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Abstract. The lack of double negation and de Morgan properties makes fuzzy logic unsym-
metrical. This is the reason why fuzzy versions of notions like closure operator or Galois
connection deserve attention for both antiotone and isotone cases, these two cases not being
dual. This paper offers them attention, comming to the following conclusions:
– some kind of hardly describable “local preduality” still makes possible important parallel

results;
– interesting new concepts besides antitone and isotone ones (like, for instance, conjugated

pair), that were classically reducible to the first, gain independency in fuzzy setting.

1. Introduction

By revisiting the concept of set [26], fuzzy logic has to take a new look at some
derived (at least in their initial, “concrete” forms) concepts too, like closure operator
or Galois connection. Antitone fuzzy forms of these were introduced and studied
in [1], [2], [5], [6], [9]. This paper argues that, within fuzzy framework, the isotone
forms are also worth studying, since the duality that made possible transporting
results between antitone and isotone in classical setting does no longer exist here.
Let us consider, for exemplification, the following crisp notions:

Let X and Y be two sets. A pair (↑,↓) of functions, ↑: P(X) −→ P(Y ),
↓: P(Y ) −→ P(X) is said to be:

(1) an antitone Galois connection between X and Y if

A ⊆ B↓ iff B ⊆ A↑ .

(2) an isotone Galois connection between X and Y if

A ⊆ B↓ iff A↑ ⊆ B .

(3) a conjugated pair between X and Y if

A ∩ B↓ = ∅ iff B ∩ A↑ = ∅ .
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The above three types of structure appear canonically from binary relations
between X and Y . Let R be such a relation. Define:

-(1) A↑R = {y ∈ Y / ∀x ∈ X, xRy};
B↓R = {x ∈ X / ∀y ∈ B, xRy}.

-(2) A⇑R = {y ∈ Y / ∃x ∈ X, xRy};
B⇓R = {x ∈ X / ∀y, xRy �⇒ y ∈ B}.

-(3) A⇑||R = {y ∈ Y / ∃x ∈ X, xRy};
B⇓||R = {x ∈ X / ∃y ∈ B, xRy}.

What does it mean that two of the above three notions are dual? Duality is not a
very well defined concept here, since we deal not with abstract, but concrete par-
tial orders (inclusions). Still, duality is self-evident. Take, for example, antitone
Galois connections and conjugated pairs. Any Galois connection (↑,↓) produces,
using the complement operation ¯ , a conjugated pair (↑̄, ↓̄), and vice versa. The
two correspondences are inverse to each other. Moreover, if a Galois connection is
given by a relationR, then its corresponding conjugated pair is given by R̄, and vice
versa. And same goes for antitone versus isotone Galois connections. These facts
make that many relevant statement regarding one of the concepts to be immediately
dualizable to the other two. This is also the situation of opening-closure operators or
systems. In addition, duality is present even in statements mixing these concepts:

– composing the components of an antitone Galois connections produces two clo-
sure operators �⇒ composing the components of an isotone Galois connection
produces an opening and a closure operator;

– any antitone Galois connection is induced by a relation �⇒ any conjugated pair
is induced by a relation;

– opening operators are in bijection to opening systems �⇒ closure operators are
in bijection to closure systems.

But, of course, there are some limits - we do not have, for instance, a notion
similar to the one of closure or opening operator that comes by composition from
conjugated pairs. This means that duality and its application is, regarding these
set-theoretical notions, junctural: although many relevant statements are easy to
dualize, we do not have a uniform and consistent way of transporting results or
concepts like at a real duality. Still, if one takes the trouble to formalize all the
above notions inside a common language (and then isolate between sentences some
that are dualizable), one can notice that the real cause of duality is usually the fact
that (P(X),⊆) is isomorphic, as a complete lattice, to (P(X),⊇), the complement
operation being the isomorphism. This is not however the case in fuzzy setting,
where “the set of parts of X” becomes LX, with L being the structure of truth val-
ues. If L is not a Boolean algebra (and it is in fuzzy logic’s nature not to be), there
is still possible to define the above structures, but not as dual structures; although
sometimes, similar results can be proved and even a common approach is possible.
Some of these common approches and similar results are studied in this paper,
which is structured as follows.

Section 2 prepares the field for discussion.
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In Section 3, starting from the consideration of three (fuzzy versions of) basic
connections between sets (isotone and antitone Galois connection, and conjugated
pair), we introduce an abstract notion of connection and provide some results about
all the three discussed examples.

In Section 4, fuzzy opening operators are introduced and studied, using similar
techniques to the ones about fuzzy closure operators from [5] and [6].

Section 5 discusses the operators induced by fuzzy isotone Galois connections;
two characterizations are provided (one of them similar to that from [5]).

Operators comming from fuzzy conjugated pairs are the issue of Section 6.
These operators, constructed inductively, reveal the important role played by tran-
sitive closures of relations when conjugated pairs are considered.

The hierarchy induced by a conjugated pair constitutes the main subject of
Section 7. A characterization theorem (in the spirit of those of antitone or isotone
concept lattices) is proved under certain additional (quite natural) hypotheses.

Some concluding remarks end the paper.

2. Preliminaries

Given a lattice L, we denote by Ld its dual.

Definition 1. A residuated lattice is a structure (L,∨,∧, ∗,→, 0, 1) such that the
following are true:

(GR1) (L,∨,∧, 0, 1) is a bounded lattice;
(GR2) (L, ∗, 1) is a monoid;
(GR3) (residuation)

For all a, b, c ∈ L, a ≤ b → c iff a ∗ b ≤ c .

Lemma 1 ([18]). The following hold in any residuated lattice (whenever we use
family suprema or infima, we assume that they exist; the negation ¯ is defined by
ā = a → 0):

(1) a → 1 = 1; 1 → a = a;
(2) a ≤ (a → b) → b;
(3) (a → b) ∗ a ≤ b;

(4)

(∨
i∈I
ai

)
∗ a =

∨
i∈I
(ai ∗ a) and

(∧
i∈I
ai

)
∗ a ≤

∧
i∈I
(ai ∗ a);

(5)

(∨
i∈I
ai

)
→ a =

∧
i∈I
(ai → a);

(6) a →
(∧
i∈I
ai

)
=
∧
i∈I
(a → ai);

(7)
∧
i∈I (ai → bi) ≤

(∧
i∈I
ai

)
→
(∧
i∈I
bi

)
;
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(8)
∧
i∈I (ai → bi) ≤

(∨
i∈I
ai

)
→
(∨
i∈I
bi

)
;

(9) a → b ≤ (a ∗ c) → (b ∗ c);
(10) (a → b) ∗ (b → c) ≤ (a → c);
(11) a → b ≤ (b → c) → (a → c);
(12) a → b ≤ (c → a) → (c → b);
(13) b ≤ a → (a ∗ b);
(14) a → (b → c) = b → (a → c);
(15) a ≤ b iff a → b = 1;
(16) → is antitone in the first and isotone in the second argument;
(17) ∗ is isotone in both arguments;
(18) a ∗ b ≤ a and a ∗ b ≤ b;
(19) 0 ∗ a = a ∗ 0 = 0;
(20) a ≤ ā;
(21) a → b ≤ b̄ → ā;
(22) a → b̄ = b → ā;
(23) The following axioms are equivalent:

– a = ā,
– a ≥ ā,
– ā → b̄ = b → a,
– ā → b̄ ≤ b → a,
– ā → b = b̄ → a,
– ā → b ≤ b̄ → a;

(24) (a ∗ b) → c = a → (b → c).

When L satisfies one of the equivalent axioms from Lemma 1.(23), it is said to
have the double negation property. Define / : L× L −→ L by a/b = b → a.

For the whole paper, we fix a complete residuated lattice L.
We shall deal with fixed non-empty sets like X or Y (called universes). The

complete residuated lattice L that stands for the truth degree structure. Elements
from LX and LY shall be called L-sets or fuzzy sets, while elements from LX×Y
L-relations or fuzzy relations.

Notice that, if we naturally write A ⊆ B whenever A(x) ≤ B(x) for all
x ∈ X, (LX,⊆) is a complete lattice in which suprema and infima are the fuzzy
unions and intersections (denoted

⋃
and

⋂
), that is the suprema and infima taken

pointwise.
Define S, T : LX × LX −→ L by

S(A,B) =
∧
x∈X

A(x) → B(x) ,

T (A,B) =
∨
x∈X

A(x) ∗ B(x) ,

for allA,B ∈ LX. Notice thatS andT are actually fuzzy relations onLX. WhileS is
the famous subsethood degree, T (A,B) expresses the degree to which intersection
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of A with B is non-empty. The following proposition lists some immediate prop-
erties of S and T (among which, that S is a fuzzy order in the sense of [3], [9]).

Proposition 1. For all A,B,C ∈ LX,
(1) S(A,A) = 1;
(2) T (A, 0) = T (0, A) = 0 (where the first two 0-s are the constant functions);
(3) S(A,B) ∗ S(B,C) ≤ S(A,C);
(4) S(A,B) = 1 iff A ⊆ B;
(5) S(A,B) = S(B,A) = 1 implies A = B;
(6) T (A,B ∗ C) = T (A ∗ B,C).

3. Fuzzy connections

In this section, we are going to treat three important types of connections between
fuzzy sets, by means of a general notion of connection associated to some binary
operators, the (�, �)-connection. We shall prove that, in some cases, (α, β)-con-
nections come from binary fuzzy relations.

Definition 2. LetX, Y be two universes. A pair of functions (↑,↓), ↑: LX −→ LY ,
↓: LY −→ LX is called

– L-antitone Galois connection between X and Y if

S(A,B↓) = S(B,A↑)

– L-isotone Galois connection between X and Y if

S(A,B↓) = S(A↑, B)

– L-conjugated pair between X and Y if

T (A,B↓) = T (B,A↑)

for all A ∈ LX,B ∈ LY .
Since L is understood, we can call them fuzzy antitone (isotone) Galois con-

nection or fuzzy conjugated pair, that we abreviate by “FAC”, “FIC”, and “FCP”
respectively.

There are canonical ways to obtain such couples of functions, using fuzzy rela-
tions R ∈ LX×Y . To such a relation, associate a pair (↑R,↓R) by:

(1) A↑R (y) =
∧
x′∈X

A(x′) → R(x′, y) , B↓R (x) =
∧
y′∈Y

B(y′) → R(x, y′) ,

(2) A↑R (y) =
∨
x′∈X

A(x′) ∗ R(x′, y) , B↓R (x) =
∧
y′∈Y

R(x, y′) → B(y′) ,

(3) A↑R (y) =
∨
x′∈X

A(x′) ∗ R(x′, y) , B↓R (x) =
∨
y′∈Y

B(y′) ∗ R(x, y′) ,

for all A ∈ LX,B ∈ LY , x ∈ X, y ∈ Y . One can immediately check, using the
residuated lattice properties, the following:



1014 G. Georgescu, A. Popescu

Proposition 2. The pair of functions defined by

-(1) is a FAC,
-(2) is a FIC,
-(3) is a FCP.

Fags were introduced and studied in [1] and [2]. There, among others, it is proved
that all FACs are induced by fuzzy relations, and moreover, thatR �→ (↑R,↓R) is a
bijection. What about FICs and FCPs? Is there any (duality) relationship with FACs
that can transport the above result? In classical setting (taking L to be the Boolean
algebra {0, 1}), because LX (which is P(X)) is isomorphic, as a lattice, to (Ld)X,
there is indeed a perfect duality between both the notions FAC-FIC and the construc-
tions (1)–(2) - this is why one does not need to study (crisp) isotone Galois connet-
cions, all the results comming by duality from the antitones. Also, crisp conjugate
pairs stay in duality with both isotone and antitone Galois connections (see the intro-
duction) - thus, we can actually speak about a “triality” in the crisp case.1 However,
because of the lack of symmetry of residuated lattices, we do not have this nice
situation in fuzzy case. All we can recover from it is that isotones induce antitones:

Proposition 3.

(1) Every FIC C = (↑,↓) gives a FAC C′ = (⇑,⇓) defined by;
A⇑ = A↑, B⇓ = B̄ ↓ .

(2) If C is induced by some L-relation R, then C′ is induced by R̄.
(3) The mapping C �→ C′ is not necessarily injective or surjective.
(4) If L has the double negation property, then the mapping C �→ C′ is bijective,

its inverse being (⇑,⇓) �→ (↑,↓), where A↑ = A⇑ and B↓ = B̄⇓ for all
A ∈ LX and B ∈ LY .

Proof.

(1): Let A ∈ LX and B ∈ LY . We need to show S(A,B⇓) = S(B,A⇑). But
this means S(A, B̄↓) = S(B,A↑), that is, buy the isotone Galois connection
property of (↑,↓), S(A↑, B̄) = S(B,A↑). The last is true by Lemma 1.(22).

(2): Suppose C = (↑,↓) is induced by R. Then

A⇑(y) = A↑(x) =
∨
x∈X

A(x) ∗ R(x, y) =
∧
x∈X

A(x) ∗ R(x, y)

=
∧
x∈X

A(x) → R̄(x, y)

and

B⇓(x) = B̄↓(x) =
∧
y∈Y

R(x, y) → B(y) =
∧
y∈Y

B(y) → R̄(x, y) ,

for all x, y,A,B (we applied Lemma 1.(5,22,24)). Hence (⇑,⇓) is induced
by R̄.

1 It is in fact a “quadrality”, if we define a notion of connection that is symmetric to the
one of isotone Galois connection by S(B↓, A) = S(B,A↑) - this is not however interesting
to consider separately, since it is just an isotone Galois connection between Y and X.
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(3): We consider the structure of truth values L = {0, 1/3, 2/3, 1} having the
usual number order and the operations ∗ and → given in the following tables
(the values of the first argument are displayed vertically and the values of the
second argument horizontally):

∗ 0 1/3 2/3 1
0 0 0 0 0

1/3 0 0 0 1/3
2/3 0 0 0 2/3
1 0 1/3 2/3 1

→ 0 1/3 2/3 1
0 1 1 1 1

1/3 2/3 1 1 1
2/3 2/3 2/3 1 1
1 0 1/3 2/3 1

It is easy to verify that the above structure is a residuated lattice. The negation
is given below:

x 0 1/3 2/3 1
x̄ 1 2/3 2/3 0

Let X = {x} and Y = {y}, two singleton universes. We identify LX, LY and
LX×Y with L. Consider the following functions from L to L (i.e. from LX to LY

or from LY to LX):

x 0 1/3 2/3 1
x⇑ 1 1 2/3 1/3
x⇓ 1 1 2/3 1/3
x⇑′

1 1 1 2/3
x⇓′

1 1 1 2/3
x↑1 0 0 0 1/3
x↓1 2/3 1 1 1
x↑2 0 0 0 2/3
x↓2 2/3 2/3 1 1

One can easily check the following facts:

– (⇑,⇓) and (⇑′,⇓′) are L-antitone Galois connections;
– (↑1,↓1) and (↑2,↓2) are linear L-isotone Galois connections;
– there is no L-isotone Galois connection C such that C �→ (⇑,⇓) (beacuse

1⇑ = 1/3, which is not the negation of any element);
– (↑1,↓1) �→ (⇑′,⇓′) and (↑2,↓2) �→ (⇑′,⇓′).

These facts prove (3).

(4): If the mapping from antitones to isotones is well defined, it is clearly the inverse
of the mapping from point (1). Thus, all we need to prove is that, if (⇑,⇓) is
FAC, then (↑,↓) is a FIC. Consider for thisA ∈ LX andB ∈ LY . The required
property is S(A↑, B) = S(A,B↓). This means S(A⇑, B) = S(A, B̄⇓), that
is S(A⇑, B) = S(B̄, A⇑), which is true by the double negation property (see
Lemma 1.(23)). ��

It very much seems that no other natural connection between these notions can
be found, unless we take the very harsh Boolean algebra assumptions. In fact, we
can conjecture the following non-mathematical statement:
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Consider any two of the three notions, n,m ∈ {FAC,FIC,FCP}, n �= m. Then,
the following statements are equivalent for a residuated lattice L:

(1) For each non-empty sets X, Y , there exist two natural bijections

φ : LX×Y −→ LX×Y ,
χ : {the n-s between X and Y } −→ {the m-s between X and Y } ,

such that, if (↑,↓) is an n given by R, then φ(↑,↓) is an m given by χ(R).
(2) L is a Boolean algebra.

If one notices that the only mappings φ, χ that have any chance of being natural
are those that make use of the negation in L, one tends to agree with the above. In
fact, we can make this statement a mathematical one, if we translate “natural” by
“polynomially defined using the residuated lattice operators”, but we do not enter
such details - all that we want to point out is that, inside this fuzzy context, and
inside any fuzzy context really,2 the discussed three notions are far from being dual.

We are now going to answer the question of relationship between these struc-
tures and fuzzy relations, in a common, but artificial framework, which puts
together, in spite of their lack of duality, the three cases.

Consider five complete lattices L′, L1, L2, L3, L4, L5 and two operations

α : L1 × L2 −→ L′ , β : L3 × L4 −→ L′ .

The infima in the latticesLi shall have i as an upper index. The same thing happens
to intersections of families of elements fromLXi orLYi , which are pointwise infima.
The “zero” and “one” elements fromLi shall be denoted by 0i and 1i .All the entities
connected toL′ (infima, “zero”, “one” etc.) shall be denoted without any additional
index (

∨
, 0, 1 etc.). About α and β, we assume that, for each b1, b2, b3, b4 from

L1, L2, L3, L4 respectively,

– the applications b2 �→ α( , b2) and b4 �→ β( , b4) are injective;
– α, β commute, on each argument, with arbitrary infima (in particular, if one of

the arguments of β or α is 1i , with i ∈ 1, 2, 3, 4, then the result is 1).

For each Ai ∈ LXi , Bi ∈ LYi+2, with i ∈ {1, 2}, define

Sα(A1, A2) =
∧
x∈X

α(A1(x), A2(x)) , Sβ(B1, B2) =
∧
y∈Y

β(B1(y), B2(y)) .

In any of the lattices, say L′, and with respect to any set, sayX, define, for each
b ∈ L′ and x ∈ X, the hypersingleton {b|x} to be the fuzzy subset of X given by
{b|x}(x′) = b if x = x′ and 1 otherwise.

Definition 3. An (α, β)-connection3 between two non-empty sets X, Y is a pair
(↑,↓) of functions ↑: LX1 −→ LY4 , ↓: LY3 −→ LX2 such that Sα(A,B↓) =
Sβ(B,A

↑) for all A ∈ LX1 , B ∈ LY3 .

2 “Fuzzy” is usually related to the unit interval ([0, 1],≤), which cannot be organized
as a Boolean algebra.

3 Notice that the notion of (α, β)-connection uses some complete lattices, without any
given implication (residua) - the “connection” condition is expressed only in terms of the
operators α, β and the lattice infima.
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(α, β)-connections include FACs, FICs and FCPs as particular cases, as fol-
lows (suppose, as usual, that their complete residuated lattice is L - denote by D
the complete lattice underlying L):

– FAC: L′ = L2 = L4 = D, L3 = L1 = Dd , α = β =→ - use Lemma 1.(1) to
get the required injectivity and Lemma 1.(5,6) for commutation with infima.

– FIC:L1 = L4 = D,L2 = L3 = Dd , α = /, β =→ - for injectivity of a �→ →
a, use again Lemma 1.(1); as for a �→ /a, notice that a �→ /a = a′ �→ /a′
implies that fort each x, a ≤ x iff a′ ≤ x, hence a = a′; Lemma 1.(5,6) can be
used to establish commutation with infima.

– FCP: L′ = L1 = L2 = L3 = L4 = Dd , α = β = ∗ - injectivity follows
from 1 being identity element for ∗; commutation with infima is assured by
Lemma 1.(4).

We now come to explore the structure of (α, β)-connections, reaching in par-
ticular common properties of the three types of connections.

Lemma 2. Every (α, β)-connection (↑,↓) between X and Y is uniquely deter-
mined by each one of its pair members, ↑ or ↓.

Proof. Let us prove, for instance, that the pair is determined by its first member.
For this, assume that (↑,↓) and (↑,↓′) are (α, β)-connections - we need to show
that ↓=↓′. Let B ∈ LY3 . We have that

Sα(A,B
↓) = Sβ(B,A

↑) = Sα(A,B
↓′
) ,

for each A ∈ LX1 . Let x ∈ X and let b1 ∈ L1. We put A = {b1|x}, and obtain
Sα({b1|x}, B↓) = Sα({b1|x}, B↓′

), that is

α(b1, B
↓(y)) = α(b1, B

↓′
(y)) ,

and this happens for all b1 ∈ L1. Applying the injectivity of b2 �→ α( , b2), we get
B↓(y) = B↓′

(y). ��
Lemma 3. For all families (Ai)i∈I ⊆ LX1 , (Bi)i∈I ⊆ LY3 ,(

3⋂
i∈I
Bi

)↓
=

2⋂
i∈I
B

↓
i ,

(
1⋂
i∈I
Ai

)↑
=

4⋂
i∈I
A

↑
i .

Proof. We only prove the first equality. For this, let A ∈ LX1 . Aplying infima prop-
erties, definition of connection and commutation with infima, we get

Sα(A,

(
3⋂
i∈I
Bi

)↓
) = Sβ

(
3⋂
i∈I
Bi, A

↑
)

=
∧
y∈Y

β

(
3∧
i∈I
Bi(y), A

↑(y)

)

=
∧
y∈Y

∧
i∈I
β(Bi(y), A

↑(y)) =
∧
i∈I

∧
y∈Y

β(Bi(y), A
↑(y))

=
∧
i∈I
Sβ(Bi, A

↑) =
∧
i∈I
Sα(A,B

↓
i )
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=
∧
i∈I

∧
x∈X

α(A(x), B
↓
i (x)) =

∧
x∈X

∧
i∈I
α(A(x), B

↓
i (x))

=
∧
x∈X

α

(
A(x),

2∧
i∈I
B

↓
i (x)

)
= Sα

(
A,

2⋂
i∈I
B

↓
i

)
.

Let x ∈ X and let A = {b1|x}, where b1 ∈ L1. The above proved equality
becomes

α(b1,

(
3⋂
i∈I
Bi

)↓
) = α

(
b1,

2⋂
i∈I
B

↓
i

)
, ∀b1 ∈ L1 .

This implies, via the injectivity from the connection definition, that(
3⋂
i∈I
Bi

)↓
=

2⋂
i∈I
B

↓
i . ��

Corollary 1. Let (↑,↓) and (↑′,↓′) be two (α, β)-connections between X and Y .
Then, in order that (↑,↓) = (↑′,↓′), it suffices that ↑ and ↑′, or ↓ and ↓′, coincide
on hypersingletons.

Proof. Assume, for instance, that ↑ and ↑′ coincide on hypersingletons. Knowing
that each A ∈ LX1 can be written as

⋂1
x∈X{A(x)|x}, then applying Lemma 3, we

obtain ↑=↑′. It now suffices to apply Lemma 2 in order to get the desired result.
��

Even at this very general level, we can speak, in certain conditions, about
connections given by fuzzy relations. Let us assume that the parameterized (with
parameters b1, b3) equation

α(b1, z2) = β(b3, z4)

has a solution that can be functionally expressed with values in a complete lattice
L5. Namely, we assume that there exist α′ : L3×L5 −→ L2, β ′ : L1×L5 −→ L4,
such that, for all b1, b3, b5 from L1, L3, L5,

α(b1, α
′(b3, b5)) = β(b3, β

′(b1, b5)) .

Now, let R ⊆ LX×Y
5 be a fuzzy relation. Define ↑R,↓R by

A↑R (y) =
4∧

x′∈X
β ′(A(x′), R(x′, y)) = Sβ ′(A,R( , y)) ,

B↓R (x) =
2∧

y′∈Y
α′(B(y′), R(x, y′)) = Sα′(B,R(x, )) ,

for all A ∈ LX1 , B ∈ LY3 , x ∈ X, y ∈ Y .
It is easy to see that, particularizing this for our main three cases, we obtain the

standard ways to construct them from binary fuzzy relations (see Proposition 2), if
we instanciate L5, α

′, β ′ as follows:
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– FAC: L5 = D, α′ = β ′ =→ - the requested equality becomes

b1 → (b3 → b5) = b3 → (b1 → b5) ,

which is true according to Lemma 1.(14).
– FIC: L5 = Dd , α′ = ∗, β ′ = / - the equality becomes

b1/(b3 ∗ b5) = b3 → (b1/b5) ,

which means

(b3 ∗ b5) → b1 = b3 → (b5 → b1) ,

true according to Lemma 1.(24).
– FCP: L5 = Dd , α′ = β ′ = ∗ - the equality becomes

b1 ∗ (b3 ∗ b5) = b3 ∗ (b1 ∗ b5) ,

true by associativity and commutativity.

Proposition 4. (↑R,↓R) is an (α, β)-connection between X and Y .

Proof. LetA ∈ LX1 andB ∈ LY3 . We only use the assumed equality withα, β, α′, β ′
and commutation with infima:

Sα(A,B
↓R ) =

∧
x∈X

α(A(x), B↓R (x))

=
∧
x∈X

α(A(x),

2∧
y∈Y

α′(B(y), R(x, y))

=
∧
x∈X

∧
y∈Y

β(B(y), β ′(A(x), R(x, y)))

=
∧
y∈Y

∧
x∈X

β(B(y), β ′(A(x), R(x, y)))

=
∧
y∈Y

β(B(y),

4∧
x∈X

β ′(A(x), R(x, y)))

=
∧
y∈Y

β(B(y), A↑R (y)) = Sβ(B,A
↑R ) . ��

We have thus provided a sufficient criterion for the solvability of a more complex
system of equations with (↑,↓) as unknown part,

Sα(A,B
↓) = Sβ(A

↑, B) , (A,B) ∈ LX1 × LY2 ,

by reducing it to a simpler functional equation:

α(x, α′(y, z)) = β(y, β ′(x, z)),

having α′ and β ′ as unknown part. In case this functional equation has a solution,
we obtain a whole family of solutions for the initial system.
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Of course, at this stage, it is hard to say whether each solution of the system
can be obtained in the above way. However, if we “strategically” equalize some of
the lattices and operations, we come to a positive answer, that will be relevant for
the three cases of connections we care about.

Proposition 5. Assume that L5 = L2, L4 = L′, β ′ = α and 03 is neutral for β
(i.e. β(03, b)) = b for all b ∈ L′). Then each (α, β)-connection between X and Y
is given by a fuzzy relation. Moreover, (α, β)-connections between X and Y and
fuzzy relations from LX×Y

2 are in bijection.

Proof. Let us prove that the application R �→ (↑R,↓R) is a bijection. Let (↑,↓)
be a (α, β)-connection. We show that there exists a unique R ∈ LX×Y

2 such that
(↑,↓) = (↑R,↓R).
Unicity: Let x ∈ X, y ∈ Y . A presumptive R as above would satisfy

{b1|x}↑(y)) = {b1|x}↑R (y) =
4∧

x′∈X
β ′({b1|x}(x′), R(x′, y))

=
∧
x′∈X

α({b1|x}(x′), R(x′, y))

= α(b1, R(x, y)) ∧
∧
x′ �=x

α(1, R(x′, y)) = α(b1, R(x, y)) ,

for each b1 ∈ L1. So, because of the injectivity of b2 �→ α( , b2), R(x, y) is
uniquely determined; and this happens for each x, y.

Existence: Define, for each x ∈ X, y ∈ Y ,R(x, y) = {03|y}↓(x). In order to prove
that (↑,↓) = (↑R,↓R), it would be sufficient, according to Corollary 1, to show
that ↑ and ↑R coincide on hypersingletons; that is, for all x ∈ X, y ∈ Y , b1 ∈ L1,

{b1|x}↑(y) = {b1|x}↑R (y) ,
which means

{b1|x}↑(y) = α(b1, R(x, y)) .

To see that the last is true, apply the connection property for A = {03|y} and
B = {b1|x}, to get

β(03, {b1|x}↑(y)) = α(b1, {13|y}↓(x)) ,
that is

{b1|x}↑(y) = α(b1, R(x, y)) . ��
All the identifications requested in the above propositions L5 = L2, L4 = L′

and β ′ = α, hold in the three cases; also, 03 being neutral for β means, in L,
1 → x = x or 1 ∗ x = x, which is true. We get:

Corollary 2. Each FAC (FIC, FCP) betweenX andY is induced by a fuzzy relation.

Thus indeed, all the three types of structures are given by fuzzy relations, and
this is proved by a common reasoning, keeping within itself bits and pieces of
duality, remains from the classical case.



Non-dual fuzzy connections 1021

4. Fuzzy opening operators and systems

Fuzzy closure operators were introduced in [5]. In classical set theory, the dual
notion is the one of opening operator. However, fuzzy opening operators are not
perfectly dual to fuzzy closure operators. But they are “dual enough” to parallel
some important properties, like the bijecive correspondence to appropriate systems
of fuzzy sets. The results from this section (as well as Proposition 11 from Section
5) have form and use techniques very similar to the ones from [5] (but they are not,
as far as we see, deducible from those4). Unless otherwise stated, we work with a
fixed universe X.

Definition 4. A fuzzy opening operator on X is a mapping ◦ : LX −→ LX such
that, for all A,B ∈ LX,

– A◦ ⊆ A;
– A◦◦ = A◦;
– S(A,B) ≤ S(A◦, B◦).

Definition 5. A fuzzy opening system on X is a set O ⊆ LX such that, for each
A ∈ LX, ⋃

B∈O
S(B,A) ∗ B ∈ O .

The condition from Definition 5 is a (more or less) fuzzy version of the state-
ment that “for each set A, the union of all B from O that are included in A is
in O”; of course, as for all fuzzy translations of a crisp sentence, more choices
could be made - here, one chosed that “B is included in A” is expressed along
the union.

Proposition 6. Let O = (Ai)i∈I ⊆ LX. Then O is a fuzzy opening system iff, for
each family (ai)i∈I ⊆ LX,

⋃
i∈I ai ∗ Ai ∈ O.

Proof. For proving the “if” statement, let A ∈ LX. Take ai = S(Ai, A) , for all
i ∈ I .

Conversely, let (ai)i∈I ⊆ L and denoteA = ⋃
i∈I ai ∗Ai . For provingA ∈ O,

it would be enough that
⋃
i∈I S(Ai, A)∗Ai = A. The ⊆ part is obvious. The other

inclusion means ⋃
i∈I
ai ∗ Ai ⊆

⋃
i∈I
S(Ai, A) ∗ Ai .

It suffices to show that, for all i ∈ I ,

ai ≤ S(Ai, A) =
∧
x∈X

Ai(x) → A(x) ,

that is,

4 Although finding a common framework for proving these and perhaps others, together
with their antitone forms, in the spirit of Section 3, would be interesting.
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∀x ∈ X, ai ≤ Ai(x) → A(x) ,

∀x ∈ X, ai ∗ Ai(x) ≤ A(x) ,

which is true by the choice of A. ��
Corollary 3. Let O ⊆ LX. Then O is a fuzzy opening operator iff O is closed to
arbitrary unions and, for all a ∈ L, A ∈ O, a ∗ A ∈ O.

Proof. Suppose O = (Ai)i∈I . For the “if” statement, let (ai)i∈I . Since, for each
i ∈ I , ai ∗ Ai ∈ O and O is closed under unions, we get

⋃
i∈I ai ∗ Ai ∈ O. Thus,

by the last proposition, O is a fuzzy opening system. The “only if” statement also
follows from Proposition 6. In order to prove closure under union of the family
(Aj )j∈J , with J ⊆ I , we chose ai to be 1 if i ∈ J and 0 otherwise. To prove that
a ∗ Aj ∈ O for some j ∈ I , we cose aj to be a and the other ai-s to be 0. ��
Proposition 7. Let O ⊆ LX be a fuzzy opening system. Then, for all A ∈ LX,⋃

B∈O
S(B,A) ∗ B =

⋃
B∈O,B⊆A

B ,

Proof. ⋃
B∈O,B⊆A

B ⊆
⋃

B∈O,S(B,A)=1

B ⊆
⋃
B∈O

S(B,A) ∗ B .

Conversely,
⋃
B∈O S(B,A) ∗ B is in O and is included in A, hence it is also

included in
⋃
B∈O,B⊆A B. ��

Proposition 8. There exists a bijective correspondence between fuzzy opening sys-
tems and fuzzy opening operators, given by:

– O �→ ◦O, where, for all A ∈ LX, A◦O = ⋃
B⊆A,B∈O B;

– ◦ �→ O◦ = {A ∈ LX / A = A◦}.
Proof. (a) Let us show that O◦ is a fuzzy opening operator. Obviously, A◦O ⊆ A.

In addition, A◦O ∈ O, hence A◦O◦O = A◦O . Now, using Proposition 7 and
Lemma 1.(8,9),

S(A◦O , A′◦O ) =
∧
x∈X


 ⋃
B⊆A,B∈O

B


 (x) →


 ⋃
B⊆A′,B∈O

B


 (x)

=
∧
x∈X

(∨
B∈O

S(B,A) ∗ B(x)
)

→
(∨
B∈O

S(B,A′) ∗ B(x)
)

≥
∧
x∈X

∧
B∈O

(S(B,A) ∗ B(x)) → (S(B,A′) ∗ B(x))

≥
∧
x∈X

A(x) → A′(x) = S(A,A′) .
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(b) We prove that O◦ is a fuzzy opening system. Let A ∈ LX. It is sufficient to
show ⋃

B∈O◦

S(B,A) ∗ B = A◦ .

Because S(A◦, A) = 1, we have

A◦ = S(A◦, A) ∗ A◦ ⊆
⋃
B∈O◦

S(B,A) ∗ B .

On the other hand, for all x ∈ X,

A◦(x) ≥
∨
B∈O◦

S(B,A) ∗ B(x)

means that, for all B ∈ O◦, S(B,A) ∗ B(x) ≤ A◦(x), that is S(B,A) ≤
B(x) → A◦(x). But B = B◦, so the last is true, because

S(B,A) ≤ S(B◦, A◦) = S(B,A◦) ≤ B(x) → A◦(x) . ��
Let us now look at the relation between fuzzy opening and closure operators.

Like in the case of fuzzy Galois connections, this relation turns up to be “one way”.
First, recall from [5] the definitions of fuzzy closure operator and system.

Definition 6. A fuzzy closure operator on X is a mapping • : LX −→ LX such
that, for all A,B ∈ LX,

– A ⊆ A•;
– A•• = A•;
– S(A,B) ≤ S(A•, B•).

Definition 7. A fuzzy closure system on X is a set C ⊆ LX such that, for each
A ∈ LX, ⋂

B∈C
S(A,B) → A ∈ C .

There exists a one-to-one correspondence between fuzzy closure operators and
systems [5], by which each operator • is taken into the set of its closed fuzzy sets
A (i.e. such that A = A•).

Proposition 9.

1. Every fuzzy opening operator ◦ on X naturally gives a fuzzy closure operator
on X • defined by5

A• = Ā
◦
,

for all A ∈ LX.

5 In what follows, for instance, Ā
◦

denotes the result of applying to A, first the operator
¯ , and then the operator ◦; and similarly for Ā

•
. On the other hand, A◦ refers to applying

first ◦ and then ¯ .
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2. The mapping ◦ �→ • is not necessarily injective or surjective.

Proof. (1): Let A,A1, A2 ∈ LX. Because Ā
◦ ⊆ Ā, we have A ⊆ Ā

◦ = A•.

Moreover, it is immediate that A• ⊆ A••. Now, Ā
◦ ⊆ Ā

◦
, hence Ā

◦ =
Ā

◦◦ ⊆ Ā
◦◦

= A•◦
; it follows that A•◦ ⊆ Ā

◦
, that is A•• ⊆ A•. Finally,

S(A1, A2) ≤ S(A2, A1) ≤ S(A2
◦
,≤ A1

◦) ≤ S(A1
◦
, A2

◦
) = S(A•

1, A
•
2).

(2): We consider the same truth values structures from the proof of Proposition
3.(3), take X = {x} and define the following operators on L (that can be seen
as operating on LX):

x 0 1/3 2/3 1
x◦1 0 0 2/3 2/3
x◦2 0 1/3 1/3 1/3
x•1 2/3 2/3 2/3 1
x•2 1/3 1/3 2/3 1

One can see that:

– ◦1, ◦2 are fuzzy opening and •1, •2 fuzzy closure operators.
– both ◦1 and ◦2 map to •1 and nothing maps to •2. ��

Notice that there is no canonical way to obtain a fuzzy opening operator out
of a closure one, unless L is a Boolean algebra. If • is a fuzzy closure operator, ◦
given by A◦ = Ā

•
, for all A ∈ LX, is not necessarily a fuzzy opening operator, as

one can immediately see.
A similar discussion can be made for opening and closure systems, but we do

not further insist on these matters - the ideea, we think, is pretty clear: “isotone” is
not dual to “antitone” in fuzzy set theory; but, quite surprisingly, these two concepts
behave very similarly.

Remark 1. We have recently discovered the existence of some parallel work regard-
ing the topics of this chapter - in [11], the authors introduce LK -interior operators,
a somewhat more general notion than our fuzzy opening operator, in that they also
consider, besides the residuated lattice L of truth values, an order filter K , “the set
of designated truth values”.

5. Operators induced by fuzzy isotone Galois connections

Two universes, X and Y , shall be fixed throughout this section.
FICs gives rise to fuzzy opening and fuzzy closure operators, as one can see by

quite routine check, using Lemma 1:

Proposition 10. If (↑,↓) is a FIC, then ↑↓ is a fuzzy closure operator and ↓↑ is a
fuzzy opening operator.

Next, in order to characterize the above operators, we give another “isotone”
result that is very similar to an antitone one [5].
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Definition 8. Let O, C ⊆ LX. A bijection φ : O −→ C is called fuzzy isomor-
phism if, for all A,B ∈ O, S(A,B) = S(φ(A), φ(B)). 6

Proposition 11. There exists a bijective correspondence between the set of FICs
between X and Y and the set of triples (•, ◦, φ) such that • is a fuzzy closure
operator on Y , ◦ is a fuzzy opening operator on X and φ : C• −→ O◦ is a fuzzy
isomorphism.

Proof. For C = (↑,↓) an L-isotone Galois connection, define TC = (↑↓,↓↑, φ),
where, for each A ∈ C↑↓, φ(A) = A↑. The bijetcivity of φ follows immedi-
ately if we notice that its inverse is ψ : O −→ C defined by ψ(B) = B↓. Also,
S(φ(A), φ(A′)) ≥ S(A,A′) by the definition of FIC. On the other hand, since
A = B↓ for some B, we have that φ(A) = B↓↑↓ = B↓ (and same goes for A′).
Thus, using again the definition, S(φ(A), φ(A′)) ≤ S(A,A′).

Let now T = (•, ◦, φ) be a triple as above. Define CT = (↑,↓) by

A↑ = φ(A•), for all A ∈ LX;
B↓ = ψ(B◦), for all B ∈ LY ,

where ψ is the inverse of φ.
We check that CT is a FIC. Let A ∈ LX and B ∈ LY . Notice that, since φ(A•)

is open, φ(A•)◦ = φ(A•), hence

S(φ(A•), B) ≤ S(φ(A•)◦, B◦) = S(φ(A•), B◦) ≤ S(φ(A•), B) ,

so S(φ(A•), B) = S(φ(A•), B◦). Then

S(A↑, B) = S(φ(A•), B) = S(φ(A•), B◦)
= S(ψ(φ(A•)), ψ(B◦)) = S(A•, ψ(B◦)) = S(A•, B↓) .

But, since B↓ is closed, S(A•, B↓) = S(A,B↓), so

S(A↑, B) = S(A,B↓) .

We show CTC = C. Let C = (↑,↓), CTC = (↑′,↓′), TC =↑↓,↓↑, φ). Then

A↑′ = φ(A↑↓) = A↑↓↑ = A↑ .

Similarly, ↓′=↓.
Let us prove that TCT = T . Let T = (•, ◦, φ), TCT = (•′, ◦′, φ′),CT = (↑,↓).

Then

A•′ = A↑↓ = ψ
(
φ(A•)◦

) = ψ
(
φ(A•)

) = A• .

Similarly, ◦′ = ◦. Finally,

φ′(A) = A↑ = φ(A) . ��
6 This concept is actually a particular case of the one of isomorphism between two fuzzy

partially ordered sets (ie. sets equiped with a fuzzy equality - here the usual equality - and a
fuzzy order relative to that fuzzy equality - here the subsethood degree, see [4]).
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Corollary 4. A fuzzy closure system on X is given by an L-isotone Galois connec-
tion betweenX and Y iff it is isomorphic to a fuzzy opening operator on Y and vice
versa.

We are now interested in characterizing closure operators and systems comming
from FICs in terms of the underlying relation R. These are actually very natural
and “famous” types of closure operators in the crisp case, especially when X = Y

and the correponding relation is an equivalence or a partial order.7

SupposeR is a fuzzy relation betweenX and Y and consider (↑,↓) the induced
FIC and • =↑↓ the corresponding fuzzy closure operator. For each A ∈ LX,

A•(x) =
∧
y∈Y

R(x, y) →
∨
x′∈X

A(x′) ∗ R(x′, y) .

As pointed out in [13], in case X = Y and L is an L-preorder, the expression of •
becomes simpler (since • =↑):

A•(x) =
∨
x∈X

A(x) ∗ R(x, y) .

In [9], there are characterized the fuzzy closure operators and systems comming
from fuzzy equivalences. In case R is an arbitrary fuzzy relation, we have the fol-
lowing. (The left-shift generation rule on LX is: from A, infer A → b, where
A ∈ LX and b ∈ L.)

Proposition 12. Let C ⊆ LX be a fuzzy closure system. Then C is induced (via a
FIC) by some fuzzy relation betweenX and Y iff it is generated using left-shift and
intersection by a class of fuzzy sets of cardinal at most |Y |.

Proof. “only if”: Let • = (↑,↓) and R the corresponding L-relation. We define
the family of fuzzy sets (�y)y∈Y ⊆ LX by�y(x) = R(x, y) for all y ∈ Y , x ∈ X.
Let A ∈ LX. Then there exists B ∈ LY such that A = B↓. We have that:

A(x) = B↓(x) =
∧
y∈Y

R(x, y) → B(y) =

⋃
y∈Y

�y → B(y)


 (x) .

Thus A = ⋃
y∈Y �y → B(y).

7 When it is a partial order, the closing operator assigns to each set the generated order
ideal. In case we deal with an equivalence, it assigns to each set the union of all the equiva-
lence classes that cross it.
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“if”: Suppose (�y)y∈Y generates C using left-shift and intersection. Define
R(x, y) = �y(x) for all x, y. Let A ∈ LX.

A•(x) =

 ⋂
A⊆�y→B

�(y) → B


 (x) =

∧
A∗�y⊆b

�y(x) → b

=
∧

∀x′∈X,A(x′)∗�y(x′)≤b
�y → b =

∧
∨
x′∈X A(x′)∗�y(x′)≤b

�y → b

=
∧
y∈Y

�y →
(∨
x′∈X

A(x′) ∗�y(x)
)

(the last equality holds because → is isotone on the second argument). The proved
equality shows that • is induced by R. ��

If we care about fuzzy closure operators induced by antitone Galois connections,
we have a much nicer, but similarly provable, characterization result. Consider, on
LX, for each a ∈ L, the unary operation “a-left-shift”, that assigns to eachA ∈ LX
the fuzzy set a → A. Also, consider intersection as a family of infinitary opera-
tions, indexed on the cardinal of the set to which we take the intersetcion. In [5],
the fuzzy closure systems on a set X are proven to be exactly the subalgebras of
LX together with the above operations. In this context, we have the following (not
quite parallel result) for the antiotone case.

Proposition 13. A fuzzy closure system on X is induced (via a FAC) by some fuzzy
relation iff, as a subalgebra, it is generated by some set of cardinal |Y |.

The proof, similar to the one of Proposition 12, is left as an exercise to the
reader.

6. Operators induced by fuzzy conjugated pairs

Let (↑,↓) be a FCP. Remember that it is always given by a fuzzy relation, that we
denote R, by

A↑(y) =
∨
x∈X

A(x) ∗ R(x, y) , B↓(x) =
∨
y∈Y

B(y) ∗ R(x, y) .

For an arbitrary operator � : LX −→ LX (or � : LY −→ LY ), we denote by
�i , with i ∈ N, the operator�◦�◦ . . .◦�, i times. In particular�◦ is the identity.

Define • : LX −→ LX and ♠ : LY −→ LY by

A• =
⋃
i∈N

A(↑↓)i , B♠ =
⋃
i∈N

B(↓↑)i ,

for all A ∈ LX,B ∈ LY .
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Lemma 4. For each A,A1, A2 ∈LX, B,B1, B2 ∈LY , (Ai)i∈I ⊆LX, (Bi)i∈I ⊆LY ,

(1)
(⋃

i∈I Ai
)↑ = ⋃

i∈I A
↑
i ,

(⋃
i∈I Bi

)↑ = ⋃
i∈I B

↑
i ;

(2) S(A1, A2) ≤ S(A
↑
1 , A

↑
2 ) , S(B1, B2) ≤ S(B

↓
1 , B

↓
2 ) ;

(3) A• = A ∨ A•↑↓ , B♠ = B ∨ B♠↓↑ .

Proof.

(1) is obvious, looking at the definition of ↑,↓ using R.
(2) We use Lemma 1.(9 and 8).

S(A
↑
1 , A

↑
2 ) =

∧
y∈Y

A
↑
1 (y) → A

↑
2 (y)

=
∧
y∈Y

(∨
x∈X

A1(x) ∗ R(x, y)
)

→
(∨
x∈X

A2(x) ∗ R(x, y)
)

≥
∧
y∈Y

∧
x∈X

(A1(x) ∗ R(x, y)) → (A2(x) → R(x, y))

≥
∧
y∈Y

∧
x∈X

A1(x) → A2(x) = S(A1, A2) .

The other inequality follows analogously.
(3) We use point (1):

A• =
⋃
i∈N

A(↑↓)i = A ∨
⋃
i≥1

A(↑↓)i = A ∨
(⋃
i∈N

A↑↓
)↑↓

= A ∨ A•↑↓ .

A similar proof gives the other equality. ��
Proposition 14. • and ♠ are fuzzy closure operators.

Proof. A ⊆ A• follows fromA(↑↓)0 = A. LetA1, A2 ∈ LX, We rewrite S(A•
1, A

•
2)

using Lemma 1.(8) and Lemma 4.(2):

S(A•
1, A

•
2) =

∧
x∈X

A•
1(x) → A•

2(x)

=
∧
x∈X

(∨
i∈N

A
(↑↓)i
1 (x)

)
→

∨
i∈N

(
A
(↑↓)i
2 (x)

)

≥
∧
x∈X

∧
i∈N

A
(↑↓)i
1 (x) → A

(↑↓)i
2 (x)

≥
∧
x∈X

∨
i∈N

A1(x) → A2(x) = S(A1, A2) .

We now prove A• = A••. That A• ⊆ A•• we already know. For the converse
inclusion, apply Lemma 4.(3):

A•• =
⋃
i∈N

(A•)(↑↓)i ⊆
⋃
i∈N

A• = A• .

That ♠ is a fuzzy closure operator follows similarly. ��
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For a fuzzy relaton P ∈ LX×Y , define its transitive closure to be P ∗ ∈ LX×Y ,

P ∗(x, y) =
∨
i∈N

x1,...xi∈X
y1,...yi∈Y

P (x, y1) ∗ P(x1, y1) ∗ P(x1, y2)

∗P(x2, y2) ∗ . . . ∗ P(xi−1, yi) ∗ P(xi, y) ,
for all x ∈ X, y ∈ Y . (In case i = 0, we agree to identify P(x, y1) ∗ . . . ∗ P(xi, y)
with P(x, y).)

The name “transitive closure” is justified by the fact that P ∗ is the least fuzzy
relation Q such that:

– P ⊆ Q;
– Q(x, y′) ∗Q(x′, y′) ∗Q(x′, y) ≤ Q(x, y), for all x, x′ ∈ X, y, y′ ∈ Y (call this

last property transitivity8).

Transitive closures can be put in connection to the above induced operators.
Denote, as before, by ↑,↓, •,♠ (without any subscript) the entities associated to
R, and by ↑R∗ ,↓R∗ , •R∗ ,♠R∗ those associated to R∗.

The transitive closure R∗ is an extension of R that does not change the induced
operators, but expresses them more compactly; moreover, it is, in some sense,
optimal:

Proposition 15. (1) • ↑=↑ ♠ =↑R∗ ; ↓ • = ♠ ↓=↓R∗ ;
(2) •R = •R∗ = 1LX ∨ (↑R∗↓R∗); ♠R = ♠R∗ = 1LY ∨ (↓R∗↑R∗);
(3) R∗ is the smallest fuzzy relation Q such that:

– R ⊆ Q;
– •Q ↑Q=↑Q.

Proof.

(1): An easy check by induction on i shows that, for each i ≥ 1 and A ∈ LX,

A(↑↓)i−1↑(y) =
∨

x1,...xi∈X
y1,...yi∈Y

A(x1) ∗ R(x1, y1) ∗ R(x1, y2)

∗R(x2, y2) ∗ . . . ∗ R(xi−1, yi) ∗ R(xi, y) .
Hence,

A↑♠(y) =

⋃
i≥1

A↑(↓↑)i−1


 (y) =


⋃
i≥1

A(↑↓)i−1↑

 (y)

=
∨
i≥1

∨
x1,...xi∈X
y1,...yi∈Y

A(x1) ∗ R(x1, y1)

8 Notice that, if X = Y , a reflexive fuzzy relation R from LX×Y is transitive in our
acceptance if and only if it is transitive in the usual sense.



1030 G. Georgescu, A. Popescu

∗R(x1, y2) ∗ R(x2, y2) ∗ . . . ∗ R(xi−1, yi) ∗ R(xi, y)
=
∨
x∈X

A(x) ∗ R∗(x, y) = A↑R∗ (y) .

Thus ↑♠=↑R∗ . That •↑=↑♠ follows easily by Lemma 4.(1). So
• ↑=↑ ♠ =↑R∗ . The other triple equality follows similarly.

(2): Let B ∈ LY . By Lemma 4.(3),

B♠(y) = B(y) ∨ B↑↓♠(y) = B(y) ∨ (B↓)↑♠(y) = B(y) ∨ B↓↑R∗ .

This means that ♠ = 1LY ∨ (↓↑R∗). Similarly, • = 1LX ∨ (↑↓R∗). Applying
these two equalities for R∗ instead of R, we get

♠R∗ = 1LY ∨ (↓R∗↑R∗) , •R∗ = 1LX ∨ (↑R∗↓R∗) .

In order to finish the proof of (2), it suffices to show ↓↑R∗=↓R∗↑R∗ and
↓↑R∗=↓R∗↑R∗ . We only prove the first, the other following similarly. Let
B ∈ LY and y ∈ Y . We need∨

x∈X,y′∈Y
B(y′) ∗ R(x, y′) ∗ R∗(x, y)

=
∨

x∈X,y′∈Y
B(y′) ∗ R∗(x, y′) ∗ R∗(x, y)

It suffices that, for each y′ ∈ Y ,∨
x∈X

R(x, y′) ∗ R∗(x, y) =
∨
x∈X

R∗(x, y′) ∗ R∗(x, y) .

One inequality is immediate. For the other, we rewrite the righthand side:∨
x∈X R∗(x, y′) ∗ R∗(x, y) is the supremum of

R(x, y1) ∗ R(x1, y1) ∗ R(x1, y2) ∗ . . . R(xn, yn) ∗ R(xn, y′)

∗R(x, z1) ∗ R(u1, z1) ∗ R(u1, z2) ∗ . . . R(um, zm) ∗ R(um, y) ,
where n,m take values in N, xi, ui in X yi, zi in Y . We want to show that
any such product is lower or equal to

∨
x∈X R(x, y′) ∗R∗(x, y). If n = 0, the

inequality is immediate; so assume n > 0. Regroup the product as

R(xn, y
′) ∗ [R(xn, yn) ∗ R(xn−1, yn) ∗ . . . R(x, y1) ∗ R(x, z1)

∗R(u1, z1) ∗ . . . ∗ R(um, y)]
and notice that this is lower or equal to R(xn, y′) ∗R∗(xn, y). This proves the
inequality.

(3): Because R∗ is transitive, ↑R∗↓R∗↑R∗≤↑R∗ . This means

↑R∗=↑R∗ ∨ ↑R∗↓R∗↑R∗= (1LX∨ ↑R∗↓R∗) ↑R∗= •R∗ ↑R∗ .

Let now Q having the two properties from point (3). Then

↑Q↓Q↑Q⊆ •Q ↑Q=↑Q .

Let x ∈ X, y ∈ Y andA ∈ LX defined byA(x′) = 1 if x = x′ and 0 otherwise.
Then
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Q(x, y) = A↑Q(y) = A↑Q↓Q↑Q(y)
=

∨
y′∈Y,x′∈X

Q(x, y′) ∗Q(x′, y′) ∗Q(x′, y) .

This implies the transitivity of Q, hence R∗ ⊆ Q. ��

7. Induced hierarchical structures

The lattice of fuzzy concepts, structure associated to a fuzzy binary relation, via its
induced FAC, is a generalization of the concept lattice from classical case, having
a similar, yet fuzzy, characterization theorem [2].

One can also construct hierarchies associated to FICs and FCPs. In the crisp
case, the situation is the following: while hierarchies for FICs are perfectly dual
to those for FACs (and thus one does not need to study both), those for FCPs are
fundamentally different.9 However, when fuzziness is concerned, all three differ.

To each FAC, FIC, or FCP between X and Y , one associates the lattice of fix
points Ls(↑,↓) (where s ∈ {FAC,FIC,FCP}, consisting of all pairs (A,B) from
LX × LY with A↑ = B and B↓ = A. The order is taken according to first compo-
nent: (A,B) ≤ (A′, B ′) iffA ⊆ A′. In fact, the second component is not neglected
this way, because

– for FACs, (A,B) ≤ (A′, B ′) iff B ′ ⊆ B;
– for FICs and FCPs, (A,B) ≤ (A′, B ′) iff B ⊆ B ′.

Instead of Ls(↑,↓), we can write Ls(R), where R is the underlying fuzzy
relation. It is known that LFAC(R) and LFIC(R) are complete lattices that can be
abstractly characterized (see [2], [23]):

Proposition 16. I. A complete lattice W is isomorphic to LFAC(R) if and only if
there exist two functions γ : L×X −→ W , µ : L×Y −→ W such that γ (L×X)
is
∨

-dense, µ(L× Y ) is
∧

-dense, and

γ (a, x) ≤ µ(b, y) iff a ∗ b ≤ R(x, y) .

II. A complete lattice W is isomorphic to LFIC(R) if and only if there exist two
functions γ : L× X −→ W , µ : L × Y −→ W such that γ (L× X) is

∨
-dense,

µ(L× Y ) is
∧

-dense, and

γ (a, x) ≤ µ(b, y) iff R(x, y) ≤ a → b .

9 We do not know any study of this kind of hierarchies (for conjugated pairs that is) in
classical setting.
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While the elements of LFAC(R) are canonically interpretted as fuzzy concepts
(pairs extent-intent), LFIC(R) can be seen as the hierarchy of concise local con-
text [23]. We again emphasize the fact that, although very similar, the structures
associated to FACs and FICs are not dual. In classical setting (i.e. L = {0, 1}), the
only observed duality can be expressed as follows: for each relation R, LFIC(R) �
LFAC(R̄) and LFAC(R) � LFIC(R̄), R̄ being the complement of R. This is by far
not the case here, where negation behaves very unsymmetrically. Take, for instance,
the residuated lattice L = {0, 1/4, 2/4, 3/4, 1}, with the operations ∗,→ and ¯
(the negation) displayed below:

∗ 0 1/4 2/4 3/4 1
0 0 0 0 0 0

1/4 0 0 1/4 1/4 1/4
2/4 0 1/4 1/4 2/4 2/4
3/4 0 1/4 2/4 2/4 3/4
1 0 1/4 2/4 3/4 1

→ 0 1/4 2/4 3/4 1
1 1 1 1 1 1

1/4 1/4 1 1 1 1
2/4 0 2/4 1 1 1
3/4 0 1/4 3/4 1 1
1 0 1/4 2/4 3/4 1

a 0 1/4 2/4 3/4 1
ā 1 1/4 0 0 0

Let X = {x1, x2}, Y = {y1, y2, y3}, and the L-relation R between X and Y ,
together with its complement R̄, as below

R x1 x2

y1 2/4 0
y2 1 3/4
y3 1/4 2/4

R̄ x1 x2

y1 0 1
y2 0 0
y3 1/4 0

We shall now list the composition and structure of each R or R̄-lattice of fixed
points for FAC and FIC, but also for FCP (which is also a complete lattice, that
we shall study afterwards), in order to point out something that is in fact quite
transparent: there is no duality between any of these structures.

LFAC(R)

x1 x2 y1 y2 y3

1/4 0 1 1 1
2/4 0 1 1 2/4
1/4 1/4 1/4 1 1
3/4 0 3/4 1 1/4
1 0 2/4 1 1/4

2/4 1/4 1/4 1 2/4
1/4 3/4 0 1 3/4
1 1/4 1/4 1 1/4

2/4 3/4 0 1 2/4
1 3/4 0 1 1/4

2/4 1 0 3/4 2/4
1 1 0 3/4 2/4

LFAC(R̄)

x1 x2 y1 y2 y3

0 0 1 1 1
1/4 0 1/4 1/4 1
0 1/4 1 1/4 1/4

2/4 0 0 0 2/4
1/4 1/4 1/4 1/4 1/4
0 1 1 0 0
1 1/4 0 0 1/4

1/4 1 1/4 0 0
1 1 0 0 0
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LFIC(R)

x1 x2 y1 y2 y3

0 0 0 0 0
1/4 0 1/4 1/4 0
0 1/4 0 1/4 1/4
0 2/4 0 2/4 1/4

2/4 2/4 1/4 2/4 1/4
0 3/4 0 2/4 2/4

3/4 2/4 2/4 3/4 1/4
2/4 3/4 1/4 2/4 2/4
0 1 0 3/4 2/4
1 2/4 2/4 1 1/4

2/4 1 1 3/4 2/4
3/4 1 2/4 3/4 2/4
1 1 2/4 1 2/4

LFIC(R̄)

x1 x2 y1 y2 y3

1/4 0 0 0 0
1 0 0 0 1/4

1/4 1/4 1/4 0 0
1 1/4 1/4 0 1/4

1/4 2/4 2/4 0 0
1 2/4 2/4 0 1/4

1/4 3/4 3/4 0 0
1 3/4 3/4 0 1/4

1/4 1 1 0 0
1 1 1 0 1/4

LFCP(R)

x1 x2 y1 y2 y3

0 0 0 0 0
1/4 1/4 1/4 1/4 1/4
2/4 2/4 1/4 2/4 1/4
3/4 2/4 2/4 3/4 1/4
1 3/4 2/4 1 2/4

LFCP(R̄)

x1 x2 y1 y2 y3

0 0 0 0 0
0 1/4 1/4 0 0
0 2/4 2/4 0 0
0 3/4 3/4 0 0
0 1 1 0 0

LFAC(R)

•

•

• •

•

• •

•

•

•

•

•

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
��

�
��

���������� �����

����� LFAC(R̄)

•

•

• •

•

•

•

• •

�
�

�
�

�

�
�

�
�

�

�����

�����

�����

�����

�
�

�
�

�

�
�

�
�

�
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LFIC(R)

•

•

••

• •

• •

•

•

•

•

•

�
�

�
�

�

�
�

�
�

�

�����

�����

�����

����������

���������������

����� LFIC(R̄)

•

•

•

•

•

•

•

•

•

•

�����

�����

�����

�����

���������� ���������� ����������

LFCP(R)

•

•

•

•

•

LFCP(R̄)

•

•

•

•

•

We mention that, for a relation R, LFCP(R) is not even in the classical case
totally ordered, isomorphic, or dual to LFCP(R̄), as shown by the following exam-
ple, where L is the Boolean algebra {1, 2},X = {x1, x2, x3}, Y = {y1, y2, y3}, and
R, (̄R) as below.

R x1 x2 x3

y1 0 0 1
y2 1 1 0
y3 0 1 0

R̄ x1 x2 x3

y1 1 1 0
y2 0 0 1
y3 1 0 1

LFCP(R)

x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
0 0 1 1 0 0
1 0 0 0 1 0
1 1 1 1 1 1

LFCP(R̄)

x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
1 1 1 1 1 1
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LFCP(R)

•

•

• •

�
��

�
��

�
��

�
��

LFCP(R̄)

•

•

Let us now focus all our attention to the new structure LFCP. As usual, we look
atX as the universe of objects, at Y as that of properties, and atR as the relation “to
have” between objects and attributes. A fixed point (A,B) can be seen as a fuzzy
subcontext, since the whole initial contextual framework is preserved between A
and B: all the properties of any object from A (and no other) are in B (A↑ = B)
and vice versa (B↓ = A). The inductive definitions of operators •,♠ constitute
some closing process, including, at each step, the whole R-available “space” for
a set of objects (or of attributes): A takes for itself all the needed properties, A↑,
whileA↑ calls for more objects,A↑↓, and so on - this could be seen as a try to build
a minimal subcontext. Unfortunately, this does not always work, since the result is
not necessarily a fixed point. All we can say at this stage is that any fixed point is
closed to the above construction and, consequently, the relation R can be taken to
be transitive.

Proposition 17. Let (↑,↓), R its relation, •,♠ its operators.

(1) LFCP is a complete lattice in which arbitrary suprema are given by

∨
i∈I
(Ai, Bi) =

(⋃
i∈I
Ai,

⋃
i∈I
Bi

)
.

(2) If (A,B) ∈ LFCP(R), then A = A• and B = B♠;
(3) LFCP(R) = LFCP(R

∗).

Proof. 1. follows immediately from Lemma 4.(1).
2. IfB = A↑ andA = B↓, thenA = A↑↓. This impliesA = A(↑↓)i , for all i ∈ N,

which immediately gives A = A•. Similarly, B = B♠.
3. It is sufficient to prove that, if A and B are closed (w.r.t. the operators induced

by R, which are, by Proposition 15.(2), equal to those induced by R∗), then
A↑ = A↑R∗ and B↓ = B↓R∗ . We only prove the first of these. By Proposi-
tion 15.(1) • ↑=↑R∗ . Replacing R by R∗, we get •R∗ ↑R∗=↑R∗ ♠R∗ , hence
• ↑= •R∗ ↑R∗ , which is precisely what we needed, because any closed A is
equal to A• and A•R∗ . ��
We have already seen that operators induced by FCPs are not as smooth as the

ones from FACs and FICs. This is the reason why their sets of objects or attributes
that are closed to these operators do not necessarily provide fixed points. However,
they do that, if we take the following additional assumption: all the objects and
properties are empirically consistent, that is:

– for every object x, there exists a property y such that R(x, y) = 1;
– for every property y, there exists an object x such that R(x, y) = 1.
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Lemma 5. Let V ,W be two complete lattices and I, J two non-empty sets. Assume
that there exist the families A = (ai)i∈I , B = (bj )j∈J ⊆ V , A′ = (a′

i )i∈I , B
′ =

(b′
j )j∈J ⊆ W such that

∀i ∈ I, J ′ ⊆ J, ai ≤
∨
j∈J ′

bj iff a′
i ≤

∨
j∈J ′

b′
j ,

∀j ∈ J, I ′ ⊆ I, bj ≤
∨
i∈I ′

ai iff b′
j ≤

∨
i∈I ′

a′
i .

If A,B,A′, B ′ are
∨

-dense in V and W , then V and W are isomorphic.

Proof. Define φ : V −→ W and ψ : W −→ V by

φ(v) =
∨

i∈I,ai≤v
a′
i ,

ψ(w) =
∨

j∈J,b′
j≤w

bj .

These functions are obviously increasing. In order to prove that they are inverse to
each other, let w ∈ W . Then φψ(w) is equal to∨

{a′
i / i ∈ I, ai ≤

∨
j∈J,b′

j≤w
bj }.

Using one of the hypotheses, the last becomes

φ(ψ(w)) =
∨

{a′
i / i ∈ I, a′

i ≤
∨

j∈J,b′
j≤w

b′
j } ,

the last being, using the
∨

-density of B ′ and A′, equal to w. That the other com-
position is the identity follows similarly. ��
Lemma 6. Suppose that all the objects and properties are empirically consistent.
Then, for each (A,B) ∈ LX × LY ,

(A,B) ∈ LFCP(R) iff [A = A• and B = A↑] iff [B = B♠ and A = B↓] .

Proof. We only prove the first equivalence. One implication follows from Propo-
sition 17.(2). For the other, assume that A = A• and B = A↑. This implies, by
Lemma 4.(3), thatA↑↓ = A•↑↓ ⊆ A• = A. On the other hand, using the empirical
consistency of objects, for each x ∈ X,

A↑↓(x) =
∨

y∈Y,x′∈X
A(x′) ∗ R(x′, y) ∗ R(x, y)

≥
∨
y∈Y

A(x) ∗ R(x, y) ∗ R(x, y) ≥ A(x) .

Thus A = A↑↓. This means A = B↓. ��
We are now ready to characterize the lattice LFCP(R).
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Proposition 18. Suppose that all objects and properties are empirically consistent.
A complete lattice W is isomorphic to LFCP(R) if and only if there exist two func-
tions γ : L × X −→ W , µ : L × Y −→ W such that γ (L × X), µ(L × Y ) are∨

-dense and, for each a ∈ L, G ⊆ L×X, F ⊆ L× Y , x ∈ X, y ∈ Y ,

γ (a, x) ≤
∨
µ(F) iff a ≤

∨
(b,y′)∈F

b ∗ R∗(x, y′) ,

µ(a, y) ≤
∨
µ(G) iff a ≤

∨
(b,x′)∈G

b ∗ R∗(x′, y) .

Proof. According to Lemma 5, any two complete lattices that satisfy the above
conditions are isomorphic. It suffices to show that LFCP satisfies them. Denote, for
each x ∈ X (or x ∈ Y ) and a ∈ L, by {a|x} the (singleton) function from LX (or
LY ) which takes value a in x and 0 in the other elements.10

Define γ and µ by

γ (a, x) = ({a|x}•, {a|x}•↑),
µ(a, y) = ({a|y}♠↓, {a|y}♠),

for all a ∈ L, x ∈ X, y ∈ Y . Let (A,B) ∈ LFCP. Then, using Lemma 4.(1) and
closure operators properties,

(A,B) =
((⋃

x∈X
{A(x)|x}

)•
, A↑

)
=
((⋃

x∈X
{A(x)|x}•

)•
, A↑

)
.

By Lemma 6, each ({A(x)|x}•, {A(x)|x}•↑ is a fixed point; hence, by Proposition
17.(1), so is their componentwise union; this implies that

⋃
x∈X{A(x)|x}• is closed

to •, which means that we can further rewrite (A,B) into
∨
x∈X γ (A(x), x). So

γ (L×X) is
∨

-dense in LFCP. Similarly, µ(L×Y ) is
∨

-dense. We now check the
first of the remaining required properties (the other following similarly).

γ (a, x) ≤ µ(F)

means

{a|x}• ⊆

 ∨
(b,y)∈F

{b|y}



♠↓

,

that is

{a|x}• ⊆

 ∨
(b,y)∈F

{b|y}



↓•

,

10 The denoted entity is different from that of Section 3, where {x|a} denoted the hyper-
singleton.
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which, since the lefthand side is closed w.r.t. •, is equivalent to

{a|x} ⊆

 ∨
(b,y)∈F

{b|y}



↓•

,

and, since, ↓ • commutes with suprema, further to

{a|x} ⊆
∨

(b,y)∈F
{b|y}↓• ,

that is

a ≤
∨

(b,y)∈F
{b|y}↓•(x) .

But, from Proposition 15.(1), ↓ • =↑R∗ , so the above is equivalent to

a ≤
∨

(b,y)∈F
{b|y}↑R∗ (x) ,

which means a ≤ ∨
(b,y)∈F b ∗ R∗(x, y). ��

8. Concluding remarks

The present paper introduced and studied fuzzy conjugated pairs, with their under-
lying closure operators and hierarchical structure. Isotone versions of fuzzy Galois
connections and closure operators were also considered, arguing that they are not
dual to the antitone ones, but providing quite similar results about them. A form
of artificial common treatment of classically dual notions that fail to be fuzzily
dual has concretized into the concept of (α, β)-connection, that could be seen as
recovering remains of duality by means of common polynomial invariants.

A very interesting subject for future research would be a systematic study of
duality at the level not of involved concepts, but of proofs regarding the concepts -
the very similar techniques in proving some isotone-antitone results suggest that, if
we restrict our statements to some that are well formed w.r.t. residuation property,
we could achieve a productive duality in fuzzy logic.

Another open problem would be, once we have some working “concrete” fuzzy
notions of Galois connection, opening and closure operator etc., to provide their
suitable algebraic abstractizations (notice that, for instance, a fuzzy closure oper-
ator (between sets) is not a particular case of (abstract) closure operator, while a
fuzzy Galois connection is not even a particular case of functor!).

Acknowledgements. Many thanks to the referee for helpful remarks and suggestions.
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