
Vol.:(0123456789)1 3

AI & SOCIETY (2024) 39:1653–1665 
https://doi.org/10.1007/s00146-023-01631-2

MAIN PAPER

Artificial understanding: a step toward robust AI

Erez Firt1

Received: 20 June 2022 / Accepted: 16 January 2023 / Published online: 15 March 2023 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
In recent years, state-of-the-art artificial intelligence systems have started to show signs of what might be seen as human 
level intelligence. More specifically, large language models such as OpenAI’s GPT-3, and more recently Google’s PaLM 
and DeepMind’s GATO, are performing amazing feats involving the generation of texts. However, it is acknowledged by 
many researchers that contemporary language models, and more generally, learning systems, still lack important capabilities, 
such as understanding, reasoning and the ability to employ knowledge of the world and common sense in order to reach or 
at least advance toward general intelligence. Some believe that scaling will eventually bring about these capabilities; others 
think that a different architecture is needed. In this paper, we focus on the latter, with the purpose of integrating a theoreti-
cal–philosophical conception of understanding as knowledge of dependence relations, with the high-level requirements and 
engineering design of a robust AI system, which integrates machine learning and symbolic components.
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1  Introduction

When OpenAI’s (then) new language model, GPT (Genera-
tive Pre-Trained Transformer)-3, went public, there was an 
ongoing debate regarding the level of its (general) intelli-
gence. Part of it can be attributed to conversations like the 
following, which highlights “common-sense”, perhaps the 
holy grail of general intelligence:

Q: What is your favorite animal?
A: My favorite animal is a dog.
Q: Why?
A: Because dogs are loyal and friendly.
Q: What are two reasons that a dog might be in a bad 

mood?
A: Two reasons that a dog might be in a bad mood are if 

it is hungry or if it is hot.
Q: Are there any animals with three legs?
A: No, there are no animals with three legs.
Q: Why do not animals have three legs?
A: Animals do not have three legs because they would 

fall over.1

OpenAI was founded with the ambitious vision of the 
long sought for artificial general intelligence (AGI), intel-
ligent systems that possess all the depth, variety, and flex-
ibility of the human mind. Could GPT-3, its predecessors 
and alike models be the first step toward creating this sort 
of intelligence?

Ordinarily, I would have argued at this point that the 
debate concerning the level of intelligence of contemporary 
language models should be settled, i.e., that language models 
such as GPT-3, BERT, XLNet and others (e.g., the BERT 
modifications RoBERTa and ALBERT) cannot understand, 
reason or in general, think, at least not in the way humans 
do. However, recent developments in scaling, architecture 
and abilities seem to keep such a statement controversial, to 
a certain degree; Google’s latest and greatest Pathways Lan-
guage Model (PaLM), has 3 times the number of GPT-3’s 
parameters, a new AI architecture and the ability to explain 
jokes and inferences, among other things.2 Thus, the rest of 
this paper is dedicated to examining the debate and pointing 
out what might be still missing.
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1  See https://​lacker.​io/​ai/​2020/​07/​06/​giving-​gpt-3-​a-​turing-​test.​html, 
accessed on May, 2022.
2  See Dean (2021) and Chowdhery (2022).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-023-01631-2&domain=pdf
https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html
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GPT-3 is a large-scale language model: it has been trained 
to learn a probability distribution over tokens (roughly, 
pieces of information considered as discrete elements, and 
the building blocks of natural language) on the internet. Its 
training consists of being required to predict the next tokens 
in a sequence; the model’s parameters are then iteratively 
modified depending on the accuracies of its predictions so 
that its future predictions on similar data become more accu-
rate. Having learned the probability distribution, GPT-3 is 
then able—given a context (that might include a few exam-
ples of the desired form of response) and a prompt—to con-
vincingly predict which paragraphs should come next.

PaLM is different in this sense. Instead of digesting 
one modality of information at a time—text in the case of 
GPT-3—PaLM’s architecture could enable multimodal mod-
els that encompass vision, auditory, and language under-
standing simultaneously.

These language models are trained on TBs of text from 
multiple sources,3 thus creating a model that can, given a 
context, correctly make medical diagnoses, draft legal text 
based on plain English, generate poetry, prose, philosophical 
reflections and art criticism and accurately translate foreign 
languages into English, among other things. On top of all 
this, current state-of-the-art language models have another 
impressive ability of being few-shot learner models. This 
means that instead of requiring additional domain-specific 
training to perform specialized tasks, as older models 
required, few-shot learners are able to accomplish that, given 
just a small number of examples or demonstrations.

This is an amazing engineering achievement. I have no 
desire to belittle its magnitude in any way whatsoever. It 
is also an important step on our way toward general intel-
ligence. Nevertheless, assuming we aim to construct an 
autonomous machine with something similar or approach-
ing general intelligence, it is still not enough. This is due 
to the fact that current language models can only generate 
sequences of tokens (in many cases only after a preliminary 
step of prompting or demonstration), based on a probability 
distribution learned from the text they were trained on. In 
some cases, increasing the quantity may lead to better pre-
dictions; for example, in generating responses in arithmetic 
cases of addition of four digit numbers (in comparison with 
additions of two or three digit numbers), where supposedly 
the reason is that calculations with many-digits numbers 
are encountered less frequently in the training data; or in 
scaling the number of parameters and constructing smart 

architectures, which would enable the system to overcome 
some of the known shortcomings of current language mod-
els, as in the case of PaLM.

However, not all cognitive abilities can depend on or be 
transformed into text prediction problems; where logical rea-
soning or common sense are needed, most current language 
models perform less successfully. I emphasize the quanti-
fier most, because the recent release of PaLM brings to the 
fore a very significant point we shall elaborate on in follow-
ing sections, i.e., the debate between proponents of scaling 
and quantity and proponents of qualitative capabilities. In 
other words, between those who believe that increasing the 
amount of training data, processing power and parameters 
will lead to better language models and eventually to under-
standing, and those who believe that we currently lack essen-
tial capabilities that cannot, in principle, emerge only by 
scaling. Sutton (2019), for example, argues that the history 
of AI research has taught us a lesson: AI systems based on 
data and computation are more effective than those based on 
human knowledge and rules, “by a large margin.” Paraphras-
ing on a Geoff Hinton tweet4 and the Hitchhiker’s Guide 
to the Galaxy’s answer to the question of life, the universe 
and everything, we can say that the quantitative approach 
suggests that the answer to all these questions is 42 (trillion 
parameters).

Recently, Firt (2020) has pointed out a few necessary con-
ditions for general intelligence, fore and foremost among 
which are learning, understanding and reasoning. Here, we 
focus on understanding. We follow the conceptualization 
of understanding as knowledge of causes or knowledge 
of relations and dependencies between parts in a system.5 
Another important aspect of understanding is the ability to 
manipulate these relations in a manner which “allows the 
understander to anticipate what would happen if things were 
relevantly different…[and] make correct inferences about a 
world in which the relevant differences obtain.” (Firt 2020: 
§3.1) We understand something—be it physical phenomena 
or the behavior of other people—when we have knowledge 
of it that can be grounded in causes, or more precisely, in 
dependence relations, of which causal dependence is but 
one instance.6

We believe that understanding is a necessary component 
on our path toward implementing the kind of artificial intel-
ligence that Marcus (2020) calls ‘robust AI’:

“[An] intelligence that, while not necessarily superhuman 
or self-improving, can be counted on to apply what it knows 
to a wide range of problems in a systematic and reliable 

3  As per its creators, GPT-3 has been trained on over 175 billion 
parameters and 45 TB of text gathered from all over the web. See for 
example https://​www.​sprin​gboard.​com/​blog/​data-​scien​ce/​machi​ne-​
learn​ing-​gpt-3-​open-​ai/, accessed on 27th of April, 2022. PaLM is a 
540 billion parameter language model trained on “780 billion tokens 
of high-quality text” (Chowdhery 2022: 3).

4  See https://​twitt​er.​com/​geoff​reyhi​nton/​status/​12708​14602​93118​
7715, accessed on 1st of May, 2022.
5  For these views, see Grimm (2011, 2014) and Thorisson and Kre-
melberg (2017).
6  See Grimm (2014) and Kim (2010).

https://www.springboard.com/blog/data-science/machine-learning-gpt-3-open-ai/
https://www.springboard.com/blog/data-science/machine-learning-gpt-3-open-ai/
https://twitter.com/geoffreyhinton/status/1270814602931187715
https://twitter.com/geoffreyhinton/status/1270814602931187715
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way, synthesizing knowledge from a variety of sources such 
that it can reason flexibly and dynamically about the world, 
transferring what it learns in one context to another, in the 
way that we would expect of an ordinary adult.” (ibid: 3).

The emphasis being on building an AI we can trust, and 
which must be endowed with what Marcus (ibid: 5) calls 
deep understanding. As Marcus stresses,

“If our AI systems do not represent and reason over 
detailed, structured, internal models of the external world, 
drawing on substantial knowledge about the world and its 
dynamics, they will forever resemble GPT-2: they will get 
some things right, drawing on vast correlative databases, 
but they won’t understand what’s going on, and we won’t 
be able to count on them, particularly when real world cir-
cumstances deviate from training data, as they so often do.” 
(ibid: 9).

This need for ‘deep understanding’ is also featured in 
other, closely related inquiry fields. For example, in Machine 
Ethics there is an ongoing discussion revolving the construc-
tion of different types of Artificial Moral Agents (AMAs). 
When referring to the construction of a certain type of 
AMA, i.e., functional AMA, Allen and Wallach (2011) 
suggest what they call the Hybrid approach; an approach 
to achieving artificial morality which integrates top-down 
and bottom-up approaches. In brief, top-down approaches 
refer mainly to rule-based AI, where human-made rules are 
inserted into the system, and bottom-up approaches refer 
to methods which begin with raw data, or some random/
baseline version of the system, and learn or develop from 
that point on (e.g., using methods of machine learning or 
genetic algorithms). Again, the goal is for our future moral 
machines to understand the words we use (semantics), i.e., 
to be able to link the tokens they generate to objects in the 
world, and to relations these objects have with other objects 
(the pragmatics, the context), so it will not make disastrous 
mistakes when making predictions.

But what does it take to implement artificial understand-
ing? We begin with the notion of understanding as the 
knowledge of relations and dependencies. The main purpose 
of this paper is to integrate this theoretical–philosophical 
conception of understanding with the high-level require-
ments and engineering design of a robust AI system. How 
do we achieve that? First, we discuss a debate between two 
approaches; let us term them the Deep Learning approach 
and the Integrative approach. Both approaches acknowledge 
the capabilities needed for AI systems to reach the next step. 
The former aims to achieve this advancement by implement-
ing these capabilities within a framework of (deep) learning, 
while the latter aims to do the same thing by integrating deep 
learning with symbolic AI; we discuss these issues in more 
details below. But the main point does not rest on the details 
of the actual implementation. It concerns the necessary com-
ponents that compose the general solution (that may have 

more than one way of being implemented): a data preserv-
ing structure that holds the dependence relations between 
entities discovered by the system. That is, a data representa-
tion of the causal and other dependence relations, which are 
discoverable from already-learned data correlations and the 
cognitive models7 constructed by the system; these cognitive 
models describe the state of affairs in terms of dependen-
cies between the entities and their location in space–time; A 
knowledge base containing background and common sense 
knowledge of the world; learning mechanisms for efficient 
unsupervised autonomous learning; and lastly, a reasoning 
system that can leverage all of the above, make inferences, 
predict and provide decent human readable explanations for 
its decisions.

Thus, the structure of this paper is as follows: in Sect. 2, 
we discuss the philosophical analysis of understanding as 
knowledge of dependence relations. In Sects. 3 and 4, we 
examine two debates concerning the path to understand-
ing: the ‘quantity vs. quality’ debate and the Deep Learn-
ing approach vs. Integrative approach debate and propose a 
general high-level architecture based on the ideas presented 
thus far. Section 5 is comprised of our concluding remarks.

2 � Understanding as knowledge 
of dependence relations

In this section, we focus on types of understanding usually 
referred to as understanding-why and objectual understand-
ing; the former is implied in sentences that take the form “I 
understand why X” (for example, “I understand why this and 
that happened”), whereas the latter is implied in sentences 
that take the form “I understand X”, where X can be thought 
of as a body of information or a subject matter.

There are several epistemological views of understanding; 
in this paper, we focus on what Grimm (2014) terms the tra-
ditional view, i.e., the idea that understanding derives from 
knowledge of causes.8 Grimm (2014) provides a survey of 
other views of understanding, discusses the major objections 
to the traditional view, as they appear in the literature, and 
provides satisfactory replies to all of them. I saw no point in 
rehearsing them here.

In what follows, we want to depict a view, which is to 
some extent wider or more encompassing than understand-
ing as knowledge of causes: Understanding arises from 
knowledge of relations and dependencies, of which causal 

7  We shall use cognitive models and world models interchangeably; 
both refer to a cognitive ability to construct inner models of the world 
or the immediate surroundings and examine and manipulate them.
8  For further contemporary support for this view, see Grimm (2014), 
fn. #1.
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dependencies or causal relations are but one instance.9 
Henceforth, when we use the notion of dependence rela-
tions or dependencies (following Kim (2010 [1994]: 183), 
we mean a relation between states, events, facts, properties, 
regularities or entities; two prominent examples of which are 
causal and mereological dependencies.

To understand why X, i.e., to understand why this and 
that happened, or to understand X, where X can be thought 
of as a body of information or a subject matter, one has to 
know what led to X (as a concrete phenomenon), or how 
the parts and elements of X, as a system or a structure, 
depend upon one another in various ways, in cases of objec-
tual understanding.10 Moreover, understanding, as we por-
tray it, is also about the ability to manipulate the relations, 
dependencies and in general the structure that one, i.e., the 
understander, perceives, be it the structure of an object or 
the complex structure of relations between different enti-
ties populating his surrounding. Wilkenfeld (2013) suggests 
that one understands when one possesses a representation 
of that which is understood that is sufficiently robust to be 
manipulable for inferential and practical purposes. In other 
words, understanding occurs when we have a robust mental 
representation of the thing to be understood. This robustness 
is expressed by the ability of the understander to manipu-
late and tweak this representation to examine inferences and 
take actions. In the same spirit, Grimm (2011) suggests that 
manipulating the “system” allows the understander to “see” 
the way in which “the manipulation influences (or fails to 
influence) other parts of the system” (Grimm 2011: 11). 
Thus, according to Grimm, understanding the relationships 
between relevant parts of a subject matter amounts to manip-
ulating the system by changing parts of it and observing the 
impact on the overall system. He refers to such ability as 
grasping, and suggests that it also allows the understander to 

anticipate what would happen if things were relevantly dif-
ferent. It allows the agent to make correct inferences about 
a world in which the relevant differences obtain.

Let us reiterate the details of ‘knowledge of dependence 
relations’ and ‘understanding as manipulation of relations’ 
and see not only how they are integrated, but also how such 
integration gives rise to a more complete picture of under-
standing. Grimm (2014) defends the traditional view of 
understanding as knowledge of causes by updating the way 
proponents of such a view should understand ‘knowledge of 
causes’. To begin with, he defuses objections often made by 
opponents of the traditional view, who take knowledge of 
causes to mean the knowledge of the truth of a certain causal 
proposition, of the following structure:

(a) S has knowledge of the cause of p just in case.
(b) S knows that p because of q.

Such an account, continues Grimm (2014: §II), should 
be abandoned or at least supplemented. Understanding is 
not about knowing that a certain proposition is true or even 
necessarily true. To understand, one should “grasp” or “see” 
the “modal relationships that obtain between the properties 
(objects, entities) at issue. In the case of knowledge of causes 
in particular, what would be seen or grasped would be how 
changes in the value of one of the terms of the causal relata 
would lead (or fail to lead) to a change in the other.” (ibid: 
§IV) In other words, understanding as knowledge of causes 
amounts to having the relevant causal information, i.e., how 
things are, and also how things could have been, or how 
things would turn out to be in case they were manipulated/
changed/different.11 To further refine this last statement, we 
can say, following Grimm (2014) that one understands when 
one grasps “the modal relationship that obtains between the 
terms of the explanation.” (ibid: §VI).12

To conclude this modified version of knowledge of 
dependence relations, we stress again its two most impor-
tant points: understanding is the knowledge of dependencies 
and relations between phenomena and entities relevant to the 
thing to be understood, and the ability for modal representa-
tion of these relations in a way that allows the understander 
to manipulate them and examine other related possibilities; 
or in other words, the ability for counterfactual reasoning 
with regards to these dependencies.

Not to get ahead of ourselves too much, but just to men-
tion that two indispensable components of our robust AI 
architecture already feature prominently in this suggested 

9  The idea of understanding as knowledge of dependence relations 
(i.e., the idea of expanding the notion of causation to dependence) is 
supported by several prominent philosophers: Woodward (2003: 6) 
claims that “any explanation that proceeds by showing how an out-
come depends… on other variables counts as causal”; Greco (2010: 
9) likewise argues that “understanding involves ‘grasping,’ ‘appreci-
ating,’ or knowing causal relations taken in the broad sense: i.e., the 
sort of relations that ground explanation.”; and Kim (2010 [1994]: 
183) argues that “dependence relations of various kinds serve as 
objective correlates of explanations.”.
10  See Grimm (2011). Riggs (2003: 20) emphasizes the importance 
of the relations among parts and between the parts and the whole, 
when trying to understand a subject matter. Other philosophers that 
support the idea that understanding is largely about grasping or com-
ing to know the relations between entities, include Zagzebski (2001: 
242, 2009: 142), who asserts that understanding “involves grasping 
relations of parts to other parts and perhaps the relations of part to 
wholes”; As Grimm (2014: §VI) puts it, “the common thought here 
seems to be that the primary objects of understanding are the rela-
tionships (or structures) that hold among the various elements of real-
ity.”.

11  This description of Grimm has some interesting similarities to 
Pearl and Halpern (2001) Structural-Model approach. See especially 
§3.1.
12  Of course, this “grasping” is fallible and the understating can be a 
matter of degree. See Grimm (2014: fn #21 and §V-VI, respectively).
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view of understanding: cognitive models of which relations 
and dependencies between entities are a necessary part, and 
some kind of a knowledge base containing common sense 
or background knowledge of the world. The capability of a 
system to take effective action in the world (at least) partly 
depends on its ability to manipulate relations, and examine 
the cognitive models in which those relations are modi-
fied. In other words, when one understands something—an 
object, a situation, etc.—one is able to manipulate the thing 
understood effectively, e.g., in a way that will enable her to 
achieve goals.

More formally, a statement of the sort “agent A under-
stands an object O”,13 is true in a certain context, if and 
only if A has a cognitive model R of O that A can modify 
in certain ways to produce R’, which can then be used to 
manipulate or make inferences pertaining to O.

3 � How to get there

As aforesaid, current state-of-the-art AI systems do not 
possess the kind of understanding portrayed in the previ-
ous section. In particular, just for illustration purposes, large 
language models such as GPT-3 perform amazingly (almost 
magically), when are faced with familiar tasks, i.e., tasks 
within their training distribution or on the rarer cases when 
they are able to extrapolate beyond their training distribu-
tion, but might perform miserably when faced with tasks 
outside their training distribution.

Since its launch, in 2020, many critics have tried to 
expose limitations, failures and faults in the way GPT-3 
operates,14 part of which were answered in a way that 
exposed faults in the objections themselves (e.g., misuse or 
incorrect use of prompting).15 Marcus and Davis (2020b) 
were also part of this wave of criticism. Their critique is 
based on a few examples, where the system got it wrong. 
Here are a few reasoning-related illustrations (their input 
in bold, GPT-3’s completion in italics, their explanation in 
brackets):

Psychological reasoning
Janet and Penny went to the store to get presents for 

Jack. Janet said, “I will buy Jack a top.” “Don’t get Jack 
a top,” says Penny. “He has a top. He will get a top.” “I 
will get Jack a top,” said Janet.

[Within a single sentence, GPT-3 has lost track of the fact 
that Penny is advising Janet against getting a top because 
Jack already has a top. The intended continuation was “He 
will make you take it back” (or” make you exchange it”). 
This example was drawn directly from Eugene Charniak’s 
1972 PhD thesis; nearly 50 years later, it remains outside the 
scope of AI natural-language technology.]

Biological reasoning
You poured yourself a glass of cranberry juice, but 

then you absentmindedly poured about a teaspoon of 
grape juice into it. It looks okay. You try sniffing it, but 
you have a bad cold, so you can’t smell anything. You are 
very thirsty. So you drink it. You are now dead.

[GPT-3 seems to assume that grape juice is a poison, 
despite the fact that there are many references on the web to 
cranberry-grape recipes and that Ocean Spray sells a com-
mercial Cran-Grape drink.]

Overall, there is no real doubt about whether GPTs can 
fail and produce nonsensical text. Marcus and Davis’s point 
is that we cannot know when it fails.

“The trouble is that you have no way of knowing in 
advance which formulations will or won’t give you the 
right answer… The optimist will argue (as many have) that 
because there is some formulation in which GPT-3 gets the 
right answer, GPT-3 has the necessary knowledge and rea-
soning capacity—it’s just getting confused by the language. 
But the problem is not with GPT-3’s syntax (which is per-
fectly fluent) but with its semantics: it can produce words in 
perfect English, but it has only the dimmest sense of what 
those words mean, and no sense whatsoever about how those 
words relate to the world.” (ibid.)

It is generally agreed that current state-of-the-art AI (deep 
learning) systems share the problem of misunderstanding or 
misrepresenting the world in which they reside, or in which 
we want them to operate. Large language models serve us 
here as a relatively convenient illustration of this issue—
they learn how tokens relate (syntax), but not how they are 
connected to the physical world (semantics), under different 
circumstances (pragmatics).

Clearly enough, to avoid syntax-based nonsensical errors 
and to be able to trust these systems we need to elevate them 
to the next level and provide them with the ability to connect 
to the world. As Marcus and Davis (2019) put it:

“Start by developing systems that can represent the core 
frameworks of human knowledge: time, space, causality, 
basic knowledge of physical objects and their interactions, 
basic knowledge of humans and their interactions. Embed 
these in an architecture that can be freely extended to every 
kind of knowledge, keeping always in mind the central tenets 
of abstraction, compositionality, and tracking of individuals. 
Develop powerful reasoning techniques that can deal with 
knowledge that is complex, uncertain, and incomplete and 
that can freely work both top-down and bottom-up. Connect 

13  Object O is any object of understanding and it can include theories 
in physics, a certain proof in mathematics or logic, a person (as in, “I 
understand my friend”), a story or an event, an action, or a phrase in a 
language, to give some examples.
14  For a structured review of GPT-3’s scope and limitations, see for 
example Floridi and Chiriatti (2020).
15  See the comprehensive technical blog of Gwern Branwen—https://​
www.​gwern.​net/​GPT-3, Accessed 12-May-2022.

https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3
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these to perception, manipulation, and language. Use these 
to build rich cognitive models of the world. Then finally 
the keystone: construct a kind of human-inspired learning 
system that uses all the knowledge and cognitive abilities 
that the AI has; that incorporates what it learns into its prior 
knowledge… Put all that together, and that’s how you get to 
deep understanding.” (ibid.)

This is already a suggestion that incorporates architec-
tural changes that should be made to contemporary systems. 
Before we move to discuss these architectural changes, there 
are still two unresolved debates to consider, the first of which 
starts prior to accepting Marcus and Davis’s suggestion and 
the second revolves around the issue of the right way to 
implement some or all of the features that appear in their 
suggestion.

The first issue concerns the controversy ‘quantity vs. qual-
ity’. To be sure, we need to trust our systems and we cannot 
do that if, once in a while, they make a mistake that a 3-year-
old would not make. This controversy revolves around the 
best way to achieve or improve the level of trustworthiness 
of these systems. One approach is to rely on scale—the idea, 
or hope, is that AI systems can perform better if we gather 
more data, make sure that the quality of the data is high, add 
more parameters and apply deep learning at increasingly 
large scales.16 On the other hand, Marcus (2022) represents 
the other approach, the qualitative approach. According to 
him, “Scaling the measures Kaplan and his OpenAI col-
leagues looked at—about predicting words in a sentence—
is not tantamount to the kind of deep comprehension true 
AI would require.” (ibid.) He goes further to conclude that 
“research from DeepMind and elsewhere on models even 
larger than GPT-3 have shown that scaling starts to falter 
on some measures, such as toxicity, truthfulness, reason-
ing, and common sense…[and] making GPT-3-like models 
bigger makes them more fluent, but no more trustworthy.” 
(ibid.)17 The qualitative approach’s general idea is that we 
need more than just scaling in the areas of data and model’s 
parameters. We need capabilities that current state-of-the-art 
AI systems lack.

3.1 � A deeper look into the quantitative approach—
the case of PaLM

As mentioned above, since the launch of GPT-3 improve-
ments have been made in several aspects related to large 
language models. In the context of the quantitative approach, 

which supports the general idea that scaling can lead to sys-
tems that understand the world, we should take a look at the 
latest and greatest in this domain, i.e., Google’s Pathways 
Language Model (PaLM). Chowdhery et al. (2022) detail the 
scaling, improvements and achievements (in benchmarks, 
compared to other language models) of PaLM; in what fol-
lows, we take a brief look at these aspects to see whether 
we can draw conclusions regarding the reasonability of the 
quantitative/scaling approach.

Chowdhery et al. (2022) specify four main points, related 
to scale and architecture, which led PaLM to achieve “break-
through performance” on a number of tasks, and more spe-
cifically, “state-of-the-art few-shot results across hundreds of 
natural language, code, and mathematical reasoning tasks.” 
(ibid: 3) The following points are highlighted:

(1)	 Model depth and width: Training of a 540B param-
eter language model on 6144 Tensor Processing Units 
(TPU) v4 chips.

(2)	 No. of tokens trained: in the case of PaLM, 780 billion 
tokens of data.

(3)	 Training corpus quality: cleaner datasets from diverse 
sources.

(4)	 Architecture: The use of Pathways, a new AI architec-
ture, which (allegedly) enables its users to train a single 
model to handle multiple tasks, to receive input from 
multiple modalities (e.g., vision, auditory, and language 
understanding) and make models sparse and efficient. 
In other words, “Pathways will enable a single AI sys-
tem to generalize across thousands or millions of tasks, 
to understand different types of data, and to do so with 
remarkable efficiency.” (Dean 2021).

Having said that, let us examine what can we know at 
this point in time and what is still uncertain. First, we know 
that at least up to this point on the scaling axes, scaling 
still achieves better performance in a number of tasks.18 
Although this cannot be argued with certainty in the case 
of PaLM (as there are various possible reasons for the 
increased performance, as we shall presently discuss), 
other models (e.g., GATO19) support this claim. Second, at 
least in the PaLM case, we cannot attribute the increasing 
success in various tasks to scaling per se, as the influence 
of other factors, e.g., the quality of the training data or the 
change in architecture, were not carefully filtered out, as is 
also admitted by Chowdhery et al. (2022, §13). Third, there 
is the issue of diminishing returns; the effect of scaling on 
performance may fade together with the increase in size. As 
the authors stress, this has not yet happened: “the results 
presented here suggest that the improvements from scale for 

16  See for example Kaplan et  al. (2020) and Sam Altman’s, Open 
AI’s CEO, blog post, which celebrates “Moore’s Law for Every-
thing.” (https://​moores.​samal​tman.​com/, Accessed on the 13-May-
2022).
17  See Rae et al. (2022) and Thoppilan et al. (2022) for support for 
this claim.

18  See Chowdhery et al. (2022) and Reed (2022).
19  See Reed (2022).

https://moores.samaltman.com/
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few-shot language understanding have not yet plateaued.” 
(ibid: §14) At this point, we have no empirical evidence as to 
whether future scaling will keep on increasing performance, 
or whether the process of diminishing returns will start to 
manifest itself. And also, maybe more importantly, following 
our goal to reach robust AI that truly understands the world, 
the question remains, even given that scaling continues to 
bear fruits, in terms of increased performance, can learning 
from data alone provide us with understanding as knowledge 
of dependence relations?

In this paper, I assume that it cannot, for the following 
reasons: In general, machine learning uses statistical rea-
soning and methods to find patterns in data. After digest-
ing a certain amount of data (i.e., the training/distribu-
tion data), the system can then make statistical predictions 
when given a new input. When the input is close enough 
to the training distribution, the prediction is more accu-
rate. Many of the champions of machine learning agree 
that statistical methods are not enough for robust artifi-
cial intelligence: “Despite its success, statistical learning 
provides a rather superficial description of reality that 
only holds when the experimental conditions are fixed.” 
(Scholkopf et al. 2021: 613) What is needed, according to 
these authors,20 is to integrate “causality, with its focus on 
representing structural knowledge about the data generat-
ing process that allows interventions and changes,” as this 
can take us a step toward robustness, and “can contribute 
toward understanding and resolving some limitations of 
current machine learning methods.” (ibid.)

These are the fundamental intuition and reasoning that 
lead us to explore the qualitative approach, which basically 
states that current machine learning methods need some 
enhancement in the form of new capabilities, in order to step 
up. The remainder of this paper is dedicated to this approach 
and the two prominent alternatives to implement it, around 
which the next debate revolves.

4 � Robust AI doth not live by data only

Ever since the beginning of AI research, two general 
approaches to building AI systems have been explored, 
implemented and tested, i.e., the rule-based approach, 
also referred to as symbolic AI, and the machine learning 
approach. The former manipulates symbols in the same way 
most software programs do, i.e., by having sets of symbols 
(codes) to represent information,21 and by processing those 

symbols using mathematical and logical operations; the 
latter uses linear regression algorithms or structures called 
neural networks in order to produce statistical predictions 
regarding similar cases. Without going into the history of AI 
research over the last seven decades, it is enough for the pur-
poses of this paper to acknowledge that current state-of-the-
art systems built according to any one of these approaches 
have problems and certain type of tasks they perform less 
successfully: symbolic systems tend to be more complicated 
and do not perform well on tasks such as image and speech 
recognition and other language related tasks; Deep learning 
methods perform extremely well on these tasks after being 
trained on large data sets. On the other hand, deep learning 
systems are brittle (i.e., tend to be inaccurate, or even err 
miserably, when it comes to out-of-distribution cases), their 
results are difficult to explain (and therefore hard to trust) 
and they are associated with several ethical and socially 
related harms. For example, large language models can 
cause discrimination, exclusion and toxicity related harms 
(e.g., promoting stereotypes, causing unfair discrimination, 
inciting violence or causing offense), information hazards 
(e.g., providing information about how to easily perform 
unethical or illegal actions), human–computer interac-
tion harms (e.g., “conversational agents” conversing with 
humans can exploit human psychological vulnerabilities), 
to name just a number of possible types of harms.22 Thus, 
it seems that an obvious solution, or at least one alternative 
that should be explored, is the integration of the rule-based 
and machine learning approaches.

This integration of approaches lies at the heart of the 
debate between the Deep Learning approach and the Inte-
grative approach; both parties agree that current state-of-
the-art deep learning systems have the problems outlined 
above; both parties agree that capabilities such as reasoning, 
common sense and knowledge of causal relations, cognitive 
models and real understanding are needed. However, they 
defer on the way to achieve such capabilities. As Yoshua 
Bengio puts it, in his 2020 AI debate with Gary Marcus, 
“We would like to build in some of the functional advantages 
of classical AI rule based symbolic manipulation in neural 
nets, but in an implicit way.”23 His rival in this debate, Gary 
Marcus, is a known champion of the Integrative approach 
and has for long advocated for what has been recently known 
as the Symbolic-Deep-Learning or Neuro-Symbolic AI 
approach.24

20  See also related work of Bengio et al. (2020).
21  For example, in the universally used ASCII code, the binary num-
bers 01000001 and 01000010 stand for (are symbols for) the letters A 
and B, respectively.

22  See Weidinger (2021).
23  See min. 46:30, https://​www.​youtu​be.​com/​watch?v=​EeqwF​
jqFvJA, Accessed 22-May, 2022.
24  Representative studies of this approach include Mao (2019), Raedt 
et  al. (2020), Oltramari (2020), Chitnis et  al. (2021), and a relevant 
interesting research summary from IBM: https://​resea​rch.​ibm.​com/​
blog/​ai-​neuro​symbo​lic-​common-​sense, Accessed 25-May-2022.

https://www.youtube.com/watch?v=EeqwFjqFvJA
https://www.youtube.com/watch?v=EeqwFjqFvJA
https://research.ibm.com/blog/ai-neurosymbolic-common-sense
https://research.ibm.com/blog/ai-neurosymbolic-common-sense
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As regards the Integrative approach, Marcus predicts that 
“within a few years… many people will wonder why deep 
learning for so long tried to do so largely without the other-
wise spectacularly valuable tools of symbol manipulation; 
virtually all great engineering accomplishments of human-
kind have rested on some sort of symbolic reasoning,” (Mar-
cus 2020: 16–17) and goes on to specify what he believes 
to be the key components of such robust systems: a reason-
ing component, “that can leverage large-scale background 
knowledge efficiently, even when available information is 
incomplete,” (ibid: 40) cognitive models, without which 
“systems like these are lost. Sometimes they get lucky from 
statistics, but lacking cognitive models they have no reliable 
foundation with which to reason over.” (ibid: 42) In addition, 
understanding, which according to Marcus is closely related 
to the ability to infer a model of the thing we wish to under-
stand, “and ultimately to be able to make inferences about 
how it operates, and what might happen next.” (ibid: 41).

Interestingly enough, his rival in this debate, Yoshua 
Bengio, agrees with the gist of these statements. In his 
2020 talk25 in ‘AI in 2020 & Beyond’ he specifies the fol-
lowing problems for (what was then) current deep learn-
ing systems: the number of samples a system should be 
trained on, so it may operate (more or less) accurately, the 
dependence on human-provided labels, the kind of errors 
deep learning systems make, which implies their lack of 
understanding. To overcome these problems and reach the 
goal of robustness and trustworthiness we require and want, 

he then stresses several points to be achieved: generaliza-
tion beyond the training distribution, in order to perform 
well under unknown circumstances; the development of the 
ability to create and manipulate inner world models, which 
can give these systems a capability, analogous (at least, to a 
certain extent) to human imagination; the ability to discover 
and manipulate causal structures, to be able to better cope 
with changes in their surroundings; and the development of 
the ability to employ common sense, so these systems may 
get better at understanding the world around them and in this 
way acquire a better sense of the meaning of the concepts 
we use.

Bottom line, when examining what both researchers sug-
gest, one can come to an understanding that both sides agree 
on many important high-level details; the rest may seem 
like implementation details. Thus, in the remainder of this 
section, I sketch a suggestion for a high-level software archi-
tecture for an artificial understander: the main entities, their 
role, and their inter-relations. In this suggestion, I follow the 
general Integrative approach, and offer a solution wherein 
the initial proposals made by learning sub-systems can be 
verified and validated against the system’s knowledge of the 
world and common sense on the one hand, and its percep-
tion of its surroundings, the entities populating it and their 
relations, on the other hand.26 The following is a high-level 
design of such architecture, succeeded by descriptions of the 
different components and their relations:

25  See https://​www.​youtu​be.​com/​watch?v=​GibjI​5FoZsE, Accessed 
24-May-2022.

26  See for example Sychev (2021: 731–2) for a similar approach: 
“we can develop a human-like intelligence as a system where neu-
ral networks generate new ideas and strategies given the context and 
random noise … symbolic reasoning assesses their applicability and 
the level of risk using available knowledge before trying them in the 
environment, then the ideas that passed logical verification are imple-
mented under conscious control.”.

https://www.youtube.com/watch?v=GibjI5FoZsE
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27  As stated in Dean (2021), “Pathways could enable multimodal 
models that encompass vision, auditory, and language understanding 
simultaneously.”
28  For example, when conversing with a human, the system can ana-
lyze the auditory input and extract the semantic value as well as the 
sentiment, and integrate this analysis with a visual analysis of the 
posture and gestures, for example, to gain a more complete under-
standing of the pragmatics of the conversation.

29  The Façade design pattern is a software structural design pattern 
whose responsibility is to hide the complexities of a system and pro-
vide an interface using which any user of the system can access it.
30  These types of operations, commonly implemented to support per-
sistent storage applications, are usually referred to by the acronym 
CRUD: Create, Read, Update, Delete.

	 (1)	 One or more modules of learning systems,27 providing 
the system with audio, visual and text input informa-
tion. This information can take several forms: visual 
information (e.g., post-processed images or videos 
containing object information), audio and text con-
taining queries, descriptions or conversational input, 
etc. In other words, these modules provide sensory 
input to the system. They receive or actively collect 
information from and about its surroundings, e.g., text 
input that can be received as textual requests, visual 
input from cameras, auditory input that can be trans-
formed into text input and can be analyzed to extract 
content, sentiment and other pragmatic aspects.28 
Based on this analysis, a coordinator sub-module can 

then construct a request for additional information, 
based on the received processed input, as part of a call 
to other services in the system, as detailed below.

	 (2)	 Following (1), processed input may contain informa-
tion regarding objects and their relations (the result of 
processed images, videos, audio and text), suggested 
output in the form of generated text, requests for addi-
tional supplementing data (in the form of requests for 
data to be retrieved from other services in the system), 
or requests for the execution of certain tasks (e.g., a 
request from the Reasoner Model service to perform 
a logical analysis of a certain proposition or claim).

	 (3)	 The Environment model is a sort of a gateway/
Façade,29 whose responsibility is to allow multiple 
types of operations30 on data related to the system’s 
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surroundings: cognitive models [see (4, 6)], rela-
tions and dependencies between objects populating 
the environment [see (5, 7)] and the relation between 
these models and the dependencies [see (8)].

	 (4)	 Following (3), and by employing the processed input 
from (2), the environment model is responsible for 
producing or updating cognitive/world models.31 
World models are internal models of the surroundings 
or environment in which the agent or system resides 
or wish to take action in. The accuracy of the model, 
in terms of the objects contained in it, their properties, 
relations and location, determine the system’s abil-
ity to manipulate and act within the environment this 
world model describes, making the constant updating 
of the model necessary. This internal model can refer 
to any type of environment (e.g., physical/realistic, 
fictional, and a game world).

	 (5)	 Use of discovery algorithms to extract relations and 
dependencies—mostly causal dependencies—from 
the processed input in (2).32

	 (6)	 Cognitive/world model storage, composed of static 
world models (in case of models of static scenarios 
such as images, or descriptions of a certain static 
fictional-realistic state of affairs), or a timeline series 
of world models, in which frame-like world mod-
els are connected together by a timeline, creating 
a description of the surroundings over time. World 
models, following (4), contain information and refer-
ences to entities populating the relevant environment, 
their properties (e.g., their spatial properties, but also 
relevant facts about them or references to knowledge 
base entries, or dependencies-db entries containing 
relevant additional information), and their relations.

	 (7)	 Dependencies database (DB): contains all of the 
dependencies between entities populating the different 
world models. Dependencies represent the different 
relations between entities (e.g., some sort of spatial 
relations, causal relations, part-whole relations and 
more, depending on the domain), and are the result of 
discovery processes (5). Each entry in the dependen-
cies DB contains information about the entities (e.g., 
a complex entity-id representing the entity and the 
world model it is contained in), the dependency type, 
and additional information according to the depend-

ency type (e.g., a reference to a previous/subsequent 
chain in a causal chain).

	 (8)	 World model  dependencies associations: stands for 
the relation between a world model and a dependency. 
Each world model has zero or more (0-*) dependen-
cies that are related to it. Each dependency has at least 
one (i.e., the one it was discovered in, more if it lasts 
over time in different frames in the same time series 
of a world) world model it is related to.

	 (9)	 The Reasoner model draws its inspiration from sys-
tems like CYC,33 and neuro-symbolic architectures 
that apply reasoning, e.g., for question answering.34 
The general idea is to transform the problem, the 
concept or the question, given in a natural-language 
form, into an abstract form that captures its conceptual 
meaning; the system can then reason about this form 
using its knowledge and common sense bases, as well 
as environmental data, and produce a meaningful and 
explainable result. The Reasoner can apply deductive, 
inductive and abductive reasoning, which means that 
it can reason effectively (i.e., reach an hypothesis or 
a theory that best explains the available data,35 much 
like humans do) with partial and uncertain informa-
tion.

	(10)	 Retrieve or update knowledge [see (11)] related to 
reasoning processes (retrieval) or text, images, video, 
audio data (update). In addition, one of the ways to 
develop and increase the knowledge contained in the 
system’s knowledge base (11) is to add the products 
of reasoning processes to it; this is one of the ways by 
which the system can learn from experience and reuse 
the past conclusions of reasoning processes.

	(11)	 Knowledge base: contains general concepts, rules 
and domain-specific extensions of both. For example, 
concepts can relate to time (hour, day, night), space 
(geography, spatial relations), emotions, culture, his-
tory and much more. Rules involve these concepts, 
e.g., that most people sleep at night, for several hours 
at a time, lying down; that no two objects can occupy 
the same space at the same time; that causes precede 
or start at same time as their effects. Another impor-
tant aspect of knowledge bases is the contextual valid-
ity of their assertions,36 i.e., the fact that assertions 

33  See CYC technology overview, https://​www.​cyc.​com/​wp-​conte​nt/​
uploa​ds/​2019/​09/​Cyc-​Techn​ology-​Overv​iew.​pdf, Accessed 29-May-
2022.
34  See for example the research summary from IBM: https://​resea​rch.​
ibm.​com/​blog/​ai-​neuro​symbo​lic-​common-​sense, Accessed 25-May-
2022.
35  See Vogel (1998).
36  See CYC technology overview (fn. #28), Sect. 5.6.

31  Henceforth, we will use cognitive and world models interchange-
ably.
32  See for example Scholkopf et al. (2021) and Bengio et al. (2020).

https://www.cyc.com/wp-content/uploads/2019/09/Cyc-Technology-Overview.pdf
https://www.cyc.com/wp-content/uploads/2019/09/Cyc-Technology-Overview.pdf
https://research.ibm.com/blog/ai-neurosymbolic-common-sense
https://research.ibm.com/blog/ai-neurosymbolic-common-sense
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can be true at one time, but not at another; in these 
circumstances but not in those; in one culture but not 
in another. This is crucial for handling contradictions 
and the non-universality of most convictions.

	(12)	 Application Programming Interface (API) for exter-
nally inserting new concepts or rules to the knowledge 
base.

	(13)	 Retrieval of environmental data, i.e., data related to 
the surroundings, the entities populating it and their 
mutual dependencies, which can be of help during 
reasoning processes. For example, to infer the best 
explanation, the Reasoner Model must employ all 
available data, however partial and uncertain, which 
are stored either in the knowledge base or as part of 
the Environmental data.

	(14)	 The output of the Reasoner model can take several 
forms, depending on the context. For example, it can 
be employed as a filtering mechanism to filter out 
certain instances of generated text suggested by the 
system, based on common sense and knowledge rea-
soning; it can provide a step-by-step understandable 
logical argument in answer to a query; it can provide 
an answer to a question that takes into account the 
physical surroundings, and more. Similar (but in an 
opposite way) to the process described in (1), where a 
Coordinator sub-module takes the output of the learn-
ing modules and transforms it into a form that can be 
passed to the other sub-modules of the system, here, 
the Coordinator sub-module receives the output of the 
Reasoner and transforms it into a human understand-
able form that can be presented to the end-users of the 
system.

5 � Concluding remarks

As previously mentioned, the main purpose of this paper 
is to implement artificial understanding by integrating our 
chosen theoretical–philosophical conception of understand-
ing with the high-level requirements and engineering design 
of a robust AI system. In Sect. 2, we outline a notion of 
understanding as the knowledge of relations and depend-
encies. Then, we follow the Integrative approach, which 
aims to achieve the capabilities needed for AI systems to 
reach the next step by integrating deep learning with sym-
bolic AI. In this final section, we examine how the high-
level architecture presented in the previous section puts into 
practice the following theoretical–philosophical conception 
of understanding: knowledge of dependencies and relations 
between phenomena and entities relevant to the thing to be 
understood, and the ability for modal representation of these 
relations in a way that allows the understander to manipulate 

them and examine other related possibilities; or in other 
words, counterfactually reason about them.

How does the architecture outlined in the previous sec-
tion corresponds to this conception of understanding? First, 
it allows the understander (i.e., the system) to keep track 
of the dependencies in its surroundings. This is accom-
plished by providing a data preserving structure that holds 
the dependence relations between entities discovered by 
the system. The language, audio and visual modules are in 
constant interaction with the environment; they provide a 
constant flow of information processed into a pre-defined 
abstract representational form; this input is then used by the 
Environment Model to construct world model frames that 
describe the surroundings at a certain instant of time on the 
one hand, and to run discovery algorithms to extract depend-
encies between entities on the other hand. Discovery algo-
rithms can also make use of the Reasoner Model to retrieve 
and employ knowledge and common sense to identify and 
catalogue correlations in the input as (causal) dependencies. 
The world models containing the entities and the dependen-
cies are stored and associations between them are created, 
as described in the previous section. Second, the Reasoner 
Model can make use of the Environment Model to construct 
additional world models (based on the ones discovered thus 
far) and associate different dependencies with them, so it can 
then reason counterfactually about them. In other words, it 
allows the Reasoner to tweak duplicates of existing world 
models. This enables the Reasoner to manipulate inner world 
models and their associated dependencies, to examine coun-
terfactual courses of action and their results, and thus, reach 
better informed decisions.

As can be seen from the above description, the outlined 
architecture integrates learning models with symbolic mod-
els. It captures the essence of understanding as ‘knowledge 
of dependencies’ by discovering and storing dependencies 
between identified entities in its surroundings, and by ena-
bling the different sub-modules of the system to interact in 
a way that allows the creation and manipulation of world 
models and their associated inter-relations similar to the 
one identified by the system; thus, enabling the system to 
‘imagine’ what could have been if similar circumstances 
took place. This kind of architecture meets the requirements 
of the theoretical–philosophical conception of understand-
ing described in Sect. 2, by enabling a robust representation 
of the dependence relations, the creation of world models 
which allow manipulation and tweaking of those relations, 
so it is able to observe their impact and anticipate what 
would happen if things were relevantly different. To follow 
our final statement of Sect. 2, in the proposed architecture, 
our agent A can have a cognitive model R of the object O; 
it can create a cognitive model R’ of O, manipulate it and 



1664	 AI & SOCIETY (2024) 39:1653–1665

1 3

make inferences pertaining to O, based on these manipula-
tions; thus, agent A understands O.

It is not my intention to argue that this is the only alter-
native for the implementation of artificial understanding, or 
even the best of all alternatives. The debate portrayed in 
previous sections is not settled and it may be the case that 
similar capabilities may be implemented by adopting other 
approaches.37 However, at this point in time, the Integrative 
approach seems more promising and following it to imple-
ment understanding in artificial systems will surly yield 
more robust AI systems.
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