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Abstract
Since some AI algorithms with high predictive power have impacted human integrity, safety has become a crucial challenge 
in adopting and deploying AI. Although it is impossible to prevent an algorithm from failing in complex tasks, it is crucial 
to ensure that it fails safely, especially if it is a critical system. Moreover, due to AI’s unbridled development, it is imperative 
to minimize the methodological gaps in these systems’ engineering. This paper uses the well-known Box-Jenkins method for 
statistical modeling as a framework to identify engineering pitfalls in the adjustment and validation of AI models. Step by 
step, we point out state-of-the-art strategies and good practices to tackle these engineering drawbacks. In the final step, we 
integrate an internal and external validation scheme that might support an iterative evaluation of the normative, perceived, 
substantive, social, and environmental safety of all AI systems.
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1 Introduction

Artificial Intelligence (AI) has performed exceptionally 
strongly in recent decades. Automatic and online image rec-
ognition, translators, driverless cars, and games have reached 
accuracy levels, in some instances, that surpass human levels 
(Mnih et al. 2015). However, the safety of some AI technolo-
gies has been questioned. For example, a self-driving vehicle 
killed a pedestrian in Arizona, AI-based prosecution sys-
tems have kept innocent people in jail, and IBM’s automatic 
cancer treatment advisor made unsuitable recommendations 
(Marcus and Davis 2019, p. 11). Concerned about the unfor-
tunate consequences of engineering pitfalls and the potential 
impacts of the unregulated deployment of these intelligent 
systems, governments, private companies, and researchers 
are looking for strategies to ensure that AI can be safely 
deployed in different economic sectors. The unbridled use 

of AI can be beneficial, but it also creates new risks for the 
environment, humans, and other sentient beings. Therefore, 
research on safe AI is urgently needed and a consensus must 
be reached on implementing new intelligent systems and 
validating those already in place, especially in the case of 
systems with a high potential impact on the community.

The latest AI developments are grounded in Machine 
Learning (ML), especially Deep Learning (DL). The com-
plex structure of the most powerful ML models makes them 
impossible to interpret, turning them into black boxes. In 
addition to skepticism about decision-making, the opacity 
of these models has been known to conceal unfair decisions 
(Rudin 2019), thus generating mistrust about their safety. 
Moreover, naive errors in data processing and other kinds 
of negligence in adopting these models have demonstrated 
their limited substantive safety (Buolamwini 2017). In this 
article, we remind ML practitioners that ML models belong 
to a particular family of statistical models; therefore, frame-
works such as the well-known Box-Jenkins framework used 
to adjust and validate statistical models can help ML mod-
eling as well. This Box-Jenkins framework has been part 
of the “manual” of good practices in the statistical commu-
nity for several decades and could well be applied in the AI 
community too. Using this framework, this paper presents a 
literature review identifying engineering pitfalls and factors 
that compromise AI safety and presenting some state-of-the-
art strategies and good practices to tackle these drawbacks. 

http://crossmark.crossref.org/dialog/?doi=10.1007/s00146-022-01591-z&domain=pdf
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On the other hand, although this paper does not intend to 
validate the Box-Jenkins framework, four phases of clini-
cal AI-system validation (statistical, relational, pragmatic, 
and ecological), proposed by Cabitza and Zeitoun (2019) 
are integrated into it to highlight the importance of itera-
tive internal and external safety validations. The last section 
summarizes the main findings of the literature reviewed and 
shares the authors’ insights on how to move toward safe AI.

2  The Box‑Jenkins framework for safe AI

Due to the significant deployment of AI in society, it is 
becoming more and more urgent to ensure that these tech-
nologies work safely. Therefore, new frameworks and regu-
lations are consequently being designed: The European 
Commission (2019) presented its Ethics Guidelines for 
Trustworthy AI; The Executive Office of the President of 
the United States (2019) published the National AI R&D 
strategic in the same year, followed by the guiding princi-
ples for AI by the Government of Canada (2021) and the 
divulgation of the guidelines on AI ethics by the Ministry 
of Science and Technology (MOST) of China (2021). These 
policies and frameworks contain general requirements and 
ethical principles about transparency, privacy, fairness, and 
accountability. However, they do not go into much detail and 
do not explain how those concepts are interrelated. Private 
companies like Rolls-Royce (2021), Facebook (2022) or 
IBM (2022) have also published guidelines for a Trustwor-
thy, Responsible and Explainable AI. They are also high-
level aspects around the AI implementation disregarding a 
particular operation of the systems, like by the governments.

In contrast, the Trustworthy Artificial Intelligence 
Implementation (TAII) Framework proposed by Baker-
Brunnbauer (2021) does go into mid-level details identify-
ing the systemic relationships of ethics within organizations 
for their products and services. However, although it might 
be helpful for system design and validation interconnect-
ing the organizational business model, it does not show a 
complete process of adjusting a model. Many other frame-
works envision translating high-level principles into mid- 
or low-level concepts as proposed by Shneiderman (2020), 
Hibbard (2012), Abràmoff et al. (2020), or Cabitza and Zei-
toun (2019). However, they ignore the intrinsic statistical 
nature that ML models contain or do not contain all the steps 
of the modeling process. The Box-Jenkins method, on the 
other hand, is an iterative procedure that goes through all 
the stages of statistical modeling, especially time series and 
regressions. It is easy to understand, has been used in differ-
ent contexts (Box et al. 2015, p.15), and applies in just three 
phases: (1) Identification, (2) Estimation and validation, and 
(3) Application. The first phase refers to data prepossessing 
and model identification. Once the model is identified, its 

parameters are estimated, and then the best model is selected 
using suitable criteria, and its assumptions are statistically 
validated. The selected model can be used if the validation 
phase is satisfactory; otherwise, it must return to the first 
phase. The validation step consists of the verification of 
purely statistical assumptions.

To describe the context of AI system safety and integrate 
both internal and external validation, we connect the Cabitza 
and Zeitoun (2019) validation framework into the Box-Jen-
kins framework (see figure 1). Internal validation consists of 
evaluating these algorithms’ performance in controlled sce-
narios, while external validation is carried out in real-world 
situations. The validation process is composed of four steps: 
(1) Statistical validation, (2) Relational validation, (3) Prag-
matic validation, and (4) Ecological validation. Statistical 
validation might be the most widely used by AI practitioners 
and refers to the analysis of metrics such as accuracy, sen-
sitivity, specificity, robustness, and consistency. Relational 
validation involves direct system users, such as physicians, 
inspectors, or other end-users who interact directly with the 
system. In this step, the system’s usability is evaluated, and 
it provides the first view of human-machine interaction in 
experimental but close-to-reality settings. Pragmatic valida-
tion assesses the system’s functionality in real-world condi-
tions, and ecological validation is a longitudinal pragmatic 
validation involving all the players (e.g., patients in the case 
of medical diagnosis).

2.1  Data preparation

Data are crucial for developing AI technologies. Gener-
ally, thousands or millions of records are required to train 
AI models. These records, usually called examples in ML 

Fig. 1  The Box-Jenkins framework for safe AI
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jargon, can come in different formats: cross-sectional or 
longitudinal data tables, images, videos, or voice record-
ings. Although it is impossible to look at all the records, it is 
essential to become familiar with the data. Not surprisingly, 
intelligent system designers must contextualize themselves 
before proposing solutions. Although this sounds obvious, 
ML practitioners often ignore the potential of descriptive 
statistics, multivariate analysis, or inspection of a few exam-
ples. For instance, some winning AI models unintention-
ally fooled the international PASCAL VOC competition 
because, to some extent, data were not preprocessed. The 
competition involves classifying realistic images with the 
highest possible accuracy level. Some of the accurate algo-
rithms focused their attention on irrelevant photo areas to 
classify an image (Lapuschkin et al. 2016). The heat maps 
in figure 2 show two examples where a classifier might be 
focusing on irrelevant parts of the image. A ship was classi-
fied correctly due not to its morphology but to the presence 
of the sea. Horses were correctly classified since copyright 
text was on many images of horses. Perhaps this kind of 
error went unnoticed for years during the competition’s his-
tory; it could have probably been foreseen if a preliminary 
analysis of the images had been carried out, especially in 
the case of the horses.

Alternatively, it is crucial to pay attention to data col-
lection details. Wrong inferences might occur if sampling 
details are ignored. Even though collecting data that fully 
reflect reality might be impossible in some instances, it is 
essential to know the scope of these technologies’ use. Rep-
resentativeness, measurement errors, missing data, misclas-
sification, high dimensionality, and unbalanced data affect 
the inferences and limit these models’ use. Naturally, data 
is imperfect and unbalanced; some features are less preva-
lent than others. However, the precision of the algorithms 
must be guaranteed in some specific and essential cases. For 
example, driverless cars must detect pedestrians regardless 
of their skin color, or a medical diagnostic device for a spe-
cific disease must work for both in people with high and low 
socioeconomic status. In contrast, some IBM and Micro-
soft algorithms performed better on pale-male faces than on 
dark-skinned females (Buolamwini, 2017); ML-based clini-
cal support might report inaccurate results in people with 

low socioeconomic status due to their underrepresentation 
in the health data (Gianfrancesco et al., 2018).

Excessive reliance on AI tools of this kind may amplify 
disparities and be unsafe. In cases where the performance of 
the algorithms cannot be guaranteed, these limitations must 
at least be reported to the users. A complete contextualiza-
tion of the problem, the constant verification of the model's 
assumptions, sensitivity or robust analyses, and descriptive 
statistics help in the early identification of harmful features 
and uses of the model. As Buolamwini (2017) claims, this 
type of analysis should become “part of standard practice 
rather than merely a commendable option.”

On the other hand, data integrity must be ensured, tested, 
and documented before a model is trained, according to The 
European Commission (2019). Moreover, when it comes to 
sensitive information, privacy must be protected, and confi-
dentiality preserved.

2.2  Model selection

Data come in different structures such as longitudinal, unbal-
anced, or incomplete data. Modeling methodologies are pro-
posed based on these characteristics. ML practitioners must 
remember that the model must fit the data and not the data 
the model. Ignoring the nature of data can lead to unreli-
able results, which work in theory but not in practice. For 
instance, the Google and Amazon search engines reflected 
gender discrepancies (Buolamwini 2017), even though 
methods already existed to remove gender stereotypes from 
embedding methods (Bolukbasi et al. 2016) such as the ones 
used by those search engines (Marcus and Davis 2019, p. 
46). Class imbalance tends to generate biased learning and 
result in less predictive power in minority classes since most 
ML algorithms assume relatively balanced data (Zheng and 
Jin 2020). Weighting minority class distributions according 
to their learning difficulty level is a method that has been 
proposed to handle unbalanced data (He et al. 2008) and 
reweight for label-biased data (Jiang and Nachum 2020). 
Label-biased data might result in incorrect predictions, but 
optimization-based methods to control unfair predictions 
based on data that might favor certain classes have also been 
suggested in the literature (Thomas et al. 2019).

Fig. 2  Examples of anomalies detected in the classifiers of one of the PASCAL VOC competitions. © (2016) IEEE. Reprinted, with permission, 
from (Lapuschkin et al. 2016)
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Sample size influences the scope of inferencing, data 
acquisition is often expensive, and ML algorithms might 
not generalize well with just a few training sessions. Learn-
ing from a few examples is essential in contexts such as 
anomaly detection because the scarcity of anomalies. The 
system would need to learn when a low-rate event is per-
ceived. Methods such as few-shot learning (Fei-Fei et al. 
2006; Fink 2005), prototypical networks (Snell et al. 2017), 
and matching networks (Vinyals et al. 2016) may be suitable 
to tackle these limitations since they require few data. The 
motivation underlying these algorithms is grounded in the 
idea that humans can learn new tasks quickly without a huge 
number of examples using prior knowledge. For example, 
a child who has seen a few photos of giraffes can identify 
a giraffe among multiple photos of animals. Transfer learn-
ing uses a convenient trained ML model to train a differ-
ent model. With this method, the amount of data required 
is smaller than with a model trained from scratch. Other 
ways to gain in data include generating synthetic examples 
(Georgakis et al. 2017), data wrapping (Baird 1992), includ-
ing expert knowledge (Vasconcelos and Vasconcelos 2017), 
and combining these techniques. Nevertheless, the safety of 
algorithms based on just a few examples should be tested 
since their inferences can be limited to particular cases, 
especially if they are trained on non-probabilistic samples.

AI algorithms have shown great predictive capacity, and 
thus statistical reliability. However, reliability is not the 
same as safety. If a critical system fails, it should fail safely, 
and other alternatives need to be available to the user. Thus, 
controllability is essential for a safe AI system. To control a 
system, users need to interact with the machine, and to inter-
act with it, users need to understand its outputs: they should 
understand why a decision is made or how the machine per-
forms its process. Therefore, safe systems require explain-
able algorithms. However, explainability might be the Achil-
les heel of the most capable AI algorithms. DL has emerged 
with a set of accurate but uninterpretable models that in 
some tasks have even surpassed the human level (Mnih et al. 
2015). Because of their internal complexity, their underly-
ing decision mechanism is incomprehensible, which makes 
users skeptical. This issue is known as the black-box phe-
nomenon in AI. High-stakes decisions based on these black-
boxes can harm society (Varshney and Alemzadeh 2017). 
For instance, a physician might not be able to correct an 
AI-based diagnosis (Akatsuka et al. 2019) or prevent a false 
positive. Accurate black-box systems may be grounded in 
spurious correlations (Lapuschkin et al. 2019), leading to 
unsafe decisions. Now more of those systems are being hast-
ily produced, so the AI community needs to deliberate about 
AI safety and trustworthiness.

Making automatic decisions understandable or interpret-
ing the mechanism inside these black boxes increases a sys-
tem’s safety perception, trust, and acceptance (Shin 2021), 

which are key factors to externally in ensuring that systems 
are externally valid. Explainable AI methods are developed 
with two schools of thought: (1) some researchers work on 
inherently interpretable models, while (2) others develop 
methods that are explainable post hoc. The first school cre-
ates ML models with transparent, easily understandable 
internal mechanisms, whereas the second creates methods 
to explain ML algorithms that are already trained. There 
are also hybrid approaches that combine both approaches.

Purely transparent models are perhaps the simplest AI 
algorithms; their structures allow their complete decision 
mechanism to be interpreted. Some examples are regression 
models, logistic models, and Bayesian models. The struc-
ture of these models is clear, so users can easily interpret 
and interact with model parameters to understand why and 
how the model decides. Although they have been widely 
used in contexts such as health (Mor-Yosef et al. 1990) and 
education (Kobrin et al. 2011), their statistical accuracy 
has been outperformed by more complex models. These 
include decision trees, which are robust, transparent mod-
els but they become less comprehensible to humans as the 
number of their nodes increases, except in some pathologi-
cal models (Maimon and Rokach 2014, p. 53). Transparent 
models allow for complete interpretation, resulting in less 
uncertainty for users. However, methods such as Concept 
Whitening (CW) (Chen et al. 2020), deepLIFT (Shrikumar 
et al. 2019), and Grad-CAM (Selvaraju et al. 2019) sacrifice 
complete interpretability for more accurate DL. These tech-
niques are model-specific approaches to interpret deep neu-
ral networks (DNNs). While CW, which is more associated 
with the first school of interpretable AI, introduces a mecha-
nism to align concepts known to users with a latent space in 
the target DNN architecture during training, DeepLIFT and 
Grad-CAM produce feature-based explanations of trained 
DNNs. Feature-based explanations mean that some relevant 
features are highlighted in the model input to explain its 
output (see figure 3). DeepLIFT assigns importance scores 
to the input features, backpropagating the contributions of all 
neurons in the network to every feature in the input. Grad-
CAM, which is concept-based like CW, uses gradients to 
weight feature maps on images and produce visual expla-
nations of any convolutional neural network–based model. 
Case studies have shown that Grad-CAM improves human 
performance to classify images accurately, reveals the trust-
worthiness of a classifier, and helps identify biases in the 
input data (Selvaraju et al. 2019).

In the family of post hoc methods, agnostic approaches 
obtain feature-based explanations without altering the 
architecture of the model. Agnostic methods are attrac-
tive since they ignore the black box’s underlying struc-
ture. They do not need to open the black box, but they do 
require query access, that is, they need the output produced 
for a given data point. LIME is an agnostic, gradient-based 
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strategy that explains any classifier or regressor’s predic-
tions faithfully and interpretably (e.g., a linear model) by 
approximating an interpretable model locally (Ribeiro 
et al. 2016). Like LIME, SHAP estimates feature attribu-
tions on individual instances, but it applies game theory 
to guarantee that the explanations satisfy specific proper-
ties (Lundberg and Lee 2017). SHAP outputs values that 
represent the features’ contributions to predictions (see 
figure 3). Both SHAP and LIME provide visual explana-
tions that can be easily interpreted by users.

Hybrid methods combine explainable models with black 
box models. Deep k-Nearest Neighbors (DkNN), Deep 
Weighted Averaging Classifier (DWAC), Self-Explaining 
Neural Network (SENN), and Contextual Explanation Net-
works (CENs) are some examples of hybrid approaches. 
DkNN combines k-nearest neighbor inferencing with the 
hidden representation of the training set in a DNN (Paper-
not and McDaniel 2018). Its nearest neighbors ensure each 
layer’s interpretability since they represent a set of exam-
ples to explain a decision made by the DNN. DWAC makes 
predictions based on a weighted sum of training instances 
where the weights are determined by the distance from the 
instance to be evaluated to all training instances (Card et al. 
2019). As in DkNN, the explanations for a decision are pro-
vided in terms of similar examples in the training set (the 
most highly weighted training examples). SENN uses locally 
simple interpretable models to generalize to more complex 
yet still interpretable models (Alvarez-Melis and Jaakkola 
2018). SENN estimates these simple models’ parameters 
via, for example, a DNN and regularizes their estimation 
to maintain interpretability. CENs learn to predict based 
on intermediate explanations. Those explanations are in 
the form of context-specific probabilistic graphical models. 
OPEN UP is a control chart used for online and post hoc 
fault diagnosis (Morales-Forero and Bassetto 2019).

There is still no consensus as to which of the two schools 
of thought provides valid explanations for the behavior of 
models. A known difference between inherently explainable 
models and post hoc methods is that interpretable models 
become more precise as they become more complex. Thus, 
the former is less accurate than the latter, which might be 
based on complex black boxes. This is not entirely true, 
though. If structured data with meaningful characteristics 
are available, models such as regression or decision lists 
can be as accurate as more complex models such as DNNs, 
boosted decision trees or random forests (Rudin 2019). 
The use of these approaches is context-dependent; verify-
ing this trade-off and the data structure is a good practice 
for adopting these methods in particular cases. Neverthe-
less, assuming that interpretability might be sacrificed for 
performance, high-stakes decisions based on these black 
boxes can have harmful effects: using incomprehensible 
models, unknown shifts in the data would remain hidden, as 
well as wrong inferences based on incorrect patterns (Varsh-
ney and Alemzadeh, 2017). Furthermore, transparency and 
explainability are becoming mandatory in any deployment 
of AI-based critical systems (European Commission 2019; 
Executive Office of the President of the United States 2019; 
Ministry of Science and Technology (MOST) of China, 
2021; Government of Canada 2021).

On the other hand, explanations depend on their users: 
while average users require practical, easy-to-digest, local 
explanations, technical experts may require more complex 
information, and managers more general explanations. Thus, 
all the stakeholders’ roles and knowledge need to be con-
sidered. Users and designers must agree on what should 
be explained and how. They might be interested in feature-
based explanations, concept-based explanations, contrastive 
explanations, or counterfactual explanations. As mentioned 
above, feature-based explanations highlight features in the 

Fig. 3  Contrastive explanation of a type of defect based on SHAP 
values. The first image is taken from the NEU surface defect database 
(Song and Yan 2013; He et  al. 2019; Dong et  al. 2019). The three 

images at the right highlight the pixels that positively (red pixels) and 
negatively (blue points) affect the classifier’s decision
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input to explain which ones are more relevant in predicting 
certain output; they can answer questions such as what areas 
in an input image influence the model decision. Their expla-
nations are local: they apply to certain inputs. Concept-based 
explanations are grounded in known concepts, and thus are 
easier for users to understand. Contrastive and counterfac-
tual explanations are quite similar: they both allow users 
to distinguish between different options in a system that 
answers questions such as “Why was a specific output not 
predicted?” or “What if something is changed in the model 
or the input?”

2.3  Estimation

In the ML community, the estimation process is called 
“training.” Training is based on an objective function opti-
mization using training data and is then tested with an inde-
pendent data set that we call a test set. When testing with the 
test set, we expect that the model will produce similar results 
with unseen observations; in other words, that it will gener-
alize well. Generalization is reached when the test set’s error 
measure is as small as possible; that is, the model is accu-
rate in the test set. The central assumption is that the train-
ing data and test data are drawn from the same distribution. 
However, in most practical cases, they come from related, 
not identical, distributions (Yao et al. 2020). Although it 
would be both necessary and sufficient for generalizing if 
an algorithm were to achieve “similar” performance on a 
test sample and a training sample that are “close,” the condi-
tion of independent, identically distributed samples is still 
required (Xu and Mannor 2012). Therefore, special attention 
must be paid to the target population and sample mechanism 
for these training and test data. Conclusions are limited to 
the target population with a proper sampling.

In addition to explainability, perhaps the greatest weak-
ness of AI models is the definition of their objective func-
tions. The objective functions correspond to the mathe-
matical representation of the instructions demanded by the 
system developers. The model parameters are estimated via 
the minimization or maximization of these functions. The 
idea is to formalize the designers’ requirements based on 
these functions, but these requirements are often far from 
what is really wanted. For an AI to be safe, it is important 
that what is asked of the machine corresponds precisely 
to what is wanted of the machine. The objective functions 
might not fulfill all the needs, however. Complex tasks 
often require the learning process to be aligned with human 
values. A human-compatible system often requires more 
than the optimization of a single mathematical expression. 
Artificial General Intelligence (AGI) is an emergent topic 
that challenges researchers in this direction since it requires 
open-ended solutions: open-ended as a way to learn every-
thing rather than to learn a specific task. The big challenge 

is formalizing open-endedness in mathematical expressions 
(Stanley 2019). Nevertheless, being aligned with human val-
ues does not guarantee the safety of the system, unforeseen 
events can occur even if a human operates the entire system. 
The problem is that machines do not have the common sense 
or goodwill to mitigate any unintended consequences. For 
instance, fully autonomous cars must immediately require 
solutions to ethical questions in situations such as described 
in the Trolley dilemma, where any result is undesirable 
and might pragmatically better express uncertainty. Some 
research has been done in this direction (Eckersley 2018; 
Beale et al. 2020).

The difficulty of expressing the correct objective func-
tions is well illustrated in reinforcement learning. Two con-
crete problems related to objective functions’ misspecifica-
tion are negative side effects and reward hacking (Amodei 
et al. 2016). When the agent negatively affects the envi-
ronment, this is a negative side effect; on the other hand, 
when the agent finds a simple or counterintuitive solution 
that maximizes the objective function but goes against the 
designer’s desire, it is a case of reward hacking. In both 
cases, the agent learns to obtain the highest reward by apply-
ing strategies without common sense. These two problems 
were illustrated with the Coast Runners video game (Amodei 
and Clark 2016). Approaches to tackle this problem include 
penalizing changes in the environment and preventing the 
agent from reaching a risky position to deceive the system 
(Amodei et al. 2016). Letting the agent and the human work 
together to achieve the human’s goals is another alternative. 
This approach is known as cooperative inverse reinforcement 
learning (Hadfield-Menell et al. 2016).

On the other hand, since identifying vulnerabilities is cru-
cial to ensure the system’s safety, techniques such as adver-
sarial attacks and defense techniques have attracted increas-
ing attention in the AI community. Adversarial attacks are 
algorithms specially designed to cause a malfunction in an 
ML model by perturbing its examples; they can affect the 
model both in the training stage and later on, usually during 
classification. The former is known as a poisoning attack and 
the latter as an evasion attack. Adversarial attacks can also 
be classified according to the level of knowledge: White-box 
attacks require full knowledge of the target model; black-box 
attacks only assume query access to the model, namely being 
able to obtain specific input predictions; finally, gray-box 
attacks have only limited access to the model. Since white-
box and gray-box attacks have access to more information, 
they perform better than black-box attacks; thus, white-box 
adversarial attacks are the strongest (Ren et al. 2020). In this 
Box-Jenkins step, we will discuss poisoning attacks since 
they are the only ones that occur during the learning process. 
We will discuss evasion attacks in the next step, validation.

Poisoning attacks craft examples to affect the training 
process. When the adversary simply wants to reduce the 
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model’s classification performance, these kinds of attacks 
are known as availability attacks (Biggio et al. 2012; Mei 
and Zhu 2015). In contrast, when the adversary seeks to 
misclassify a single target point, they are called targeted 
attacks (Koh and Liang 2017; Shafahi et al. 2018). Backdoor 
attacks, in contrast, are attacks in which the adversary con-
trols one or more features to decrease the model’s accuracy 
(Chen et al. 2017).

Defense techniques are alternative approaches to increase 
neural networks’ robustness. These defense methods can 
either modify the data, modify the model, or use auxiliary 
information to increase the model’s robustness. The meth-
ods that modify the data include adversarial training, gradi-
ent hiding, blocking transferability, data compression, and 
data randomization; methods that modify the model include 
regularization, defensive distillation, feature squeezing, deep 
contractive network, and mask defense. The Defense-GAN, 
MagNet (Meng and Chen 2017), and High-level Represen-
tation Guider Denoiser methods use auxiliary information. 
However, since white-box attacks have full access to the 
model, especially its parameters, they can adapt and craft 
adversarial samples directly for the target model. Many 
defense methods are vulnerable to such attacks, even when 
they are effective against black or gray-box attacks (Ren 
et al. 2020).

2.4  Validation

In this step, a validation process for implementation and 
safety monitoring of AI systems is described, mostly for 
critical systems. The procedure was initially proposed by 
Cabitza and Zeitoun (2019) for clinical contexts and con-
sists of four stages: statistical validation, relational valida-
tion, pragmatic validation, and ecological validation. Some 
methodologies that aim to validate the model’s safety at each 
stage are described below.

2.4.1  Statistical validation

Although a kind of validation is often done during the esti-
mation process, it is necessary to evaluate performance with 
a completely independent data set to confirm that the algo-
rithm does not overfit the training data. Roughly, the same 
objective function used for the training is also evaluated in 
the test set; if this value is close to the one obtained in the 
training process, the model is ready to use. In classification, 
the F score and the area under the receiver operating char-
acteristic (ROC) curve are also commonly used to express 
statistical validity in terms of true-positive rates (sensitivity, 
recall, or probability of selection) and false-positive rates 
(1—specificity). These types of validation are the most com-
mon in the development of ML models. However, to ensure 
safety in this step, additional statistical validations might be 

required. For example, let us examine some evasion attack 
techniques. As mentioned above, evasion attacks are a kind 
of adversarial attack against a trained model. An evasion 
attack carefully creates malicious examples that are likely 
to be misclassified by the model. There are many kinds of 
evasion attacks, and new ones are constantly being invented. 
Detecting new adversarial observations can be more efficient 
than preventing them (Koo et al. 2019). Detecting corrupt 
observations can either robustify the model by retraining 
it based on the updated adversarial repository or prevent it 
from tampering with the system. Essentially, these adversar-
ial detectors are either another binary ML classifier (Hendry-
cks and Gimpel 2016; Fidel et al. 2019; Koo et al. 2019) or a 
statistical test (Grosse et al. 2017) that classifies a test exam-
ple as benign or adversarial. MagNet is another approach 
that, in addition to detecting, automatically corrects the 
corrupt sample so that it does not affect the system (Meng 
and Chen 2017). However, there are also special attacks that 
learn to fool both the classifier and the adversarial detector 
(Carlini and Wagner 2017). Hence, all types of adversarial 
defenses might be required. Some industries might require 
more sophisticated, up-to-date defense systems than others, 
such as banks or insurance companies versus manufacturing 
companies.

2.4.2  Relational validation

Achieving high accuracy is essential, but it might not be the 
most relevant result. Even if a system has been proven to be 
statistically valid, statistical validity is not enough to ensure 
its usability, especially in critical tasks (Cabitza and Zeitoun 
2019). For instance; doctors can become less vigilant and 
over-rely on a system with high predictive capacity, even 
when it is wrong (Parikh et al. 2019); inspectors can provide 
correct diagnostics based on a system that provides right 
answers in 7 out of 10 cases if they are able to ignore the 
incorrect diagnostics interpreting the system outputs. Rela-
tional validation evaluates end-user–machine interactions. 
It validates whether the system is efficient and works rea-
sonably well in real-world, but controlled settings (Cabitza 
and Zeitoun 2019). While statistical validation is focused 
on efficacy, relational validation is focused on the system’s 
usability. ISO standards can help to specify and measure 
system usability (ISO 9241-110, 2020). Specifically, the 
recently published ISO/IEC TR 24028 (2020) provides an 
overview of topics relevant to building AI systems’ trust-
worthiness. Trustworthiness, in the sense of the ability “to 
meet stakeholder expectations in a verifiable way,” is the 
primary objective. Considerations of availability, resiliency, 
reliability, accuracy, safety, security, and data privacy are 
also included in this ISO.

On the other hand, users’ perceived safety is a relevant 
factor in adopting technology. Perceived safety refers to “the 
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user’s perception of the level of danger when interacting 
with a robot, and the user’s comfort level during the interac-
tion” (NíFhaoláin et al. 2020). Although human–machine 
interaction is a challenge for all automated systems, explain-
ability allows human–machine communication in AI sys-
tems. Explainability enables the user to interact with the AI 
systems, providing information about a determinate deci-
sion; in certain instances, the user can arbitrarily modify the 
inputs and contrast the outputs, so the interaction is in both 
directions: machine-human and human–machine. Robot-
human interaction, stress, affective state, and reliability have 
been measured to evaluate intelligent systems’ safety. Physi-
ological sensors, questionnaires, and direct input devices are 
often used after users have interacted and accumulated some 
experience with the system (Cabour et al. 2021). Although 
there has been immense progress in Explainable AI and 
assessment of its explanations, there is still much room for 
improvement.

2.4.3  Pragmatic validation

This kind of validation is similar to relational validation, but 
it is done later in the process. To pragmatically validate the 
system, it should be exposed to real-world conditions in an 
uncontrolled environment. Here, the objective is to evaluate 
the system’s actual effectiveness.

Before exposing users to the system, compliance with all 
rules and regulations must be ensured. The concept of nor-
mative safety becomes important here; a system achieves 
normative safety if it meets all the relevant norms, regula-
tions, and standards. In addition to all the legal or techni-
cal requirements that every system needs to meet according 
to its context and industry, special new regulations have 
emerged for some AI technologies (e.g., European Com-
mission (2019)).

Factors such as transparency, explainability, fairness, 
governance and adaptability are common requirements in 
all these regulations, however it is not yet clear what level 
of explainability or transparency these systems require. The 
evaluation of the impact of these systems would be easier if 
counterfactual scenarios can be assessed but those type of 
analysis are limited given the complex architecture of the 
NN. Complete transparency allows assessing the causality 
of the inputs, i.e., it enables decision makers to fully under-
stand the changes in the results due to small changes in the 
input data. Although some explainable algorithms such as 
SHAP or LIME have been proposed based on certain causal-
ity (Lundberg and Lee 2017), those methods remain explor-
atory, and sometimes inconsistent. The opaque nature of 
DNN, for instance, can still hide unknown shifts in the data 
and might provide wrong inferences based on incorrect pat-
terns (Varshney and Alemzadeh 2017). Building inherently 
explainable models is more responsible since it is easier to 

evaluate the model causality (Rudin 2019). The interpret-
ability of AI models is definitely what sets them apart from 
any other system, so by closing this gap the effectiveness of 
these AI-based systems can be evaluated regardless. There-
fore, we believe that when it comes for safety in high-stake 
decisions, interpretability must clearly be required for the 
current frameworks and regulations.

2.4.4  Ecological validation

Ecological validation refers to longitudinal validation of 
the environmental benefits the system generates, that is, an 
assessment of the system’s social and environmental fit over 
time (Cabitza and Zeitoun 2019). Factors such as throughput 
rates, workflow improvement, and net savings are validated 
here, along with cost-effectiveness analyses and indirect-
user safety assessments. Public, social, and environmental 
safety must be considered from the system design stage, how-
ever. This stage is only a validation step to confirm what 
has been planned. Since the nature of the automated task 
might be dynamic, adjustments in the system may be needed. 
Therefore, continuous monitoring of these safety factors is 
recommended.

This kind of validation is important for ensuring that 
the AI system will not create unexpected social situations. 
Algorithmic impact assessments (AIAs) are frameworks that 
allow public and private agencies to evaluate the impact of 
automated decision systems in the environmental, privacy, 
and human rights policy domains. AIAs are becoming man-
datory in any deployment of automated decision-making. 
Be as open as possible, allow auditing, ensure explainable 
algorithms, and preserve privacy are some of the common 
features of these AIAs. Alternative frameworks (e.g., the 
Aletheia Framework designed by Rolls-Royce (2021) or 
the Canadian guiding principles to ensure the effective and 
ethical use of AI published by The Government of Canada 
(2021)) provide essential measurements and general guid-
ance on implementing AI systems.

“The core issue is that current AI systems mimic input 
data without regard either to social values or to the quality 
or nature of the data” (Marcus and Davis 2019, p. 47). For 
instance, Kim et al. (2019) reported that only 6% out of 516 
published studies in medical imaging diagnosis externally 
validated their AI algorithms. Statistical accuracy indica-
tors are certainly one of the main concerns of ML practi-
tioners, suggesting indifference to questions such as: How 
compatible is the system with society, the environment, and 
sentient life? How well is it aligned with the social values? 
What are the risks to society and to nature of implementing 
the system? Although these questions might have subjective 
answers, methods to deal with biased or unfair decision-
making are being developed. For instance, the Seldonian 
method based on constrained optimization allows one to 
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control undesirable behaviors in the predictions of ML mod-
els (Thomas et al. 2019). The constraints are measures to 
control unfair predictions probabilistically and intuitively; 
an undesirable behavior could be, for example, large dif-
ferences in mean prediction errors for GPAs of applicants 
of different genders or for expected financial loss. Thomas 
et al. (2019) show how gender inequities in GPA predictions 
can be controlled and still produce more accurate estimates 
than state-of-the-art fairness-aware algorithms (e.g., Fairlean 
(Agarwal et al. 2018) and Fairness constraints (Zafar et al. 
2017)). In contrast, Eckersley (2018) suggests that high-
stakes decisions, such as medical decision support systems 
or autonomous weapons or risk assessment in criminal jus-
tice contexts, cannot be based only on strict mathematical 
objective functions. Otherwise, it would be impossible to 
make a good prediction “without violating strong human 
ethical intuitions”; ethical questioning, commonly there are 
no close-ended answers to many ethical questions, so these 
critical systems should exhibit some uncertainty in these 
cases. Human assistance is still required.

On the other hand, Deepfakes that involve the use of 
AI models to generate fake audio or visual content have 
shown their impact on public safety. Researchers have also 
increased their efforts to simulate these malicious activi-
ties and create defenses against them. Poisoning attack 
simulations to make discriminatory decisions (Solans et al. 
2020); methods to detect fake visual content using physical 
or physiological aspects (Li et al. 2018; Yang et al. 2019; 
Agarwal et al. 2019), and capturing specific artifacts (Zhou 
et al. 2017, 2018) are products of those efforts.

The impact of these technologies on society and nature is 
undoubtedly an essential element of their implementation. 
Although legislation and frameworks already exist to pre-
vent it from producing environmental, economic, and human 
damage (European Commission 2019; Executive Office of 
the President of the United States 2019; Ministry of Science 
and Technology (MOST) of China, 2021; Government of 
Canada 2021), there are still globally diversified technolo-
gies in which the safety factor takes a backseat, such as the 
very recent case of Facebook, which is accused of caus-
ing detrimental to the mental health of teenagers and being 
dishonest in its fight against hate and misinformation CBC 
(2021). Throughout this article, we have identified some fac-
tors and strategies for developing, validating, and monitoring 
AI. Still, there seems to be an endless discussion of safe AI 
while the misuse and abuse of these technologies continue.

3  Conclusion

In this article, we have used the Box-Jenkins framework to 
structure an analysis of factors and strategies to ensure safer 
adoption of AI technologies. Engineering pitfalls, plausible 

state-of-the-art solutions, and challenges have been identi-
fied throughout the model adjustment process, from data 
collection to external validation, showing the long road 
that lies ahead to ensure safe AI. Many of the new models 
are developed by big technology companies, which collect 
large volumes of information through social media or elec-
tronic devices. However, the ML community has given little 
thought to data collection, possibly since it has traditionally 
thought that the more, the better. Oversampling niche popu-
lations does not lead to a better understanding of the general 
population. Each element in the population of interest must 
have a greater than zero probability of being selected; oth-
erwise, inferences concerning the entire population might 
be biased. Data collection spearheads the modeling process; 
therefore, probabilistic sampling methods need to be one 
of the first concerns for many ML practitioners. Sampling 
depends on the context and affects inferencing. Inferenc-
ing is relevant since real-life system performance can be 
affected, gender discrepancy can be produced, and the integ-
rity of people’s lives can be negatively impacted, to mention 
just a few issues.

We have also described how data preprocessing can bring 
to light collection gaps, contextualize the designers, and cus-
tomize the modeling. Although powerful AI models exist 
in the literature, there are no one-size-fits-all models. Con-
text-dependent modeling supports identification of a proper 
model and its validity. Internal and external validations must 
be performed to assess whether the system fulfills the task 
requirements and identify risks and possible vulnerabilities 
in all the safety dimensions: normative, perceived, substan-
tive, social, and environmental safety.

The definition of objective functions represents a real 
challenge for AI practitioners. Parameter estimation based 
on simple target functions in close-ended environments 
might not be enough to ensure system safety. On one hand, 
obtaining objective parameter estimates can be very difficult 
since data scientists and software developers may embed 
their own task perceptions, and complex tasks might require 
more than a single mathematical expression. On the other 
hand, although techniques such as adversarial testing help 
to make the system more robust, those techniques still tend 
to be narrow tasks tested in controlled environments. That 
is why it is so important to externally validate algorithms.

The community agrees that explainable AI is imperative 
for AI safety, especially for high-stakes decisions. Never-
theless, there is still no consensus about what to explain 
and how. Although the latest agnostic explainable models 
seem to provide meaningful explanations and to be more 
in line with the unbridled nature of AI, researchers have 
recently advised that we stop explaining black-box models 
since this practice can harm society and inherently interpret-
able models can provide more faithful interpretations. Inher-
ently interpretable models may be less accurate than black 
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boxes but providing adequate, timely information will allow 
users to act correctly if the system fails. Therefore, inher-
ently interpretable approaches might be the best candidates 
for safer AI. Nevertheless, explanations depend on system 
users and their needs. Some system users may require global 
and counterfactual explanations, while others require local 
and feature-based explanations. Thus, system design that 
embraces the knowledge and needs of all stakeholders could 
allow more users to detect and assess the system’s failures 
on a timely basis.

Machines’ lack of goodwill or common sense can lead 
to unfortunate situations. So, human-in-the-loop or human-
assist systems might be safer than fully autonomous systems. 
Although being aligned with human values is a subjective 
concept, general ethical considerations can be incorporated 
into the system and constantly evaluated.

Note that no verification of the framework used in this 
paper was, or was intended to be, carried out since it was 
only used as a creative way to describe all the issues related 
to safety in AI systems. However, this idea could serve as 
inspiration for future research and case studies in AI.
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