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Abstract. Aim of this work is to investigate from a proof-theoretic viewpoint a proposi-
tional and a predicate sequent calculus with an ω–type schema of inference that naturally
interpret the propositional and the predicate until –free fragments of Linear Time Logic LTL
respectively. The two calculi are based on a natural extension of ordinary sequents and of
standard modal rules. We examine the pure propositional case (no extralogical axioms), the
propositional and the first order predicate cases (both with a possibly infinite set of extralog-
ical axioms). For each system we provide a syntactic proof of cut elimination and a proof of
completeness.

1. Introduction

The importance of Linear Temporal Logic LTL [Em90] is twofold: theoretical and
in applications to computer science. As for applications, Pnueli [Pnu77] was the
first to use temporal systems to prove correctness of sequential and concurrent
programs.

Despite its name LTL is not a logic of time: it is rather a modal logic whose
Kripke models, based on the frame of natural numbers, describe the evolution of
computations. The basic modal operators ◦ (next) and � (always) of LTL are inter-
preted as “at the next state of computation” and “at each state from the current
state onwards” respectively.

So far LTL has been thoroughly investigated by using model– or automata–the-
oretic techniques [Em90, VaWo86]. Expressive power [Kam68] and computational
complexity [SC85] have been also studied for sake of using LTL as a specification
language.
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Aim of this work is to investigate from a proof-theoretic viewpoint a prop-
ositional and a predicate sequent calculus with an ω–type schema of inference
that naturally interpret the until–free propositional and predicate fragments of LTL
respectively. Hence we are interested in proving properties like cut–elimination,
subformula property, consistency in a syntactic way.

Although a thorough proof–theoretic investigation has not been accomplished
yet, it is known that finitary presentations of LTL suffer intrinsic limitations.Among
them: lack of completeness in presence of an infinite set of extralogical axioms and
lack of a recursive axiomatization for the first order predicate version (see [GHR94]).
It is also known that a way to overcome those limitations is to allow infinitary rules.

In [BM03] we accomplished a proof-theoretic investigation of a finitary calcu-
lus for the until –free fragment LTL− of LTL. Being sufficiently expressive, LTL−
is extensively studied.

In [BM03] we introduced a natural deduction system based on an extension of
modal formulas by means of a space component. Our work pointed out similarities
between LTL− and first order Peano Arithmetic PA from a proof–theoretic view-
point. Same as for PA we proved the following for LTL−: 1. a strong normalization
theorem; 2. strong normalization yields a syntactic consistency proof; 3. introduc-
tion of an induction rule corresponding to the schema A → (�(A → ◦A) → �A)

makes full subformula property fail.
We recall that Schütte [Sch77] proved cut elimination and full subformula prop-

erty for PA by introducing infinitary ω–rules and by restricting to recursive proofs
(see also [Gir83]).As previously mentioned, aim of this work is to show that similar
results hold for sequent calculi with an ω–type schema of inference in which LTL−
can be naturally interpreted.

Let PAω be first order Peano arithmetic with ω–rule. We point out that operators
◦, � and � behave in LTL− “in the same way” as the successor function , ∀ and ∃
in PAω respectively. As a consequence, the deduction rules governing the modal
operators in LTL− are very intuitive. Such a close correspondence between LTL−
and PAω is lost when introducing operator until: for this reason we leave to future
works a possible extension to LTL of the results obtained in this paper.

The features of the present work are: 1. use of a natural extension (2–sequents)
of ordinary sequents; 2. formulation of very intuitive inference rules; 3. presence
of natural ω–type schemata of inference; 4. interpretability within our systems of
the until–free fragments of propositional and predicate LTL (see, for instance, Cor-
ollary 3.6); 5. provability of cut–elimination in a syntactic way for all the proof
systems (even in presence of infinitely many extralogical axioms).

In the sequel we briefly comment on the previous points.
Point 1 : the use of “enriched” formulas is not a novelty: see, for instance,

the labelled formulas for modal logics in [BMV98] or the prefixed formulas for
LTL–like logics in [CM98]. Contrary to those approaches, we avoid any syntactic
treatment of the accessibility relation. More precisely: no deduction rule explicitly
deals with the order relation on natural numbers.

Point 2 : 2–sequents allow rewriting of modal inference rules simply by adding
a space component. As already remarked, this forces a formulation of the rules in
strict analogy with those of PA. We remark that having intuitive inference rules is
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by no means a novelty of our systems: it is a property shared by most calculi that
deal with “enriched formulas” and have a simple semantics.

Point 3 : since our ω–type schemata of inference are very similar to the ω–rules
of arithmetic, throughout the paper we can use variants of standard techniques (see,
for instance, [Gir83, Chapter 6]).

We remark that, due to the already mentioned limitations of finitary systems, the
use of ω–rules (or more general infinitary rules) is quite common. See [Seg94] for
a model-theoretic approach to infinitary systems. We just mention two more works.

In [Sza87], Szalas provides a recursive axiomatization in Hilbert style of first
order predicate LTL in a language with a binary operator different form the usual
until. By introducing an infinitary rule (somehow reminescent of an ω–rule), the
author proves completeness for his system by using algebraic methods.

An orthogonal approach to ours is pursued in [Sza96]: the paper is devoted to
axiomatizing classes of modal logics (fixpoint logics) whose modalities are defined
by least fixpoints of equations on formulas. In this regard we recall that all tem-
poral operators can be defined in terms of ◦ and fixpoints [EC81], hence Szalas’
approach is quite general. For each fixpoint logic (defined by a set of modalities,
a class of interpretations and a notion of satisfiability), the author provides an infi-
nitary proof system that he proves to be sound and complete. Each infinitary rule
can roughly be viewed as an ω–rule that describes the semantics of a modality by
“approximations”. Approximations are obtained from the definition by a fixpoint
of the modality and they appear in the premises of the rule.

Szalas also shows how the infinitary proof system can be reduced to a finitary
one that is sound and complete relative to a suitably chosen restriction of the class of
interpretations. Both systems are cut–free in the sense that cut rule is not included
in any of them with the motivation that implementation of the proof systems and
proof–search are easier. Once more we stress the point that our main goal is proving
cut elimination.

Point 4 : loosely speaking, the meaning of Corollary 3.6 is that our propositional
system is a conservative extension of LTL−.

Point 5 : we just draw attention to the importance of syntactic cut elimination
in proof–theory.

We recall that LTL− naturally embeds into systems for program verification
like Modal µ–Calculus [AKM95], Propositional Dynamic Logic [Ha84] and CTL∗
[Em90]. Being those systems more powerful, it is not clear how to make a proof–
theoretic comparison with LTL. In particular we do not know of any presentation
of CTL∗ as a sequent calculus for which cut elimination holds (indeed the first
axiomatization in Hilbert style of CTL∗ appeared only recently [Rey01]).

To summarize, the main results in this paper are: a syntactic proof of cut elim-
ination in the propositional case. Such a proof immediately yields full subformula
property and consistency. Cut elimination and completeness hold for the proposi-
tional system even in presence of extralogical axioms. The propositional system is
then extended to a predicate system for which syntactic cut elimination, subformula
principle and completeness with respect to an arbitrary set of extralogical axioms
still hold.
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We finish this section with a brief outline of the paper.
In Section 2 we introduce 2–sequents and the propositional system 2Sω. For

2Sω we prove cut elimination and, as immediate corollary, subformula property.
In Section 3 we show that 2Sω has at least the deductive power of LTL− and

we relate provability in the two systems.
In Section 4 we extend 2Sω by means of an arbitrary set of extralogical axioms.

We show that cut elimination (for cuts whose cut formula does not occur in any of
the axioms) and completeness still hold.

In Section 5 we introduce a predicate extension 2SP�
ω of 2Sω, where � is an

arbitrary set of extralogical axioms. For 2SP�
ω we prove cut elimination (formulated

as in Section 4) and a completeness theorem.

2. 2–sequent calculus with ω-rule

2.1. 2–sequents

2–sequents were introduced in [Mas92, MM96, GMM98] for sake of providing a
proof-theoretic treatment of basic modalities like modal operators of modal logic
S4, exponentials of Linear Logic and others. The idea is to enrich the structure of
ordinary sequents by adding a space dimension. The definition of 2–sequent is based

on the notion of 2–sequence. The latter is an expression of the form

α0
α1
...

αn

, where

each αi is a finite (possibly empty) sequence of formulas. We say that formulas
occurring in the sequence αi are at level i.

Finally, a 2–sequent is an expression of the form � � � where � and � are
2–sequences.

The vertical structure of a 2–sequent is needed in order to have good introduc-
tion rules for modal operators. Formulas are allowed to move from one level to
another only as effect of application of a modal rule.

One can also represent a 2–sequent by means of an ordinary sequent made of
indexed formulas. By an indexed formula we mean a formula decorated with its
own level. If formula A is at level i, we keep track of that by writing Ai. Therefore
a 2–sequent can be represented as an expression of the form � � �, where � and
� are sequences of indexed formulas.

2.2. The 2-sequent calculus

We begin by describing the alphabet of a propositional modal language L0:

– proposition symbols p0, p1, . . . from a countably infinite set At;
– the propositional connectives ∨, ∧, →, ¬;
– the modal operators ◦, �, �;
– the auxiliary symbols ( and ).
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Definition 2.1. The set of propositional modal formulas of L0 is the least set that
contains the proposition symbols and is closed under applications of the proposi-
tional connectives and the modal operators.

As described above, in a 2–sequent each modal formula is equipped with a level.
Levels range on natural numbers. We use i, j, k . . . (possibly indexed) for levels.

For sake of clarity, we state the following:

Definition 2.2. 1. An indexed formula (briefly: formula) is an expression of the
form Ai , where A is a modal formula and i is a natural number.

2. A 2-sequent is an expression of the form � � �, where � and � are finite
sequences of formulas.

Warning: from now on we will use the word “sequent” meaning “2-sequent”,
when no ambiguity arises.

Given an index i and a non atomic modal formula, say A∧B, we write A ∧ Bi

for (A ∧ B)i (similarly in other cases). We feel free to use braces to increase read-
ability.

The 2–sequent calculus with ω-rule is given by the following set of rules. We
name each rule: this will be needed in the sequel.

2.3. Rules

Identity rules

Ai � Ai Ax
�1 � Ai, �1 �2, A

i � �2
Cut

�1, �2 � �1, �2

Formula Ai occurring in Cut rule is called the cut formula.

Structural rules
� � �

W �
�, Ai � �

� � � � W
� � Ai, �

�, Ai, Ai � �
C �

�, Ai � �

� � Ai, Ai, � � C
� � Ai, �

�1, A
i, Bj , �2 � �

Exc �
�1, B

j , Ai, �2 � �

� � �1, A
i, Bj , �2 � Exc

� � �1, B
j , Ai, �2

Propositional rules

� � Ai, � ¬ �
�, ¬Ai � �

�, Ai � � � ¬
� � ¬Ai, �

�, Ai � � ∧1 �
�, A ∧ Bi � �

�, Bi � � ∧2 �
�, A ∧ Bi � �

�1 � Ai, �1 �2 � Bi, �2 � ∧
�1, �2 � A ∧ Bi, �1, �2
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�1, A
i � �1 �2, B

i � �2 ∨ �
�1, �2, A ∨ Bi � �1, �2

� � Ai, � � ∨1
� � A ∨ Bi, �

� � Bi, � � ∨2
� � A ∨ Bi, �

�1, B
i � �1 �2 � Ai, �2 →�

�1, �2, A → Bi � �1, �2

�, Ai � Bi, � �→
� � A → Bi, �

Modal rules

�, Ai+1 � � ◦ �
�, ◦Ai � �

� � Ai+1, � � ◦
� � ◦Ai, �

�, Ai+k � �
� �

�, �Ai � �

{� � Ai+j , �}j∈ω � �
� � �Ai, �

{�, Ai+j � �}j∈ω � �
�, �Ai � �

� � Ai+k, � � �
� � �Ai, �

We introduce now the notion of ω–proof. We follow the presentation of ω–logic
proposed in [Gir83].

Let S∗ be the set of finite sequences of natural numbers. We denote the empty
sequence by < > and an arbitrary sequence by < n0, . . . , nk > . We use ∗ for
concatenation of sequences.

We define a partial ordering ≤ on S∗ as follows: t ≤< > for all t ∈ S∗ and
< n0, . . . , nk >≤< m0, . . . , ml > if and only if l ≤ k and ni = mi for all
0 ≤ i ≤ l. We denote by < the associated strict order.

Definition 2.3. 1. A tree T is a subset of S∗ satisfying the property that whenever
t ∈ T and t ≤ s then s ∈ T . Elements of T are called nodes. A leaf is a node
with no successors.

2. A well-founded tree (briefly: wf-tree) is a tree with no infinite strictly decreasing
sequence . . . < tn < . . . < t1 < t0.

Given a tree T and s ∈ T , we let Ts the tree defined by:

s′ ∈ Ts ⇔ s ∗ s′ ∈ T .

Notice that T< > = T .

Definition 2.4. The height ht(T ) of a tree T is the ordinal recursively defined as
follows:

ht(T ) =
{

0 if T = 〈 〉;
sup{ht(T<i>) + 1 :< i >∈ T } otherwise.

We always assume that the set of immediate successors of an arbitrary node t

in a tree T is of the form {t∗ < i >}i∈I , for some initial segment I of ω (possibly
the whole ω).

In the graphical representation of a tree, we place t∗ < i > to the left of
t∗ < j > if i < j.
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Let R be the set of rule names and let S be the set of 2–sequents. Let also
g : R ∪ S → N be an effectively computable coding bijection with effectively
computable inverse.

Definition 2.5. 1. An ω–proof is an ordered pair (T , �), where T is a wf-tree and
� : T → g(R) × g(S) is a so-called labelling function with the following
properties (we denote by π2 the projection onto the second factor of a cartesian
product):
(a) if �(t) =< g(Ax), n > then n is g(Ai � Ai) for some formula Ai and t is

a leaf of T ;
(b) if �(t) =< m, n >, with m = g(r) for some r �= Ax in R and n =

g(� � �), then t is not a leaf, and if {t∗ < i >}i∈I is the set of immediate

successors of t then
{g−1(π2�(t∗ < i >))}i∈I

� � �
is an instance of rule r .

2. The conclusion of the ω-proof (T , �) is the sequent g−1(π2�(〈 〉)).
The height ht(�) of an ω-proof � = (T , �) is the height of tree T .

Definition 2.6. We say that a sequent � � � is provable in 2Sω if there exists an
ω-proof whose conclusion is � � �.

By coding the nodes of a tree by means of natural numbers in an effective
manner, one can easily make sense of the notion of recursive tree and give the
following:

Definition 2.7. A (primitive) recursive ω-proof is an ω–proof (T , �) such that T is
(primitive) recursive and � is an effectively computable function.

In practice it is convenient to regard an ω-proof as a wf-tree whose nodes are
each labelled by a sequent and by the rule name that led to that sequent. This gives
the possibility of less formal, but simpler, definitions that are in accordance with
the usual representation of sequent proofs.

For instance we will write �+k to indicate the labelled wf-tree obtained from
the ω-proof � by replacing each formula Ai occurring in � with Ai+k. It is straight-
forward to check that �+k is still an ω-proof.

An ω-proof free from rules with infinitely many premises will be called simply
a proof.

In order to simplify the graphical representation of ω–proofs, we will use a
double deduction line to indicate application of a rule preceded or followed by a
sequence of structural rules. So we will write

� � �===== r
	 � 


when the sequent 	 � 
 has been obtained from � � � by means of an application
of rule r and of a finite number of structural rules.

Definition 2.8 (subformula). The set Sub(Ai) of subformulas of a formula Ai is
recursively defined as follows:
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Sub(pk) = {pk} if p is a proposition symbol;
Sub(¬Ak) = {¬Ak} ∪ Sub(Ak);
Sub(A#Bk) = {A#Bk} ∪ Sub(Ak) ∪ Sub(Bk), when # ∈ {→, ∨, ∧};
Sub(◦Ak) = {◦Ak} ∪ Sub(Ak+1);
Sub(#Ak) = {#Ak} ∪ {Sub(Ak+i ) : i ∈ ω}, when # ∈ {�, �}.

Definition 2.9. 1. The degree deg(A) of a modal formula A is recursively defined
as:
(a) deg(p) = 0 if p is a proposition symbol;
(b) deg(¬A) = deg(◦A) = deg(�A) = deg(�A) = deg(A) + 1;
(c) deg(A ∧ B) = deg(A ∨ B) = deg(A → B) = max{deg(A), deg(B)} + 1.

2. The degree deg(Ai) of formula Ai is just deg(A).

Definition 2.10. The degree δ[�] of an ω–proof � is the ordinal defined as follows:

δ[�] =
{

0 if � is cut-free;
sup{deg(Ai) + 1 : Ai is a cut formula in �} otherwise.

We are now ready to prove a cut-elimination theorem for 2Sω. We employ ideas
and techniques introduced in [Gir83].

Let � be a sequence of formulas. We denote by �−Ak the sequence obtained
by removing all occurrences of Ak in �. When writing �, �′−Ak we actually mean
�, (�′−Ak).

In the sequel ordered pairs of ordinals are intended to be lexicographically
ordered. Hence one can make proofs by induction on pairs of ordinals.

The next result is crucial for proving cut-elimination.

Lemma 2.11. Let n ∈ N. Let Ak be a formula of degree n and let < �, �′ > be
a pair of recursive ω–proofs of sequents � � � and �′ � �′ respectively, satis-
fying the property δ[�], δ[�′] ≤ n. Then one can obtain in an effective way from
< �, �′ > a recursive ω–proof Mix(�, �′) of sequent �, �′−Ak � �−Ak, �′
satisfying the property δ[Mix(�, �′)] ≤ n.

Proof. By induction on the pair < ht(�), ht(�′) > .

Let � and �′ be{
�i

�i � �i

}
i∈I r

� � �

and

{
�′

j

�′
j � �′

j

}
j∈I ′

r ′
�′ � �′

respectively, where I and I ′ are ∅ (in case of an axiom), {1}, {1, 2} or ω.

We proceed by cases.

1. r is Ax.

If � � � is Ak � Ak, then one gets Mix(�, �′) from �′ by means of a suitable
sequence of structural rules.
If � � � is Bi � Bi, for B �= A or i �= k, then one gets Mix(�, �′) by means
of a suitable sequence of structural rules.
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2. r ′ is Ax.

This case is symmetric to case 1.
3. r is a structural rule.

Apply induction hypothesis to the pair < �1, �
′ > and then apply a suitable

sequence of structural rules to get the conclusion.
4. r ′ is a structural rule

This case is symmetric to 3.
5. r is a cut or a logical rule not introducing Ak to the right.

Apply the induction hypothesis to each pair < �i, �
′ >, so obtaining the

ω–proof Mix(�i, �
′), for i ∈ I. The ω–proof Mix(�, �′) is then

{
Mix(�i, �

′)

�i, �
′−Ak � �i −Ak, �′

}
i∈I========================== r

�, �′−Ak � �−Ak, �′

6. r ′ is a cut or a logical rule not introducing Ak to the left.
This case is symmetric to 5.

7. r is a logical rule introducing Ak to the right and r ′ is a logical rule introducing
Ak to the left.
(a) r is a propositional rule.

This subcase is treated exactly as in the first order case (see, for instance,
[Gir83] or [Tak75]). Here we show only the case when A is of the form
B → C. Let � and �′ be

�1

�, Bk � Ck, �1

� � B → Ck, �1

and

�′
1

�′
1, C

k � �′
1

�′
2

�′
2 � Bk, �′

2

�′
1, �

′
2, B → Ck � �′

1, �
′
2

respectively. Apply the induction hypothesis to the pairs of ω–proofs
< �, �′

2 >, < �1, �
′ > and < �, �′

1 >, obtaining Mix(�, �′
2),

Mix(�1, �
′) and Mix(�, �′

1) respectively. The ω–proof Mix(�, �′) is
then

Mix(�, �′
2)

=====================
�, �′

2 −Ak �Bk, �1−Ak, �′
2

Mix(�1, �
′)

==================================
�, �′

1−Ak, �′
2 −Ak, Bk �Ck, �1−Ak, �′

1, �
′
2

========================================================= Cut

�, �′
1−Ak, �′

2 −Ak �Ck, �1−Ak, �′
1, �

′
2

Mix(�, �′
1)

�, �′
1−Ak, Ck ��1−Ak, �′

1==================================================================================Cut

�, �′
1−Ak, �′

2 −Ak ��1−Ak, �′
1, �

′
2

(b) A is ◦B.

Let � and �′ be

�1

� � Bk+1, �1

� � Ak, �1

and

�′
1

�′
1, B

k+1 � �′

�′
1, A

k � �′
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respectively. Apply the induction hypothesis to the pairs of ω–proofs
< �1, �

′ > and < �, �′
1 >, obtaining Mix(�1, �

′) and Mix(�, �′
1)

respectively. The ω–proof Mix(�, �′) is then

Mix(�1, �
′)

�, �′
1−Ak � Bk+1, �1−Ak, �′

Mix(�, �′
1)

�, �′
1−Ak, Bk+1 � �1−Ak, �′

Cut
�, �′

1−Ak, �, �′
1−Ak � �1−Ak, �′, �1−Ak, �′

====================================
�, �′

1−Ak � �1−Ak, �′

(c) A is �B.

Let � and �′ be{
�j

� � Bk+j , �1

}
j∈ω

� � Ak, �1

and

�′
1

�′
1, B

k+n � �′

�′
1, A

k � �′

respectively. Apply the induction hypothesis to the pairs of ω–proofs
< �n, �

′ > and < �, �′
1 >, obtaining Mix(�n, �

′) and Mix(�, �′
1)

respectively. The ω–proof Mix(�, �′) is then

Mix(�n, �
′)

�, �′
1−Ak � Bk+n, �1−Ak, �′

Mix(�, �′
1)

�, �′
1−Ak, Bk+n � �1−Ak, �′

Cut
�, �′

1−Ak, �, �′
1−Ak � �1−Ak, �′, �1−Ak, �′

====================================
�, �′

1−Ak � �1−Ak, �′

(d) A is �B. This subcase is symmetric to 7c.

Notice that, in all cases, being the additional cuts performed on subformulas of
Ak, from the assumptions deg(Ak) = n and δ[�], δ[�′] ≤ n we immediately get
δ[Mix(�, �′)] ≤ n. ��
Theorem 2.12 (Cut elimination). Let � be a recursive ω–proof of � � �. Then
there exists a recursive cut-free ω–proof �∗ of � � �.

Proof. By induction on the pair < δ[�], ht(�) > . Suppose � is not cut-free and
let r be the last rule applied in �. We distinguish two cases:

1. r is not a cut.
Let � be {

�i

�i � �i

}
i∈I r,

� � �
where I is one of {1}, {1, 2}, ω. Apply the induction hypothesis to each �i,

obtaining recursive cut-free ω-proofs �∗
i , for i ∈ I. A cut-free ω–proof �∗ of

� � � is then {
�∗

i

�i � �i

}
i∈I r

� � �
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2. r is a cut
Let � be

�1

�1 � Ak, �1

�2

�2, A
k � �2

Cut
� � �

Apply the induction hypothesis to �1 and �2 to obtain recursive cut-free ω-
proofs �∗

1 and �∗
2 of �1 � Ak, �1 and �2, A

k � �2 respectively.
Applying Lemma 2.11 to the pair < �∗

1, �
∗
2 >, one gets a recursive ω–proof

�0 of sequent �1, �2−Ak � �1−Ak, �2 such that δ[�0] ≤ deg(Ak) < δ[�].
Finally one gets a recursive cut-free ω-proof of �1, �2 −Ak � �1 −Ak, �2
from �0 by induction hypothesis and, from it, a recursive cut-free ω-proof of
� � � by application of a suitable sequence of structural rules. ��
Immediate consequences of cut elimination are:

Corollary 2.13. Each formula occurring in a cut-free ω-proof � is a subformula
of some formula occurring in the conclusion of �.

Corollary 2.14. 2Sω is consistent, namely there is no ω-proof in 2Sω of the empty
sequent � .

3. On the deductive power of 2Sω

In this section we compare the deductive power of 2Sω with that of LTL−.
Firstly, we remark that the introduction of ω–rule in first order arithmetic allows

a purely logical treatment of the induction schema (see [Gir83]). Similarly, we show
that the use of ω–rule in temporal systems makes possible a purely logical proof of
the temporal induction schema

A → (�(A → ◦A) → �A).

Let us begin with a Hilbert style presentation LTL− (see [GPSS80]):

Axioms

A0 All modal instances of propositional tautologies.
A1 ◦(A → B) → (◦A → ◦B)

A2 ¬ ◦ A → ◦¬A

A3 �(A → B) → (�A → �B)

A4 �A → A

A5 �A → ◦�A

A6 A → (�(A → ◦A) → �A)

Rules

� A � A → B

� B
MP; � A

� ◦A
◦ G; � A

� �A
�G.

We write �LT L− for the provability relation in LTL−.
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In order to investigate the deductive power of 2Sω we provide recursive ω–
proofs of a natural 2–sequent translation of some LTL− axioms. We just present
two interesting cases.

A3 �(A → B) → (�A → �B)




Bk � Bk Ak � Ak

→�
Ak, A → Bk � Bk

� �
Ak, �(A → B)

0 � Bk

==================== � �
�A0, �(A → B)

0 � Bk




k∈ω � �
�A0, �(A → B)

0 � �B0

==================== �→
�(A → B)0 � �A → �B0

�→� �(A → B) → (�A → �B)0

A6 A → (�(A → ◦A) → �A)

Let us inductively prove that, for all k ∈ N, there exists a recursive ω–proof
�k of sequent A0, �(A → ◦A)0 � Ak .
basis:

A0 � A0

W �
A0, �(A → ◦A)

0 � A0

induction:

Ak+1 � Ak+1

◦ �◦Ak � Ak+1
�k

A0, �(A → ◦A)0 � Ak

→�
A0, �(A → ◦A)0, A → ◦Ak � Ak+1

� �
A0, �(A → ◦A)0, �(A → ◦A)0 � Ak+1

C �
A0, �(A → ◦A)0 � Ak+1

The required ω–proof is therefore:{
�k

A0, �(A → ◦A)0 � Ak

}
k∈ω � �

A0, �(A → ◦A)0 � �A0

�→
A0 � �(A → ◦A) → �A0

�→� (A → (�(A → ◦A) → �A))0

Proposition 3.1. If �LT L− A then there exists a recursive ω–proof of � A0.

Proof. By induction on a proof of A in LTL−.
We have partly shown already that there exist recursive ω–proofs of the 2–

sequent translations of all LTL− axioms (see above).
Furthermore the following piece of ω-proof shows that 2Sω is closed under

modus ponens:
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� A → B0

B0 � B0 � A0

→�
A → B0 � B0

Cut� B0

Finally, we prove that 2Sω is closed under application of rules ◦G and �G.

In Section 2 we have already noticed that if A is any modal formula and � is a
recursive ω–proof of � A0 then �+k is a recursive ω–proof of � Ak, for all natural
numbers k. Therefore if there exists a recursive ω–proof of the sequent � A0, then
there is also one of � ◦A0 and of � �A0. ��

Notice that a syntactic consistency proof of LTL− follows as straightforward
corollary of the previous proposition and Corollary 2.14.

3.1. Semantics

Let the language L0 defined in Section 2 also be the language of LTL−. A Kripke
model (briefly: a model) for LTL− is a pair Na =< N, a : N → 2At >.

The satisfiability relation of a modal formula A at time m in the model Na

(notation: Na |=m A) is inductively defined as usual. For sake of completeness we
recall the following cases:

Na |=m B → C ⇔ (Na |=m B ⇒ Na |=m C);
Na |=m �B ⇔ Na |=n B for all n ≥ m;
Na |=m ◦B ⇔ Na |=m+1 B.

A well–known result for LTL− is the following (see [Em90]):

Theorem 3.2. For every modal formula A

�LT L− A ⇔ Na |=0 A for all models Na.

The semantics of 2Sω is defined in terms of the Kripke semantics. The models
of 2Sω are those of LTL−.

Definition 3.3. A model Na satisfies formula Ai (notation: Na |= Ai) if and only
if Na |=i A.

Definition 3.4. Let � and � be sets of formulas. We write � |= � if, whenever
model Na is such that Na |= Ai for all Ai ∈ �, there exists Bk ∈ � such that
Na |= Bk .

Theorem 3.5 (Soundness). If the sequent � � � is provable in 2Sω then � |= �.

Proof. By straightforward induction on the height of an ω–proof of � � �. ��
Putting together the previous results we can relate provability in LTL− and in

2Sω:

Corollary 3.6. �LT L− A if and only if there exists a recursive ω–proof of the
sequent � A0 in the system 2Sω.

Notice that a full completeness theorem for 2Sω follows from Theorem 4.5
below.
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4. Provability from axioms

It is well–known that, no matter what kind of presentation we choose, a complete-
ness theorem for LTL− in the vein of Theorem 3.2 fails for provability from infinite
sets of axioms. Here is an easy counterexample to completeness: let

� = {qi → (◦qi+1) ∧ q : i ∈ ω},

where qi and q are proposition symbols such that q �= qi and qi �= qj for all
i, j ∈ ω, i �= j.

A model of � is a model Na as in Section 3.1 such that Na |=n A for all n ∈ N
and all A ∈ �. It is easy to see that each model Na of � has the property that
Na |=0 q0 → �q.

For sake of contradiction, suppose there is a proof in LTL− plus � of q0 → �q.

Then the latter is provable in LTL− plus �n = {qi → (◦qi+1) ∧ q : i ≤ n}, for
some n ∈ ω. Consider the model Na where

a(m) =
{ {q, qm} if m ≤ n + 1;

∅ otherwise.

Clearly Na is a model of �n. On the other hand Na �|=0 q0 → �q, contradicting
to soundness.

In the sequel we want to show that a completeness theorem holds for 2Sω even
in presence of axioms.

Definition 4.1. Let � be a set of modal formulas. We let

�ax = { � Ai : A ∈ � and i ∈ ω}.

1. The system 2S�
ω with proper axioms in �ax is obtained by adding all the se-

quents in �ax to the system 2Sω .
We label each proper axiom by Pax.

2. An ω–proof in 2S�
ω is an ω-proof (as in Definition 2.5, with the function g

extended to Pax) satisfying the additional clause
(a1) if �(t) =< g(Pax), n > then n = g( � Ai) for some Ai ∈ �ax and t is a

leaf of T .

Theorem 2.12 extends to the system 2S�
ω . In order to do that we first define the

degree δ�[�] of an ω-proof � in 2S�
ω :

δ�[�] =




0 if � is cut-free or each cut
formula in � occurs in �ax ;

sup{deg(Ai) + 1 : Ai is a cut formula
in � and Ai does not occur in �ax} otherwise.

We reformulate Lemma 2.11 as follows:
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Lemma 4.2. Let n ∈ N and let Ak be a formula of degree n not occurring in
�ax. Let < �, �′ > be a pair of recursive ω–proofs of sequents � � � and
�′ � �′ respectively, satisfying the property δ�[�], δ�[�′] ≤ n. Then one can
obtain in an effective way from < �,�′ > a recursive ω-proof Mix(�, �′) of
sequent �, �′−Ak � �−Ak, �′ satisfying the property δ�[Mix(�, �′)] ≤ n.

The proof of Lemma 4.2 goes in the same way as the proof of Lemma 2.11.
Theorem 2.12 can be restated as follows:

Theorem 4.3 (Cut elimination). Let � be a recursive set of modal formulas. Sup-
pose there exists a (recursive) ω-proof in 2S�

ω of sequent � � �. Then there exists
a (recursive) ω-proof in 2S�

ω of � � � satisfying the property that each cut formula
occurs in some sequent in �ax.

Proof. A straightforward extension of the proof of Theorem 2.12: replace δ with
δ� and restate case 1. and case 2. as follows:

1′. r is not a cut or r is a cut with cut formula occurring in �ax;
2′. r is a cut with cut formula not occurring in �ax. ��

Concerning the semantics, when dealing with proper axioms we restrict the
class of models to those satisfying the axioms:

Definition 4.4. Let � be a recursive set of modal formulas. A �–model is a model
Na such that Na |= Ai for all A ∈ � and all i ∈ N.

Let � and � be sets of formulas and let � be a recursive set of modal formulas.
We write � |=� � for � ∪ �ax |= �. Therefore |=� is the restriction of |= to the
class of �–models.

Theorem 4.5 (Soundness and Completeness). Let � be a (primitive) recursive
set of modal formulas and let � � � be a nonempty sequent. Then � |=� � if and
only if there exists a (primitive) recursive ω–proof in 2S�

ω of � � �.

Proof. ⇐ By straightforward induction on the height of a (primitive) recursive
ω–proof in 2S�

ω of � � �.

⇒ Following [Gir83], we say that a pre–ω–proof is an ω–proof whose associated
tree may not be well-founded.
We prove that it is possible to construct a (primitive) recursive pre–ω–proof of
� � � in 2S�

ω whose associated tree is well–founded if and only if � |=� �.

We shall construct the pre–ω–proof step-by-step, starting from the conclusion.
We closely follow the construction outlined in [Gir83] and we simply point out
the major differences.
We fix a recursive enumeration E of formulas.
At step n the portion of proof will look like

{�i � �i}i∈In

...

� � �
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where {�i � �i}i∈In is a (possibly infinite) set of hypothesis. We extend the
proof upwards by adding on top of each �i � �i a portion of proof. In order to
do that we need the following data:
– the sequent �i � �i;
– the step n;
– a marked formula E

ki

i in �i � �i.

We must consider the following cases:
(a) �i � �i is a weakening of a sequent �′

i � �′
i of one of the following forms:

Ak � Ak (logical axiom) or � Bl, for some Bl ∈ �ax (proper axiom). Then
we add on top of �i � �i the following portion of proof:

�′
i � �′

i
...

�i � �i

where the vertical dots represent a sequence of applications of weakening
and exchange rules.
Notice that if, at some step n, each sequent �′

i � �′
i with i ∈ In is either a

logical axiom or a proper axiom, we have obtained an ω–proof of � � �.

(b) Case (a) does not hold and the marked formula E
ki

i occurs in �i.

Then we have the following cases:
i. E

ki

i is atomic. Let Al be the first formula in the enumeration E not
occurring in �i � �i. We extend the proof as follows:

�i � Al, �i �i, A
l � �i=====================

�i � �i

We have replaced the hypothesis �i � �i by two sets of hypothesis.
We will describe the marking mechanism after presenting all the cases.

ii. The cases relative to the propositional connectives are treated as in
[Gir83].

iii. E
ki

i is of the form �Al.

The portion of proof above �i � �i is:

{�i � Al+j , �i}j∈ω==============
�i � �i

iv. E
ki

i is of the form �Al.

The portion of proof above �i � �i is:

�i � Al, . . . , Al+n, �i======================
�i � Al+1, . . . , Al+n, �i===================

...

�i � Al+n, �i===========
�i � �i
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v. E
ki

i is of the form ◦Al.

The portion of proof above �i � �i is:

�i � Al+1, �i==========
�i � �i

(c) Case (a) does not hold and the marked formula E
ki

i occurs in �i.

Then we have the following cases:
i. E

ki

i is atomic: proceed as in case (b)i.
ii. The cases relative to the propositional connectives are treated as in

[Gir83].
iii. E

ki

i is of the form �Al.

The portion of proof above �i � �i is:

�i, A
l, . . . , Al+n � �i======================

�i, A
l+1, . . . , Al+n � �i===================

...

�i, A
l+n � �i===========

�i � �i

iv. E
ki

i is of the form �Al.

The portion of proof above �i � �i is:

{�i, A
l+j � �i}j∈ω==============
�i � �i

v. E
ki

i is of the form ◦Al.

The portion of proof above �i � �i is:

�i, A
l+1 � �i==========

�i � �i

We still have to describe the marking mechanism.
At step 0 we mark the leftmost formula in �0 = � if � �= ∅; the rightmost

formula in �0 = � otherwise.
Now we indicate the formula that has to be marked in every hypothesis of the

portion of proof constructed above �i � �i in case (b) or (c). In either case the
hypothesis are of the form �′ � �′, with �′ = �i, �

′
i and �′ = �′

i , �i.

1. If E
ki

i is formula D
ij
j in �i = D

i1
1 , . . . , D

ik
k , we mark:

– formula D
ij+1
j+1 if j < k;

– the rightmost formula in �′ if j = k and �′ �= ∅;
– the leftmost formula in �′ if j = k and �′ = ∅;
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2. If E
ki

i is formula C
ij
j in �i = C

i1
1 , . . . , C

il
l , we mark:

– formula C
ij−1
j−1 if j > 1;

– the leftmost formula in �′ if j = 1 and �′ �= ∅;
– the rightmost formula in �′ if j = 1 and �′ = ∅.

The procedure that we have just described produces a recursive pre–ω–proof
� of � � � in 2S�

ω .
By Soundness, if � is an ω–proof then � |=� �.

If � is not an ω–proof then we can find a sequence (�i � �i)i∈ω such that

i. �0 = � and �0 = �

and, for all i,

ii. �i � �i is a hypothesis at step i;
iii. �i+1 � �i+1 is a hypothesis of the portion of proof above �i � �i.

Lemma 4.6 below ensures that the following model is well-defined:

Na =< N, a : N → 2At >,

where, for all p ∈ At,

p ∈ a(i) if pi occurs in �n for some n;
p /∈ a(i) if pi occurs in �n for some n.

By Lemma 4.7 below, we get Na |= � and Na �|= �, since �0 = � and
�0 = �.

Furthermore, if Bl is any formula in �ax then Bl does not occur in any �i

(otherwise the sequence of �i � �i’s would be finite). Hence, by Lemma 4.6, Bl

occurs in �n for some n and so Na |= Bl, again by Lemma 4.7. It follows that
Na |= �ax. Finally we get � �|=� �.

Therefore if � |=� � the pre–ω–proof � constructed above is indeed an ω–
proof of � � �. Furthermore � is (primitive) recursive. ��

We are left with the proofs of the two lemmas that have been used in the previous
proof.

Lemma 4.6. Let (�i � �i)i∈ω be a sequence satisfying the properties i.– iii. as in
the proof of Theorem 4.5. Then for every formula Bj there exists a natural number
l such that Bj occurs in �l � �l but not on both sides of the sequent.

Proof. It is clear that there cannot be any natural numbers m, n such that Bj occurs
in both �m and �n because, otherwise, Bj occurs in both �max{m,n} and �max{m,n},
contradicting to the assumption that the sequence of �i � �i’s is infinite.

Let the fixed enumeration E of formulas be

E0
k0 , . . . , En

kn, . . .

Suppose that, for all m < n, , Em
km occurs in �lm � �lm with li ≤ lj if i ≤ j.

Then Em
km occurs in �ln−1 � �ln−1 for all m < n.

By construction of the pre–ω–proof and by definition of the marking mechanism
there exists a natural number l ≥ ln−1 such that the marked formula in �l � �l is
atomic. Then En

kn occurs in �l+1 � �l+1. ��
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Lemma 4.7. Let (�i � �i)i∈ω be a sequence satisfying the properties i.– iii. as in
the proof of Theorem 4.5 and let Na be the model defined in the proof of the same
theorem. Then, for each formula Al,

(a) Na |= Al if Al occurs in �n for some n;
(b) Na |= ¬Al if ¬Al occurs in �n for some n.

Proof. 1. A is a proposition symbol: (a) and (b) hold by definition of Na.

2. the propositional cases are straightforward.
3. A is �B, for some modal formula B: suppose first that Al occurs in �n, for

some n. Let k ∈ N. Then there exists m ≥ max{n, k} such that the marked for-
mula in �m � �m is Al. Therefore �m+1 is �m, Bl, . . . , Bl+m. By induction
hypothesis we get Na |= Bl+k. Being k arbitrary, we finally get Na |= Al.

Suppose now that Al occurs in �n, for some n. There exists m ≥ n such Al is
the marked formula in �m. Therefore �m+1 is Bl+k, �m, for some k ∈ ω. By
induction hypothesis we get Na |= ¬Bl+k. Hence Na |= ¬�Bl.

4. A is �B, for some modal formula B: suppose first that Al occurs in �n, for some
n. There exists m ≥ n such Al is the marked formula in �m. Therefore �m+1 is
�m, Bl+k, for some k ∈ ω. By induction hypothesis we get Na |= Bl+k. Hence
Na |= �Bl.

Suppose now that Al occurs in �n, for some n. Let k ∈ N. Then there exists
m ≥ max{n, k} such that the marked formula in �m � �m is Al. Therefore
�m+1 is Bl, . . . , Bl+m, �m. By induction hypothesis we get Na |= ¬Bl+k.

Being k arbitrary, we finally get Na |= ¬Al.

5. A is ◦B, for some modal formula B: suppose first that Al occurs in �n, for some
n. There exists m ≥ n such Al is the marked formula in �m. Therefore �m+1
is �m, Bl+1. By induction hypothesis we get Na |= Bl+1. Hence Na |= Al.

Suppose now that Al occurs in �n, for some n.There exists m ≥ n such Al is the
marked formula in �m. Therefore �m+1 is Bl+1, �m. By induction hypothesis
we get Na |= ¬Bl+1. Hence Na |= ¬Al. ��

5. Predicate modal extension

In this section we deal with the predicate case. We extend the propositional lan-
guage L0 of Section 2 to a countable predicate language with equality L, and we
define predicate modal formulas in the usual way. We denote by V ar the countably
infinite set of L-variables.

As in [Gir83], we regard predicate formulas as equivalence classes by identi-
fying two formulas that differ only by the names of their bound variables. Also,
when substituting a term t for a variable x in a formula A(x), we always assume
that we are indeed considering A′(t), where A′(x) is a formula equivalent to A(x)

such that no free variable of t occurs bound in A′(t).
Predicate indexed formulas (briefly: formulas) are defined following Defini-

tion 2.2.
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We extend the system 2Sω by adding the following:

Rules for quantifiers

� � Ai, � � ∀
� � ∀xAi, �

�, A(t)i � � ∀ �
�, ∀xA(x)i � �

� � A(t)i, � � ∃
� � ∃xA(x)i, �

�, Ai � � ∃ �
�, ∃xAi � �

In rules � ∀ and ∃ �, variable x must not occur free in � � �. In rules � ∃ and
∀ �, t is an arbitrary L-term.

Notice also that rules are given up to variable renaming of bound variables.

Axioms for equality Equality is an equivalence relation satisfying the property
of indiscernibility of identicals. Hence, for all L-terms s, t; all atomic formulas A

and all n ∈ N, we introduce the axioms

1. � (t = t)n;
2. (s = t)n, A(s)n � A(t)n.

We also add, for all L-terms s, t and all n, k ∈ N, the axiom

3. (s = t)n � (s = t)k,

expressing the semantic property that models have constant domains and rigid
interpretation of terms.

Notice that, thanks to axiom 3., one can prove sequent (s = t)n, A(s)n � A(t)n

for an arbitrary formula A (by induction on the degree of A).
The same notation as in Section 4 is in force, with a major difference:

Definition 5.1. Let � be a set of predicate modal formulas. We let

�ax = { � Ai : A ∈ � and i ∈ ω} ∪ { axioms for equality }.
We write 2SP�

ω to denote the predicate correspondent of 2S�
ω , when � is a set

of proper axioms. We write 2SPω for 2SP ∅
ω .

We extend the definition of (pre)-ω-proof in accordance with the new axioms
and rules.

One can easily show that the correspondent of ∀x�A → �∀xA (Barcan for-
mula) and �∀xA → ∀x�A (Converse Barcan formula) are provable in 2SPω.

Concerning the third axiom for equality, notice that {(s = t)n � (s = t)k : n,

k ∈ N} is provably equivalent in 2SPω \ {axioms for equality} to

{(s = t)n � �(s = t)n, ¬(s = t)n � �¬(s = t)n : n ∈ N},
for all terms s, t.

After extending the definition of degree of a formula to the predicate case by
letting

deg(∀xA) = deg(∃xA) = deg(A) + 1,

one defines the degree δ�[�] of an ω–proof � as in Section 4 and proves that
Lemma 4.2 holds in the predicate case as well:



An approach to infinitary temporal proof theory 985

Lemma 5.2. Let n ∈ N and let Ak be a formula of degree n not occurring in �ax.

Let < �, �′ > be a pair of recursive ω–proofs of sequents � � � and �′ � �′
respectively, satisfying the property δ�[�], δ�[�′] ≤ n. Then one can obtain in
an effective way from < �, �′ > a recursive ω-proof Mix(�, �′) of sequent
�, �′−Ak � �−Ak, �′ satisfying the property δ�[Mix(�, �′)] ≤ n.

Proof. Same as the proof of Lemma 2.11. Just add to case 7. the subcases

(e) A is ∀xB(x).

Let � and �′ be

�1(x)

� � B(x)k, �1

� � ∀xB(x)k, �1

and

�′
1

�′
1, B(t)k � �′

�′
1, ∀xB(x)k � �′

respectively. Apply the induction hypothesis to the pairs of proofs < �1(t), �
′ >

and < �, �′
1 >, obtaining Mix(�1(t), �

′) and Mix(�, �′
1) respectively. The

proof Mix(�, �′) is then

Mix(�1(t), �
′)

�, �′
1−Ak � B(t)k, �1−Ak, �′

Mix(�, �′
1)

�, �′
1−Ak, B(t)k � �1−Ak, �′

Cut
�, �′

1−Ak, �, �′
1−Ak � �1−Ak, �′, �1−Ak, �′

====================================
�, �′

1−Ak � �−Ak, �′

(f) A is ∃xB(x).

This case is symmetric to the previous one. ��
From the previous lemma we get:

Theorem 5.3 (Cut elimination). Let � be a recursive set of modal formulas. Sup-
pose there exists a (recursive) ω-proof in 2SP�

ω of sequent � � �. Then there exists
a (recursive) ω-proof of � � � satisfying the property that each cut formula occurs
in some sequent in �ax .

Proof. Same as the proof of Theorem 4.3. ��
Corollary 5.4. Suppose there exists a (recursive) ω-proof of sequent � � � in
2SPω. Then there exists a (recursive) ω-proof �∗ of � � � in 2SPω satisfying the
property that each cut formula in �∗ is atomic.

5.1. Predicate semantics

Many different choices can be made to define the semantics of predicate modal
logic (see [Gar84]). None of the choices is free from restrictions and/or drawbacks.

In this section we present a semantics for 2SPω closely connected to the modal
semantics prescribing constant domains and rigid designators.
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A model M is a triple < N, (Mn)n∈ω, σ > such that:

1. N is the frame of natural numbers;
2. (Mn)n∈ω is a sequence of L-structures with common universe M such that

the interpretation of each constant or function symbol of L is the same in all
structures;

3. σ : V ar → M is an assignment of values to variables in M.

The definition of M |= An is the standard inductive one, after reading M |= An

as “A is true at world n.” For instance

< N, (Mn)n∈ω, σ >|=n ∀xA ⇔ for all a ∈ M < N, (Mn)n∈ω, σx/a >|=n A,

where σx/a is the same as σ apart from σx/a(x) = a.

The relations � |= � and � |=� � defined in the previous sections extend in
a natural way to the current setting.

Notice that if � � � is an axiom for equality then � |= �. Hence � |= � is
the same as � |=∅ �. (Recall the definition of �ax.)

We claim that the following extension of Theorem 4.5 holds:

Theorem 5.5 (Soundness and Completeness). Let � be a (primitive) recursive
set of modal formulas and let � � � be a nonempty sequent. Then � |=� � if and
only if there exists a (primitive) recursive ω–proof in 2SP�

ω of � � �.

Proof. We just give a sketch of the completeness proof. We closely follow the
proof of Theorem 4.5. We first describe the additional steps in the construction of
a pre-ω-proof � of � � �.

Nothing changes in the marking mechanism of formulas.
In addition to a recursive enumeration E of L-formulas we also fix a recursive

enumeration T of L-terms.
When describing how to extend upwards the portion of proof obtained at step n

of the construction of a pre-ω-proof, we take into account the additional cases due
to quantifiers:

Case (a) We include among the axioms those for equality.
Case (b) We add the subcases:

vi. The marked formula Ei
ki is of the form ∀xAl . The portion of proof to be

added above �i � �i is then

�i � A(y)l, �i=========== ,
�i � �i

where y is a variable not occurring in �i � �i.

vii. The marked formula Ei
ki is of the form ∃xAl . Let t0, . . . , tn be the first

n + 1 terms in the enumeration T (here and in the sequel think as if we are
performing step n of the construction).
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The portion of proof to be added above �i � �i is then

�i � A(t0)
l, . . . , A(tn)

l, �i=======================
�i � A(t1)

l, . . . , A(tn)
l, �i=====================

...

�i � A(tn)
l, �i============

�i � �i

Case (c) We add the subcases:
vi. Ei

ki is of the form ∀xAl. Let t0, . . . , tn be the first n + 1 terms in the
enumeration T . The portion of proof above �i � �i is:

�i, A(t0)
l, . . . , A(tn)

l � �i=======================
�i, A(t1)

l, . . . , A(tn)
l � �i=====================

...

�i, A(tn)
l � �i============

�i � �i

vii. E
ki

i is of the form ∃xAl. The portion of proof above �i � �i is:

�i, A(y)l � �i=========== ,
�i � �i

where y is a variable not occurring in �i � �i.

As in the proof of Theorem 4.5, we obtain a recursive pre–ω–proof � of � � �

in 2SP�
ω . If � is not an ω–proof then we can find a sequence (�i � �i)i∈ω such

that

i. �0 = � and �0 = �

and, for all i,

ii. �i � �i is a hypothesis at step i;
iii. �i+1 � �i+1 is a hypothesis of the portion of proof above �i � �i.

Remark 5.1. One can easily check that Lemma 4.6 still holds.

We now define a model M =< N, (Mn)n∈ω, σ > . We let ∼ be the equivalence
relation on L–terms given by:

s ∼ t ⇔ ∀n ∈ N ∃l ∈ N such that (s = t)n occurs in �l.

To check that ∼ is actually an equivalence relation, use Remark 5.1, the first two
axioms for equality and recall how the sequence (�i � �i) has been constructed.

We denote by [t] the ∼–equivalence class of term t.

For each constant symbol c, we let its interpretation cn in Mn be [c].
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If f is a k–ary function symbol, k > 0, we let its interpretation f n in Mn be
given by: f n([t1], . . . , [tk]) = [f (t1, . . . , tk)] for all terms t1, . . . , tk.

If P is a k–ary predicate symbol, we let its interpretation P n in Mn be given
by:

([t1], . . . , [tk]) ∈ P n ⇔ there exists l ∈ N such that P(t1, . . . , tk)
n ∈ �l.

As usual, one has to check that f n and P n are well–defined: as before, keeping
in mind the axioms for equality, how the sequence (�i � �i) has been constructed
and Remark 5.1, this is a matter of routine.

Finally we let σ(x) = [x] for all x ∈ V ar. This ends the definition of M.

A straightforward argument shows that tn = [t] for all terms t and all n ∈ ω.

Arguing as at the end of the proof of Theorem 4.5, by Lemma 5.6 below we get
� �|=� �.

Therefore, assuming that � |=� �, we obtain that the pre–ω–proof � whose
construction has been sketched above is indeed a (primitive) recursive ω–proof of
� � �. ��

We are left with the proof of the following:

Lemma 5.6. Let (�i � �i)i∈ω be a sequence satisfying the properties i.– iii. as in
the proof of Theorem 5.5 and let M be the model defined in the proof of the same
theorem. Then, for each formula Ak ,

M |= Ak ⇔ there exists l ∈ N such that Ak occurs in �l.

Proof. As in Lemma 4.7 the proof goes by induction on deg(A). In addition to the
cases treated in the proof of that lemma, we only examine the case when A is of
the form ∀xB(x).

Suppose that Ak occurs in �l, for some l, and let t be an arbitrary term. Without
loss of generality we can assume that no variable occurring in t is bound in A (recall
that A is an equivalence class rather than a formula).

There exists a natural number j such that B(t)k occurs in �j (for there are
arbitrarily large indices i such that Ak is the marked formula in �i � �i so the
claim follows by Case (c) vi).

By induction hypothesis M |= B(t)k. The latter is equivalent to saying that
<N, (Mn)n∈ω, σx/[t] >|=B(x)k,whereσx/[t] is the same asσ apart fromσx/[t](x) =
[t]. Being each element in M of the form [t], for some term t, we get M |= Ak.

Concerning the inverse implication, by Remark 5.1 suppose that Ak occurs
in �l, for some l. Then B(y)k occurs in �j for some natural number j and
some variable y (see Case (b) vi). By induction hypothesis M �|= B(y)k, namely
< N, (Mn)n∈ω, σx/[y] >�|= B(x)k (we can assume that y does not occur bound in
B(x)). Hence M �|= Ak.

The case when A is of the form ∃xB(x) is symmetric. ��
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