th projection of ϕ. By
the previous lemma, for every i ∈ I , ϕ−1

i [Rad(Ai )] is a maximal filter of Ai , thus:

Rad(A) ⊆
⋂
i∈I
ϕ−1
i [Rad(Ai )]

So we only need to prove this inclusion:⋂
i∈I
ϕ−1
i [Rad(Ai )] ⊆ {a ∈ A : an > ¬a ∀n ≥ 1}

Suppose that for every i ∈ I , a ∈ ϕ−1
i [Rad(Ai )]. Then for every i ∈ I ,

ϕi(a) ∈ Rad(Ai ) and, since Ai are chains, for every n ≥ 1, (ϕi(a))n > ¬(ϕi(a)).
Therefore, for every n ≥ 1, ϕ(a)n > ¬ϕ(a), hence for every n ≥ 1, an ≥ ¬a. This
implies that for every n ≥ 1, an > ¬a. ��
Corollary 1. Let A be an IMTL-chain. Then Rad(A) ⊆ A+.

Corollary 2. Let A be an IMTL-algebra. Then:
A+ is a filter if, and only if, A+ = Rad(A).

Proof. Suppose that A+ is a filter. We have to prove that A+ ⊆ Rad(A). Let a ∈
A+, then for every n ≥ 1 an ∈ A+. We have an ≤ a, hence ¬a ≤ ¬an < an ≤ a

and this means that a ∈ Rad(A). ��

3.2. Local IMTL-algebras

Note that in every IMTL-algebra A, we have: Rad(A) ⊆ {a ∈ A : ord(a) = ∞}.
We will study now the algebras where this inclusion is an equality, the local IMTL-
algebras.

Definition 10. An IMTL-algebra A is local if for every a ∈ A, ord(a) < ∞ or
ord(¬a) < ∞.
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It is clear that chains are local algebras. Also all perfect algebras are local. In
fact, we have this characterization:

Proposition 6. An IMTL-algebra A is local if, and only if, it has a unique maximal
filter.

Proof. Suppose that M is the unique maximal filter of A. If there is a ∈ A such
that ord(a) = ord(¬a) = ∞ then a,¬a ∈ M and this is a contradiction since M
is proper. Conversely, suppose that A is local and let M be a maximal filter. Then
it is easy to prove thatM = {a ∈ A : ord(a) = ∞}. ClearlyM is contained in this
set. If a /∈ M and ord(a) = ∞, then ∃n such that ¬an ∈ M , so ord(¬an) = ∞.
Hence ord(an) < ∞, so ord(a) < ∞, a contradiction. ��
Corollary 3. Let A be an IMTL-algebra.

A is local if, and only if, Rad(A) = {a ∈ A : ord(a) = ∞}.
There is a special type of filter related to local algebras, namely the primary

filters. To define it we need a new operation ⊕ in IMTL-algebras, which is the dual
operation of ∗:

Definition 11. Let A be an IMTL-algebra. For every a, b ∈ A we define a ⊕ b :=
¬(¬a ∗ ¬b), 1a := a and for every n > 1 na := (n− 1)a ⊕ a.

Definition 12. P is a primary filter of an IMTL-algebra A if it is a proper filter
such that for every a, b ∈ A such that a ⊕ b ∈ P , there is n ≥ 1 such that na ∈ P
or nb ∈ P .

Theorem 4. Let A be an IMTL-algebra and P ⊆ A a filter. Then:
A/P is local if, and only if, P is primary.

Proof. Suppose that the quotient is local and take a ⊕ b ∈ P such that for every
n ≥ 1, na /∈ P . From one hand, a/P ⊕ b/P = (a ⊕ b)/P = 1/P , hence
¬(b/P ) ≤ a/P . To the other hand, for every n ≥ 1, n(a/P ) �= 1/P , so for every
n ≥ 1, n¬(b/P ) �= 1/P . It follows that ord(b/P ) = ∞, but A/P is local, so
ord(¬(b/P )) < ∞. This implies that there is a m ≥ 1 such that mb/P = 1/P ,
therefore mb ∈ P . To prove the converse, take an arbitrary a/P and observe that
a⊕¬a = 1 ∈ P . Then, using thatP is primary, we have that there is n ≥ 1 such that
na ∈ P or n(¬a) ∈ P . In the first case it is easy to prove that ord(¬a/P ) < ∞,
and the second implies ord(a/P ) < ∞. Thus, the algebra is local. ��
Corollary 4. Let A be an IMTL-algebra and let F ⊆ A be a prime filter. Then, F
is primary.

Proposition 7. Let F be a proper filter of an IMTL-algebra A. Then, F is primary
if, and only if, there is a unique maximal filter M such that F ⊆ M .

Proof. F is primary iff A/F is local iff A/F has a unique maximal filter iff there
is a unique maximal filterM such that F ⊆ M , since there is an order isomorphism
between the filters of A/F and the filters of A containing F . ��
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Corollary 5. An IMTL-algebra is local if, and only if, all its proper filters are
primary.

Corollary 6. Let A be a local IMTL-algebra. Then for each filter F ⊆ A, A/F is
local.

Hence, the class of local IMTL-algebras is closed under homomorphic images.
It is easy to prove that is also closed under subalgebras. Nevertheless, this class is
neither a variety nor a quasivariety since it is not closed under direct products. For
instance, the standard nilpotent minimum algebra [0, 1]NM is local but the direct
product of two copies of it, ([0, 1]NM)2, is not local. In fact, since all chains are
local, the variety generated by the local algebras is the whole IMTL.

In order to state a classification theorem of local algebras, we define two new
classes of IMTL-algebras.

Definition 13. An IMTL-algebra A is locally finite if for everya ∈ A\{1},ord(a) <
∞. A is peculiar if it is local and there are a, b ∈ A\{0, 1} such that ord(a) = ∞,
ord(b) < ∞ and ord(¬b) < ∞.

Locally finite and peculiar algebras can have negation fixpoint; for instance the
standard Lukasiewicz algebra on [0, 1] is locally finite and [0, 1]NM is peculiar,
since ord( 1

2 ) = ord(¬ 1
2 ) < ∞.

Theorem 5. Let A be a local IMTL-algebra such that A �∼= B2. Then A satisfies
one, and only one, of the following:

– A is perfect.
– A is locally finite.
– A is peculiar.

3.3. Perfect IMTL-algebras and disconnected rotations of prelinear semihoops

For perfect algebras there is also a special type of filters:

Definition 14. P is a perfect filter of an IMTL-algebra A if it is a proper filter such
that for every a ∈ A, there exists n such that na ∈ P if, and only if, for every m,
m(¬a) /∈ P .

Proposition 8. Let A be an IMTL-algebra and F ⊆ A a proper filter. Then:
F is perfect if, and only if, A/F is a non-trivial perfect algebra.

Proof. It is straightforward to check. ��
Corollary 7. Every perfect filter is primary.

Proof. By the last proposition and Theorem 4. ��
Theorem 6. Let A be an IMTL-algebra. Then:

A is perfect if, and only if, every proper filter of A is perfect.
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Proof. If every proper filter is perfect, then A is perfect since A ∼= A/{1}. Now
suppose that the algebra is perfect and take an arbitrary proper filter F ⊆ A, and
a ∈ F . We must prove (∃n na ∈ F ⇔ ∀m m(¬a) /∈ F). Indeed, na ∈ F ⇒
ord(na) = ∞ ⇒ ord(¬(na)) < ∞ ⇒ ord((¬a)n) < ∞ ⇒ ord(¬a) < ∞ ⇒
ord(a) = ∞. If there is m such that m(¬a) ∈ F , then ord(¬a) = ∞ and this is
absurd.

For the other implication: ∀m m(¬a) /∈ F ⇒ ∀m m(¬a) �= 1 ⇒ ∀m am �=
0 ⇒ ord(a) = ∞ ⇒ ord(¬a) < ∞ ⇒ ∃n (¬a)n = 0 ⇒ ∃n na = 1 ∈ F . ��

Therefore, we obtain that the class of perfect IMTL-algebras is closed under
homomorphic images and obviously is closed under subalgebras. However, con-
sidering the subalgebra A of [0, 1]NM generated by [0, 1] \ { 1

2 } we obtain that A
is a perfect algebra while A2 is not perfect. So, this class is not closed under direct
products.

It is also possible to characterize these algebras in the following way:

Theorem 7. Let A be an IMTL-algebra. Then:
A is perfect if, and only if, A = Rad(A) ∪ ¬Rad(A).

Proof. Suppose that A is perfect. By Corollary 3 we know that Rad(A) = {a ∈
A : ord(a) = ∞} and then the result follows immediately. Conversely, if A =
Rad(A) ∪ ¬Rad(A) then every a ∈ Rad(A) has infinite order and every a ∈
¬Rad(A) has finite order, hence the algebra is perfect. ��
Corollary 8. Every perfect algebra is bipartite.

Proof. If the algebra is perfect, then it is local, so the radical is the only maximal
filter and the result is obvious. ��

Another easy consequence is the following proposition about perfect subalge-
bras:

Corollary 9. Given an IMTL-algebra A, Rad(A) ∪ ¬Rad(A) is a perfect subal-
gebra and contains all perfect subalgebras of A.

Interestingly, the notion of perfect algebra turns out to be the same as the notion
of disconnected rotation, as the following theorem proves:

Theorem 8. Let A be an IMTL-algebra. Then the following are equivalent:

(1) A is perfect.
(2) A/Rad(A) ∼= B2.
(3) A is isomorphic to the disconnected rotation of a prelinear semihoop.

Proof. [(1) ⇒ (2)]: If the algebra is perfect, then the radical is perfect and maximal,
hence A/Rad(A) is simple and perfect, so it must be isomorphic to B2.

[(2) ⇒ (3)]: For every a ∈ A, (a/Rad(A) = 1/Rad(A) ⇒ a ∈ Rad(A))
and (a/Rad(A) = 0/Rad(A) ⇒ a ∈ ¬Rad(A)). So A = Rad(A) ∪ ¬Rad(A).
Then, considering the prelinear semihoop B given by Rad(A), we obtain that
A ∼= B∗.
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[(3) ⇒ (1)]: If A ∼= B∗ for some prelinear semihoop B, then it is obvious that
all positive elements have infinite order and all negative elements have finite order.

��
It is also interesting to particularize this result to MV-algebras:

Theorem 9. Let A be an IMTL-algebra. The following are equivalent:

(1) A is a perfect MV-algebra.
(2) A is isomorphic to the disconnected rotation of a cancellative hoop.

Proof. [(1) ⇒ (2)]: It is clear that Rad(A) is a Wajsberg hoop. We only need to
show that it has no minimum element and then it will be a cancellative hoop. Sup-
pose that a is the minimum of Rad(A) and take any x < a different from 0. Then
a∧x = x, but a ∗ (a → x) = a ∗¬(a ∗¬x) = ¬(a → a ∗¬x) = ¬(a → a) = 0,
a contradiction with A being a MV-algebra.

[(2) ⇒ (1)]: The rotation of a cancellative hoop is always an MV-algebra as it
is proved in Lemma 3.13 of [13] and by the last theorem it is perfect. ��

3.4. Bipartite IMTL-algebras

Finally, we will study the class of bipartite algebras. Let A be a bipartite IMTL-
algebra. Recall that these algebras do not have negation fixpoint. It is clear that for
every a ∈ A, ord(a) = ∞ or ord(¬a) = ∞. Take A1 := {a ∈ A : ord(a) =
∞ ⇔ ord(¬a) < ∞} and A2 := {a ∈ A : ord(a) = ord(¬a) = ∞}. Then, we
have:

– A = A1 ∪ A2.
– A1 = {0, 1} if, and only if, A ∈ BA.
– A2 = ∅ if, and only if, A is perfect.

Lemma 3. Let A be an IMTL-algebra. We have:
For every a, b ∈ A, if ord(¬(a ∗ b)) < ∞, then ¬a ∗ ¬b = 0.

Proof. It is just an easy computation. ��
Proposition 9. If A1 is a subuniverse, then A1 = A+ ∪ A− and A+ is a filter.

Proof. First we prove that for every a ∈ A1, ord(a) = ∞ implies a ∈ A+. Indeed,
if ord(a) = ∞, then ord(a2) = ∞, so ord(¬a2) < ∞ (since a2 ∈ A1), and thus
¬a ∗ ¬a = 0 (by the previous lemma), i.e. ¬a < a.

Now we check thatA1 = A+∪A−. Take a ∈ A1. If ord(a) = ∞, then a ∈ A+.
If ord(a) < ∞, then ord(¬a) = ∞, so ¬a ∈ A+ and a ∈ A−. Take a ∈ A+ ∪A−.
If a ∈ A+, then ord(¬a) < ∞ and ord(a) = ∞, hence a ∈ A1. If a ∈ A−, then
ord(a) < ∞ and ord(¬a) = ∞, hence a ∈ A1.

Finally we prove that A+ is a filter. It is enough to prove that it is closed under
∗. Take a ∈ A+, then ord(a2) = ∞, so a2 ∈ A+. If a, b ∈ A+, we only need
to prove that the order of a ∗ b is infinite. Suppose that it is finite. Then there is n
such that (a ∗ b)n = 0. This implies that there is m such that (a ∗ b)2m = 0, so
a2m ≤ ¬b2m but this is a contradiction because a2m and b2m are positive elements.

��
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Proposition 10. Let A be an IMTL-algebra without negation fixpoint and letM ⊆
A be a prime filter. Then the following are equivalent:

(1) A+ ⊆ M .
(2) M is maximal and A = M ∪ ¬M .
(3) A/M ∼= B2.
(4) M is maximal and perfect.

Proof. [(1) ⇒ (2)]: If a ∈ A, then by Proposition 1, a ∨ ¬a ∈ A+ ⊆ F , but since
F is prime, a ∈ F or ¬a ∈ F .

[(2) ⇒ (3)]: On one hand, M is primary by Corollary 4, so A/M is local. On
the other hand, for every a ∈ A, a/M ∨ ¬(a/M) = (a ∨ ¬a)/M = 1/M , hence
A/M is Boolean. Therefore, it must be the two-element Boolean algebra.

[(3) ⇒ (4)]: If A/M ∼= B2, then M is perfect since B2 is perfect, and M is
maximal since B2 is simple.

[(4) ⇒ (1)]: Take a ∨ ¬a ∈ A+ and suppose that is not in M . Then there is a
n ≥ 1 such that ¬(a ∨ ¬a)n ∈ M , so n(¬a) ∧ na ∈ M in contradiction with M
being perfect. ��

This gives a characterization of bipartite IMTL-algebras:

Theorem 10. An IMTL-algebra A is bipartite if, and only if, the filter generated by
A+ is proper.

Proof. The implication from left to right follows immediately from the last theo-
rem. For the other one, suppose that Fi(A+) is proper. Then it must be contained
in some maximal filter M , so A+ ⊆ M and by the last theorem A = M ∪ ¬M . ��
Lemma 4. Let A be an IMTL-algebra without negation fixpoint and let F ⊆ A be
a filter. Then: A/F ∈ BA if, and only if, A+ ⊆ F .

Proof. Suppose that the quotient is a Boolean algebra and take a ∈ A+. Then
a/F ∨ ¬(a/F ) = (a ∨ ¬a)/F = 1/F . Thus: a = a ∨ ¬a ∈ F . Conversely, it is
straightforward to check that A/F satisfies the law of the excluded middle. ��
Lemma 5. Let A be a bipartite IMTL-algebra. Then:

A is bipartite only by Fi(A+) if, and only if, Fi(A+) is a maximal filter.

Proof. Suppose that Fi(A+) is a maximal filter. A+ ⊆ Fi(A+), so A = Fi(A+)∪
¬Fi(A+). If M is a maximal filter and A = M ∪ ¬M , then A+ ⊆ M , hence
Fi(A+) = M . ��
Proposition 11. Let A be a bipartite IMTL-algebra. If A+ is a filter, then A1 =
A+ ∪ A−.

Proof. By Lemma 4, A/A+ ∈ BA. If there exists a ∈ A1 \ (A+ ∪ A−), then
a/A+ is neither 1/A+ nor 0/A+, so ord(a/A+) = ord(¬a/A+) = ∞ but this is
inconsistent with a ∈ A1 since ord(a) < ∞ or ord(¬a) < ∞. ��

Using these results we obtain a good characterization of the algebras in BP0:
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Theorem 11. For every IMTL-algebra A the following are equivalent:

(1) A ∈ BP0.
(2) A/Rad(A) ∈ BA.
(3) Rad(A) = A+ and A has no fixpoint.

Proof. [(1) ⇔ (2)]: For every maximal filter M , A = M ∪ ¬M iff (by Theorem
10) A+ is contained in every maximal filter iff A+ ⊆ Rad(A). By Lemma 4 this
is equivalent to A/Rad(A) ∈ BA.

[(2) ⇒ (3)]: By Lemma 4 we obtain A+ ⊆ Rad(A) and the other inclusion is
always true.

[(3) ⇒ (2)]: Also by Lemma 4. ��
Inside the class of bipartite algebras, this characterization gives:

Proposition 12. For every bipartite IMTL-algebra A the following are equivalent:

(1) A1 is a subuniverse.
(2) A+ is a filter.
(3) A ∈ BP0.

Proof. [(1) ⇒ (2)]: Seen in Proposition 9.
[(2) ⇒ (3)]: By the last theorem.
[(3) ⇒ (1)]: If A ∈ BP0, then by the last theoremA+ is a filter. By Proposition

11 we obtain the result. ��
Corollary 10. Every perfect IMTL-algebra is in BP0.

In addition this special class of bipartite algebras is a variety:

Theorem 12. BP0 is a variety. One equational axiomatization of it is obtained by
adding the next set of equations to the usual axiomatization for IMTL:

{(x ∧ ¬x) → (x ∨ ¬x)n ≈ 1 : n ≥ 1}.
Proof. Let A be an IMTL-algebra. A ∈ BP0 iff Rad(A) = A+ iff (by The-
orem 3) for every a ∈ A+ and every n ≥ 1, an ≥ ¬a iff (by Proposition 1)
A |= (x ∧ ¬x) → (x ∨ ¬x)n ≈ 1 for every n ≥ 1. ��
Corollary 11. BP0 is the variety generated by all perfect IMTL-algebras, i.e. by
all disconnected rotations of prelinear semihoops.

Proof. Let K be the variety generated by all perfect IMTL-algebras. By Corol-
lary 10, K ⊆ BP0. The other inclusion follows from the subdirect representation
theorem and Theorem 2. ��

There is a simpler axiomatization for BP0:

Corollary 12. BP0 can be axiomatized by adding to the axioms of IMTL only the
following:

(¬(¬x)2)2 ≈ ¬(¬x2)2.
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Proof. Let K be the variety of IMTL-algebras satisfying this equation. We will
prove K = BP0. If A ∈ K, then by the subdirect representation theorem A is
representable as a subdirect product of chains satisfying the equation. By Theo-
rem 2 these chains are in BP0, so A ∈ BP0. Conversely, take A ∈ BP0. Then
A is isomorphic to a subdirect product of IMTL-chains in BP0, so A satisfies the
equation. ��

Therefore, we have found a new logic whose algebraic semantics is the variety
BP0. We call this logicBP0. Obviously, it can be presented in a Hilbert-style calcu-
lus by adding the axiom schema (¬(¬ϕ)2)2 ↔ ¬(¬ϕ2)2 to the calculus given for
IMTL. Notice that there are no algebras of BP0 defined over [0, 1], since all stan-
dard IMTL-algebras have negation fixpoint but perfect algebras do not have it; thus
the logic BP0 has no standard completeness. Nevertheless, we can prove that this
logic has the following Glivenko-style theorem2 w.r.t. the classical propositional
calculus:

Theorem 13. Let 	CPC denote the relation of derivability in the classical proposi-
tional calculus. Then, for everyϕ ∈ FmL, 	CPC ϕ if, and only if, 	BP0 (¬(¬ϕ)2)2.

Proof. Suppose that 	CPC ϕ. It suffices to prove that for each chain A ∈ BP0,
A |= (¬(¬ϕ)2)2 ≈ 1. Let A be such a chain and v : FmL → A an eval-
uation. We know that A/Rad(A) ∼= B2, so v(ϕ)/Rad(A) = 1/Rad(A), i.e.
v(ϕ) ∈ A+, hence (¬(¬v(ϕ))2)2 = 1. Conversely, if 	BP0 (¬(¬ϕ)2)2, then
B2 |= (¬(¬ϕ)2)2 ≈ 1, i.e. B2 |= ϕ ≈ 1, hence 	CPC ϕ. ��

BP0 does not contain all bipartite algebras. So we can ask also for the properties
of the class of all bipartite IMTL-algebras.

Proposition 13. The class of bipartite IMTL-algebras is closed under subalgebras.

Theorem 14. Let {Ai : i ∈ I } be a set of IMTL-algebras and take their direct
product A. If there is j ∈ I such that Aj is bipartite, then A is bipartite.

Proof. Using the same reasoning as in Theorem 4.5 of [9]. ��

Corollary 13. The class of bipartite IMTL-algebras is closed under direct products.

Corollary 14. The variety generated by all bipartite IMTL-algebras is IMTL.

Proof. Let A be an arbitrary IMTL-algebra. Consider A × B2, that is a bipartite
IMTL-algebra since B2 is bipartite. Thus, taking the projection over the first com-
ponent, we obtain A as a homomorphic image of a bipartite algebra. Therefore,
every IMTL-algebra is in the variety generated by all bipartite algebras. ��

2 For a general study of this type of theorems in the framework of natural expansions of
BCK logic see [8].
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3.5. Varieties of prelinear semihoops and subvarieties of BP0

In this section we will prove that the lattice of subvarieties of BP0 is really big
and complex. Indeed we show that it is isomorphic to the lattice of subvarieties of
prelinear semihoops.

We will need the next notation: given a class of prelinear semihoops K, we
define K

∗ := {A∗ : A ∈ K}.
Lemma 6. If K is a class of prelinear semihoops, then H(K∗) = H(K)∗.

Proof. Take A ∈ K and B ∈ H(A) and consider B∗. We know that B is the image
of some homomorphism h : A → B. We must prove that B∗ ∈ H(A∗). It suffices
to consider the following homomorphism:

g : A∗ → B∗ defined by:

g(a) =
{
h(a) if a ∈ (A∗)+
¬h(¬a) if a ∈ (A∗)−

Take now B ∈ H(K∗), i.e., B is the image of some homomorphismh : A∗ → B,
where A ∈ K. Then B ∼= h[(A∗)+]∗, so B ∈ H(A)∗ ⊆ H(K)∗. ��
Lemma 7. If K is a class of prelinear semihoops, then S(K∗) = S(K)∗.

Proof. Take A ∈ K and B ∈ S(A∗). Since B is a subalgebra of the disconnected
rotation of A, we have thatB+ ⊆ (A∗)+ = A andB− ⊆ (A∗)−. Actually,B+ is the
universe of a subalgebra of A and B is the disconnected rotation of this subalgebra.
Therefore, A ∈ S(K)∗.

Conversely, if A ∈ K and B ∈ S(A)∗, then B = C∗ for some C ⊆ A. It follows
that C∗ ⊆ A∗, so B ∈ S(A∗) ⊆ S(K∗). ��
Lemma 8. If K is a class of prelinear semihoops, then PU(K)∗ ⊆ ISPU(K∗).

Proof. Take {Ai : i ∈ I } ⊆ K and consider an ultraproduct
∏I

U Ai . Consider also
the ultraproduct of {A∗

i : i ∈ I } corresponding to the same index set and the same

ultrafilter, i.e.,
∏I

U A∗
i . It suffices to take the embedding α : (

∏I
U Ai )

∗ → ∏I
U A∗

i

defined by:

– If ā/U ∈ (∏I
U Ai)∗+, α(ā/U) := ā/U .

– If ¬(ā/U) ∈ (∏I
U Ai)∗−,α(¬(ā/U)) := ¬ā/U , where for every i ∈ I (¬ā)(i) =

¬(ā(i)).
We obtain (

∏I
U Ai )

∗ ∈ IS(
∏I

U A∗
i ) ⊆ ISPU(K∗). ��

Lemma 9. If K is a class of prelinear semihoops, then PU(K∗) ⊆ IS(PU(K)∗).

Proof. Take {Ai : i ∈ I } ⊆ K and an ultraproduct
∏I

U A∗
i . Given ā ∈ ∏I

A∗
i , we

define j (ā) ∈ ∏I
Ai as:

j (ā)(i) :=
{
ā(i) if ā(i) > ¬ā(i),
¬ā(i) otherwise.

In order to show that
∏I

U A∗
i ∈ IS((

∏I
U Ai )

∗) ⊆ IS(PU(K)∗) it is enough to

consider the embedding α :
∏I

U A∗
i → (

∏I
U Ai )

∗ defined by:
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– If ā/U ∈ ∏I
U A∗

i is such that {i ∈ I : ā(i) > ¬ā(i)} ∈ U , then α(ā/U) :=
j (ā)/U .

– If ā/U ∈ ∏I
U A∗

i is such that {i ∈ I : ā(i) < ¬ā(i)} ∈ U , then α(ā/U) :=
¬α(¬ā/U).

��
Theorem 15. Let K and L be classes of totally ordered prelinear semihoops. Then,
V(K) = V(L) if, and only if, V(K∗) = V(L∗).

Proof. From Jónsson’s Lemma (see [4]) we deduce that given a class M of prelin-
ear semihoops or IMTL-algebras, HSPU(M) coincides with the class of the chains
in V(M). Therefore, due to the representation in subdirect products of chains, we
only need to prove: HSPU(K) = HSPU(L) iff HSPU(K∗) = HSPU(L∗).

Suppose first that HSPU(K) = HSPU(L). Therefore, K ⊆ HSPU(L), so K
∗ ⊆

(HSPU(L))∗ = HS(PU(L))∗ ⊆ HSISPU(L∗) ⊆ HSPU(L∗).Thus, HSPU(K∗) ⊆
HSPU(L∗), and the other is inclusion is provable in the same way.

Suppose now that HSPU(K∗) = HSPU(L∗). Then, K
∗ ⊆ HSPU(L∗) ⊆

HSIS(PU(L))∗ = (HSISPU(L))∗ ⊆ (HSPU(L))∗. Therefore, K ⊆ HSPU(L),
and the other inclusion is provable in the same way. ��

4. Concluding remarks

We have done some first steps in the general study of the variety IMTL, the algebraic
counterpart of involutive fuzzy logics.3 By generalizing the concepts of perfect,
local and bipartite algebra defined formerly for MV-algebras, we have character-
ized several classes of IMTL-algebras. In particular, we have given a new insight to
Jenei’s disconnected rotation presented in [20] showing that the algebras obtained
by this method are exactly the class of perfect IMTL-algebras. Futhermore, we have
studied the variety generated by those algebras and we have proved that it is BP0.
This gives, of course, a new fuzzy logic, namely the extension of IMTL obtained
by adding the axiom (¬(¬ϕ)2)2 ↔ ¬(¬ϕ2)2. However, this logic has no standard
completeness, i. e. is not complete w.r.t. the semantics given by the algebras over
[0, 1] because there are no IMTL-algebras over [0, 1] without negation fixpoint.

Notice that BP0 is much bigger than the variety obtained in the case of MV-
algebras. Indeed, the variety generated by perfect MV-algebras has only one proper
non-trivial subvariety, the class of Boolean algebras, while our BP0 in IMTL has
infinitely many (for instance, all the varieties of NM-algebras without fixpoint clas-
sified in [16]) and, moreover, this lattice of subvarieties is isomorphic to the lattice
of varieties of prelinear semihoops. This strong difference suggests that the study
of the structure of subvarieties of BP0, and in general of IMTL, will be a deep and
challenging task.
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