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Abstract
Artificial general intelligence (AGI) is not a new notion, but it has certainly been gaining traction in recent years, and aca-
demic as well as industry resources are redirected to research in AGI. The main reason for this is that current AI techniques 
are limited as they are designed to operate in specific problem-domains, following meticulous preparation. These systems 
cannot operate in an unknown environment or under conditions of uncertainty, reuse knowledge gained in another problem 
domain, or autonomously learn and understand the problem-domain. We shall call AI systems capable of such feats artificial 
general intelligent (AGI) systems. The three tasks of this paper are to provide a working definition of the term AGI, examine 
the “missing G”, i.e., the set of abilities that current AI systems lack and whose implementation will result in a basic AGI 
system, and consider different approaches, including a hybrid one, to a comprehensive solution for an AGI.
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1 Introduction

Artificial General Intelligence (AGI) is not a new notion, 
but it has certainly been gaining traction in the last decade 
or so. Conferences hosting researchers from different fields 
(computer and neuro-sciences, logic and mathematics, phi-
losophy etc.) are dedicated to the study of AGI,1 univer-
sity courses invite expert guest speakers to discuss differ-
ent aspects related to the concept,2 and academic as well as 
industry resources are invested in or redirected to research 
in AGI. One of the main reasons for this is that AI research-
ers have realized that current AI techniques are limited. To 
be sure, Deep Learning networks and their variants (e.g., 
Convolutional Neural Networks) have reached outstand-
ing achievements in various tasks and even surpassed the 
predictions of many experts; nevertheless, applications of 
these techniques are considered “narrow” AI. Why? Because 
these systems are designed to operate in specific problem-
domains following meticulous preparation—usually by 
being fed predefined models and millions of training exam-
ples as input, before they can start working—and even then, 
their accuracy, although averagely high, is not guaranteed. 
These systems cannot operate in an unknown environment 

or under conditions of uncertainty. They cannot use knowl-
edge gained in another problem domain. They cannot auton-
omously learn and produce a model of the world and act 
accordingly. They cannot understand the problem-domain 
and realize what model or parameters should be used and 
extracted from the environment. We shall call AI systems 
capable of such feats Artificial General Intelligent (AGI) 
systems, or at least the first phase of AGI systems. The first 
task of this paper is to provide a working definition of the 
term AGI, according to the above outline.

The main task of this paper is to examine the “missing 
G”, i.e., the set of features or abilities that current AI sys-
tems lack and whose implementation will result in a basic 
AGI system; in other words, to highlight the features that 
separate the narrow from the general. These features include 
unsupervised learning, understanding, abductive reasoning 
and creativity. We shall explore the need for and the mean-
ing of these capabilities, expound any philosophical aspect 
arising from the implementation of such capabilities and 
examine how they are implemented by or fit into different 
approaches, which offer comprehensive solutions for con-
structing AGI systems. Other issues, though they may be 
relevant in some way to the construction of AGI systems, are 
beyond the scope of this paper: the kind of hardware needed 
to construct AGI systems, whether quantum computing is 
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a prerequisite, or whether at all computational power is a 
crucial factor. Furthermore, we shall not try to speculate 
or determine the time of the first appearance of such sys-
tems—as Yann LeCun3 stated in one of his public lectures, 
“[N]o one in their right mind would tell you it’s going to be 
less than 20 years, and if someone tells you it’s more than 
20 years, what it means is that they have no idea how long 
it’s going to take.”

The structure of this paper is as follows: In the second 
section, we introduce a “good-enough” definition of AGI; in 
the third and fourth sections, we discuss unsupervised learn-
ing, understanding, abductive reasoning and creativity; in 
the last section, we shall consider two approaches to a com-
prehensive solution for an AGI system—the brain emulation 
approach and the cognitive architecture approach. I discuss 
their similarities and differences, examine how they propose 
to tie it all together, and at the final concluding section, draw 
conclusions regarding a hybrid approach that may take us 
one-step ahead toward a general AI system.

2  What is AGI?

Our starting point for formulating an initial concept of 
AGI is the ideas and operational definitions presented on 
the Machine Intelligence Research Institute’s (MIRI) web-
site.4 The main idea follows Legg and Hutter (2006), who 
basically defined intelligence as a measure of the “agent’s 
ability to achieve goals in a wide range of environments”. 
Other AI researchers follow the same line: Goertzel (2006) 
defines it as the ability to achieve “complex goals in complex 
environments”; Voss (2005) claims that an AGI system will 
need “domain-independent skills necessary for acquiring a 
wide range of domain-specific knowledge—the ability to 
learn anything”, and that such a system should be a “highly 
adaptive, general-purpose system that can autonomously 
acquire an extremely wide range of specific knowledge and 
skills and can improve its own cognitive ability through self-
directed learning”. Another idea is that AGI systems should 
have the ability to transfer learning from one domain to other 
domains.

These statements echo some of the ideas and capabilities 
mentioned above. We can now try to converge to a working, 
“good-enough” definition that employs these ideas and oth-
ers that seem necessary, and which can serve us throughout 
this paper. One capability, mentioned repeatedly and empha-
sized by almost every thinker, is learning—autonomous 

unsupervised learning of any problem-domain, which 
includes the ability to transfer gained knowledge, i.e., to 
share knowledge between domains. Instead of systems that 
should be taught how the world (or the problem-domain) 
looks like, AGI systems learn independently, understand 
the problem-domain, extract the essential features from it 
and are able to reuse gained knowledge and re-apply it by 
tweaking it to fit the new domain—they learn from experi-
ence. Learning gives rise to other essential capabilities, such 
as understanding and reasoning. We expect AGI systems 
to understand their environment in a way that will enable 
them to extract from it the necessary features, i.e., those 
parameters that are most relevant to the problem at hand in 
the given context, and apply them to the solution. We also 
expect AGI Systems to be able to use abductive reasoning, 
and infer the best explanation when only partial information 
is available. When we refer to abductive reasoning, we shall 
henceforth employ the prevalent definition of abduction as 
theory-formation: “Given a background theory and an obser-
vation to be explained, an abductive inference conjectures 
one or more best explanations for the observation from the 
background theory” (McIlraith 1998: 3). Thus, we expect 
AGI systems to come up with one or more best explana-
tions of observations made in a problem-domain, and to be 
able to decide which explanation is the most suitable under 
current conditions. Another important and widely discussed 
capability is creativity, whose definition commonly involves 
the concepts of autonomy, intentionality, appraisal and emo-
tion, which are highly controversial in themselves, and even 
more so when AI systems are concerned. We shall examine 
and evaluate the essentiality of creativity as far as AGI sys-
tems are concerned, and whether such systems can meet 
the initial conditions, which are commonly considered as 
pre-requisites for real creativity. In the following sections, 
we discuss the above set of capabilities in detail.

To sum up the basic idea of a “first-phase” AGI system, 
let us frame it in a few clear sentences. The rest of the paper 
is dedicated to explicating this rough definition. Thus, our 
AGI system is an autonomous system in the sense that it 
can learn in an unsupervised manner, i.e., without being 
instructed what kind of model it should follow and what 
parameters or features it should extract from its surround-
ings. It understands the world around it in a sense that allows 
it to realize how to model a new problem, learn from expe-
rience in the sense of sharing and transferring the insights 
learned between different problem-domains, and use abduc-
tive reasoning in a way that will enable it to reach decisions 
and take actions based on uncertain and limited data. To 
accomplish this and more, our AGI system should be crea-
tive in at least a limited sense, which is discussed below.3 Yann LeCun is a professor of computer science and the Director of 

AI research in Facebook.
4 What is AGI? https ://intel ligen ce.org/2013/08/11/what-is-agi/ 
Accessed Nov 2018.
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3  Learning, understanding and reasoning

In this section we shall consider a few fundamental capa-
bilities, with which every AGI system should be equipped, 
namely the ability to learn anything independently, the 
ability to understand its domain and surroundings in such 
a way that enables it to extract essential features correctly 
to model the problem, and the ability to reason based only 
on uncertain and partial data, i.e., to form hypotheses and 
explanations, decide which of them optimally suits the situ-
ation and act accordingly. Obviously, implementing these 
abilities is fraught with some philosophical and technologi-
cal difficulties. In what follows, we shall discuss the prin-
cipal obstacles.

Let us look at a simple, basic architecture of an AI sys-
tem, through which we can examine, where these capabili-
ties come into play.5

There are three basic modules here: a Perception module, 
which enables the system to evaluate the state of the world; 
an Agent module, which generates actions, makes predic-
tions that enable the system to plan and reason, and which 
has an internal state, of which I shall expand presently; the 
third module is the Objective, which evaluates the state of 
the Agent and calculates its motivational level or its drive 
to act in a certain way. One of the main purposes of the 
Objective module is to drive the Agent to do what we want 

it to do. This can be done by hardwiring an immutable sub-
module into it, something which is similar in function to 
instincts, and which will drive the Agent to act in a way that 
we believe is good. Another sub-module is used to estimate a 
value function, which basically consists of the human values 
we want it to follow.6

Thus, through this simple architecture, we shall try to 
evaluate how the abilities mentioned above come into play. 
The main focus has to be on the predictive ability of the 
Agent. Basically, this ability enables the system to infer 
the state of the world even when only partial and uncertain 
information is available, and to be able to infer the future 
from the past and the present, and the past from the present. 
Humans and animals learn to do so, from the moment they 
are born. We learn how the world works by observing it in 
the first few years of our lives—we learn basic truths about 
our world, e.g., object permanence, dimensions, gravity, cau-
sality and so on. This gives us what AGI systems need more 
than anything, i.e., common sense. Moreover, this gives us 
the ability to fill in the blanks, e.g., in our visual field or in 
conversations, and predict the consequences of our actions. 
In fact, one can argue that the ability to predict is an impor-
tant and essential part of being intelligent. The idea that the 
brain is fundamentally a probabilistic prediction machine is 
an increasingly influential thesis (often referred to as predic-
tive processing or predictive coding) in cognitive science 
in recent years. Roughly, the thesis asserts that the brain is 
continually striving to minimize the mismatch between self-
generated predictions of its sensory inputs and the sensory 
inputs themselves. This process of prediction error minimi-
zation (repeated throughout the hierarchical structure of the 
neocortex) allegedly generates the full range of psychologi-
cal phenomena that make up the mind.7 Our Agent needs 
what is sometimes referred to as a “world simulator”, i.e., an 
internal simulation of the world that it may employ to plan 
ahead, by examining action proposals on (a simulation of) 
the world and evaluating their outcomes.8

Recent promising developments in the field of unsuper-
vised learning have given rise to Generative Adversarial 
Networks (GANs), a deep neural network architecture con-
sisting of two networks that compete one other for training. 
Roughly speaking, the architecture comprises a generator 

5 This is only for illustration purposes. The reader should keep in 
mind that future AGI architectures might be quite different.

6 Recent ideas regarding the way to train an agent to follow the right 
values involve Adversarial Training, i.e., training AI agents by letting 
them compete against other AI agents.
7 See Hohwy 2013 and Clark 2016 for overviews.
8 However, in recent decades, following works such as Brooks 1991, 
the use of internal representations in artificial systems such as robotic 
systems has been laid aside. Brooks had noticed that internal rep-
resentations “get in the way” when building very simple intelligent 
systems, and therefore urged researchers to “use the world as its own 
model”.
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network, whose task is to create or simulate a certain data 
structure, and a discriminator, whose task is to validate the 
data structure passed to it by the generator and authenticate 
it. For example, the generator tries to create a certain image 
and the discriminator tries to check its authenticity. Thus, 
the generator is in a feedback loop with the discriminator, 
and the discriminator is in a feedback loop with the ground 
truth of the images, which are either fake or are taken from 
a certain known dataset. Consequently, both nets are trained. 
Although a GAN may use labeled datasets for training (the 
dataset of images in the example above), its goal is to model 
what the data look like and to be able to generate new exam-
ples of what it has learned. In other words, unlike supervised 
learning, where the input data are associated with labels and 
the goal is for the model to generalize and associate new data 
with known labels, in this case the data come unlabeled, and 
the goal is different: to model what the data look like and use 
them to generate new examples.

The near-future advantages of unsupervised learning are 
obvious: the ability to learn without needing any examples, 
i.e., a training data set, or from, at most, a small number of 
examples and to generalize features that enable the system 
to apply its experience to different tasks. In the case of AGI 
systems, this ability allows these systems to learn a new 
domain or environment based on a very small number of 
observations and its past experience, without the interven-
tion of humans. For example, the hope is that an AGI system 
entering a new environment will learn new causal relations 
based on observation and its past experience with other 
causal relations (and the generalization of the causal rela-
tion features) without any human labeling or intervention.

3.1  Understanding

Understanding goes hand in hand with learning and reason-
ing. In fact, there is no sharp distinction between successful 
learning and understanding in a context, wherein a system 
is supposed to function and act under conditions of uncer-
tainty in an unknown domain. One prominent approach, in 
the field of AI research, is that definitions of understanding 
should emphasize utility and refer to something that can be 
measured. In what follows, we mention a few types of under-
standing, review a highly AI-relevant view of understanding 
and a pragmatic approach (Thorisson et al. 2016), which 
highlights certain criteria that can be measured and tested.

In epistemology, we usually refer to three types of under-
standing: propositional understanding, understanding-why 
and objectual understanding. In the context of AGI research, 
the more interesting types are understanding-why and 
objectual understanding; the former is implied in sentences 
that take the form “I understand why X” (for example, “I 
understand why this and that happened”), whereas the lat-
ter is implied in sentences that take the form “I understand 

X”, where X can be thought of as a body of information 
or a subject matter. Pritchard (2009) referred to these two 
types as atomistic and holistic understanding, respectively, 
which can also be thought of as emphasizing the difference 
between concrete cases of understanding and understanding 
a structure or a body of information. Grimm (2011) sug-
gests that objectual understanding can be helpfully thought 
of as akin to a “system or structure [that has] parts or ele-
ments that depend upon one another in various ways”, and 
Riggs (2003: 20) agrees, emphasizing the importance of the 
relations among parts and between the parts and the whole, 
when trying to understand a subject matter.

An interesting and AI-relevant idea is that of understand-
ing as Representation Manipulability (URM). Roughly, 
Wilkenfeld (2013) suggests that one understands when one 
possesses a representation of that which is understood that 
is sufficiently robust to be manipulable for inferential and 
practical purposes. In other words, understanding occurs 
when we have a robust mental representation of the thing to 
be understood. This robustness is expressed by the ability 
of the understander to manipulate and tweak this represen-
tation to examine inferences and take actions. In the same 
spirit, Grimm (2011) suggests that manipulating the “sys-
tem” allows the understander to “see” the way in which “the 
manipulation influences (or fails to influence) other parts of 
the system” (Grimm 2011: 11). Thus, according to Grimm, 
understanding the relationships between relevant parts of 
a subject matter amounts to manipulating the system by 
changing parts of it and observing the impact on the overall 
system. He refers to such ability as Grasping, and suggests 
that it also allows the understander to anticipate what would 
happen if things were relevantly different. It allows the agent 
to make correct inferences about a world in which the rel-
evant differences obtain.

Let us examine the relevancy of URM to AGI architec-
tures of the type mentioned above. First, this account of 
understanding relies on the premise that “the difference 
between understanders and non-understanders is that the 
former, but not the latter, can utilize the understood effec-
tively” (Wilkenfeld 2013: 1004).9 In other words, when one 
understands something—an object, a situation etc.—one is 
able to manipulate the thing understood effectively, e.g., in 
a way that will enable her to achieve goals. Another basic 
premise concerns the ability of an agent to represent objects 

9 As Wilkenfeld also mentions, this point is similar to the one made 
by Woodward (2003) in his manipulationist accounts of causation and 
explanation, according to which causes can be thought of as devices 
for manipulating effects, and causal explanations include citing causal 
variables the alteration of which (in appropriately specified counter-
factuals) would have affected the explanandum.
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mentally, because a mental representation10 of an object X 
is a prerequisite for an agent to understand X. According to 
URM, understanding is the ability to manipulate some men-
tal correlate, i.e., the mental representations, of the under-
stood object such that one would then be able to manipulate 
the target itself. In a more formal way, a statement that an 
agent A understands an object O,11 is true in a certain con-
text, if and only if A has a mental representation R of O that 
A can modify in certain ways to produce R’, which can then 
be used to manipulate or make inferences pertaining to O.

Thus, an AGI system learns the problem-domain (the con-
text in which the object it wishes to understand “resides”) 
through its Agent module and creates its (artificial correlate 
of a) mental representation. The Agent can review possible 
actions or examine possible hypotheses (on which we pres-
ently expand) and their possible outcomes, by manipulating 
the artificial representation that it created, examining the 
outcomes of these manipulations and through all that infer 
the best course of action under the conditions of the prob-
lem-domain. Thus, this view of understanding is related to 
unsupervised learning (through which the Agent can obtain 
artificial correlates of mental representations of objects 
in certain domains), abductive reasoning (through which 
the Agent can come up with hypotheses it can examine by 
manipulating its artificial representations) and creativity 
(which can be a useful tool in manipulating and making 
significant small alterations to object representations).

Another, more formal, approach to understanding is intro-
duced by Thorisson et al. (2016) as a “pragmatic theory of 
understanding rooted in an analysis of how predictive con-
trollers compute meaning” (ibid., p. 107). The authors are 
interested in a sort of understanding that allows an agent to 
act “in a practical and goal-directed way”, and that guides 
its behavior in beneficial ways. Thus, understanding a cer-
tain phenomenon is defined as the level of accuracy of the 
Model, which the agent holds with respect to the phenom-
enon. The accuracy of the appropriate model, and, there-
fore, the agent’s level of understanding, is determined by the 
quality (correctness) of representation of two main factors 
in the model: The completeness of the set of elements asso-
ciated with the phenomenon as represented by the model, 

and the accuracy of the relevant elements. Let us examine 
this definition in more detail12: a phenomenon is a process, 
state of affairs, or occurrence in a certain domain, which is 
made up of a set of elements that are related (or unrelated) 
to one other (by causal or part-whole relations, for example). 
A Model is a set of information structures pertaining to a 
phenomenon. These structures can be used to explain and 
predict the phenomenon; produce effective plans for achiev-
ing goals with respect to the phenomenon, and (re)create the 
phenomenon. When speaking of the accuracy of the model 
with respect to the phenomenon, we mean the level of detail 
by which the information structures of the model describe 
the elements of the phenomenon and their relations. Hence, 
we can estimate the level of understanding of a phenomenon 
by an agent by assessing its capabilities to predict, explain, 
achieve goals with respect to and (re)create the phenomenon. 
The latter is considered by the authors as the strongest kind 
of evidence for understanding, since by (re)creating they 
mean the ability to produce a model of the phenomenon in 
sufficient detail to replicate its necessary and sufficient fea-
tures. This, in turn, attests to the agent’s level of understand-
ing according to the two factors mentioned previously, i.e., 
the completeness of the set of elements associated with the 
phenomenon and their accuracy. Both factors are required 
for (re)producing the phenomenon in question.

3.2  Abductive reasoning

Thus, AGI systems are required to learn and understand to 
accomplish tasks. To do that, they need to put their under-
standing to use by predicting and taking actions. This 
requires the agent to reason, often under conditions of uncer-
tainty and with partial information, much like humans do 
in many situations of their daily life. This, in turn, requires 
the most common type of reasoning—abductive reasoning. 
Let us first understand what exactly abductive reasoning is: 
an abductive inference is often referred to as an inference 
to the best explanation.13 That is, given a set of observa-
tions O, an agent forms possible and plausible explanations 
E1…Ei and infers Ej, which best explains O. Obviously, one 
has to be able to determine what a plausible explanation 
is, what constitutes a best explanation and, moreover, one 
has to determine whether Ej is true, approximately true, or 
merely probable. Another problem for an agent that reasons 10 Wilkenfeld tries to remain as neutral as possible regarding the 

question of what mental representations are, but commits himself 
to the assertion that they are, minimally, “computational structures 
with content that are susceptible to mental transformations” and 
to the assertion that this is “consistent with classic computational-
ism” (ibid.) Hence, we can assume that at least some versions of the 
Computational Theory of Mind comply with Wikenfield’s minimal 
description of mental representations.
11 Object O is any object of understanding and it can include theories 
in physics, a certain proof in mathematics or logic, a person (as in, “I 
understand my friend”), a story or an event, an action, or a phrase in a 
language, to give some examples.

12 Italicized concepts are rigorously defined in Thorisson et al. 2016, 
§3 and I did not see any point in reiterating these definitions here.
13 In this paper, I employ the terms “abduction” and “abductive rea-
soning” in their more modern sense of justifying hypotheses. In this 
sense, abductive reasoning is often associated with “Inference to the 
Best Explanation” (in contrast to the historical sense, according to 
which “it refers to the place of explanatory reasoning in generating 
hypotheses” [Douven 2017: 1]).
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abductively is that Ej may just be the best explanation from 
among a set of bad explanations.14 In other words, E1…Ei 
may consist of not-so-good explanations of O, of which Ej 
is the best, while a different set of explanations of O may 
contain several explanations that explain O better than Ej.

McIlraith (1998) specifies three characterizations of 
abductive reasoning predominant in the AI literature: the 
logic-based account, the set-covering account and the 
probabilistic account, of which the logic-based account is 
the most prevalent. Without getting too much into concrete 
logical definitions,15 we take the liberty to describe roughly 
the prevalent definition of the logic-based account, i.e., an 
abductive framework based on a background theory. McIl-
raith (1998, §2) defines a generic abductive framework as 
consisting of a background theory T and a set of literals 
W of an assumed language L, from which explanations are 
drawn. Given this framework and an observation O, E is an 
abductive explanation of O (from W) iff T U E entails O and 
T U E is satisfiable, i.e., there is at least one assignment to 
each variable that makes the proposition evaluated to be true. 
To come up with the best abductive explanation, we need 
supplementary definitions of simplicity and minimality16 (of 
literals of the language) for example, but these vary and they 
are language dependent.

These three components, i.e., learning, understanding and 
reasoning, are tightly connected. The ability to learn and 
understand is a prerequisite for the other types of cognitive 
abilities required from our AGI agent, namely abductive rea-
soning, forming hypotheses, and taking decisions based on 
the best hypothesis. For example, our agent must be able to 
learn a new problem-domain, identify a certain phenomenon 
as belonging to an abstract relation it already understands, 
e.g., causal relation, and manipulate the environment to take 
action based on what it decided to be the best explanation of 
the problem at hand. Much like humans, our agent must be 
able to associate a single new observation with an already-
known relation (as we do, when we observe an occurrence 
and classify it as an instance of the cause-effect relation) 
and act accordingly.

4  Creativity

Creativity is a fundamental feature of human intelligence. 
Everyone has it to a certain degree, and it is essential for 
problem solving, both in everyday life and in the context 

of innovative scientific-artistic activity. Creativity is also 
closely related to many other cognitive capacities, such as 
the association of ideas, memory, perception, analogical 
thinking and reflection as well as to motivation, emotion, 
cultural context and personality. This multitude of connec-
tions is one reason that creativity is such a challenging and 
elusive concept to define. There are two main reasons for 
researching and implementing creativity in AI systems: one 
is to understand creativity in human beings and the other 
is to construct creative AI-systems, which will be able to 
cope with problems of different domains in a similar way 
to human beings. In this section, we focus on the latter—a 
non-exhaustive definition of creativity is provided, followed 
by a discussion of the question of machine creativity, i.e., is 
it possible for an artificial system to have “real” creativity?

One way to define creativity is to see it as the ability to 
generate creative ideas or artefacts, where a creative idea is 
one that is novel, surprising, and valuable.17 These terms 
have several interpretations, which we elaborate presently. 
Regarding the concept of novelty, an idea can be new to 
its originator or to all human thought (as far as it can be 
known); the former is a form of psychological creativity 
and is termed by Boden P-Creativity, while the latter is his-
torically creative, or H-Creativity. For our purposes here, 
P-creativity is the more interesting type of creativity, since 
it concerns the psychological mechanisms that underlie 
originality and the question of whether it may be instanti-
ated in AGI systems. Compared to novelty, the criterion of 
value is much more complicated. Must an idea have value 
to be considered creative? If so, how can we evaluate its 
value? These difficulties can take at least two forms: the 
idea can be extremely specific to a domain, culture or group, 
in which case it can be considered valuable only by a very 
limited number of people; another difficulty is related to the 
period during which an idea or an artifact may be considered 
valuable—are long lasting second-rate ideas more valuable 
than ephemeral, trendy, first-rate ideas? From the last state-
ments, it becomes clear that value judgments are relative 
and, therefore, difficult to agree on. What about the criterion 
of surprise? There are three types of surprise that correspond 
to three types of creativity mentioned by Boden. First, the 
unexpected, statistically unusual type of surprise, which we 
have always known to be possible, e.g., when a friend wins 
the lottery. Second, the type of surprise we experience when 
we come across something that we did not expect and have 
never even considered, but once experienced, seems to fit a 
certain familiar pattern, e.g., a new artwork by a known art-
ist. The third type of surprise is the amazement we feel when 
presented with (what we have believed up to this moment to 

17 See Boden 1998; 2004; 2014.

14 See also van Fraassen 1980: 143, who termed this problem “the 
best of a bad lot”.
15 See McIlraith 1998, §2 and especially §3.
16 Other definitions of best explanation can include additional criteria 
such as priority rankings or probabilities.
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be) an impossible idea, e.g., the stochastic, indeterministic 
nature of the quantum domain.

As mentioned above, these three types of surprise corre-
spond to three types of creativity suggested by Boden: com-
binational, exploratory and transformational creativity. The 
first involves novel combinations of familiar ideas, e.g., met-
aphors, collages in art, the use of analogies in science, etc. 
In the latter case, the combination can have an explanatory 
value, as when a physicist compares the atom to the solar 
system. The other two types of creativity are different and 
closely linked, for they involve the alteration of conceptual 
spaces, i.e., structured styles of thought, which are already 
accepted within a certain group. In other words, the concep-
tual space includes the disciplined ways of thinking rooted 
in one’s culture or social group. In exploratory creativity, 
the originator explores the familiar terrain of his or her con-
ceptual space and comes up with something novel, limited 
by the constraints of his existing structures of thought. In 
transformational creativity, a true alteration of one’s concep-
tual space occurs—an impossibility from the point of view 
of the structured mind, which occurs when one removes or 
alters a previously inherent limitation or adds new ones. This 
enables the formation of new structures that could not have 
arisen before, which in turn enables the generation of previ-
ously impossible ideas. It should be noted that some writers 
consider Boden’s work to be non-exhaustive, e.g., Novitz 
(1999) argues that at least one important type of creativ-
ity has eluded Boden’s taxonomy, namely “invention from 
scratch”.18 In addition, Novitz claims that within her clas-
sification, Boden leaves no room for correct measurement 
of degrees of creativity.

We can now move to examine the question of machine 
creativity. Must “real” creativity involve autonomy, inten-
tionality and emotion? One common objection to machine 
creativity is that real creativity requires autonomy and pro-
grammed machines cannot be autonomous. On this view, 
combinational and exploratory creativity can be simulated 
by programmed systems, but to allow transformational crea-
tivity is to say that programmed systems can go beyond their 
instructions. This kind of objection seems to be outdated. If 
we achieve unsupervised learning and understanding, we 
also achieve the ability to learn new things and new rules, 
to drop refuted hypotheses and adopt newly confirmed ones 
as well as to learn and understand new patterns, revealed as 
the system explores uncharted domains.

When considering autonomy, intentionality and emotion 
as prerequisites for real creativity, we can tentatively main-
tain that emotions (and consciousness) are not necessary for 

creativity,19 and that intentionality is an essential property 
of ideas and artefacts, which were conceived or made for 
a certain purpose.20 Thus, we are left with the question of 
autonomy, i.e., with the question of whether AGI systems 
can be autonomous and consequently creative. Thus, it can 
be argued that creativity is dependent on the other capabili-
ties we previously mentioned, i.e., learning, understanding 
and reasoning. First, we should clarify the question. The 
notion of autonomy here is directly associated with spon-
taneous action and freedom of choice, and to the question 
whether these can be applied to artificial systems. Obviously, 
programmed systems, by definition, are limited to a certain 
extent by instructions of a human programmer. Narrow AI is 
also limited by its problem domain and the fact that its learn-
ing is supervised. In these types of systems, it seems that it 
is justified to claim that only combinational and exploratory 
creativity are possible. Genuine, radical transformations can 
arise when unsupervised learning and interaction with the 
environment occur, followed by understanding of the sort 
discussed above. Autonomous action can arise when learn-
ing and understanding of the environment occur without 
limitations and the system is able to reason and modify the 
environment to achieve its goals. How are these goals deter-
mined? Ultimate goals are likely to be dictated by the sys-
tem’s human creators (at least in the first phase, when AGI 
systems will still be constructed by humans), but this fact 
should not influence the system’s transformational creativ-
ity—it can be manifested when trying to achieve intermedi-
ate or instrumental goals. In this sense, people are limited in 
practically the same way: our goals, purposes and wishes are 
dictated by external factors as well—society, education, etc.

5  How does it all fit together?

In the previous sections we discussed a basic set of abilities 
that seem to be necessary, although perhaps not sufficient, 
for the creation of an initial-phase AGI system. In this sec-
tion, we shall examine two approaches that integrate these 
capabilities into a whole system architecture. One approach 
is referred to as the cognitive-architecture approach. It 
emphasizes the tight integration of the capabilities discussed 
above and other cognitive mechanisms. The other approach, 
the brain-emulation approach, stresses the need to learn from 
the human brain, and it suggests that we do so by emula-
tion. This feature is common to both approaches—they both 

18 An instance of creative thinking that does not involve an explo-
ration or transformation of an existing conceptual space, but rather 
develops a new one, or creates it from scratch.

19 This is due to the fact that there are examples of creativity without 
consciousness or emotions being exhibited. See Boden 2014, §4.
20 Therefore, creativity defined by reference to ideas and artefacts 
must be intentional. See Boden 2014, §4, for an exception to this rule 
regarding artefacts such as artworks and poems.
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contain turn to the human brain in search of insights, solu-
tions and ideas.21

Langley (2012) characterizes the cognitive-architec-
ture paradigm by introducing several general features and 
assumptions that researchers should focus on, to make pro-
gress toward understanding intelligence. The first is high-
level cognition, which goes beyond the “ability to recog-
nize concepts, perceive objects, or execute complex motor 
skills” (ibid.: 4), and refers to complex, multi-step reasoning, 
understanding (mainly, of natural language), planning, and 
even reasoning about one’s own reasoning. The second is 
structured representations, i.e., structures that represent the 
complex relations that arise during reasoning, understand-
ing and other higher-level cognitive processes. The third is 
an emphasis on system-level accounts of intelligence, i.e., 
accounts of the relations between the different components 
and capabilities discussed in previous sections, and the way 
these relations may give rise to high-level mental abilities. 
The fourth feature involves the use of heuristics. Analo-
gously to their use by the human mind, heuristics allow the 
user to tackle difficult problems without looking for “guar-
antees”, by finding acceptable rather than optimal solutions. 
The fifth concerns our study of human cognition and our 
ability to implement this knowledge when constructing intel-
ligent systems. Langley believes that there is much to learn 
and re-engineer into artificial systems from the cognitive 
abilities that humans exhibit so effortlessly, despite their 
limited computational power and working memories. The 
final feature concerns the exploratory research of construct-
ing new systems that can exhibit intelligent capabilities that 
we identify in humans. This research yields many insights22: 
the importance of seeking unified architectures for cognition 
and not focusing on individual capabilities and focusing on 
finding a small set of very general mechanisms, through the 

interactions of which the diversity of intelligent behavior 
arises.

Let us examine how these features map to the capabili-
ties we discussed in the previous sections. The first, i.e., 
high-level cognition, is self-evident, for high-level cogni-
tion includes understanding and reasoning. The second, i.e., 
structured representations, is tightly linked to understand-
ing, especially to such views as URM—the ability to rep-
resent mentally the environment or part of it and to be able 
to manipulate it to achieve goals. The third deals with the 
relations between these capabilities and is the core of cogni-
tive architecture, i.e., that which gives rise to whole-system 
properties, which we try to achieve when we emulate the 
human brain. The fourth—the use of heuristics—is tightly 
linked to abductive reasoning. Finally, putting to use the 
fifth and sixth points will lead us to implementing the kind 
of features we discussed in the previous sections—the abil-
ity to learn from experience, understand and reason from 
uncertain, partial data.

To exemplify the role of the above-mentioned features 
and emphasize the architectural and systematic characteris-
tics of the cognitive-architecture approach, let us consider 
the sigma cognitive architecture (Rosenblum et al. 2016). 
Sigma is an integrated computational model of intelligent 
behavior, which eventually aims to achieve the original 
grand goal of AI/AGI development, i.e., a working imple-
mentation of a full cognitive system, and to ultimately sup-
port the real-time needs of intelligent artificial agents, e.g., 
robots. The development of Sigma is guided and motivated 
by four goals: (1) grand unification, which aims to go beyond 
the cognitive capabilities required for human-level intelli-
gent behavior, and include key non-cognitive aspects such as 
perception, motor control, and affect; (2) generic cognition, 
spanning both natural and artificial cognition at a suitable 
level of abstraction; (3) functional elegance, i.e., a broad 
enough cognitive (and non-cognitive) functionality, which 
will ultimately suffice for human-level intelligence; and (4) 
sufficient efficiency, i.e., enabling real-time performance for 
applications of intelligent artificial agents/robots, and for 
large-scale experiments in modeling human cognition.

Sigma is built on lessons learned from over three decades 
of independent work in cognitive architectures and graphi-
cal models,23 among which are the need for a long-term 
memory, a working memory, and perceptual buffers; the 

21 At this point, we should also mention the 4e (Embodied, Embed-
ded, Extended, Enactive) cognition methodology, which is prevalent 
in robotics as it focuses on issues of embodiment of cognition. In 
general, proponents of this methodology claim that many (if not all) 
cognitive phenomena are in some sense dependent on the morpholog-
ical, biological and physiological details of the agent’s body, its envi-
ronment and its interaction with the environment. Thus, they claim 
that cognition involves extracarnial processes. This claim can take a 
strong and a weak form—the former suggests that cognitive processes 
are essentially based on extracarnial ones and the later suggests that 
they are only causally dependent on them. In this paper, I assume 
that the main requirements of a suitable weak interpretation of this 
methodology can be implemented within the two approaches—both 
can accommodate a sort of causal interaction with the environment. 
A discussion of the strong interpretation of 4e cognition as a separate 
approach is beyond the scope of this paper.
22 See Paul Rosenbloom’s interview on lessons learned from Soar 
to Sigma: Paul Rosenbloom on Cognitive Architectures. https ://intel 
ligen ce.org/2013/09/25/paul-rosen bloom -inter view/. Accessed Nov. 
2018.

23 See especially Rosenblum et  al. 2016, Sect.  5.1 for a technical 
introduction of graphical models. In general, these models concern 
efficient computation with complex multivariate functions. This 
includes decomposing these functions into products of simpler func-
tions, mapping the resulting decompositions onto graphs, and com-
puting over these graphs via message passing or sampling algorithms. 
Graphical models provide working approaches to both symbol and 
signal processing, and to both logical and probabilistic reasoning.

https://intelligence.org/2013/09/25/paul-rosenbloom-interview/.
https://intelligence.org/2013/09/25/paul-rosenbloom-interview/.
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importance of multiple forms of long-term memory; the 
centrality of the ~ 50 ms cognitive cycle; and the critical-
ity of combining symbolic and statistical information. At a 
high level, Sigma as a cognitive system is best understood 
in terms of a sequence of layers that are analogous to those 
found in computer systems:

At the core of the cognitive architecture is a cognitive 
cycle that is intended to correspond to the ~ 50 ms cycle in 
humans:

In the first major phase, i.e., the elaboration phase, knowl-
edge about the current situation is processed and conclusions 
are drawn from it. The role of this phase is to elaborate what 
is understood about the current situation. At this phase, the 
system does not make choices or learn, but tries to deter-
mine, recalculate and update the content of its memory. The 
second major phase is responsible for making choices and 
persistent changes to memories based on the understanding 
achieved in the elaboration phase while also engaging in 
meta-architectural processing. These may include short-term 
modifications to working memory as well as alterations to 
the system’s affective and attentional states. It also includes 
long-term modifications to long-term memory, i.e., learn-
ing. This phase is inherently about making changes. This 
includes decisions about the operators to be applied to make 
progress in the current situation, changes to working mem-
ory and different aspects of reflection, learning, affect (i.e., 

emotion), and attention. The last paragraphs were an attempt 
to examine how cognitive architectures can be a suitable 
platform for the implementation of (some of) the features 
discussed above. In the concluding section, we shall further 
expound on this.

The second general approach we shall discuss supports 
the artificial emulation of the biological brain. Proponents 
of this approach include large enterprises such as the human 

brain project (HBP), as well as small companies such as 
Jeff Hawkins’ Numenta. The HBP takes two paths toward 
artificially imitating the brain: one is Brain Simulation and 
the other is Neuromorphic Computing. The brain simulation 
platform (BSP) aims to replicate the brain and its workings 
on a computer. To do so, they have to characterize the bio-
physical and computational properties of human neurons, a 
very challenging task for two main reasons: the complex-
ity of the brain, its components and their relations and the 
ethical limitations involved in acquiring data directly from 
human brains. As regards Neuromorphic computing, this 
approach implements aspects of biological neural networks 
as analogue or digital copies in electronic circuits. Its goal 
is twofold: offering a tool for neuroscience to understand the 
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dynamic processes of learning and development in the brain 
and applying brain-inspired processes to generic cognitive 
computing.

Numenta is a company that focuses on reverse-engineer-
ing the neocortex, according to the ideas of its founder Jeff 
Hawkins.24 Numenta researches the way the human brain 
works—more specifically, how the neocortex works and how 
brain cells work together to create perceptions, predictions 
and behavior. The project’s aim is to build machine intelli-
gence based on the principles of neocortical function, which 
the company believes are necessary and sufficient for any 
system that exhibits general-purpose intelligence, biological 
or artificial. Why the neocortex? Because it is a sophisticated 
learning system that learns how to model the world from 
the data streaming through our senses, and it is this fact 
that causes Hawkins and others to believe that by emulating 
the neocortex, we will be able to build machine intelligence 
endowed with the abilities of learning, understanding, rea-
soning and creativity. A recent example of the research in 
this field is the “Thousand Brains Model of Intelligence”,25 
a cognitive model proposing that cortical recognition and 
modeling capabilities are much more powerful than previ-
ously assumed. According to Hawkins, this research avenue 
will become indispensable to the future development of AI, 
facilitating the solutions of such problems as generalization 
and flexibility in applying the learning of one domain to 
other domains.

One of the major difficulties that this approach is facing 
is related to the thesis of Connectionism26 and the long-dis-
credited assumption that the neuron is simple enough to be 
artificially emulated. A recent criticism can be found in Sardi 
et al. (2017), who claim that the long-lasting computational 
scheme of the neuron as a single electrical, excitable, thresh-
old unit is misguided, and that the neuron is in fact a much 
more complex unit. According to the “old” scheme, neurons 
sum the incoming electrical signals via their dendritic trees 
and generate a spike to their axon if the membrane potential 
reaches a certain threshold. Therefore, the waveform of the 
spikes, e.g., rise time, peak values, depolarization period and 
decay time unto a resting potential, is consistently reproduc-
ible by the neuron, but varies among neurons. Thus, this 
relatively simple computation scheme of biological neurons 
consists of a single, centralized, excitable mechanism that 
linearly sums its entire signal input. The authors question 
this common scheme, and suggest, based on experiments, 

that a neuron functions as an anisotropic, i.e., directionally 
dependent, threshold unit. Every neuron contains several 
independent excitable sites, each functioning as an inde-
pendent threshold unit that sums up the incoming signals 
from a given limited spatial direction, most probably by one 
or more dendrites. These independent threshold units are 
not identical and are characterized by different spike wave-
forms and different summation specifications. This, in turn, 
suggests that the neuron27 is a more complex and structured 
computational element than assumed heretofore, and the 
implications for its computational capabilities will surely 
have interesting consequences for any artificial system with 
emulated neurons as its basic component. The authors note, 
however, that it is not suggested that each neuron is com-
posed of several separate and detached neuron-like units that 
sum up signals coming from certain dendrites, for the case 
may well be that the dynamics of the threshold units will 
prove (experimentally) to be coupled, since they share the 
same axon and may also share a refractory period.

This approach suffers from additional substantial diffi-
culties, originating mainly from our lack of knowledge: we 
know little about neural connectivity—what are the rules 
neurons follow when they create different types of con-
nections? What is the importance of these types? We lack 
knowledge of the precise timing of action potentials and of 
organizational levels with regard to the processing of infor-
mation by large neuronal groups or circuits. These seem to 
be substantial obstacles for brain emulation projects.

However, it should also be noted that the brain-emula-
tion approach has recently received apparent support from 
a study performed by DeepMind researchers (Banino et al. 
2018), regarding navigation of artificial agents using grid-
like cells.28 The aim of the study was to examine whether 
the computational functions of grid cells can be leveraged 
to develop a deep-reinforcement learning agent with mam-
malian-like navigational abilities. After training the network 
with input mirroring the signals available to the mammalian 
brain, certain units (~ 25%) within the network developed 
what the authors refer to as “spatial activity profiles”, which 
resemble the activity and functionality of grid cells. Pend-
ing more meticulous examination of the training and the 
details of these profiles, we can cautiously agree that these 
findings give a certain degree of support to the view that 
emulating the structure, functionality and principles of the 
biological brain will give rise to the desired cognitive abili-
ties discussed above.

Having mentioned the difficulties and recent support, let 
us examine more closely the hidden assumptions behind 

26 The debate revolving the value of Connectionism as a view that 
hopes to explain intellectual abilities using artificial neural networks 
has been going on for several decades now. For a comprehensive 
overview, see Garson and Buckner 2019.

27 This study was limited to the examination of pyramidal neurons.
28 A grid-like cell is a type of neuron in the brains of many species 
that allows them to understand their position in space.

24 See Hawkins 2004.
25 See Hawkins et al. 2017.
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the claim that emulating the human brain or the neocor-
tex will bring about such higher order cognitive abilities 
as understanding, abductive reasoning, extended learning 
capabilities and more. Proponents of brain emulation claim 
that these abilities will emerge when we are able to construct 
an emulated neocortex. They use the concept of emergence 
in such manner: “Getting back to AGI… intelligence is an 
emergent phenomenon. It must emerge from the interactions 
of non-intelligent components” (Anderson 2011, §3); and: 
“The cortical algorithm can be deployed in novel ways, with 
novel senses, in a machined cortical sheet so that genuine, 
flexible intelligence emerges outside of biological brains.” 
(Hawkins 2004: 38). What do they mean by that?

Emergentism is a view in the philosophy of mind, one 
of a variety of positions grouped under the more general 
position of Non-Reductive Materialism (NRM). Proponents 
of NRM hold that the mental is ontologically part of the 
material world; yet mental properties are causally efficacious 
without being reducible to physical properties. More specifi-
cally, proponents of Emergentism assert that consciousness, 
including all higher-order cognitive abilities, emerges from 
the physical brain. There are two types of emergence—weak 
and strong, and the difference between them boils down to 
our ability to infer the emergent property from knowledge 
of the lower-level components, their structure and their 
relationships. In the case of weak emergence, we may not 
be able to predict the emergence of a property, because we 
lack sufficient knowledge. However, in the case of strong 
emergence, we cannot infer the emergence of a property 
in principal, i.e., even when having complete knowledge of 
all low-level components, their structure, relationships, etc. 
Consciousness and higher-order mental abilities are consid-
ered to be the prevalent examples of strong emergence,29 and 
so if proponents of the brain-emulation approach assume the 
emergence of such higher-order abilities as understanding, 
reasoning and creativity, they will have to face objections 
raised by several philosophers30 who believe that strong 
emergence does not make sense.

Another issue we should examine is whether the analogi-
cal inference that the proponents of Emergentism make is 
justified. The inference is the following: the human neo-
cortex is built in a certain way and has certain higher-order 
cognitive properties; therefore, if we emulate the neocortex, 
i.e., create an artificial entity or system which is very similar 
to the neocortex, the higher-order cognitive properties of the 
neocortex will emerge in this similar system as well. Prima 
facie, this inference appears justified. Analogical reasoning 

is based on the concept of similarity31 and indeed it seems 
that by creating an artificial neocortex, which resembles 
the human neocortex, with a similar functionality of its 
basic components, a similar structure and similar relation-
ships between its components, we can analogously infer 
the similarity of properties of the whole. However, beyond 
the question of how we define similarity, we should also 
mind issues of granularity and material. Granularity refers 
to the level of accuracy at which the emulated neocortex 
will be implemented. How detailed will the structure and 
functionality of the emulated neuron be in comparison to its 
biological counterpart? If we emulate the neocortex at the 
level of neuronal groups—a level that may suffice to achieve 
functionality—we may lose granularity and consequently 
similarity. This will make our analogical inference weaker, 
since it was originally based on similarity. The same applies 
to the structure, connections and relationships of larger neu-
ronal groups. These implementation details matter greatly to 
the validity of the inference, for it may well be that what we 
consider as similar enough may not warrant the conclusion 
of the analogical argument. The other issue is material: the 
biological matter composing biological neurons could be of 
great importance to the whole in the sense that conscious-
ness and higher-order mental abilities may all be properties 
of biological brains.32 Hence, the material factor may also 
influence similarity and consequently the validity of the ana-
logical inference. Moreover, it may warrant the inference 
completely false, for if higher-order cognitive abilities are 
properties of biological brains, then no matter how similar 
the emulated neocortex is to its biological counterpart, no 
higher-order properties will emerge. With these points in 
mind we can now conclude.

6  Concluding remarks

To sum up, both approaches may be dependent on advance-
ments in other areas such as cognitive science, hardware 
development and perhaps quantum computing. However, 
we can still reach a few interim insights regarding the near 
future path AGI development should take: First, let us con-
sider the brain emulation approach. Although it encom-
passes the dream and promise of building artificial brains, 
in its current state this approach suffers from multitude of 
problems—current projects are falling short of their declared 
goals, and more generally, as discussed above, this approach 
faces several major technical-scientific problems and is 

31 In general, it is difficult precisely to define similarity relations, but 
see Helman 1988, especially the chapters by Stuart Russell (“Analogy 
by Similarity”) and Ilkka Niiniluoto (“Analogy and Similarity in Sci-
entific Reasoning”).
32 As proponents of Biological Naturalism claim. See Searle 2007.

29 See, for example, Chalmers 2006.
30 See, for example, Taylor 2015; Howell 2009; and Kim 1998, and 
2006.
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founded on a rather weakly-justified philosophical basis. 
The cognitive architecture approach on the other hand, is 
based on decades of continuous research in cognitive and 
computer science and is concerned with building systems 
that implement at least some of the features discussed in 
this paper as required for AGI systems, e.g., understanding, 
learning and reasoning. To be sure, brain emulation projects 
can produce invaluable results and knowledge, not only in 
neuroscience but also in computer science and in the general 
study of artificial intelligence, but they require neurological 
knowledge that we currently do not possess.

Thus, it may seem more reasonable to pursue the develop-
ment of more innovative and hybrid systems. In other words, 
combine the two above-mentioned approaches in a manner 
that highlights the strengths of each approach and mutually 
compensates for their weaknesses. Traditionally (although 
not without exceptions), the symbolic/rule-based or classi-
cal AI paradigm is identified with the cognitive architec-
ture approach, whereas the neural networks paradigm is 
usually identified with approaches trying to simulate the 
workings of the human brain. Each of these paradigms has 
shortcomings: Deep learning (DL) is considered to be data 
inefficient, hard to generalize and uninterpretable,33 whereas 
symbolic AI is limited when it comes to unstructured data, 
be it text, audio or images. It needs a formally specified 
set of inference rules to carry out logical-like reasoning, 
and, therefore, has problems when it comes to understand-
ing the unordered and messy world out there; Combining 
the two approaches into a hybrid neuro-symbolic system, 
i.e., the reasoning power of rule-based AI with the learn-
ing capabilities of DL networks, may be the first step in the 
right direction to a general system. In such a hybrid system, 
symbolic components take advantage of the processing and 
analysis of unstructured data done by the DL components, 
while these components benefit from the reasoning power of 
the rule-based components, which enables them to learn new 
things with much less data.34 Thus, I concur with Garnelo 
and Shanahan (2019: 23) that given such a hybrid system, 
“the desired properties of data efficiency, powerful gener-
alisation, and human interpretability would likely follow.” 
Moreover, I suggest that this is a first step down the hybrid 
road, leading to general systems having even more complex 
capabilities of independent learning and understanding of 
complex environments, abductive reasoning and creativity.
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