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Abstract
The use of computers for simulation work can be traced back to the 1950s, and the pioneering work of Stafford Beer, KD 
Tocher and others at Cybor House in Sheffield, UK, the research and development (R&D) department of British steelmakers, 
United Steel. This innovative simulation work sought to offer an abstracted, ‘total’ environment of the steelmaking process 
in which different operational activities could be modeled. Critical to this work was the ability of computer simulations to 
perform such modelling at a fraction of the cost, wasting fewer material resources, and in a considerably shorter timeframe. 
Such work can be understood as the earliest example of the application of industrial-scale ‘automated computation’ to 
a real-world industrial process. Similarly indebted to the early principles of computer simulation, Waymo engineers are 
also engaged in the building of so-called ‘conflict typologies’ designed to encode material properties of everyday driving 
interactions between road users, rather than simply road users themselves. Through ‘motion planning’, coupled with the 
categorization of driving interactions, Waymo engineers build instrumental understanding of their own system’s purported 
intelligence in navigating everyday driving situations. Functioning as ‘generative mechanisms’ rather than simply evaluative 
devices, engineers seek to industrialize—instrumentalize, scale up, rationalize—everyday driving knowledge. Through 
conflict typologies, instrumental knowledge of the actual capacities of autonomous vehicles is industrialized, materialized, 
and realized.
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1  Introduction

The use of computers for simulation work can be traced 
back to the 1950s, and the pioneering work of Stafford Beer, 
KD Tocher and others at Cybor House in Sheffield, UK, 
the research and development (R&D) department of Brit-
ish steelmakers, United Steel. This innovative simulation 
work sought to offer an abstracted, ‘total’ environment of 
the steelmaking process in which different operational states, 
activities, and scenarios could be modeled and tested. Criti-
cal to this work was the ability of computer simulations to 
perform such modeling and testing at a fraction of the cost, 
wasting fewer material resources, and in a considerably 
shorter timeframe.

Mapping the steelmaking process—from the pouring of 
steel to the casting of ingots—was an important step in the 
materialization, and realization, of the value of simulation to 

organizational decision-making. In essence, such work can 
be understood as the earliest example of the application of 
industrial-scale ‘automated computation’ (Pasquinelli 2023, 
p. 41) to a real-world industrial process. Key to this was the 
computer simulations’ ability to offer ‘instrumental under-
standings’ (Skemp 1978) of everyday workplace activities, 
while remaining ‘domain-agnostic’ (Ribes et al. 2019).

This ‘classification work’ is integral to contemporary 
machine learning (Bechmann and Bowker 2019), and the 
‘industrialisation of artificial intelligence’ (van der Vlist 
et al. 2024, p. 1) more broadly. In autonomous driving, 
simulations offer huge analytical possibilities—generat-
ing material evidence of the ‘intelligence’ of their machine 
learning-dependent autonomous vehicle systems. For 
Waymo, Google/Alphabet’s autonomous vehicle division, 
extrapolating ‘what if’ scenarios in simulation software 
offers engineers the chance to model counterfactuals based 
on real situations (Schwall et al. 2020). These ‘synthetic’ 
simulated events consequently produce a welter of different 
insights into the capabilities of their vehicle systems, each 
useful for calibrating these systems—bridging the ‘reality 
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gap’ (Steinhoff and Hind 2024)—to the driving world at 
large.

Similarly indebted to the early principles of computer 
simulation, Waymo engineers are also engaged in the 
building of so-called ‘conflict typologies’, a form of 
computational capture (Agre 1994) designed to encode 
material properties of everyday driving interactions between 
road users, rather than simply road users themselves. 
Through ‘motion planning’, coupled with the categorization 
of driving interactions, Waymo engineers build instrumental 
understanding of their own system’s purported intelligence 
in navigating everyday driving situations.

By instrumental understanding, I mean operational, 
rule-based knowledge of a specific technological process—
whether steelmaking or autonomous driving—deemed 
necessary for its successful execution. Instrumental 
knowledge is the kind of knowledge that swirls around, 
circulates through, and pools in particular places and settings 
within an organizational or institutional context (Lave and 
Wenger (1991). Engineers—whether adept at early computer 
simulation or contemporary machine learning—are those 
who are typically engaged in cultivating, standardizing, 
materializing, and instrumentalizing such knowledge within 
a workplace setting.

Conflict typologies, far from just retrospective tools 
for evaluating past crashes—so-called ‘contact events’—
instead govern and guide the machine learning work carried 
out by Waymo engineers to optimize their own vehicles. 
Through these ‘generative mechanisms’ engineers seek 
to industrialize—instrumentalize, scale up, rationalize—
everyday driving knowledge. Through conflict typologies 
instrumental knowledge of the actual capacities of 
autonomous vehicles are industrialized, materialized, and 
realized.

2 � United Steel: simulation work in industrial 
settings

Simulation work can be understood as work-based activities 
centered on designing, optimizing, and utilizing computer 
simulations (Küppers et al. 2006). Often understood through 
the lens of cybernetics (Wiener 1962; Pickering 2009) and 
cybernetic management (Beer 1959), computers began to 
be used for simulation work in industrial settings because 
of their potential ability to map ‘closed-loop’ factory 
production activities such as steelmaking. KD Tocher’s The 
Art of Simulation (1963) offered the technical grounding 
for such early computer simulation work, building on prior 
work on sampling methods and random number generation.

As Tocher (1963) suggested, computer simulation work 
was indebted to three intersecting trajectories: the theory 
of mathematical statistics, applied mathematics involving 

partial differential equations, and the ‘new science’ (Tocher 
1963, p. 3) of Operational Research (OR). At Cybor 
House Tocher and colleagues had amassed expertise in 
all three areas and more.1 As Hollocks recalls, the staff 
at Cybor House, on establishment in 1957, ‘included 
three psychologists, an anthropologist, two zoologists, 
a philosopher and a classicist—as well as the range of 
scientific disciplines more normally (now) associated with 
an Operational Research department’ (Hollocks 2006, p. 19). 
It was an eclectic mix of scientific disciplines and expertise, 
reflective of the need for novel ideas, and interdisciplinary 
thinking, in the application of new computational ideas to 
specific industrial problems.

Steinhoff and Hind (2024) refer to the early (non-digital 
computer) era of simulation as the ‘statistical regime’ 
(Steinhoff and Hind 2024, p. 7), in which pseudo-random 
number generation in the form of ‘Monte Carlo simulation’ 
was typically employed. Realizing its value, it quickly shifted 
from being used purely as a ‘numerical calculation machine’ 
to an ‘alternate reality…on which “experimentation” could 
be conducted’ (Galison 1996, p. 119, quoted in Steinhoff 
and Hind 2024, p. 7). The second era, the ‘discrete-event 
regime’ (Steinhoff and Hind 2024, p. 8), offered an enhanced 
environment in which Monte Carlo-style simulations 
‘progressively gave way to more involved bespoke models 
of real systems’ (Hollocks 2008, p. 131, quoted in Steinhoff 
and Hind 2024, p. 8). Cybor House ‘became the key location 
where [this] cutting-edge simulation work started to be 
done’ (Steinhoff and Hind 2024, p. 8), still based on theories 
of mathematical statistics, where a specific industrial sites’ 
‘normal’ operating behavior could be modeled, but where 
more expansive, and experimental, forms of computer 
simulation were conducted.

2.1 � Productivity and agglomeration

The use of early computer simulations within industrial 
settings offers a perspective on how, and where, machine 
learning-driven simulation might be employed now. As the 
United Steel example suggests, the application of computer 
simulations stimulated increased economic productivity, 
enabled by economic agglomeration. In 1957, the year 
Cybor House opened, British steel production output was 
22 million tonnes (Office for National Statistics 2016). 
In 1971, four years after the British steel industry was 
nationalized, there were 302,600 steel workers, reaching 
peak steel production output in 1970 of 28.3 million tonnes 

1  Cybor House was a portmanteau of cybernetics and operational 
research (CY-BOR).
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(Office for National Statistics 2016).2 Innovations such as 
computer simulation became of huge potential value to the 
industry helping to rationalize production processes, lower 
production costs, and maximize production outputs.

Akin to an early Silicon Valley, Sheffield was known 
as ‘Steel City’, home to steelmaking since the eighteenth 
century. Cybor House was located in the Broomhill area 
of Sheffield, with United Steel operating steelmaking sites 
across South Yorkshire and Lincolnshire, such as the famous 
Appleby Frodingham Works in Scunthorpe, and a site at 
Templeborough located between Sheffield and Rotherham 
(Hollocks 2006). Located just over an hour away from 
Manchester, where the first stored-program computers 
were being developed (at the University of Manchester) 
and manufactured (at Ferranti) (Lavington 2019), United 
Steel took advantage of a proto-economic agglomeration of 
electrical engineering research, computing manufacturing, 
and the steel industry concentrated around Manchester and 
Sheffield, in the north of England (Duranton and Kerr 2018; 
Klepper 2010; Warren 1969).3

2.2 � Domains and mechanization

The application of computer simulation within the steel 
industry can be understood in two further ways: first, as 
an early example of the ‘logic of domains’ (Ribes et al. 
2019) that now pervades the computing industry. As Ribes 
et al. understand it, the concept of the domain first became 
prevalent during AI research on ‘expert systems’ during the 
1960s and 1970s, where ‘the concept of the domain serves 
to objectivize the knowledge of circumscribed groups in 
order to “capture” and “encode” it within expert systems’ 
(Ribes et al. 2019, p. 284). As Woolgar suggested, expert 
systems were ‘computer programmes intended to serve 
as consultants for decision making’ (Woolgar 1985, p. 
560–561), rather than fully ‘autonomous’ agents in any real 
sense. Accordingly, such expert systems required two parts: 
a ‘knowledge base containing the facts and heuristics of 
a particular discipline’ (Woolgar 1985, p. 561) otherwise 
known as ‘domain knowledge’, and an ‘inference procedure, 
a set of rules for the manipulation of the knowledge base’ 
(Woolgar 1985, p. 561) in order for the expert system to be 
able to assist in domain-specific decision-making.

Pervading this and other meanings of domains is the 
distinction between ‘domain specificity’ and domain 

independence’ (Ribes et al. 2019). As Ribes et al. state, 
‘making the crossing from independence to domains 
or vice versa, is a central concern for those adopting the 
logic. Domain independent tools, techniques, algorithms or 
theory must be “applied”, “tailored”, or “customized” to a 
specific domain’ (Ribes et al 2019, p. 284). The General 
Steelplant Program (GSP) developed at United Steel was 
an early demonstration of this logic in action, understood 
as ‘perhaps…the most significant work of enduring value 
to be carried out at Cybor House’ (Hollocks 2006, p. 21). 
Over time, the GSP morphed into a domain independent, 
General Simulation Program for use in other settings beyond 
steel manufacturing. As Hollocks recounts, United Steel 
were drawn to using such a simulation program precisely 
because it offered a ‘general specificity’: the potential to map 
production cycles across the different furnace methods in use 
across their multiple plants. As Hollocks writes:

[KD] Tocher knew that United Steel had a number 
of plants across the north of England. The plants in 
Scunthorpe, Rotherham, Sheffield and Workington 
covered three different technologies: open-hearth, 
electric arc and Bessemer converter…So Tocher saw 
the challenge as in producing a comprehensive model 
that could be used for any of these sites—a General 
Steelplant Program, GSP….Although there was clearly 
a similarity in purpose across the United Steels’ steel 
plants, the various technologies, equipment and layouts 
meant important differences in modelling. Tocher thus 
had to conceive a framework that would address the 
steel plant problem more generically. (Hollocks 2008, 
p. 132)

Second, the development of the GSP, and the general 
specificity it offered, can be placed within a longer history 
of the mechanization of both hand calculation and mental 
labor (Pasquinelli 2023). This mechanization involves, thus, 
not only an ‘industrialization’ of calculation (i.e., a ‘scaling 
up’), but the incorporation of specific representational 
forms—maps, plans, and as such was the case with United 
Steel, diagrams or programs. As Pasquinelli considers, ‘the 
idea of the automatic computer, in the contemporary sense, 
emerged out of the project to mechanise the mental labour 
of clerks rather than the old alchemic dream of building 
thinking automata…’ (Pasquinelli 2023, p. 40).

The question for United Steel, for which a combination 
of a Ferranti Pegasus computer and their in-house GSP were 
the answer, was how to use new computing technologies 
to aid decision-making across all operations, using these 
technological innovations to rationalize steel production 
(Lavington 2000). Here, what Pasquinelli refers to as 
‘automated computation’ (Pasquinelli 2023, p. 41) 
concerned both an industrialization of computation, and 
the subsequent application of industrialized computation 

2  By comparison, 34,500 people were employed in the steel industry 
in 2014, and steel production output was 11 million tonnes in 2016 
(Office for National Statistics 2016). The annual volume of crude 
steel produced in the UK was 5.96 million tonnes in 2022 (Statista 
2022).
3  Many of the immediate steelmaking enterprises lay in the Lower 
Don Valley area of Sheffield/Rotherham, next to the River Don.
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to (heavy) industry. Computer simulation, thus, can be 
considered an extension of these principles and practices, 
seeking to offer the computation of possibilities in aid of 
industrial rationalization. Simulation offered industrial 
actors, and those acting on their behalf (i.e., managers), the 
ability to play with metaphorical levers without wasting 
time, labor, and resources pulling literal equivalents.

2.3 � Instructional language

As mentioned in the previous section, computer simulation 
built on the prior use of statistical methods. As Hollocks 
wrote, ‘across business and industry, manual/“hand” 
simulation was a not uncommon tool in OR and Work 
Study departments’ activity in the 1950s/1960s, using 
tables of random numbers as the foundation’ (Hollocks 
2008, p. 131). The innovation was a computerization, and 
above all an industrialization, of simulation itself. Three 
aspects were key to this industrialization: the development 
of an instructional language, the implementation and 
instrumentation of resulting knowledge, and an imagined, 
idealized vision of how it might further be put to use.

First, as a form of discrete-event simulation, the GSP 
considered the steelplant ‘as a set of machines, each with a 
set of states’ (Tocher 1960, p. 59):

Any change(s) of the state(s) of (a) machine(s) is (are) 
regarded as an event and the simulation moves from 
event to event. At any moment of times, machines 
are grouped together in activities, which endure for a 
sampled time, and then become free, after a possible 
change of state, to regroup with other machines in 
further activities. (Tocher 1960, p. 59)

The development of an instructional language was critical 
to a kind of ‘instrumental understanding’ (Skemp 1978) of 
the discrete events integral to the steelmaking process. As 
Tocher wrote, ‘a language has been developed for naming 
the machines systematically and describing their states and 
the times of changes in these. Tests on the states and changes 
to them can be made in statements in language’ (Tocher 
1960, p. 59). In this case, instrumental understanding would 
amount to knowledge of, and ability to execute, the rules 
governing steel production in any one instance or setting.4 
This instructional language was accompanied by a visual 
flow diagram of all steelplant activities [Fig. 1], constituting 
a holistic ‘operational ontology’ encompassing all steelplant 
sites and technologies.

2.4 � Instrumentation of knowledge

Relevant to Tocher’s (1960) articulation of discrete-event 
simulation is Philip Agre’s (1994) notion of computational 
capture, as defined during the age of desktop computing 
in the 1990s. It might typically comprise of five stages: 
analysis, articulation, imposition, instrumentation, and 
elaboration. As Agre suggested, the first analytical 
stage involves the study of ‘an existing form of activity’ 
identifying ‘its fundamental units in terms of some 
ontology (entities, relations, functions, primitive actions, 
and so forth)’ (Agre 1994, p. 109–110). In the next stage, 
a ‘grammar’ of the activity is established, a way ‘in which 
[the] units can be strung together to form actual sensible 
stretches of activity’ (Agre 1994, p. 110). As Agre contends, 
establishing this ‘grammar of action’ (Agre 1994, p. 109) is 
far from straightforward, ‘often requir[ing] revision of the 

Fig. 1   Simplified flow diagram of activities. Acid Bessemer steel-
making plant. Source: Tocher (1960)

4  Throughout, I use instrumental understanding in a slightly differ-
ent sense to Skemp (1978)—not necessarily as a kind of rule-based 
knowledge without context or relations, but as a kind of situated rule-
based knowledge, dependent on the specifics of setting, in the sense 
intended by Lave and Wenger (1991).



AI & SOCIETY	

preceding ontological analysis’ (Agre 1994, p. 110). Once 
figured out, ‘the resulting grammar is then given a normative 
force’ (Agre 1994, p. 110), with those workers engaged in 
the activity ‘induced to organize their actions so that they 
are readily “parsable” in terms of the grammar’ (Agre 1994, 
p. 110). The two final subsequent stages—instrumentation 
and elaboration—concern the ongoing execution and 
maintenance of the computational capture process, with 
data generated through it ‘stored, inspected, audited, merged 
with other records, [and] subjected to statistical analysis’ 
(Agre 1994, p. 110). Agre’s illustration of how existing 
activities (i.e., within an office setting) might be captured 
and rendered through an operational ontology, was already 
being considered by early computer simulation practitioners 
like Tocher.

Agre’s (1994) positing of computational capture 
can further be understood as an update to the ‘Babbage 
principle’, established by Charles Babbage in 1832, that.

states that the organisation of a production process 
into small tasks (the division of labour) allows for 
the calculation and precise purchase of the quantity 
of labour that is necessary for each task (the division 
of value). The division of labour establishes a 
privileged perspective for the surveillance of labour, 
but also helps to modulate the extraction of surplus 
labour from each worker according to need. In more 
analytical terms, the Babbage principle posits that the 
abstract diagram of the division of labour helps to 
organise production while at the same time offering 
an instrument for measuring the value of labour. In 
this respect, the division of labour provides not only 
the design of machinery but also of the business plan. 
(Pasquinelli 2023, p. 47, authors’ emphasis)

In an empirical illustration of Agre (1994) and the 
Babbage principle, Tocher (1960) outlined eight stages 
for the use and embedding of the GSP in specific work 
contexts. These can be divided into three corresponding 
phases that map onto Agre’s (1994) own capture model. In 
the first analytical/articulation phase, plant processes were 
studied, and a simulation model mapping those processes is 
designed. Next, in an imposition phase, a decision control 
procedure was developed, plant records were collected and 
analyzed, and simulated models and control procedures were 
translated to a computer program. Lastly, once deployed, in 
an instrumentation/elaboration phase, long-term operational 
goals were evaluated, an experimental ‘goal searching’ 
programme might be designed, and equipment for ‘real’ 
plant control might be manufactured (Tocher 1960, p. 
64–65).

Two points can be made on the above. First, that multiple 
different workers were involved in the instrumentation of 
knowledge. Earlier stages were conducted by engineers and 

‘staff trained in simulation model building’ (Tocher 1960, 
p. 64), with ‘work study teams’ and programmers engaged 
in the extraction of plant record data (Tocher 1960, p. 64). 
While ‘plant managers’ (Tocher 1960, p. 65) dealt with long-
term goals, ‘laboratory staff’, plant managers and ‘equipment 
manufacturers’ (Tocher 1960, p. 65) ideally worked together 
to design new plant equipment.

Second, that the actual stages involved were necessarily 
more complex, and more specific, than Agre’s (1994) model 
supposes—by its very nature. In the case of the GSP, it was 
clear that the ‘normative force’ of the model Agre (1994, 
p. 110) speaks of, concerned not only ‘real-time capture’ 
(Agre 1994, p. 110) but also a need for ‘security, efficiency, 
protection from liability, and simple control’ (Agre 1994, 
p. 110) as he likewise mentions. Here the value of the GSP 
was in its ‘bespoke generality’—being able to be deployed 
in different contexts, following an established, executable 
blueprint.

2.5 � Idealized vision of elaboration

Some of Tocher’s (1960) model was evidently speculative, 
an imagined, idealized vision of how the GSP might further 
be used. In relation to the final stage, Tocher wrote that 
it had ‘not yet been reached in any applications of this 
technique’ (Tocher 1960, p. 65). Nevertheless, he made a 
proposal, in which specific machines under both human and 
automatic observation could be connected with data fed into 
a computer to be outputted as punched tape data, where a 
‘special computer programme provides for the checking 
and initial sorting of the data…[which] can be followed 
by any desired standard programmes for data analysis’ 
(Tocher 1960, p. 64). With this, Tocher (1960) envisioned 
a ‘real-time’ application of computer simulation, and how 
it could be integrated into new computational—evidently 
cybernetic—systems of real-time data collection, activity 
analysis, and control. In short, that simulation would play 
a significant part in the design and implementation of 
industrial forms of the kind of self-regulating, feedback-
enabling, cybernetic systems imagined by Beer (1959).

3 � Industrialization of AI

As a bridge to the next section, it is important to understand 
how the industrialization of computing has shaped computer 
simulation and AI/machine learning alike. As Steinhoff 
and Hind have written, contemporary synthetic data work, 
indebted to earlier innovations in computer simulation, 
is itself ‘part of a long history of the industrialization of 
computing technology’ (Steinhoff and Hind 2024, p. 16). 
Likewise, that proliferating dependency on cloud computing 
services offered by the likes of Microsoft Azure, Google 
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Cloud Platform (GCP), and Amazon Web Services (AWS) 
constitutes the wholesale ‘industrialisation of artificial 
intelligence’ (van der Vlist et al. 2024, p. 1). The question of 
computation—whether in the form of computer simulation, 
synthetic data, or machine learning—is never too far away 
from the question of industrialization.

How, then, can the industrialization of such technologies 
be characterized? Firstly, this involves a ‘scaling up’ 
of particular technologies from experimental or test 
environments to real-world settings (Pfotenhauer et  al. 
2022). Contemporary big tech firms such as Microsoft, 
Google/Alphabet and Amazon are similarly referred to as 
‘hyper-scalers’ (Narayan 2022), able to use aforementioned 
cloud computing resources to offer planetary-scale 
services to clients. In this, the ability to scale up particular 
technologies is usually framed as a kind of entrepreneurial 
zeal or innovative ambition, long the preserve of modernist 
projects, but supercharged ‘in the era of big tech, [where] 
the aim is frequently to scale up first and profit later’ 
(Pfotenhauer et al. 2022, p. 5).

Second, this requires a certain commitment to, and 
actualization of, capital investment—both in the technology 
itself and the expertise to develop, maintain, and adapt 
it. Contemporary generative AI products demand huge 
resources to train underlying large-language models (LLMs) 
and to deploy them in specific settings. OpenAI’s GPT-4 
cost over US$100million to train, according to its CEO 
Sam Altman (Knight 2023), with future models likely to 
cost considerably more (Murgia and Hammond 2024), 
depending on the number of parameters they utilize (Patel 
2023). To connect to the previous issue, ‘scaling out these 
models to users and agents costs far too much’ (Patel and 
Wong 2023, n.p.), with the expense of feeding live domain 
data into machine learning models (known as ‘inference’) 
‘exceed[ing] that of training by multiple folds’ (Patel and 
Wong 2023, n.p.).

Third, it demands a ready—or at least plausible—activity 
to which it can be applied. For LLMs, the activities are 
various, with OpenAI’s GPT-3 evaluated on a range of 
text-based tasks, from next-word prediction and ‘closed 
book’ question answering, to arithmetic and news article 
generation (Brown et al. 2020). GPT-4 already underpins 
Microsoft’s Copilot, an AI-driven assistant designed to help 
users with an array of rudimentary computer-based office 
tasks, from creating agendas and drafting boilerplate emails, 
to summarizing documents and creating presentations 
(Microsoft 2024).

3.1 � Classification work in machine learning

Classification work is integral to the industrialization of AI. 
As Muldoon et al. write, ‘AI data workers are required for a 
variety of different tasks in the AI production process, from 

very early stages of data collection and organisation, up to 
the final stages of model evaluation and data verification’ 
(Muldoon et al. 2024, p. 8). AI data work, as Muldoon 
et al. (2024) term it, might well be considered a form of 
‘microwork’ (Irani 2015), ‘cloudwork’ (Woodcock and 
Graham 2019) or even ‘ghost work’ (Gray and Suri 2019), 
although this is certainly not always the case. Indeed, 
classification work in machine learning typically straddles 
these definitions, depending on the context. In the case study 
to follow, I argue that the design of ‘conflict typologies’ in 
autonomous driving simulations is a form of classification 
work, echoing the development of operational ontologies 
in industrial settings in the 1950s. Despite being integral to 
machine learning, as Tubaro et al. (2020) consider, it can 
hardly be considered a form of microwork if this involves 
tasks that are ‘barely visible and poorly compensated’ 
(Tubaro et al. 2020, p. 2) or involve ‘activities that humans 
can do quickly and easily’ (Tubaro et al. 2020, p. 2).

Bechmann and Bowker (2019) consider classification 
work as integral to the building of machine learning 
models—a critical stage in the AI ‘pipeline’. Different 
machine learning approaches operationalize classification 
in different ways, with ‘supervised’ approaches concerning 
‘algorithms that work with classifiers or labels to generate 
predefined outputs’ (Bechmann and Bowker 2019, p. 4) and 
‘unsupervised’ approaches with ‘no predefined output…
no such supervisor… [and] only the input data’ (Alpaydin 
2016, p. 5). The objective of this classification work is to 
determine a certain ‘ground truth’ (Jaton 2021) on which a 
machine learning model can be built, dividing the world into 
constituent pieces and objects, each with their own qualities 
and characteristics. As a process of ‘localization’ (Gil-
Fournier and Parikka 2021), establishing a ground truth for 
a machine learning model anchors its interpretive abilities 
to a statistical real-world, much like previous iterations 
of computer simulation (Steinhoff and Hind 2024). In the 
absence of classification work, and specifically, ‘without the 
training dataset as a ground truth, there is no way in which 
a specific ML [machine learning] model or method can be 
judged as accurate or, indeed, successful…’ (Hind 2024, 
p.76).

Classification work is not only found in contemporary 
machine learning settings. As Bowker and Leigh Star 
suggest, ‘to classify is human’ (Bowker and Leigh Star 
1999, p. 1), and despite the thoroughly modernist practice 
of classification work, ‘not all classifications take formal 
shape or are standardized in commercial and bureaucratic 
products’ (Bowker and Leigh Star 1999, p. 1). In our day to 
day lives, ‘we have certain knowledge of…intimate spaces’ 
(Bowker and Leigh Star 1999, p. 2) where such everyday 
categorization work takes place: ‘any part of the home, 
school, or workplace reveals…systems of classification’ 
(Bowker and Leigh Star 1999, p. 2). Accordingly, 



AI & SOCIETY	

classifications ‘appear to live partly in our hands—definitely 
not just in the head or in any formal algorithm’ (Bowker and 
Leigh Star 1999, p. 2). Knowledge, and understanding, of 
the categories and category choices we make are enrolled 
into specific practices, ‘embodied in a flow of mundane 
tasks…and many varied social roles’ (Bowker and Leigh 
Star 1999, p. 2).

Despite the ordinary invisibility of what Bowker and 
Leigh Star call a kind of ‘folk classification’ (Bowker and 
Star 1999, p. 2), ‘the formal, bureaucratic ones trail behind 
them the entourage of permits, forms, numerals, and the 
sometimes-visible work of people who adjust them to make 
organizations run smoothly’ (Bowker and Star 1999, p. 
2). In such settings, classifications are more evident, more 
noticeable—attached to formal documentation, defined 
in job roles, work policies, and as illustrated before, laid 
down in simulation program manuals. Those who perform 
classification work might not, themselves, be classified 
quite so plainly as ‘classification workers’, but much of this 
work—especially forms of office work and ‘tech’ work—
comprises a significant part of what they do. The question 
then becomes: ‘but what are these categories? Who makes 
them, and who may change them? When and why do they 
become visible? How do they spread?’ (Bowker and Star 
1999, p. 3, authors’ emphasis). As they further suggest:

No one, including Foucault (1970, 1972), has 
systematically tackled the question of how these 
properties inform social and moral order via the new 
technological and electronic infrastructures. Few have 
looked at the creation and maintenance of complex 
classifications as a kind of work practice with its 
attendant financial, skill, and moral dimensions. 
(Bowker and Leigh Star 1999, p. 5)

This is despite the moral and cultural forces that not only 
power them, but bake them into ‘the modern information 
technology world’ (Bowker and Leigh Star 1999, p. 5). 
As Bechmann and Bowker contend, ‘categories are not a 
priori constructed, but highly context sensitive’ (Bechmann 
and Bowker 2019, p. 4), reflecting the specific social, 
cultural, political, and organizational settings of their 
creation and maintenance. As contemporary examples of 
‘new technological and electronic infrastructures’, machine 
learning is replete with classifications. While classification 
work does not occur equally across different machine 
learning approaches, as mentioned earlier, as Bechmann and 
Bowker contend, ‘we are still talking about classification 
work all the way down—the only issue is how visible and 
how a priori that work is’ (Bechmann and Bowker 2019, p. 
4). Accounting ‘for how classes and social categorization 
arise in the design process as deliberate [as well as] 
unintentional consequences of decisions made’ (Bechmann 
and Bowker 2019, p. 4) is critical. Classification work 

does not simply disappear in the absence of established or 
communicated categories: it bubbles under the surface or 
goes by another name.

Machine learners ‘are often simply called “classifiers”’ 
(Mackenzie 2017, p. 10) because of the importance of 
classification work to the machine learning model building 
process. While machine learning is dependent upon prior 
classification work, it also generates ‘new categorical 
workings or mechanisms of differentiation’ (Mackenzie 
2017, p. 10). The ‘learning’ part of machine learning, 
thus, is largely an assumed ability to ‘invent or find new 
sets of categories for…particular purpose[s]’ (Mackenzie 
2017, p. 10). If deemed useful in some way, these new 
categories are put to work themselves, dividing different 
social activities and interactions up based on their exhibited 
qualities. This classification work—how it is performed, 
who it is carried out by—can be understood to be a product 
of the industrialization of AI and machine learning, with 
its incessant, and infinite, need to classify objects and 
phenomena. Thus, while the existence and utility of cloud 
computing infrastructures are the most evident illustrations 
of the industrialisation of AI (van der Vlist et al. 2024), 
evidence can also be found in the form, scale, and type of 
classification work being conducted in particular settings.

As Mackenzie considers, paying ‘attention to [the] 
specificity of practices is an elementary prerequisite 
to understanding human–machine relations and their 
transformations’ (Mackenzie 2017, p. 9). Thus, as 
Mackenzie further suggests:

If we understand machine learning as a data 
practice that reconfigures local centers of power and 
knowledge by redrawing human-machine relations, 
then differences associated with machine learners 
in the production of knowledge should be a focus of 
attention. (Mackenzie 2017, p. 9-10)

To reiterate, as Bechmann and Bowker (2019) consider, 
classification work is integral to the building of machine 
learning models. Here, data collection, data cleaning, and 
model training are all classificatory steps in the machine 
learning process, where machine learners might simply 
‘assume’ or derive a priori categories from ‘institutionalized 
or accepted knowledges’ (Mackenzie 2017, p. 10).

3.2 � Classification work in the automotive industry

As a bridge to the next section, it is important to provide 
an insight into how classification work is performed in 
the automotive industry. As Tubaro and Casilli contend, 
the automotive industry ‘has become one of the largest 
clients of digital data-related micro-working services, 
notably for the development of autonomous vehicles and 
of connected cars’ (Tubaro and Casilli 2019, p. 335). This 
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microwork might take different forms within the industry, 
but typically involves different kinds of classification work. 
As Tubaro and Casilli consider, specific classification tasks 
might involve image classification (organizing images 
according to certain criteria like day/night), object detection 
or tagging (labeling road users like cars and cyclists), 
landmark detection (identifying features in the wider 
driving environment) or semantic segmentation (raster-
based, pixel-level categorization) (Tubaro and Casilli 2019, 
p. 340). In the aggregate, these tasks ultimately constitute 
a ground truth on which machine learning models depend, 
dividing a real-world driving environment into constituent 
parts, upon which a subsequent autonomous vehicle system 
can calculate the ‘path trajectories’ of other vehicles (Hind 
2023).

Yet, what is important to consider here is that while 
such work is crucial to machine learning, and necessary to 
build autonomous vehicle systems, much of it within the 
automotive industry is not necessarily outsourced as forms 
of crowd or cloudwork. Instead, such work more typically is 
conducted in universities and research centers, occupying a 
fuzzy space between manufacturers and public institutions 
(Hind et al. 2024). Most of the AI microwork firms identified 
by Tubaro and Casilli are understood to be ‘generalist’ 
platforms (Tubaro and Casilli 2019, p. 337), i.e., that they 
do not offer classification services specifically, or only, for 
automotive clients. The now-shuttered Argo AI Center for 
Autonomous Vehicle Research, hosted at Carnegie Mellon 
University (CMU) in Pittsburgh, USA demonstrated this 
distinction, being home to research on image classification 
and ‘sensor work’ (Hind 2023) more broadly. Other 
autonomous vehicle start-ups such as Waabi occupy a similar 
space, led by Raquel Urtasun, a computer scientist based at 
the University of Toronto.5 In such cases, fine-grain image 
annotation work is typically required for autonomous vehicle 
applications, more typically carried out by computer science 
graduates in research settings, such as with development 
of the foundational KITTI Vision Benchmark Suite.6 The 
setting of machine learning and machine vision ‘challenges’ 
follows a similar blueprint, enrolling newly-minted PhD 
students in tackling machine learning problems in the 
autonomous driving domain (Hind et al. 2024). For all these 
reasons, such classification work is not outsourced, and not 
conducted by remote workers in the sense articulated by the 
likes of Tubaro et al. (2020) and Muldoon et al. (2024). This 
is despite new forms of automotive microwork emerging, 
such as remote ‘intervention’ by engineers (Hind 2022a) to 
help rescue stranded autonomous vehicles (Hawkins 2023).

4 � Waymo: Waymo driver and contact events

In this final section, I contend that the design of ‘conflict 
typologies’ for autonomous driving simulations are intended 
to standardize, scale, and ultimately industrialize AI within 
this specific domain context. In February 2023, engineers 
in Google/Alphabet’s autonomous vehicle division released 
a research paper examining the safety performance of the 
Waymo Driver, Waymo’s autonomous vehicle system 
(Victor et al. 2023). In an accompanying blogpost, Waymo 
announced they had ‘accomplished another first’ exceeding 
‘one million miles on public roads with no human behind 
the wheel’ (Waymo 2023, n.p.). Both documents can 
be understood as key components in Waymo’s efforts to 
demonstrate the safety of their autonomous vehicles, in a 
bid to convince the wider public, government, legislators, 
and regulators that their vehicles are fit for public use.

More specifically, they can be understood as evidence of 
Waymo’s work to both ‘suspend’ and ‘manage’ the meaning 
of crashes—referred to as ‘contact events’ by the company—
involving their vehicles, in order to provide a convincing 
illustration of their safety (Hind 2024). This and other public 
releases of safety data from their vehicles (Schwall et al. 
2020) can be considered responses to past events involving 
autonomous vehicles, like the death of Elaine Herzberg—
hit by an Uber ATG autonomous vehicle undergoing 
testing—in 2018 (Hind 2022b; Smiley 2022). In late 2023, 
‘robotaxi’ operator Cruise had its license suspended by the 
California Department of Motor Vehicles, after obstructing 
an investigation into a crash involving one of its autonomous 
vehicles (Korosec 2023). In short, ‘winning’ the discursive 
battle over the purported safety of autonomous vehicles has 
been an increasingly important aim for autonomous vehicle 
firms.

The purpose of the research paper, as stated by 
the authors, was firstly ‘to examine all contact events 
experienced during the first one-million miles of rider-only 
(RO) operations of the Waymo Driver’ (Victor et al. 2023, 
p. 7) and second to ‘explore what conclusions can be made 
from this observed real-world safety performance in terms 
of the frequency and severity of these contact events’ (Victor 
et al. 2023, p. 7). Waymo conducts autonomous vehicle 
operations in two locations in the US (Phoenix, Arizona and 
San Francisco) using two versions of their Waymo Driver 
platform, referred to as the fourth generation (Chrysler 
Pacifica) and fifth generation (Jaguar I-Pace). Both versions 
are active in Phoenix, with only the fifth generation deployed 
in San Francisco. Analyzing data collected from all one-
million miles of RO operations, from 2019 to January 21, 
2023, the authors identified 20 contact events. Of these, 1 
occurred in 2020, 6 in 2021, 11 in 2022, and 2 in 2023. 18 
occurred in Phoenix, with another two in San Francisco. 12 5  https://​waabi.​ai/.

6  https://​www.​cvlibs.​net/​datas​ets/​kitti/.

https://waabi.ai/
https://www.cvlibs.net/datasets/kitti/
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contact events involved fourth generation versions of Waymo 
Driver (i.e., Chrysler Pacifica), and a further eight involved 
fifth generation versions (i.e., Jaguar I-Pace) (Victor et al. 
2023).

All recorded contact events are collated into a single 
table, summarizing much of the above details, and including 
a ‘danger description’ and a ‘narrative description’ of each 
contact event (Victor et al. 2023, p. 11–13). A calculation 
of injury risk accompanies each entry, using an adapted 
version of the industry-standard Maximum Abbreviated 
Injury Scale of 2 or greater (MAIS2+), to determine the 
probability of an AIS2 level injury or higher (p(MAIS2+)). 
Examples of these injuries include ‘concussions with no 
or brief loss of conscience, fractures to the sternum, and 
2 or fewer rib fractures’ (Victor et al. 2023, p. 8). The first 
contact event registered a (p(MAIS2+)) score of 4%, eight 
contact events are calculated between 1 and 2%, and a final 
11 contact events register a score between 0 and 1% (Victor 
et al. 2023, p. 11–13).

4.1 � Conflict typologies as industrializing 
knowledge

Each contact event is categorized into one of 16 ‘conflict 
groups’ which comprises an overarching ‘conflict typology’ 
[Fig. 2]. As the authors state, ‘the conflict groups are one 
of the layers of a conflict typology that also describes the 
conflict partners, role (initiator or responder), and the per-
spectives of each actor involved in a conflict’ (Victor et al. 
2023, p. 28). In developing this broad conflict landscape, ‘a 
conflict typology can be used in safety impact methodolo-
gies that analyze and predict the potential performance of 
a safety countermeasure or system within a set of defined 
crash modes’ (Kusano et al. 2023, p. 1).7

The value of the conflict typology is in how it is used to 
categorize contact events. Each conflict group demarcates 
a different contact event. The most familiar, or easy to 

Fig. 2   Eight of the 16 conflict 
groups and short descriptions.  
Source: Victor et al. (2023)

7  Kusano et  al. also mention that conflict typologies are sometimes 
called ‘crash groups’, ‘maneuver typologies’ or ‘scenario typologies’ 
(Kusano et al. 2023, p. 1).
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imagine, of these might be single-vehicle (SV) conflict, 
described as including ‘all actions (or lack thereof) 
where the ego vehicle is traveling in a trafficway but then 
experiences an in-trafficway interaction without a conflict 
partner (e.g., a rollover event) or an off-trafficway interaction 
(e.g., a road departure)’ (Victor et al. 2023, p. 28). Five of 
the 20 reported incidents are categorized as SV events. In 
addition, a Front-to-Rear (F2R) conflict is described as 
involving ‘one road user interacting with another road user 
in the same direction and same travel lane’ (Victor et al. 
2023, p 28). Of the contact events reported, a total of six 
are classified as F2R events. Other entries are categorized 
as Backing (BACK) events, denoting ‘all interactions where 
at least one road user is moving in reverse’ (Victor et al. 
2023, p. 29). Eight incidents are classified as BACK events. 
The single remaining documented contact event falls into 
the Opposite Direction Lateral Incursion (ODLI) category, 
described as occurring ‘when a non-turning actor operating 
in the trafficway’s intended travel direction interacts with 
another actor that is operating opposite of the travel direction 
in the same trafficway’ (Victor et al. 2023, p. 29).

The narrative description of this final event, occurring 
in Phoenix in 2022 and involving a fifth-generation vehicle 
(i.e., Jaguar I-Pace), offers an insight into its categorization:

Contact occurred between the left rear corner of a 
Waymo AV [autonomous vehicle] and the side of 
a garbage truck. The Waymo AV had pulled to the 
right on a narrow residential street, unable to proceed 
past an upcoming garbage truck and a parked vehicle. 
While attempting to pass the Waymo AV, the garbage 
truck made contact with the left rear corner of the 
Waymo AV. At the time of contact, the Waymo AV 
was stationary and the garbage truck was traveling less 
than 1 mph. (Victor et al. 2023, p. 12)

4.1.1 � Abstraction and discretization

Waymo engineers have designed a far more extensive 
categorization of conflicts than those actually recorded 
by their own vehicles over one-million RO miles. The 20 
contact events recorded only fall into one of four categories: 
SV, F2R, BACK and ODLI. A further 12 categories are 
not represented in the analyzed contact event data, and 
according to the typology created, no other conflicts are 
recorded at all. While there may be various reasons for this, 
what appears evident is that the conflict typology is designed 
to be utilized more broadly than to simply classify actually 
occurring contact events.

As a follow-up to earlier work where the documentation 
of simulated contact events was detailed (Schwall et al. 
2020), the typology can be understood as a generative 
mechanism rather than merely a ‘safety impact evaluation’ 

tool (Kusano et al. 2023, p. 3) for assessing, and classifying, 
prior contact events. In other words, it governs and guides 
machine learning work being performed by Waymo 
engineers, as they optimize their autonomous vehicle 
systems in question.

The construction of a conflict typology can be understood 
as an intended totalizing abstraction of all possible vehicle 
interactions—in the same way that the GSP could be 
understood as a technique for mapping all steelmaking 
activities. While the nature of the activities being captured 
and categorized is markedly different—steelmaking as a 
‘closed’ system, vehicle interactions as an ‘open’ system—
the design and documentation of a conflict typology hints 
at the underlying operational desire to formulate driving, 
and contact events, as a series of discrete events. This is 
what they refer to in related work as ‘scenario-based testing’ 
(Kusano and Victor 2022), i.e., a methodology ‘to estimate 
the probability of an injury outcome in a scenario’ (Kusano 
and Victor 2022, p. S225) in which an autonomous vehicle 
is involved. While the typology arguably ‘naturally evolves 
as novel scenarios are encountered’ (Kusano et al. 2023, p. 
3), it nonetheless operates as a holistic tool.

While the exact way in which conflict typologies are 
used in simulation work at Waymo is not divulged, Kusano 
et al. write that conflict typologies might be used alongside 
‘scenario description languages’ (Kusano et al. 2023, p. 
20) which ‘focus on describing scenarios in a way that can 
be translated into simulations or evaluations of an ADS 
[automated driving system]’ (Kusano et al. 2023, p. 20). 
More specifically, that:

The conflict typology could be used in conjunction 
with a set of scenarios to organize them by actor 
types, groups, perspectives, and contributing factors. 
For example, this conflict typology is the basis for the 
aggregation used in the Collision Avoidance Testing 
scenario-based testing programme at Waymo, where 
collision avoidance competency is evaluated relative 
to a reference behaviour model in conflicts where the 
ADS is the responder role vehicle. (Kusano et al. 2023, 
p. 20-21).

In other words, that an instructional language (i.e., 
conflict groups) might be used to implement future 
autonomous vehicle simulations.

4.1.2 � Interactions

Second, and necessarily then, conflict typologies can be 
considered as operating ‘downstream’ from ground truth-
oriented classification work. Following the metaphor of the 
AI pipeline, commonly used within the domain of autono-
mous driving, this conflict typology work is typical of the 
tasks being conducted during a motion planning/forecasting 
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phase, where engineers work to optimize an autonomous 
vehicle system’s ability to forecast the future trajectories of 
other vehicles and road users (Hind 2023). In such cases, 
there is a clear interest in properly attributing, and classify-
ing certain characteristics not only of specific vehicle types 
(i.e., a car, truck, bus) but also the types of vehicle interac-
tions they might be implicated in, susceptible to, or com-
monly involved in. In other words, that a garbage truck—
like in the ODLI example above—might be predisposed to 
certain kinds of conflicts, based on its size, weight, poor 
manoeuvrability, and the activities it is typically engaged 
in (i.e., collecting garbage). As a result, the autonomous 
vehicle system being tested might require further fine-tun-
ing in order to account for the increased likelihood and risk 
of being involved in these incidents—whether the fault of 
the autonomous vehicle or not. Waymo’s Collision Avoid-
ance Testing (CAT) is where such work might specifically 
be carried out, with Waymo testing ‘all scenarios used for 
the safety evaluation of [their] latest software releases in 
simulation—whether derived from test track data, real-world 
data, or synthetic means’ (Waymo 2022, n.p.). Here, con-
flict typologies feed into scenario-based testing, conducted 
through computer simulations.

4.1.3 � Patterns

In designing and applying a conflict typology, knowledge 
about recorded contact events is both materialized and 
abstracted. Lacking the typology, and in the absence of work 
to categorize events into specific conflict groups, the events 
stand as singular artifacts. Sorted into classes, they constitute 
prospective patterns to be joined by subsequent incidents, 
categorized accordingly. In building these classes with more 
entries, Waymo engineers slowly come to understand their 
vehicle’s capacities and limitations differently: as those 
potentially prone to involvement in certain kinds of conflicts 
over others. The categorization of the 20 contact events into 
4 conflict groups (SV, F2R, BACK, ODLI) suggest that 
Waymo vehicles are prone to single-vehicle, front-to-rear, 
backing, and opposite direction lateral incursion events—
whether, ultimately, they are blame or not. Mapping these 
capacities appears key to instrumental understandings of 
autonomous vehicles, critical to simulating—and avoiding—
future conflicts.

To summarize, not only are such objects being 
classified—common enough to image classification work 
across many different contexts—but that object interactions 
are being classified in addition. Here, objects (road users) 
themselves might be categorized in ground truth training 
datasets as possessing certain geometric properties (length, 
width), but this ground truth-based classification work is—in 
these documented conflict typologies—being accompanied 
with downstream vehicle interaction classification work. 

Both are critical, but the latter seems especially novel in 
this context, seeking to further discretize other aspects of 
driving.

5 � Conclusion

In this article, I have considered how forms of ‘classification 
work’ in the development of autonomous vehicle systems 
industrialize knowledge. Through the categorization of 
‘contact events’ involving their autonomous vehicles, 
Waymo is able to operationalize understanding of what 
kinds of interactions their vehicles are involved in. Rather 
than a post-facto evaluative framework, ‘conflict typologies’ 
are key to the advance modeling of autonomous vehicle 
interactions: they govern and guide the work of Waymo 
engineers.

Classification work is everywhere in machine learning. 
Without the labeling and annotation of training data, 
machine learning models cannot be built (Engdahl 2024). 
To gain real-world applicability, they rely on the hard labor 
of data annotators—sometimes crowdsourced, sometimes 
remote, sometimes piecemeal. Yet this classification work 
can take many forms. In this instance, the building of 
conflict typologies can be considered as somewhat different, 
conducted in-house. Such classification work requires close 
attention to the final application, and knowledge—I argue 
here—of the applied domain in question. In such instances, 
knowledge of how these conflict typologies are to be used 
in the simulation of autonomous vehicle systems is critical. 
The ‘counterfactual calculations’ detailed by one Waymo 
team (Schwall et al. 2020) support the conflict typology 
work detailed by another (Victor et al. 2023)—and vice 
versa.

This contemporary work—classification, typologies, 
machine learning—seemingly novel, is ‘part of a long history 
of the industrialization of computing technology’ (Steinhoff 
and Hind 2024, p. 16). The current industrialization of AI 
(van der Vlist et  al. 2024), dependent upon the ‘hyper-
scaling’ of cloud computing capacities (Narayan 2022), can 
be situated within a 70-year history of the industrialization 
of digital computing. Rather than a later addition, computer 
simulation has always figured within this history. The 
industrialization of computing technology, then, has always 
involved the industrialization of computer simulation. What 
is striking is that the industrialization of computer simulation 
thus offered opportunities for industrial application, such as 
in the dominant UK steel industry during the 1950s. While 
strange to consider from a contemporary vantage point, the 
steel industry was the perfect setting for innovative computer 
simulation work.

United Steel, a steelmakers based in Sheffield, UK, 
pioneered the application of computer simulations to 
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the modeling of industrial processes like steelmaking. In 
Cybor House, the company’s innovative R&D department, 
Stafford Beer, KD Tocher and colleagues developed a 
General Steelplant Program (GSP), offering the possibility 
of mapping the steelmaking process across three different 
sites in the north of England (Templeborough, Scunthorpe, 
Stocksbridge), based on three different steelmaking 
technologies (open hearth, electric, arc, acid Bessemer). 
In simulating production processes at a level of abstraction 
capable of accounting for each site and technology, while 
still remaining useful for making production decisions, 
the GSP constituted something even more consequential: 
a General Simulation Program (Steinhoff and Hind 2024). 
Able to move between domain-specificity and domain-
agnosticism, this new program offered the tangible prospect 
of being able to use computer simulation to rationalize 
production.

In mapping the flows, activities, and states of the 
steelmaking processes, GSP operators developed an 
‘operational ontology’, key to computer simulation’s 
role in cultivating, standardizing, materializing, and 
instrumentalizing any activity it was instructed to model. 
This computational capture process, as Agre (1994) 
later documents in relation to office-based work settings, 
exercised the Babbage principle, dividing the labor process 
up into non-divisible units of activity, in order to determine 
and extract productive value (Pasquinelli 2023).

Articulating these historic connections between 
computing, simulation, industrial application, and 
classification work is important in order to contextualize 
contemporary machine learning practices. Understanding 
where instrumental knowledge is generated, ordered, 
shared, and implemented in different work contexts is key to 
understanding how different computational technologies—
including machine learning and AI—have long-sought 
to classify and categorize phenomena in order to control 
and manage it. AI’s industrial roots in the automation of 
mental labor, as Pasquinelli (2023) examines, is part of 
its social history. As the history of the industrialization 
of computing, and the industrial application of computer 
simulation, suggest, this classification and categorization 
work is not distributed equally among all participants. 
Whether ‘staff trained in simulation model building’ (Tocher 
1960, p. 64) in the north of England in the late 1950s, or 
software engineers in Mountain View, California in 2024, 
understanding the capacity and ability for certain people 
to perform classification work, requires specific, empirical 
analysis. In these cases and all others, those who perform 
such tasks—the mapping of steelplant activities, the creation 
of conflict typologies—do so as employees of specific kinds 
of firms. In this, computer simulation has always been a 
tool for managerial decision-making, deployed to rationalize 
production in any way possible (Hind 2024).

Consequently, three fruitful avenues of future research 
are worth mentioning. First, more work needs to be done 
on the industrial history of computer simulation—where 
it was deployed, what type of rationalization work it 
performed, and what kinds of managerial decisions it 
supported. While the work at United Steel in the 1950s 
and 60s was innovative at the time, developments pushed 
them aside. Indeed, computer simulation work moved into 
new industries and sectors altogether, with new visual-
interactive approaches offering unprecedented advances 
in mobility settings (airports, train networks) in the 1980s 
(Steinhoff and Hind 2024). These sectoral shifts remain 
underexamined, yet help to complicate understanding 
of how the trajectory of computer simulation unfolded, 
and incorporated new decision-making theories and 
frameworks.

Second, analysis of the ensuing industrialization of 
AI is evidently necessary, from the scaling-up of cloud 
computing (Narayan 2022; van der Vlist et al. 2024), and 
the foundational role of machine learning benchmark 
datasets (Engdahl 2024), to the platformization of 
AI challenges (Luitse et  al. 2024; Hind et  al. 2024). 
This industrialization of AI demands the cultivation, 
standardization, materialization and instrumentalization 
of new kinds of operational knowledges which ultimately 
benefit the ‘rentier’ strategies of big tech firms 
(Christophers 2020).

Lastly, deepening scrutiny of the politics and ethics of 
synthetic data and generative AI is needed (Steinhoff 2022; 
Jacobsen 2023; Helm et al. 2024). While typically seen as 
a kind of ‘fix’, either avoiding the collection of sensitive 
user data or lowering the cost of collecting training data, 
synthetic data generation must still wrestle with bridging the 
so-called ‘reality gap’ between real world and simulation. 
The statistical rules that are meant to govern ‘sim-to-real 
transfer’ (Salvato et  al. 2021) rely on establishing the 
norms of distribution in any given context—from ‘realistic’ 
driving scenarios (Wayve 2023) to ‘representative’ medical 
image data (Guo et al. 2024). These so-called ‘foundation 
models’—rather than eradicating these messy issues—will 
only complicate the political and ethical effects of computer 
simulation as they embed themselves in various sites and 
settings in the future.
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