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Abstract
For millions of years, biological creatures have dealt with the world without being able to see it; however, the change in the 
atmospheric condition during the Cambrian period and the subsequent increase of light, triggered the sudden evolution of 
vision and the consequent evolutionary benefits. Nevertheless, how from simple organisms to more complex animals have 
been able to generate meaning from the light who fell in their eyes and successfully engage the visual world remains unknown. 
As shown by many psychophysical experiments, biological visual systems cannot measure the physical properties of the 
world. The light projected onto the retina is, in fact, unable to specify the physical properties of the world in which humans 
and other visually ‘intelligent’ animals behave; however, visual behaviours are habitually successful. Through psychophysi-
cal evidence, examples of the functioning of Artificial Neural Networks (ANNs) and a reflection upon visual appreciation 
in the cultural and artistic context, this paper shows (a) how vision emerged by random trial and error during evolution 
and lifetime learning; (b) how the functioning of ANNs may provide evidence and insights on how machine and human 
vision works; and (c) how rethinking vision theory in terms of trial and error may offer a new approach to better understand 
vision—biological and artificial—and reveal new insights into why we like what we like.
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1 Introduction

It is possible to consider metaphors as a way to attribute 
human characteristics to an animal, object or any other 
subject. At the same time, it is important to consider that 
abstract (non-physical) phenomena are understood through 
the attribution of physical features to the phenomena. For 
instance, the sentence inflation rose in July is interpreted 
using two concrete physical phenomena: inflation (an 
increase in size) and rising (a change in position) (Pinker 
2013).

Metaphors are used in science and philosophy to explain 
the unknown, as well as a tool to generate new knowledge 
and provide a better understanding of many phenomena 
(Zarkadakis 2015). Every century, perhaps even every dec-
ade, has its own metaphors, and “when the use of a specific 
metaphor ceases and a new metaphor takes its place, we have 

a ‘paradigm shift’ in the way science explains the world” 
(Zarkadakis 2015).

One main source of metaphors is the human brain and 
body. In the Book of Genesis Adam, for instance, is created 
out of dust and then life is infused into it—interestingly, 
the word human comes from the Latin humus, which means 
ground or earth. Later on, in the third century BCE, the 
invention of hydraulic and pneumatic systems provided a 
new paradigm to understand the human body as a “dynami-
cally moving fluid within a mechanical body” (Zarkada-
kis 2015). In the sixteenth century, again, René Descartes 
described the human body as a complex machine, comparing 
muscles and bones to cogs and pistons.

The arrival of computer technology, however, changed 
the paradigm once more. The brain started to be compared 
to a computer, as it processes the information much similar 
to how a computer does. The computer–brain analogy per-
haps finds its roots in the fact that information is transmitted 
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through electrical signals. Neurons,1 like electronic compo-
nents, indeed transmit information through a voltage change 
that much resembles the binary logic—0 and 1—used by 
computers.

From the 1950s, however, with the advent of Artificial 
Neural Networks (ANNs), this metaphor has begun to be 
revised. Unlike a computer, ANNs operate empirically, 
based on trial and error and on what worked best in the past, 
with no rigid rules or specific steps to follow—this distinc-
tion, which may seem to be of no particular importance, is 
fundamental to the understanding of this paper.

Using the new brain–ANN analogy, this paper introduces 
a new understanding of visual perception. Section 2 provides 
some essential information on the structure and functioning 
of the nervous system and briefly discusses its advantages. 
Important terminology is defined to better understand the 
entire text. Section 3 provides a basic understanding of the 
functioning of the ‘visual brain’ and introduces the idea that 
vision should be understood in empirical terms arising from 
trial and error during evolution and life-long learning. Sec-
tion 4 provides a basic understanding of the functioning of 
ANNs. Section 5 clarifies the position of culture in visual 
understanding. Additionally, it provides insights into com-
prehend why we like what we like. Lastly, Sect. 6 presents 
some implications and possible consequences of ‘accepting’ 
the brain–ANN paradigm.

2  The nervous system

Trichoplax adhaerens is a marine animal roughly one mil-
limetre in diameter without a nervous system (Senatore 
et al. 2017). However, despite this lack, as shown by Sena-
tore and colleagues, Trichoplax is capable of a variety of 
behaviours typically found in animals with nervous systems. 
Trichoplax can track space, communicate through cellular 
transmission and exhibit different feeding behaviours: it can 
arrest its ciliary movement, used for locomotion, when algae 
are detected, showing that it has a sensory system able to 
detect nutrients and to communicate over short distances 
via chemical secretion. Plants also lack a nervous system 
but, like bacteria and protists, they can use environmental 
information to generate behaviours that enable them to sur-
vive and reproduce.

What are the evolutionary advantages of having a brain, 
then? Answering this question risks falling into some kind of 
hierarchical division, with organisms with a nervous system 
at the top of the pyramid of life and others at the bottom. 
It is certainly true that having a nervous system provides 

numerous advantages. Nevertheless, having a brain is not a 
fundamental requisite for an ‘intelligent’ life form: most past 
and extant organisms are without a nervous system, and this 
absence does not seem to have caused them any particular 
problems.

No one knows when the first nervous system appeared; 
however, the need to survive in a constantly changing envi-
ronment seems to have benefited those organisms ‘gifted’ 
with a nervous system (Purves 2019). The key distinction 
between non-nervous system organisms and those with a 
nervous system seems thus a quantitative distinction in the 
range of possible behaviours. The appearance of nervous 
systems and later on of central nervous systems enabled bio-
logical creatures to respond to the external environment in 
more sophisticated and useful ways (Robson 2020).

The nervous system is composed of specialised cells 
known as neurons and glia.2 It is described for convenience 
as the central nervous system (brain and spinal cord) and 
the peripheral nervous system—both areas are of course in 
continuity. The task of the nervous system is to carry sen-
sory information (e.g., heat) from the periphery to the brain 
to promote a behaviour (e.g., remove your hand). Each neu-
rons signals via a bioelectrical signal, known as an action 
potential, which travels along the nerve cell and communi-
cates the information to another neuron—the synapse.3 Each 
cell remains independent and separate. In the case of vision, 
when photons stimulate photoreceptors cells in the retina, 
the sensory input is transformed into a neural signal and sent 
to specific areas within the brain. The information is then 
processed, and a behavioural response occurs.

Is certainly true that creatures gifted with excitable cells 
able to perceive and convey information about the outside 
world have evolutionary advantages compared to creatures 
without such cells. For instance, in the case of vision, the 
ability to create a visual representation of the world—e.g., 
identify a predator. Nevertheless, as previously stated, the 
majority of living beings that have existed and that currently 
exist lack a nervous system. Thus, having cells that can ‘rep-
resent’ the world and coordinate such representation with 
a behaviour (e.g., movement) should be seen as increasing 
the possibilities to representing the outside environment 
(Churchland 1989) rather than a fundamental requirement. 
Although the behavioural catalogue of different creatures 
varies tremendously, living organisms with and without 
nervous systems have developed strategies to pair sensory 

2 Glia cells are non-neural cells in the nervous system. Their main 
role is to provide structural support to neurons. They are not directly 
involved in the transmission of signals.
3 Synapses are connections between neurons and a target cell. The 
role of synapses is to allow communication by receiving or transmit-
ting chemical signals.

1 A neuron is a specialised cell for the transmission of electro-chem-
ical signals.
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inputs with useful behavioural answers (Purves 2019). In 
summary, the advantage of having a nervous system seems 
that of having a richer behavioural repertoire.

3  Vision

According to Andrew Parker’s light switch theory (2004), 
the change in atmospheric conditions during the Cambrian 
period and the subsequent increase in light has triggered 
the sudden evolution of vision and the consequent evolu-
tionary benefits. Despite the fascinating idea proposed by 
Parker and the consequent belief of the supremacy of vision 
over other senses, this theory does not explain how organ-
isms have been able to usefully pair a visual stimulus4 (e.g., 
the ‘image’ of a prey) with a useful behaviour (e.g., eat the 
prey). After all, at that time, vision was a new and, therefore, 
unknown source of information. How have simple organ-
isms and more complex animals been able to develop useful 
behaviours in response to visual stimuli, or put differently, 
how visually gifted creatures5 have been able to create mean-
ing from the light that enters their eyes?.

The plain individual is probably convinced to see objects 
with a specific shape, because those objects have those 
certain physical features or to see them at a certain dis-
tance, because they are actually at that distance (Kanizsa 
1997). However, as further explained in this paper, despite 
the apparent simplicity, how vision works, is still largely 
unknown—which is why, from their first appearance more 
than 50 years ago, computer vision systems remain to date, 
under certain circumstances, inaccurate, unreliable and eas-
ily deceived. Indeed, the need to further understand and rep-
licate vision has only recently arisen, with the dream and 
need to build ‘visually intelligent machines’ (Treccani 2018).

The conventional idea is that light carries with it infor-
mation about the world that somehow resembles the world 
as it is (e.g., I see a house because the light input received 
by the sensory apparatus carries with it some ‘houseness’ 
information, such as shape). This belief is probably based on 
old theories of vision such as intromission theories, which 
see vision as light rays emitted by objects, and extromission 
theories, which instead understand vision as the emission of 
light rays from the eyes towards external objects. This idea 
is, however, incorrect, because light does not carry with it 
any information other than energy. Furthermore, the human 
perceptual apparatus cannot measure the physical param-
eters of the world, because it lacks the necessary instruments 

and thus cannot retrieve the real properties of the world (as 
described more in detail later in this section). Besides, as the 
world cannot be assessed, even the idea of a representation 
of the world close enough to reality must be incorrect.

According to Parker’s theory, the advantages appearing 
from the evolution of vision gave rise to numerous new ani-
mal behaviours. Seeing in colour, for example, is undoubt-
edly an immediate asset. As pointed out by Purves, “a visual 
system that can identify object boundaries based on the 
spectral distribution of light energy will, therefore, be more 
successful in responding to images” (Purves 2019). Here, 
Purves refers to the possibility of perceiving boundaries 
given by colours. Achromatic animals, for instance, cannot 
distinguish boundaries between two objects with a spectral 
difference but the same luminosity (i.e., brightness). Col-
ours, a fundamental source of information that animals use 
to identify predators and poisonous plants or for reproduc-
tive purposes, are, however, a brain construction.

Colours are defined by variations in the wavelength (or 
frequency) of light. Red, for instance, has a wavelength of 
between 700 and 635 nm, whereas blue is between 490 and 
450 nm. However, light wavelengths themselves do not cor-
respond to any colours. The variation in the frequency of 
the wavelength, commonly understood as colour variation, 
is a vibrational variation (moving photons) in the amount of 
energy in a light wave. In addition, light waves that reach the 
retina always entail a combination of illumination, reflec-
tance, and transmittance (Fig. 1a), and there is no analytical 
method to unravelling how these factors provide visually 
appropriate answers (Purves and Lotto 2003).

How do humans perceive colours? The capacity of the 
human eye to discriminate spectral variations is based on 
the sensitivity of retina cells to different light frequencies. 
Humans have two types of photoreceptor cells in the retina: 
rods and cones. Rods seem to play a minor part in colour 
detection. The three different types of cones are each char-
acterised by a different type of photopigment. Each type of 
cone is sensitive to a different light frequency (i.e., colour). 
Yet this explanation does not seem to fully explain how and 
why colours are perceived. Additionally, the way geometric 
properties are perceived shows the inaccuracy of the human 
vision in discerning reality once more. The human visual 
system, in fact, cannot retrieve the geometrical properties of 
the world. As shown in Fig. 1b, objects with different incli-
nations, sizes and at different distances can indeed generate 
the same retinal image. As human eyes, and more generally, 
the entire perceptual system, cannot retrieve the ‘real’ prop-
erties of the world, it is clear that visual perception must be 
a generated perception (Purves et al. 2014).

To explain the operation of visual perception, 
DalePurves proposed the idea that vision should be 
understood in empirical terms “in which perceptions 
reflect biological utility based on past experience rather 

4 In biology an event, in the form of energy, that provokes and acti-
vates a receptor cell.
5 Biological creatures gifted with photoreceptors able to transmit 
information about the outside world.
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than objective features of the environment” (Purves 
et al. 2015). Retinal images,6 continue Purves “conflate 
the physical properties of objects, and therefore cannot 
be used to recover the objective properties of the world. 
Consequently, the basic visual qualities we perceive – e.g., 
colours, form, distance, depth and motion – cannot specify 
reality” (Purves et al. 2015). Visual perceptions, therefore, 

must emerge independently from any measurement of the 
world, as these measurements are not reliable. To para-
phrase Purves, the perceptual information—the visual 
world—we experience, is determined by the frequency 
of light pattern7 and its consequent importance in terms 
of survival. The association between the frequency of 

Fig. 1  a The conflation of illu-
mination, reflectance and trans-
mittance. Many combinations 
of these objective parameters 
in the real world can generate 
the same values of luminance 
at the retina. b The conflation 
of physical geometry. The same 
image on the retina can be 
generated by objects of different 
sizes, at different distances from 
the observer, and in different 
orientations (Purves 2019).

6 Images should be intended both as the light pattern detected by 
the retina, as well as the visual result of the processed light-pattern, 
meaning its visual representation—e.g., the image of a cat.

7 It is important to highlight that a light pattern does not resemble the 
physical world, nor any ‘image’ of the world produced by the human 
brain. A light pattern should be intended as the light configuration 
that is perceived, determined by its frequency of occurrence and its 
consequent usefulness (for more, see Purves et  al. 2015., Yang and 
Purves 2004 , Rao et al. 2002).
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occurrence of a light stimulus (light pattern) and its con-
sequent useful (successful) behaviour thus arises from trial 
and error during evolution and life-long learning.

If, as previously stated, animals’ visual perceptual appa-
ratus cannot assess the physical properties of the world, how 
are then images of the world formed? For Purves, if a given 
light stimulus occurs often, its value will be high. At first, 
different and random behaviours will appear in response to 
this stimulus. However, over time—evolutionary time and 
individual lifetime—an automatic link between the stimu-
lus and the most successful behaviour will arise. Accord-
ing to Darwin and neo-Darwinian theory (the integration 
of Darwin’s theory of evolution by natural selection and 
Mendel’s theory of genetics as the basis for inheritance), 
when a mutation occurs and is randomly associated with 
a neural response that promotes survival/useful behaviour, 
this mutation and its consequent neural activity will tend to 
be passed to subsequent generations. In other words, if the 
image that arises from a given luminous-configuration and 
its consequent behaviour proves to be useful for evolutionary 
purposes, a link will be created. This successful creation will 
be disseminated to the next generation following evolution-
ary processes (thus, a non-useful behaviour will not tend to 
be passed to future generations).

Purves, even if referring here to the process of hearing, 
gives an explicative example that can be likewise transferred 
to vision: “This strategy works because it establishes an objec-
tive-subjective association in biological machinery that does 
not depend on the measurements of sound sources in physi-
cal reality. As before. The role of the physical world in this 
understanding of sensory neurobiology is simply an arena in 
which neural associations are empirically tested according to 
survival and reproductive success” (Purves 2019).

As humans perceive light “categorically—usefully but 
not at all accurately—because it is an extremely efficient way 
of perceiving visual stimuli that allow us to save brain cells 
to devote to the neuroprocessing of our other senses” (Lotto 
2017), vision should be seen as a fast answer to a visual 
stimulus. Consider, for instance, the knee-jerk reflex. This 
reflex is simply an evolutionary ‘answer’ that establishes 
a successful behaviour. The activation of the nervous sys-
tem, which is rapid and precise and without the need for any 
‘brain computation’, promotes a response (i.e., extend the 
leg) that is useful (i.e., extend the leg to avoid falling if an 
object hits you). In this sense, vision should be considered 
a reflex: an automatic, quick and useful answer to a visual 
stimulus that does not require any measurement of the world 
(Purves et al. 2015). The role of vision, and more generally 
of the nervous system, is, therefore, to promote a biologi-
cal advantage rather than to reveal how the world looks like 
(Purves 2019). In short, the role of vision is to promote what 
was useful to see in the past.

4  Artificial neural networks (ANNs)

Evidence of neuroscientific practices has been found in 
ancient societies all around the world. However, only with 
the advent of electronic technologies did scientists start to 
try to replicate the functioning of the brain. In the 1940s 
(following Turing’s work in the 1930s), McCulloch and 
Pitts, respectively a neurophysiologist and a mathematician, 
began to investigate the possibility of neural computation. In 
1943, they published a paper on the operational functioning 
of neurons and the construction of ANNs that could compute 
logical functions (McCulloch and Pitts 1943). With the idea 
of building a machine able to solve any logical operation, 
McCulloch first, with the help of Pitts later, embarked on 
the design of a mathematical model—a network—of brain 
functioning.

Towards the end of the 1940s, Donald Hebb published 
The Organization of Behavior (2002), in which he demon-
strated that the more a neural pathway is used, the stronger 
it becomes. This concept is of fundamental importance: it 
shows that connections between neurons can change their 
synaptic weight, i.e., the strength of the connection. The 
stronger the connection, the more likely an association 
(stimulus-behaviour) will be to appear in the future. It is 
essential to understand this idea, as it is critical to the way 
humans and machines learn to see the world. In contrast, if 
seeing a stimulus—input—in a particular way shows itself 
not to be useful, it is less likely that the same neural pathway 
will appear.

In the past 10 years, ANNs seem to have gained the upper 
hand over algorithmic processing. Indeed, the “abilities to 
recognize patterns, make inferences, form categories, arrive 
at a consensus ‘best guess’ among numerous choices and 
competing influences, forget when necessary and appropri-
ate, learn from mistakes, learn by training, modify decisions 
and derive meaning according to context, match patterns 
and make connections from imperfect data” (Greenwood 
and Bartusiak 1992) have made ANNs particularly success-
ful—this is also why, all around the world, neuroscientists 
use ANNs to simulate the brain functioning. As example, a 
paper presented in 2018 by the DeepMind group (Google) 
(Silver et al. 2018) shows how the AlphaZero system beat 
the best human Go player in the world. Instead of using the 
force of an algorithm—following fixed procedures—Alp-
haZero learned, tabula rasa, how to win by playing against 
itself millions of time via a process of trial and error. By 
random trial and error (i.e., reinforcement learning), the sys-
tem learns from wins and losses (i.e., empirical evidence) to 
adjust the parameters (i.e., synaptic weight) of the network, 
making it more likely to choose useful moves in the future. 
By ranking the frequency of winning moves, AlphaZero 
quickly learns how to become the strongest player in Go 
history.
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In other words, differently from traditional game engines 
like IBM’s Deep Blue8 that rely on thousands of rules, fixed 
procedures and heuristic moves chosen by human experts, 
AlphaZero learns how to become the best player, without 
in-built knowledge—except the rules of the game—but by 
random self-play—trial and error (Hassabis et al. 2018).

Even if first created more than 50 years ago, it is only 
recently that ANNs have achieved satisfying results. ANNs 
are now used for image recognition tasks, to automatically 
identify objects, people, actions and places in a given image. 
Image recognition technologies are used by companies and 
governments to execute tasks such as guiding robots and 
vehicles, content searching in images, image labelling and 
medical diagnosis. Facebook, for instance, uses ANNs to 
help visually impaired users to identify people or objects in 
a photograph. Self-driving cars use ANNs to locate pedestri-
ans and vehicles, and airports use facial recognition technol-
ogies as a biometric confirmation to allow entry to a country.

For the purposes of this paper, it is of great importance 
to clarify the driving principles of an ANN’s functioning, 
as their understanding seems to provide insights into com-
prehend how the brain solve visual issues.

In his book Intelligence Emerging, Keith L. Downing 
explains the operating of an ANN as follows: “Take a brief 
pause from reality and imagine that you are the first-year 
coach of a professional basketball team. It is the first game 
of the season, and the score is tied with only seconds remain-
ing. You call a timeout, consider your multitude of strate-
gic options, and then decide to set up a play for the guy 
that everyone calls C. The play begins, C gets the ball, and 
though double-covered by two hard-nosed defenders, gets 
off a long shot. Swish! The ball goes through the net, you 
win the game, and C is carried off the court on the shoul-
ders of his/her teammates. You have now learned some valu-
able information that will help throughout the season: C is 
a clutch performer” (Downing 2015). Let us also imagine a 
few other scenarios.

In a second case, a player known as D gets the ball and 
shoots, but the ball does not reach the basket, and the match 
is lost. The newspapers will attribute the defeat to D.

In a third scenario, as described by Downing, C passes 
the ball to B, who shoots and wins the match. In this case, 
both C and B will be glorified by the media and acknowl-
edgement will be given to both—indeed, as Downing notes, 
basketball statistics include assists as evidence of a player’s 
value.

In a fourth new scenario, “C passes to B who passes to 
(the guy everyone just calls) A, who makes the winning shot. 
A gets the points and the shoulder ride to the locker room, 
B gets the assist, but does C get (or deserve) anything? It 
could be the case that, before passing to B, C faked a pass 
or dribble attack that froze A’s defender in place. This made 
it easier for A to come free to get the ball and shoot the win-
ning basket. Such a contribution by C would not show up on 
a statistics sheet, though you may notice it. You may even 
praise C more than B or A afterwards in the locker room, 
since his/her fake-then-pass was obviously the key to the 
whole play. He set up a situation that then became routine 
for B and A” (Downing 2015).

After many games, it becomes clear that C plays a criti-
cal role during the final minutes of each game. In fact, the 
value of C is proved by the statistical significance of his 
performances. The proved value (i.e., usefulness) of a player 
during the closing minute of a match is essential to plan the 
strategy and organisation of the team through the rest of the 
season. Moreover, it is necessary to highlight that all shots, 
faults, mistakes, defensive impact, points, passes and all 
the events that precede the win are equally important when 
assigning value to a player or a particular team configura-
tion. Was L fundamental for the winning of the game during 
his/her 2 min on the court? Was C a valuable player during 
the first part of the tournament but less valuable during the 
last part of the season? Was D a valuable player throughout 
the season despite the shooting error in the last game?

In short, the sum of all the trials and errors of the coach’s 
choices and the consequent accumulation of experiences 
describe the essence of the functioning of an ANN—rein-
forcement learning.9

The more the trial and error search space is extended, the 
more likely is that a useful strategy will be found, although 
the incredibly large size of the search space and the difficulty 
of taking into account all of the possible variables do not 
allow the success of a decision to be determined with cer-
tainty. In the case of an object recognition task, for instance, 
it is difficult for a machine vision system to identify all the 
possible variables—e.g., size, shape, colour, orientation—
of an object—e.g., a chair. Furthermore, an object can be 
partially hidden by other objects (a chair partially hidden 
by a table) or reflected into a mirror, creating even further 
difficulties (Treccani 2018). However, the ability of an ANN 

9 Reinforcement learning, in machine learning’s context, refers to 
the ability of an agent to learn by trial and error without supervision. 
Reinforcement learning, unlike supervised learning, does not require 
any labelled data. In the context of machine vision, a labelled data, 
for instance, might be a photograph in which the objects represented 
are specified—e.g., a cat, an apple or a house. Labels are usually 
obtained by asking annotators—humans—to make judgments about 
the content of a given image.

8 On 11 of May 1997, after a 6-match game, Deep Blue beat the 
world-best chess player—Garry Kasparov. The Deep Blue’s win had 
an important symbolic significance in the advancement of ‘intelli-
gent’ machine–artificial intelligence.
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to successfully solve a task—for instance, detect every chair 
present in a given picture—increases over time. Increasing 
the exploration of the search space for the possible solution 
increases the possibility of a successful result.

Like Downing’s first-year coach at the season’s start, 
an ANN begins with a series of random decisions (e.g., to 
choose player D instead of C)—exploration. Over time and 
through numerous attempts, the network uses the informa-
tion gathered to craft more useful decisions—exploitation. 
As the ANN explores the space of possible choices, it learns 
that certain decisions or actions lead to a reward while others 
lead to negative consequences.

In short, an ANN solve the problem of vision by millions 
of random trial and error or, in other words, through a well-
indexed database of past experiences and not through logical 
procedures. Just as an ANN system learns how to recognise 
faces among millions of other faces, distinguish different 
dog breeds or recognise and describe a scene, a biologi-
cal system learns how to see by countless trials and errors 
during evolution and individual lifetimes. In light of this, 
a new, wholly empirical understanding of the way humans 
and machines see based on trial and error is therefore needed 
(Purves et al. 2015).

5  The snake

The idea that vision emerges empirically, by trial and error, 
during evolution, life-time experience and training period—
in the case of an ANNs—was previously presented in Part 
II and III. Extending this hypothesis to the cultural and aes-
thetic realm, part IV, will suggest that also visual apprecia-
tion should be understood as a useful behaviour emerging 
by trial and error.

Culture plays an important role in visual understanding. 
Nevertheless, culture has to be understood in evolutionary 
and biological terms, which means emphasising the evo-
lutionary advantages of developing cultural traits—ideas, 
technologies and behaviours—that can be transmitted from 
an individual to another via parenteral and social learning. 
This idea implies that culture can be seen as a biological 
extension or, as noted by Creanza, as “the extension of biol-
ogy through culture” (Creanza et al. 2017).

Relevant in this regard is the case of snake detection 
theory, which holds that “humans and other primates can 
detect snakes faster than innocuous objects” (Van Le et al. 
2013). In The Fruit, The Tree, and The Serpent: Why We See 
So Well, Lynne Isbell argues that “When snakes (the Ser-
pent) appeared, a particularly powerful selective pressure…
favored expansion of the visual sense” (Isbell 2009). Isbell 
argues that the environmental pressure caused by the appear-
ance of snakes—as competitors and predators—and their 
threat to survival was a possible trigger for the complexity of 

the primate visual brain, its enlargement and the particular 
sensitivity towards snakes. “Across primate species, ages, 
and (human) cultures, snakes are indeed detected visually 
more quickly than innocuous stimuli, even in cluttered 
scenes. Physiological responses reveal that humans are also 
able to detect snakes visually even before becoming con-
sciously aware of them” (Van Le et al. 2013).

Interesting is the reference that the author makes to the 
events of the Garden of Eden described in the Old Testa-
ment. Eve’s mistake was, in fact, noticing the snake. If she 
had not noticed the animal, she probably would not have 
eaten the apple. Snake references are found not only in 
Judeo-Christian confessions but also in other religions and 
cultures. Snake representations are found in pre-Christian 
societies, on Sumerian amulets, Iranian boxes, Greek and 
Chinese mythology. The presence of snakes in different cul-
tures and the fear of snakes (ophidiophobia), seems thus to 
have an evolutionary explanation—a visual reminder that 
snakes are dangerous. As Isbell noted, “ophidiophobia may 
go way, way back, to at least 30–35 million years ago when 
the first Old World monkeys and apes, the so-called catar-
rhine primates, are thought to have appeared. Ophidiopho-
bia may even extend farther back to 60 million years ago 
when the first generalised simian primates, the anthropoids, 
are thought have appeared. If so, this timeline might help 
explain the shared ophidiophobia of all anthropoids, includ-
ing humans” (Isbell 2009).

The enlargement of the visual brain in primates, for 
Isbell, seems to have provided a fast and automatic ‘predator 
detection system’ (Isbell 2009). “The ancestral environment 
of primates uniquely affected them to link vision with auto-
matic, fast, accurate, and adjustable reaching and grasping, 
and to improve upon vision as a way to detect and avoid 
predators” (Isbell 2009). As also pointed out by Purves (see 
Sect. 3), Isbell seems to refer to vision as an automatism. 
The advantages of understanding vision as a reflex are in 
fact: to provide a fast, direct and accurate response to the 
external environment that does not require any computa-
tion or processing, as the ‘computation’ have “already been 
accomplished by laying down connectivity instantiated by 
feedback from empirical success over evolutionary and indi-
vidual time” (Purves et al. 2015). The capacity of humans to 
visual discriminate an object, for instance, is in fact in the 
order of tens of milliseconds—this may also provide insights 
on why, when looking a particular painting, for instance, we 
are immediately captured by it.

Snakes visual sensitivity and ophidiophobia thus appear 
to be an evolutionary aid: those who did not respond to 
snakes with a proper behaviour (e.g., running away) would 
have fewer chances to survive compared to animals with a 
more useful behavioural answer (Isbell 2009). The presence 
of snakes in human artefacts and religions can be explained 
through the behavioural advantages that arise from the 
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ability to visually detect snakes. In other words, a particular 
visual sensitivity towards snakes seems to have had cultural 
repercussions that justify the presence of this animal and 
its visual appreciation10 in artistic productions all around 
the world.

It is certainly important to understand the value of culture 
in the transmission of useful behaviour, for instance, of tech-
niques related to the construction of a tool. It is well known 
that several non-human species exhibit cultural transmis-
sions. Chimpanzees and macaques, for instance, can build 
tools like hammers to open nuts using stones. However, even 
the value of transmitting visual appreciation skills should not 
be underestimated, it should be read instead as an evolution-
ary aid in the same fashion of a chimpanzee’s ability to build 
a hammer, although with more degrees of separation.

As shown by Michael Baxandall in Painting and social 
experience in fifteenth century Italy (1988), having the abil-
ity to appreciate a painting was a necessary social skill to 
master for the upper middle and aristocratic Italian classes of 
the Renaissance. Possessing these visual skills gave access to 
a series of benefits in the form of social connections. In this 
fashion, artistic visual competence can be seen as an evolu-
tionary aid. These visual capacities, although not immediate, 
must be understood as useful answers to the environmental 
and social ‘selective pressure’. Every given period, in fact, 
has its own ecological ‘selective pressure’ and its consequent 
useful visual behaviour.

To trace the biological value of visual appreciation is 
surely complicated. However, exploring in this direction can 
reveal meaningful insights into why we like what we like. 
Furthermore, understanding vision and visual appreciation 
arising from trial and error during evolution and life-long 
learning can provide a new understanding to study human 
perception and culture.

6  Conclusion

The idea that the visual brain may operate like an ANN, and 
that vision works in empirical terms poses considerable dif-
ficulties both in the science and the humanities; however, as 
previously shown, there is much evidence that justifies this 
new analogy. Reconsidering vision in terms of trial and error 
implies the necessity to revise some of the ideas proposed in 
this regard, particularly in the fields of psychology and the-
ory of perception studies. However, visual perception issues 
also need to be rethought in the perspective of brain–ANNs 

analogy, since it seems to provide some insight into how 
human see and visually understand the world.

As demonstrated in Sects. 3 and 4, there are clues that 
suggest that vision emerges empirically as an automatic 
answer to a stimulus. The link of the frequency of a light 
stimulus and consequent useful behaviour determines what 
is seen. In the same fashion, by exploring all the possible 
behaviours (e.g., actions, choices) and changing the rela-
tive synaptic weight until the best ‘move’ is found, ANNs 
successfully learn how to solve a visual task (e.g., object 
classification, scene classification and image segmentation), 
possibly as biological creatures have done during evolution. 
The analogy should then be clear: the way humans and other 
animals build their way to visually understand the world 
closely resembles the operational functioning of an ANN—
and vice versa.

This idea may seem suspect to many and generate a cer-
tain antipathy in others, but the possibility of exploring the 
vision (and, more generally, the functioning of the whole 
brain) in terms of trial and error can provide a first model 
of why we see what we see, to date still missing. Although 
the theories of the last century, especially in the field of 
psychology (such as Gibson’s bottom–up theory and Greg-
ory’s top–down theory) and later in neuroscience (such as 
Marrs’s computational theory), had the merit of providing 
further elements of understanding of how the visual system 
may work. Likewise, these theories were not able to provide 
a clear explanation of how, and most importantly, why the 
‘visual world’ is constructed (i.e., the relation between the 
physical properties of the world, the visual stimulus that falls 
onto the eyes and the consequent mental image).

As previously discussed in this paper, the physical prop-
erties of the world cannot be measured, and the degree of 
discrepancy between reality and perceived reality must be 
substantial. Thus, the idea that a subject is able to respond to 
a stimulus, based exclusively on the features of the stimulus 
itself (bottom–up theory) appears insufficient. Furthermore, 
the idea of seeing as knowing (top–down theory) seems 
equally insufficient, since the state of the world is unknown. 
However, by random trial and error, by ranking the fre-
quency of the appearance of a light stimulus, the success of 
the response to that particular stimulus and the consequent 
neural wiring, animals, and more recently machines, seem 
to have been able to create a useful visual representation 
of the world. The role of vision then “is not to reveal the 
physical world, but to promote useful behaviours” (Purves 
et al. 2015).

In trying to understand visual perception and its guiding 
principles, it has to be clear that the human brain evolved 
from earlier brains, and that its capacity and limitations have 
a historical basis (Churchland 1989). The selective pres-
sure that developed visual perception—and more generally, 
all perceptions—did not arise rationally and logically but 

10 Visual appreciation refers not only to the aesthetic appreciation of 
a work of art but also to the ability to analyse, describe, interpret and 
make connections between works of art and their cultural context.
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instead from the need of living beings to successfully deal 
with the surrounding world. As the world cannot be con-
quered by the visual sensory system, animals—including 
humans—have learned to usefully represent and respond to 
the physical world through trial and error during evolution 
and individual learning. As an ANN learns how to solve a 
visual task by randomly trying the possible ‘moves’, so the 
brain has learned how to successfully respond to the world 
outside itself.

Comprehending how visual understanding was won by 
simple organisms first, more complex animals later and—
partially—by machines recently, may be of great help as it 
may help to unhinge wrong assumptions and test the validity 
of new ones. Abandoning the nest of common-sense concep-
tions about vision—both biological and artificial—will cer-
tainly lead to further complications that nevertheless deserve 
to be investigated to better understand and provide a first, 
albeit imperfect, answer to the relationship between what we 
see and what we know (Berger 2008).
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