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Abstract
The notion of computation has changed the world more than any previous expressions of knowledge. However, as know-how 
in its particular algorithmic embodiment, computation is closed to meaning. Therefore, computer-based data processing 
can only mimic life’s creative aspects, without being creative itself. AI’s current record of accomplishments shows that it 
automates tasks associated with intelligence, without being intelligent itself. Mistaking the abstract (computation) for the 
concrete (computer) has led to the religion of “everything is an output of computation”—even the humankind that conceived 
the computer. The hypostatized role of computers explains the increased dependence on them. The convergence machine 
called deep learning is only the most recent form through which the deterministic theology of the machine claims more 
than what it actually is: extremely effective data processing. A proper understanding of complexity, as well as the need to 
distinguish between the reactive nature of the artificial and the anticipatory nature of the living are suggested as practical 
responses to the challenges posed by machine theology.
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…it’s just a block of wood! I burned half of it for heat 
and used it to bake my bread and roast my meat. How 
can the rest of it be a god? Should I bow down to wor-
ship a piece of wood?1

1  Preliminaries

A distinguished colleague (holding an endowed chair at 
an Ivy League university) rushed a kind note to me: “Your 
anticipatory research theme is now a thematic focus in the 
IARPA program: Anticipatory Intelligence. The world is 
catching up with you.” On the IARPA website one reads: 
“Anticipatory intelligence focuses on characterizing and 
reducing uncertainty by providing decision makers with 
timely and accurate forecasts of significant global events.” 
The well-intended congratulation recalled the many 
instances of no less well-intended but deceiving use of the 

word “anticipation.” Prior to IARPA—and to the seductive 
task of reducing uncertainty through “anticipation”—intel-
ligence had the same privilege, but under DARPA, a catalyst 
agency with claims to many innovations.

This episode conjures questions such as: “How do scien-
tific concepts make it into everyday language?” “How does 
a certain target—intelligent behavior—morph into whatever 
it can be confused with?” And more important, “How conse-
quential is science anyway?” Albeit, if what scientists try to 
accomplish, sometimes under misguided assumptions, is not 
consequential, the whole enterprise is an exercise in futil-
ity—for which society pays.

If nothing else, the quest for knowledge was always asso-
ciated with rationality. Still, a short time ago, a rather suc-
cessful innovator (Musk 2014) went as far as to state that, 
“With artificial intelligence, we are summoning the demon.” 
Hawking (2014) joined in the expression of concern. Ray 
Kurzweil read something else into it (presumably also con-
sequential): “We will be able to upload copies of our brains 
to intelligent machines and thus achieve digital immortality,” 
(Kurzweil 2005, 2013).2 One of the leading technologists in 
the autonomous vehicle (i.e., self-driving car) “mini-revo-
lution,” Anthony Lewandowski (a member of the Google 
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and Uber “nobility”) formed Way of the Future, register-
ing it as a tax-exempt religious organization: “… through 
understanding and worship of the godhead, contribute to 
the betterment of society” (Harris 2017). As divergent as 
such positions are, they ultimately tie into what this study 
defines as the theology of the machine, ubiquitous not only 
in the world of computation, but also within deterministic 
science in general.

To return to the subject that has triggered so many con-
troversies—at the Dartmouth Conference of 1956 and 
beyond—artificial intelligence (now a two-letter word in its 
own right) proved to be consequential beyond the hopes of 
those who initiated it, though not necessarily in the way they 
wished. Parallel to the Dartmouth event, Desk Set, a film 
featuring Katherine Hepburn as Bunny Watson—the “liv-
ing” prototype of the computer that could answer any ques-
tion—displayed a machine which could have replaced her 
as reference librarian at the Federal Broadcasting Network. 
The real Watson, an IBM product featured as having AI 
capabilities, won the Jeopardy contest (January 2011) with 
living competitors renowned as the most successful contest-
ants (Ken Jennings and Brad Rutter). The Watson of IBM 
(which supported production of the movie) is now available 
for hire ($265 per month) to offer “a cognitive computational 
self-service experience that can provide answers and take 
action.”

2  Little money for a very ambitious project

John McCarthy called it “artificial intelligence.” (Before 
him, Zadeh (1950) had written about “thinking machines”.) 
The participants at the 1956 Dartmouth Conference (for-
mally, the Dartmouth Summer Research Project on Artifi-
cial Intelligence) agreed: “…every aspect of learning or any 
other feature of intelligence can be so precisely described 
that a machine can be made to simulate it.” Machine meant 
“an agent that manipulates symbols.” The extended work-
shop at Dartmouth College was documented in detail by Sol-
omonoff (1956). “This new field of mathematical models” 
(as the Rockefeller Foundation, where McCarthy applied for 
funds, understood it) was “difficult to grasp,” and only half 
of the rather modest funding request was approved with “a 
great deal of hesitancy” (Kline 2015, p. 160). It seems that 
those who were philosophically oriented (Simon, Newell, 
McCarthy, Minsky, and others of philosophical inclination 
and anti-Wiener instinct) agreed that artificial intelligence 
could save philosophy from insignificance. Indeed, many 
philosophic subjects, such as thinking, in particular deduc-
tive and inductive reasoning, but also the more recent proba-
bilistic reasoning, permeated the agenda.

The subsequent history of AI is pretty well documented 
(Lungarella et al. 2007): the victory of computation, with 

all its desired and most of the time ignored undesired conse-
quences. Computation became the underlying foundation of 
a new civilization (Nadin 1997). Of course, the self-declared 
prophets of the movement are celebrated. Day-in-day-out we 
learn of the revelations associated with Big Data processing, 
the raw material of deep, deeper, and ever more deep learn-
ing that defeats champions (of checkers, chess, Go, e-Sport). 
It out-diagnoses the medical profession and produces more 
impressive art than artists do (according to a report enti-
tled “Computers can now paint like van Gogh and Picasso,” 
Murphy 2015). Move over Rembrandt, Matisse, Picasso, 
Pollock and the rest, the Convolutional Neural Network is 
coming (Gatys et al. 2015). Neural networks “learn learn-
ing” (Andrychowicz et al. 2016) and design new networks 
(Zoph and Le 2016). The Rapture is imminent: the messianic 
singularity (Kurzweil 2005) when no distinction between 
human thinking and machine intelligence will be possible. 
Better yet: When Will AI Exceed Human Performance? Evi-
dence from AI Experts (Grace et al. 2017). No less than 352 
researchers (from the 1634 contacted) were questioned on 
the probability that high-level machine intelligence (HLMI) 
settling in the years to come (the time span varies from 9 to 
70 years). HLMI “is achieved when unaided machines can 
accomplish every task better and more cheaply than human 
workers” (Grace et al. 2017).

Time to take a deep breath: Is not today’s Turing machine 
epiphany (this word is not chosen by accident) the outcome 
of impressive proofs that demonstrated the impossibility 
(a negation, i.e., well more than a doubt) of a mechanical 
procedure for determining the truth values of mathematical 
statements? The outcomes of this particular challenge are:

1) Church, based on papers by Gödel, showed that “the 
quest for a general solution of the decision problem must 
be regarded as hopeless” (Church 1936a, b, c);

2) Turing (1936–7) proved that the Hilbertian Entschei-
dungsproblem has no solution;

3) Gödel documented that Hilbert’s goal3 cannot be 
reached, i.e., that consistency and completeness of 
some formal systems is unattainable (Gödel 1936). To 
this distinction, pertinent to formal systems in Gödel’s 
proof, we shall return (Sect. 8, G-complexity Revisited), 
reaffirming its validity to distinctions in reality (Nadin 
2014).

The negation in reference to the mechanical decision 
procedure is indirectly an affirmation of what became the 

3 Das Entscheidungsproblem is gelöst, wenn man ein Verfahren 
kennt, das bei einem vorgelegten logischen Ausdruck durch endlich 
viele Operationen die Entscheidung über die Allgemeingultigkeit 
Erfüllbarkeit erlaubt (Hilbert and Ackermann 1928).
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algorithmic set of rules that make problem solving through 
mechanical “reasoning” possible. Indeed, there is a part of 
reality that can be described through algorithmic compu-
tation. It turns out that this part of reality is at the same 
time decidable: it can be fully and consistently described 
(Nadin 2014). Those who pay attention to the details of 
Hilbert’s challenge understand that Verfahren (procedure) 
is not really the same as algorithm. “Who from among all 
of us would not gladly lift the veil under which the future 
hides?” was Hilbert’s rhetorical entry to presenting chal-
lenges to the community of mathematicians. Little could he 
know that those (Church, Turing, Gödel) demonstrating the 
impossibility of a machine-based procedure for proving the 
truth of mathematical statements actually set the founda-
tions for a particular type of machine that would eventually 
change civilization. Homo Turing, as I would call him, is 
an outcome defined by Bolter (1984): utilitarian, calculat-
ing, shallow, living by cost-benefit analysis. It seems that in 
reshaping Homo sapiens, intuition, spontaneity, empathy, 
compassion, and even judgment were traded for expediency. 
Of course, Turing could not foresee the consequences of his 
visionary work.

This outcome, probably more relevant to an anthropologi-
cal account, is related to the foundational work we are exam-
ining. Among the many consequences of this foundational 
work, two are of immediate significance:

1) The construct computation and the associated domain 
of the computable were established as a distinct epis-
temological domain. It has a rather long history (going 
back to pebbles, knots, beads on the abacus, mechanical 
devices, etc.), being, in the final analysis, one among 
many representations on whose basis knowledge acqui-
sition, dissemination, and evaluation take place.

2) In contradistinction to the computable (identified, with-
out any reason given, with the Turing machine, i.e., 
algorithmic computation), there is the non-computable 
(at least non-algorithmic), to which belongs the Entsc-
heidungsproblem, that is, a mechanical (i.e., automated) 
procedure for determining the truth of mathematical 
statements. The subdomain of algorithmic computa-
tion became the placeholder for all forms of discrete 
computation, and the underlying computation of what 
is defined (or maybe not at all defined) as AI.

If nothing else can be derived from these accepted discov-
eries, one statement stands out: human beings, in their quest 
for understanding the world, constitute themselves through 
their activities, testimony of their abilities. They prove theo-
rems, but not in a mechanical (i.e., machine-based) manner. 
Moreover, they are not subject to the infinite loop of the 
halting problem: that is, can a computer recognize when 
the program’s task is finished (or will it continue to process 

indefinitely)? The human being—and for that matter any 
form of life, independent of the activity through which it 
expresses itself—would halt. In other words, it understands 
whatever is performed and stops, either when it cannot 
achieve what it wants or after achieving it. Based on these 
two observations, one can infer: (1) contrary to statements 
made since Dartmouth, human beings are not reducible to 
algorithmic machines; and (2) a science of the human being 
transcends the algorithmic description.

3  The heresy of questioning TM 
reductionism

Even those who conceived of the new machines were sur-
prised by their performance. This is understandable. Mira-
cles are those phenomena for which we are not prepared, 
neither in terms of our ability to understand our own actions 
and ideas, nor in terms of our emotional reactions. But we 
are catching up, and what seemed out of proportion—algo-
rithmic computation by now has a history of extraordinary 
achievements—is slowly integrated in culture. The cell 
phone brought computation to everyone’s pocket. The ubiq-
uity of algorithmic computation rivals that of electricity (the 
almost prophetic view of Mark Weiser 1991). Something 
else is happening as well: “mistaking the abstract for the 
concrete” (Whitehead 1992, p. 2), also known as to hyposta-
tize or to reify, to construe something as actual. The clas-
sic example of this form of misrepresentation is Hegel’s 
view: the real world is the creation of the idea. (Debunking 
Hegel, Marx hypostatized the material world.) And before 
that, religion promoted the god-based view of the world. i.e., 
construed it as created by some divinity. Isaiah’s descrip-
tion says it all: we made gods and ascribed our own rules 
to them. For those following in the footsteps of religion, or 
of Hegel’s idealism, or of Marx’s materialism, the abstract 
Turing machine (the idea, as Hegel would call it) also creates 
a reality. The abstract mechanical procedure for ascertaining 
the truth of statements other than mathematical is mistaken 
for the concrete, for the reality of how humans think. The 
theoretic representation of this reasoning process leads to a 
religion that does not distinguish between machines (instan-
tiating the abstract mechanical model) and human beings. 
This is how deities emerge as an explanation for phenomena 
otherwise impossible to explain at a certain moment in time.

3.1  High priests and heretics

In the spirit of placing the memorable Dartmouth moment, 
when symbolic processing emerges as the assumed embod-
iment of artificial intelligence, in the broader context of 
algorithmic computation, it is time to see what happens 
to the various heretics who challenged the new religion of 
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the machine and AI. Of course, Hubert Dreyfus and Joseph 
Weizenbaum come first to mind, as do the “high priests” 
of an intolerant intellectual inquisition whose activity tran-
scended the usual academic infighting. Reading today Drey-
fus’s Alchemy and Artificial Intelligence—the RAND paper 
P3244 (Dreyfus 1965)—and Papert’s (1968) The Artificial 
Intelligence of Hubert L. Dreyfus. A Budget of Fallacies 
(Artificial Intelligence Memo No. 154) suggests a good idea 
for a movie in the spirit of Inherit the Wind (focused on 
the introduction of Darwin’s evolution theory in American 
education)4. The same holds true for Weizenbaum’s Com-
puter Power and Human Reason (1975) and McCarthy’s 
“An Unreasonable Book” (1976). By now, most computer 
scientists set aside the arguments and counterarguments of 
those confrontations. But just as a reminder: Hubert Dreyfus, 
respectable philosopher and admirable teacher, ascertained 
that

The analogy brain-computer hardware and mind-com-
puter software is a misleading assumption; the same 
holds true for the assumed discrete computation driven 
by algorithms on symbolic representations (1972).

Behind these premises, which he discussed in detail, 
although somehow imprecisely, are the far-reaching views 
according to which the dynamics of reality can be described 
through predictive rules or laws. The expectation of pre-
diction is the outcome of the doctrine that reality can be 
reduced to its physics. We shall return to the focus on physi-
cal symbol processing, as AI processing was construed. It is 
the Achilles heel of the arguments advanced by those who 
promoted symbol processing as the foundation of AI (in par-
ticular, Newell and Simon), but also of the views advanced 
by Dreyfus and others who disputed the context-free pro-
cessing of data as a path towards emulating intelligence. 
This summary does not do justice to the many distinctions 
that Dreyfus advanced, and even less to the richness (depth 
and breadth) of his arguments.

Weizenbaum knew a lot about computers—from the 
analog to the digital, including neural networks. Scheffler 
(2004) presents a good portrait of Weizenbaum’s philoso-
phy, not to be downplayed by those who saw in him only the 
MIT professor of computer science. He did not exclude the 
possibility of AI, but claimed that with larger and larger pro-
grams, more and more entangled, it becomes very difficult 
(if not impossible) to distinguish between desired outcomes 
and possible, extremely consequential, malfunctioning. 
Weizenbaum specifically associated decision-making with 
computation, but argued that choice is a human capabil-
ity, not within the possibilities of digital processing. Com-
puters have no wisdom or compassion, which, in his view 

(passionately ascertained), are part of human intelligence, 
together with emotions.

For suggesting that computers, in whichever form, could 
not do something—whatever that might be—Dreyfus and 
Weizenbaum and many others were treated like intellectual 
Luddites. For ascertaining that the brain is not a computer 
and intelligence is more than solving problems based on 
rules, such authors were ridiculed by colleagues enjoying 
positions of authority. The fact that none of them realized 
what Turing, Church, and especially Gödel established: 
there are tasks for which the algorithmic, at least in its cur-
rent expression, is not adequate. In the spirit in which deter-
minism was hypostatized and became the religion of science, 
some of Dreyfus’s and Weizenbaum’s colleagues effectively 
deified the Turing machine. The various commandments 
attributed to the deity by the humans who constructed it (in 
search of answers to questions for which no better answers 
could be given at the time) formalize this religion. Churches 
promote such commandments as divine. In a strange paral-
lel development, Descartes’s views, proclaimed but never 
proven, gave rise to the theology of reductionism and deter-
minism embodied in the machine, and now extended to 
one particular type: the Turing machine. There is historic 
precedent to this: the hypostatized brain as made of clay 
infused with spirit; the brain as a hydraulic machine (the 
humors, fluids running though the machine); the mechanical 
automata model (more like a clock); Hobbes’s mechanical 
motion brain; Helmholtz’s “neural network,” pretty much 
like the telegraph; the brain as a quantum computer. It never 

Fig. 1  Adam Hayes: ManMachine (reproduced with artist’s permis-
sion)

4 United Artists’ 1960. The title comes from Proverbs 11:9.
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ends (Zarkadakis 2015). The obsession with reducing the 
brain to the machine-du-jour is as understandable as it is 
infantile (Fig. 1).

What today intrigues a reader of the words uttered and 
printed at the time Dreyfus confronted the AI experiment is 
the “proof by intimidation”—an expression that McCarthy 
brought up, complaining that Weizenbaum used some words 
as clubs. Weizenbaum did not produce another ELIZA 
(which is still successful in our days) as he was contrast-
ing human reason to the power of computers. Their argu-
ments were about principles—and many insecure personages 
feel intimidated by principles. To discuss Dreyfus as chess 
player, only because he discussed computer-based chess 
playing, is to miss the broader point he was making. It is 
unfair, or actually disingenuous, to generalize from Dreyfus 
(an average player) losing to a machine, or even from the 
ex-world chess champion Kasparov losing to Big Blue. They 
were actually playing against hundreds, if not thousands, of 
adversaries who cooperated in investigating the huge space 
of possibilities associated with the game. If Dreyfus, and 
later Kasparov, had had access to all the resources that the 
chess program was using—the knowledge database of open-
ings played by 100 grandmasters, fast search, pattern recog-
nition, etc.—they, or anyone else, would have been compet-
ing in a fair contest. The human hours of development that 
went into having a brute force program win a chess game 
exceeds not only the lifespan of one player, but probably that 
of all players. (Kasparov learned that the machine he was 
playing against was assisted not by one grand master, but 
two). Worse yet: the machine’s winning performance and 
intelligence are incongruent.

Be that as it may, McCarthy argued for better logic, not 
for more powerful engines, when he attacked Weizenbaum’s 
warning about a time when machine brute force will take 
over human intelligence.

Papert’s (1968) argument against Dreyfus (detailed in 
Nadin 2017b) totally missed Dreyfus’s assertion: a check-
ers or chess player operates in a field of meaningful searches. 
The machine, as a purely syntactic device, does not make 
meaningful decisions; it processes data with the aim of 
reaching a well-defined target. Brute force associated with 
improved search functions (improved heuristics) is deployed 
for calculating, but not for “playing chess.” The program 
activates the hardware, like an operator’s fingers activate 
an abacus. Understanding what each step means is neither 
possible nor really attempted. To use a figure of speech, 
Papert and his followers are practicing the Entscheidung-
sproblem on a decidable mathematical problem (the chess 
game). They fail to recognize that chess is primarily a cul-
tural artifact, not a math problem or an engineering task. 
This realization is of no consequence in writing software 
and designing search facilities. It all becomes a matter of 
pattern recognition of training neural networks. A game like 

chess, with its many dimensions—cognitive, esthetic, emo-
tional, etc.—holistically engages the player. The desire to 
understand—a prerequisite of intelligence—harkens back 
to what prompted the invention of chess in the first place. 
Every game is competitive in nature. Games engage play-
ers as a whole, with their history and their entire potential. 
Automating the playing of a game involves the intelligence 
of living competitors, but is not reducible to it. Quantitative 
descriptions of winning a game of chess are rather weak rep-
resentations of the intelligence involved. Such descriptions 
ignore the meaning of the game and the significance of the 
wager implicit in the culture of playing.

Thesis 1 Intelligence is about meaning, not about measuring.

As a matter of fact, all those advancing the idea of artifi-
cial intelligence as outcome of symbolic processing missed 
the Charles Sanders Peirce moment in the history of science 
and philosophy in the USA. (In discussing, Winston’s thesis 
on learning, Dreyfus 1979, p. 21, managed to recall Peirce’s 
abductions and eventually references semantics, but never 
semiotics.) Moreover, the pioneers in computers were not 
better. This is surprising since Arthur W. Burks, for example, 
who helped in building ENIAC, the first general purpose 
digital computer, was particularly aware of Peirce.

4  Stating vs. proving

Allen Newell and Herbert A. Simon stated, “A physical sym-
bol system has the necessary and sufficient means for gen-
eral intelligent action” (1976). This is known as the physical 
symbol system principle. It was never proven. Some of the 
terms are questionable, such as “physical symbol,” or “gen-
eral intelligent action.” The concept of system is used in 
quite a vague manner. What kind of system? Intriguing also 
is the psychological assumption: “This is how individuals 
process symbols.” (Dreyfus dedicated a section to it, 1979, 
pp. 163–188). There was no proof for that at the time—as 
there is none today. Mainstream psychology was not known 
for its interest in semiotics, and actually discarded it (Bell 
2005). The condition of psychology is rather question-
able—but neither Dreyfus nor others expressed any doubts. 
Psychology is neither physiology nor brain science, but 
theoretizes their content matter. Therefore, it is surprising 
that those involved in the foundations of AI have given it 
more than considerate attention, allowing it to become the 
outmoded monster it is today. It forced upon society the IQ, 
which greatly contaminated the research of intelligence (for 
which it is supposed to stand). Between Freud’s hoax, the 
IQ (enlisting statistics, of course) and the so-called prospec-
tive psychology, there is little, if any, difference. The prob-
lem is that machine theology often invokes the circularity 
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of psychological reasoning (if the word reasoning can be 
applied at all): “This is how humans do, therefore….” But 
it never transcends the philosophic arguments (of psycho-
logical import), where the discussion got stuck, “…pas-
sively receiving data and then running through the calcula-
tions necessary” (Dreyfus 1979, p. 255). The model that 
AI adopted and which Dreyfus analyzed was proven wrong 
by those studying physiology and the motoric system, the 
brain, and everything else embodied in the living (human, 
plant, animal). Unfortunately, neither the proponents of a 
mechanistic AI nor the critics of AI paid any attention to 
the research carried on in what was then the Soviet Union 
(Nadin 2015a, b, c). We shall refer to more specific aspects 
pertinent to the subject (Ukhtomsky, Bernstein, Secenov, 
et al.).

Turing himself used the word symbol in describing his 
machine: “an unlimited memory capacity obtained in the 
form of an infinite tape marked out into squares, on each 
of which a symbol could be printed” (Turing 1948a, p. 3). 
The only requirement is that the symbol comes from a finite 
alphabet.

The formal definition (Hopcroft and Ullman 1979, p. 148) 
of a one-tape machine M is a 7-tuple:

in which Q finite, non-empty set of states; Γ finite, non-
empty set of tape alphabet symbols; b∈Γ blank symbol 
(often allowed to occur infinitely); Σ⊆Γ\{b} input symbols, 
allowed to appear in the initial tape contents; δ: (Q\F) x Γ 
→ Q x Γ × {L, R} transition function in which L is the left 
shift, R is the right shift; q0∈Q initial state; F⊆Q set of final 
states or accepting states. The initial tape contents are said 
to be accepted by M if it eventually halts in a state from F.

While all the terms that Turing used, or all the concepts 
in the 7-tuple formal definition are well defined, the notion 
of the symbol is not (cf. input symbols in the description 
given above).

4.1  Symbolic representation

The word symbol was used quite a bit in a variety of texts, 
from those of religious intent to the more ambitious attempt 
to define culture as expressed in symbols. It is doubtful that 
etymology (the reference to ancient Greek, for example) 
would shed light on the matter. Words mean what we want 
them to mean (recall Humpty Dumpty in Lewis Carroll’s 
Alice in Wonderland), or what the context of their use sug-
gests: for example, the meaning of quantum leap, or even the 
meaning of computation. Many steps further down the epis-
temological road from Turing came the already mentioned 
assertion, grounded in psychology, that processing physical 
symbols is the foundation of intelligent-like performance by 
something other than the human being. Those who focused 

M = ⟨Q,Γ,B,Σ, �.q0, F⟩,

on processing physical symbols were considering what it 
would take to achieve artificial intelligence, not what kind 
of machine would eventually accomplish it. Dreyfus’s reac-
tion to Newell and Simon—the Rand Corporation moment 
(where they developed some of their ideas and Dreyfus 
disputed them)—was not about computers, but about the 
conceptual premise: “…since Descartes…understanding 
consists in forming and using appropriate symbolic repre-
sentations,” (Dreyfus and Dreyfus 1986). This goes back 
even farther in time, to Plato’s views that rules are function-
ing in the expert’s mind whether he is conscious of them or 
not. However, in their opposition, neither Newell, Simon, 
and McCarthy et al., nor Dreyfus and his many supporters 
take the time to define symbol or symbolic. Peirce would 
have been the most pertinent reference.

Although his work was marginally acknowledged, he was 
not unknown. As already mentioned, Burks was knowledge-
able in both computers and Peirce. Before all of them, Peirce 
was involved, as Pascal and Leibniz were many years earlier, 
with “Logical Machines.” In a short article (1887a, b), Pei-
rce makes reference to Gulliver’s Voyage to Laputa.

In the “Voyage to Laputa” there is a description of a 
machine for evolving science automatically. “By this 
contrivance, the most ignorant person, at a reasonable 
charge, and with little bodily labor, might write books 
in philosophy, poetry, politics, laws, mathematics, and 
theology, without the least assistance from genius or 
study” (p. 65).

Peirce was even eventually credited (Dalakov, History of 
Computers website) for having “invented in 1886, together 
with Allan Marquand” (his student at Johns Hopkins Univer-
sity) “the first electrical logical machine.” Be this as it may, 
what should have been acknowledged is Peirce’s semiotics 
(“logic of vagueness” was his actual target, Nadin 1983).

To argue in favor of or against Plato’s theory of forms, 
or for that matter, in favor of or against Leibniz (Dreyfus 
called him the grandfather of expert systems), or to argue 
with the participants at the Dartmouth Conference is really 
fighting windmills, since their most important concept—
the symbolic—is ill defined. With this in mind, the Drey-
fus–Weizenbaum critical position in regard to machines and 
intelligence deserves to be reconsidered. Within the “win-
ner-take-all” model, they are seen as sad cases of missing the 
train that brought AI into the forefront of computation. Only 
fools argue with success. But is it truly success?

In Peirce’s view, the symbolic is nothing more than a 
form of representation. More precisely, the overreaching 
concept is the sign:

I define a sign as anything which is so determined by 
something else, called its object, and so determines an 
effect upon a person, which effect I call its Interpretant, 
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that the latter is thereby mediatily determined by the 
former (EP2, 478, 1998).

In diagrammatic expression (Fig. 2), the sign is the unity 
between what is represented (the Object, a placeholder for 
anything in the world, things, processes, ideas, etc.); some-
thing that stands for the object, called representamen; and 
the open-ended process of interpretation (called Interpre-
tant). Of course, each interpretation becomes yet another 
Object, for which representamina will stand, and so forth. 
Within Peirce’s triadic–trichotomic structure, Objects can 
be represented in their quality, uniqueness, or necessary 
(law-like) nature. The representation can be iconic (based 
on resemblance), indexical (mark left, such as a fingerprint), 
or symbolic (by agreement or convention). Interpretations 
can result in rheumatic expression (the “aha” moment), 
decent forms (ascertainments), or arguments (such as logi-
cal deductions). The nature of the sign process is such that 
at this level, only a limited number (10) of possible signs 
are possible.

This short description is not intended to be a lesson in 
Peircean semiotics (which would require a broader context, 
more precisely placing it in the larger framework of Peirce’s 
philosophy). Rather it is an attempt to give the notion of 
symbolic some underpinning. In the absence of this effort, 
the affirmation of AI as physical symbol processing resem-
bles the dialogs in the theater of the absurd (Ionesco, Beck-
ett, etc.): characters talk past each other; each has something 
else in mind, although what they say resembles the common 

use of language. Peirce placed the sign at the center of his 
semiotics, which is meant to transcend the exclusive focus 
on words usually understood as symbols. He wrote about 
the inclusive nature of signs. More precisely, symbolic rep-
resentations include iconic and indexical aspects; and words 
include assertions and judgment, thus facilitating the speech 
act through which knowledge is formulated and shared.

The focus of this part of the broader framework is on the 
notion of symbolic processing, more precisely, its meaning. 
To anchor the argument in a clear conceptual framework is 
not optional. Peirce’s semiotics, ignored or not, is a neces-
sary reference. Two aspects beg our attention:

1) How does semiotics, the discipline of sign representa-
tion, influence conceptions of the nature of computation 
and the nature of intelligence?

2) How does semiotics inform the scientific discussion of 
the possibility to replicate intelligence in some medium 
other than living matter?

Bringing up these two aspects is meant to once again 
ascertain that answers are expected from within the scientific 
community working in computation, in AI in particular. The 
fact that until now very little has been done in addressing 
these two aspects is less a critical remark than an invitation 
to do so.

4.2  Significance

In bringing up semiotics, we suggested only the least 
controversial aspect. Indeed, not unlike all the constructs 
deployed to capture quantitative aspects of reality, such as 
numbers, signs are as well the outcome of epistemological 
activity—i.e., how we get to know what we want to know. 
Since Pythagoras, numbers have predominantly informed 
knowledge of the world, eventually leading to the reduction-
ist method. But not until Peirce came the realization of the 
need to acknowledge what numbers cannot describe. There 
was semiotics before Peirce, and more was stimulated by his 
views. What comes into focus with semiotics is the relevance 
of meaning, which complements quantitative descriptions. 
Moreover, the meaning of numbers—a construct based on 
symbolic representation—associated with measuring quan-
titative aspects of reality, becomes accessible. So does the 
meaning of words in what is called natural language: the 
meaning of what people see or hear, of images and sounds, 
of models and simulations, of everything constructed by the 
living to represent its environment.

Neither Plato, nor Leibniz, searching for a universal lan-
guage and even seeking an “algorithm” for proving logical 
statements, and even less McCarthy, Minsky, Papert, New-
ell, Simon, et al. were wrong in assuming that processing 
a certain form of representation, i.e., symbolic, plays an 

Fig. 2  A coherent theory of semiotics within which symbolic repre-
sentation is well defined
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important role in intelligent expression. The understand-
ing of reality is mediated through shared representations. 
Rather, they promoted an incomplete understanding of the 
role of representation in knowledge acquisition as well as 
in knowledge expression. That the conversation between 
those ascertaining the role of symbolic processing and those 
questioning it took a nasty tone is indicative of the fact that 
there is a lot of insecurity at the limits (as relative as they 
are) of our knowledge. To give one example: Is intelligence 
contingent upon embodiment—the discussion of the intel-
ligence characteristic of ice skating, driving, swimming, 
etc.—or independent of body expression? The early AI pro-
ponents ascertained an understanding of intelligence as only 
the outcome of processing symbols. Only later did Rodney 
Brooks confirm Dreyfus (the phenomenology viewpoint). 
Evidently, Humberto Maturana, Francisco Varela, Eleanor 
Rosch, and so many others had no difficulty in accepting the 
rationality of embodied intelligence. But even they acted 
upon incomplete knowledge: Bernstein (a name to which 
we shall return) produced empirical evidence for embod-
ied knowledge (1936), a rigorous debunking of the famous 
reflex theory that brought Pavlov a Nobel Prize.

With Peirce in mind, i.e., integrating the semiotic per-
spective, the subject is reframed: Representations of all 
kinds come together, or are checked one against the other. 
With Bernstein came the realization that words such as ice 
skating or biking, and even numeric representations are not 
sufficient for performing the action, which involves not one, 
but many expressions of explicit and implicit knowledge. 
Expressed otherwise: not the generality of intelligence set 
as a theoretical and practical target by the initiators of the 
AI program have to be acknowledged, but a variety of types 
of intelligence. A little knowledge can indeed be mislead-
ing—even dangerous.

4.3  A lingering conceptual conflict

Before addressing each question brought up in Sect. 4.1, let 
us return to the conceptual conflict described in Sect. 3.

There is a large body of commentaries on the subject, 
and there is a lot to acknowledge in respect to the Weizen-
baum–Dreyfus moment as it pertains to AI and computa-
tion in general. The reason to remember is not to adjudicate 
victory for somebody, or even something. The architecture 
of thought deserves attention, not the incidental misread-
ing (such as the impossibility of speech recognition that 
Dreyfus asserted, or Weizenbaum’s anthropomorphic take 
on the degree of intelligence that the organism embodied 
by the computer might achieve). AI and Big Data (often 
sucked from underpaid subjects providing training sets) 
without which neural networks cannot operate, prompt many 
questions that neither Dreyfus nor Weizenbaum could have 
articulated.

We need to understand, which mean to intelligently 
assess not only successes, but also perspectives. Semiot-
ics and Peirce, or at least Leibniz, should have come up at 
the Turing moment, when the symbol was called into exist-
ence, as a mark on a square on the infinite tape, in relation 
to the effective procedure, i.e., algorithm, embodied in his 
machine. What happened since, in terms of machine perfor-
mance, cannot be admired enough. At the same time, what 
did not happen—due to the lack of a broader view—cannot 
be ignored. Before there was a solid science of computation, 
the initial knowledge became know-how, i.e., engineering, 
data processing. Knowledge, sacrificed for the expediency 
of applications, would have helped in avoiding the rather 
disturbing consequences of computational fanaticism and its 
associated utopia. It is not too late to focus on knowledge. 
We desperately need a sense of direction. Speculation will 
not do.

5  Machine reductionism

On this note, the discussions of yesteryear, which Dreyfus 
and Weizenbaum (and others, too) incited, take on new 
meaning. The major issue is not whether Dreyfus was right, 
but rather what the consequences of machine reductionism 
are. Instead of focusing on the new “records”—chess or Go, 
image identification, or “learning to learn,” etc.—we can 
benefit from reconsidering an accomplishment, celebrated 
with a Nobel Prize in 1963, that has since inspired the scien-
tific community. The Hodgkin–Huxley mathematical model 
(1952) suggests a physics perspective of the physiological 
process of initiating and propagating action potentials in 
neurons. This is machine reductionism at its best. The exper-
imental subject was the Giant Axon of Coligo (Fig. 3). Its 
large diameter offered the advantage of affording measure-
ments of electric variables. As the diagram shows (Fig. 3), 
the membrane can be modeled as an electrical circuit.

The scientists precisely described action potentials. The 
behavior of nerve cells and the electric circuit equation were 
put in relation: action potential, spike, firing; measure and 
seek relations between numbers (Rosen 1999, p. 63). The 
physics of the process is exquisitely expressed; and it was 
many times since experimentally confirmed. The physics of 
the living can be experimentally tested; and these experi-
ments can be reproduced. This kind of work eventually led to 
the mathematical model of the neuron intended to formally 
describe the natural neuron with its dendrites, soma, and 
axon (Fig. 4).

The mathematical model describes a behavior that associ-
ates inputs (such as those received by dendrites) and outputs 
(propagated to the dendrites of other neurons).

The artificial neuron (AN) accepts data (supposed to be 
of sensory origin) and tries to provide the description of 
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what happens when such data is processed. In the diagram 
(Fig. 5), there are m inputs to be summed up in some man-
ner; there are wm weights, to express bias (what is more or 
what is less important); and a transfer function ϕ.

I focus on this premise for what eventually became the 
spectacular field of artificial neural networks (ANN), and 
further on of machine learning and deep learning, because, 
like the Hodgkin–Huxley model, it is representative of a 
machine-reductionist view that explains not only its accom-
plishments, but also its implicit limitations. The syntax is 
exquisite. But there is no account of the meaning of the pro-
cess. And even less of the pragmatics behind the process 
captured at the formal level. The broader context involves 
what Shun-ichi Amari defined as the “prehistoric” period: 
Rashevsky and Wiener; the perceptron (debunked by Min-
sky and Papert); the Kohonen (1988) and Hopfield (1982) 
moment; the connectionist model; the first back-propagation 
paper (Rumelhart, McClelland, and Hinton in 1986), etc. 
Evidently, Hinton’s work on the Boltzmann Machine (as 
Peter Norvig, Research Director at Google, reported) and 
his presentations at Berkeley brought symbolic AI—focused 
on the symbol—to a standstill (Wang and Raj 2017). As 
opposed to the physical symbol-processing paradigm pro-
moted since Dartmouth, machine learning had cognitive 
plausibility: the brain is always respected—even by those 
who do not understand what it is. Plus: the assumption that 
learning is a brain function, not an expression of the entire 
body in anticipatory action, undermines the effort. There 
was training based on real experiences (millions and tril-
lions of training data sets produced by living subjects), and 
there was an enticing analog component: continuous rep-
resentation instead of Boolean sequences. But we remain 

Fig. 3  A Nobel Prize contribu-
tion: curve fitting with the help 
of electronic circuitry. The 
Hodgkin–Huxley Model based 
on machine reductionism

Fig. 4  From the generality of the neuron to artificial neurons

Fig. 5  The artificial neuron as mathematical model
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at Pythagoras’s “All things are numbers,” and at Hobbes’s 
claim that all reasoning is adding and subtracting (1968, 
Part I, Chap. 5). This is not a study in history. Rather it is an 
attempt to take note of opportunities missed in the absence 
of acknowledging the fundamental distinction between the 
living and the non-living. This distinction, adamantly cast 
aside since Descartes, is essential for understanding why 
machine intelligence, despite spectacular technological per-
formance, remains a chimera.

6  Artificial neural networks

If those involved in the hot topics of artificial intelligence 
had taken semiotics into account (Paul Thagard 1986, is an 
exception), they would have realized that sign processes are 
a description of reality different in nature from abstract logi-
cal or mathematical operations. Staying within the knowl-
edge domain associated with the neuron, we have to account 
for the switch from the reticular model of the brain (the 
reticulum being tissue formed by fused nerve cells) to that 
of independent and autonomous units called neurons (identi-
fied by Santiago Ramón y Cajal 1899, but already described 
to some extent before him by Johannes Purkinje 1823, and 
Otto Friedrich Carl Dieters 1865). From Dieters’s drawings 
of motor neurons to Ramón y Cajal’s images, it becomes 
obvious that there are many types of neurons, that is, many 
cells not contiguous with other cells. The activity in the neu-
ron is also remarkably rich in details in terms of the physics 
and chemistry at work, in particular electricity, but also in 
respect to the variety of its behaviors that correspond to a 
continuously changing context. There is nothing “mechani-
cal,” there are no repetitive patterns. Moreover, it is not suf-
ficient to observe the neuron but ignore the glia (the connec-
tive matter). To an observer of neuronal activity, neurons 
seem to understand what is going on, as the eminent Gelfand 
noticed (Arshavsky 1991). Their behavior is affected by fac-
tors associated with their material embodiment, but also by 
other parameters, in particular, interactions. Electro-physi-
ological recordings, which of course disturb the dynamics 
of the measured neuron, indicate the presence of voltage-
gated ion channels on dendrites. Surprisingly, as proof of 
their autonomous identity, they evince action potentials back 
propagated from the body of the neuronal cell to the den-
drites. The mathematical neuron behaves in a deterministic 
manner. The living neuron displays non-deterministic behav-
ior corresponding to the extreme variability of the context. 
Additionally, there are the spine and the body, all integrated 
in the control of motoric expression. For the living, pattern 
recognition is not a reaction, but an action in a sequence that 
is existentially meaningful.

In a different context, Nadin (2016) brought up the empir-
ical observation that no two cells in the body are the same. 

Ergo: there are no identical neurons. Moreover, there is a 
continuous re-creation of each (a subject to which I shall 
return), at a scale exceeding that of Big Data.

The motor neuron (several feet long) extending from the 
base of the spine to the toe is definitely quite different from 
brain neurons (Fig. 6). Whether the number of neurons is 
120 billion or only 86 billion (the most recent estimate), 
the scale is such that the idea of replication, of numbers and 
variety, is not within our current abilities, and should not be 
a goal. Those who still attempt it should ask if it is the right 
target since it continuously changes. Synaptic activity mul-
tiplies this moving target by many orders of magnitude—
well into the trillions or even quadrillions! We are in the 
domain of the immense (Elsasser 1998, p. 96) where what 
makes a difference is meaning—better yet, the anticipatory 
action through which life is preserved. The fact that from 
the immense huge number of synapses few are meaningful 
in a given context only shows that semiotic interactions are 
quite different from data-driven processes.

6.1  Learning and adaptivity

The short overview given above suggests at least two epis-
temological questions:

1) What kind of knowledge is afforded by an abstract 
model, which by its nature is less rich than the real?

2) What kinds of generalizations from the abstracted reality 
(the artificial neuron with limited connectivity) to reality 
itself are legitimate?

Obviously, the questions entail the implicit understand-
ing of the distinction between the living and the non-living. 
The AI proponents of symbol processing were not wrong in 
assuming that language carries information about activities 
within which words are formed and their use is established. 
Leaving out everything else besides language was only a 
temporary limitation. In reality, they soon recognized that 

Fig. 6  Some neuron types—second level generality
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vision was also important—and it, too, became an AI spe-
cialization. What they missed was the understanding that 
causality within the living is richer than in the physical. 
Learning, in a variety of forms, takes place at each level of 
life. The outcome learning is the aggregated expression of 
adaptivity—this is the pragmatic level. The artificial (see 
question 1 above) accommodates a subset of intelligence, if 
ad absurdum self-awareness could be reached in non-living 
matter.

In his impressive Reflections on a Theory of Organisms, 
Elsasser (1987) gave a systematic description of the living 
that transcends that of Schrödinger (1951), with whom he 
worked. Atom and Organism (Elsasser 1966) goes even fur-
ther, accounting for the quantum mechanics views. He tries 
to understand the meaning of logical complexity to see if it 
opens a better chance of understanding the living. “Individu-
ality increases…as one rises on the evolutionary scale.” That 
would mean that individuality, as a measure of evolution-
ary progress, is probably a better explanation than Darwin-
ian adaptation. Elsasser makes it clear that “A concept of 
life outside or apart from a specific set of physico-chemical 
mechanisms is completely meaningless” (op. cit., p. 105).

7  Awareness and matter

The Hodgkin–Huxley model is fully adequate for describ-
ing the reaction component of the behavior of the living. It 
follows the McCulloch–Pitts model (actually the Rashevsky 
neurodynamics model of 1930, taken over by his students, 
probably with his blessing). It is also a blueprint for engi-
neering artificial products, such as hearing aids or any other 
technological substitute for lost vision, lost tactility, etc. The 
abstract model of the neuron (Figs. 4, 5)—and there are all 
kinds of variations to the McCulloch–Pitts representation 
(1943)—is no less effective in describing, broadly, what the 
authors termed as neuron activity, and which was actually 
its physics. No meaning attached, only quantities—data 

reaching the dendrites. Some aggregation (described as a 
summation of weighted values), and—voilà!—the output, 
maybe not the thought itself, but a component of it (Fig. 7).

Empirical evidence concerning the living, however, con-
vincingly shows that the living not only reacts, but acts in an 
anticipatory manner. Predatory behavior, reproduction, and 
the ability (not just of bees, ants, and humans) to plan and 
establish a propitious environment for survival are exam-
ples of anticipation in action. (I name these few since for 
years I have produced for everyone interested examples in 
abundance; Nadin 1999, 2010.) This is empirical evidence 
of anticipation in action in which the possible future affects 
choices and informs activities. In the works of the Soviet/
Russian early attempts at describing anticipatory processes5, 
we find research contributions to physiology, brain science, 
anatomy, and learning, for example, worthy of recognition 
(including a Nobel Prize that decades later confirmed Ber-
itashvili’s work on the anticipatory aspects of navigation6).

Based on these considerations, the following can be 
stated:

Thesis 2 Reactions in the living are congruent with reactions 
in the non-living, and follow the cause-and-effect sequence.

Thesis 3 Anticipation-informed action is the outcome of 
realizing the meaning of change.

F o r  e v e r y t h i n g  i n v o l v i n g  t h e  v e c t o r 
PAST→PRESENT→FUTURE, physics and chemistry, 
as pertinent to any form of the living, delivers exception-
ally well. For everything involving both directions, from 
PAST→FUTURE and PRESENT←POSSIBLE FUTURE, 
neither physics nor chemistry delivers. The reason for this 
is relatively clear: within the realm of the non-living, phys-
ics captures the form of physical law (the nomothetic), i.e., 
the repetitive nature of all processes of entangled matter 
and energy. In the realm of the living, creativity defines its 
dynamics. To avoid any confusion (and the seduction of 
unjustified speculation), to create means to make something 
possible that never existed before. No matter how similar 
something that is alive seems, it is “repetition without rep-
etition” (an expression to which I shall return), which in 
itself negates the assumption that every natural system is 
a mechanism. Self-preservation of life is the fundamental 

Fig. 7  Artificial Neural Networks model

5 International Conference, Anticipation – Learning from the past. 
Early Soviet/Russian contributions to a science of anticipation. Hanse 
Institute for Advanced Study, Delmenhorst, Germany, September 
1–3, 2014.
6 Nobel Prize for decoding brain’s sense of place. Discoverers of 
brain’s navigation system get physiology Nobel. See: http://www.
natur e.com/news/nobel -prize -for-decod ing-brain -s-sense -of-place 
-1.16093 .

http://www.nature.com/news/nobel-prize-for-decoding-brain-s-sense-of-place-1.16093
http://www.nature.com/news/nobel-prize-for-decoding-brain-s-sense-of-place-1.16093
http://www.nature.com/news/nobel-prize-for-decoding-brain-s-sense-of-place-1.16093
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characteristic of the living embodied in matter. As a self-
organizing system, the living maintains its own interlock-
ing of biological matter and energy through metabolism. 
Moreover, it maintains the integrity of its instantiation in a 
particular form of life (the individual animal, plant, insect, 
etc.) through self-repair, for which metabolism delivers mat-
ter and energy (Rosen 1972).

These aspects of life expression suggest that there is 
understanding at work, i.e., intelligence. The living is not 
a pre-programmed machine executing commands between 
inception/conception and death. That which is alive makes 
and remakes itself continuously—a process in which genet-
ics plays a major role (the DNA aspect). But learning (at 
least in what epigenetics has so far confirmed) plays prob-
ably a no less important role. Properties of living matter 
result from complementary processes (Fig. 8): bottom-up 
and top-down (Ellis 2009, 2012). The image suggests that 
to observe reality is at the same time: (a) to change it; (b) 
to be changed by it; (c) to affect change of the living matter 
(e.g., neuronal configurations, protein expression); (d) to be 
part of purposeful dynamic interaction.

7.1  Intelligence, creativity, anticipation

Biology-based considerations integrating semiotics are still 
absent from the work of those who address the possibil-
ity of artificial intelligence. Moreover, they are absent from 
the considerations of the proponents of computation and its 
expression as AI. The intelligence of the cell, as well as 
the intelligence of connected neurons, not to mention the 
intelligence of each organ, are aggregated in the anticipa-
tory action through which intelligence (but not only) is 

expressed. But neither those whom Dreyfus and Weizen-
baum addressed, nor those who felt attacked, and even less 
those who criticized them, were eager to invest in under-
standing what it takes to survive, and in which sense creativ-
ity is the expression of life.

Thesis 4 The never-ending change of any and all living enti-
ties entails creative processes.

Reproduction (sexual or asexual) is, from among a large 
variety of creative processes, the most prominent. Self-pres-
ervation guides variation and selection, from the cellular 
level to that of the species. It succeeds to the extent to which 
anticipatory processes lead to successful action.

The vitalist distinction between what is alive and what 
is not was compromised for good (for a recent discussion, 
see Noble and Noble 2017). Of course, when scientists of 
unquestionable performance (theoretical and experimental) 
frame their object of interest as intelligence in something 
other than the living, the label “artificial” entails epistemo-
logical consequences. They indirectly ascertain that there is 
something—the artificial—that is not of the same nature as 
the living. For example, Hotchkiss (1958, p. 129) believed 
that “Life is the repetitive production of ordered heteroge-
neity,” evidently missing the lack of repetitivity: “repetition 
without repetition” (Bernstein 1967)7. In the spirit of sci-
ence, the scholars of the artificial wonder what aspect of 
the living could be emulated outside the living in order to 
achieve what they described as intelligence. The creative, 
non-repetitive remaking of life? Heterogeneity? No stone 
is suspected of intelligence during its long existence in a 
shape from which it is possible to guess the future pebbles 
or grains of sand. It is also possible to calculate the energy 
needed for the “mill” of time—heat, humidity, pressure, 
wind, etc.—to grind the stone. However, the behavior of 
even the most insignificant living entity qualifying as intel-
ligent cannot be predicted. This places the description of 
intelligence discussed at the Dartmouth Conference (and 
since then in a never-ending series of conferences), or dis-
cussed by Dreyfus and Weizenbaum, in a different context. 
Learning, evinced in the way behavior is affected by experi-
ence, is probably the common denominator—if indeed the 
artificial can learn. In the absence of an effective distinc-
tion between reaction and anticipation, nothing else is really 
definitory in respect to intelligence. Nobody has suggested 
that AI should emulate survival, or ensure preservation of 
life (although in our days, some very visible proponents of 
intelligent technologies, such as Kurzweil, are becoming 
addicted to the hope of immortality, or at least an extended 
lifespan). Nevertheless, it is impossible to ignore a simple 

Fig. 8  From matter to mind activity and from the mind to the matter

7 Н.А. Бернштейн. Физиология движений и активность, 1990.
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empirical observation: Preservation of life is what defines 
the intelligence of the living. Furthermore, change in living 
matter is existential.

At Dartmouth, the subject was not a synthesized intel-
ligence mimicking the intelligence of the lifeless moon or 
some planet, or the intelligence of a stone. But if it were 
only the intelligence it takes to win a game (chess or any 
other), it missed the most important aspect: the creation of 
the game itself, as one of many instances in which human 
beings shape their own condition. The game of chess docu-
ments learning, the ability to represent and to make associa-
tions, the understanding of reward, the awareness of esthetic 
expression—and much more. This is yet another example in 
which the laws of physics and knowledge of chemistry leave 
the “Why?” (of the invention of the game of chess, and of 
playing it) question unanswered. The AI proponents had a 
broader view, transcending checkers and chess: Can we find 
an effective procedure for, let us say, diagnosing (disease 
or device malfunction), distinguishing between desired and 
less than desired outcomes of actions, between good and 
bad plans?

From an epistemological (and even logical) perspec-
tive, there is no need for intelligence in the lifeless. It is 
not intelligence that allowed computer programs for playing 
chess beat Dreyfus or Kasparov—IBM itself confirmed this. 
For an observer, the nature of interactions in the lifeless is 
describable in quantitative terms. As we know, such descrip-
tions underlie the experiment through which new explana-
tions can be tested. They also underlie engineering. The 
nature of interactions in the living is only partially described 
in quantitative expression. The necessary condition of life 
preservation constitutes the domain of the meaning. Semi-
otics, ascertaining endless interpretation (i.e., semiosis), is 
complementary to the quantitative. This was entirely missed 
in the disputes of by-gone decades, as it is even more absent 
in our days. That which is alive stays alive because it is 
capable of understanding; that is, it interprets.

8  G‑complexity revisited

IBM was honest: “Deep Blue relies more on computational 
power and a simpler search and evaluation function”8. Shan-
non (1950), yet another of the great minds present (though 
marginally) at Dartmouth, calculated the lower bound of 
the complicated game-tree of chess (estimated at  1043); oth-
ers (such as Allis 1994) calculated the upper bound. But 
after defeating (in 1989) an earlier IBM chess machine, 
Kasparov was more precise: “Chess gives us a chance to 

compare brute force with our abilities.” One hundred years 
of grandmaster games form a large body of knowledge that 
the chess program can rapidly access. Specialized hardware 
and sophisticated data processing are part of the very broad 
picture—again, both in the allowed operations and in the 
ultimate goal. It is neither so simple as to be trivial nor too 
difficult for satisfactory solution. There is no learning, there 
is no intelligence, even though the proponents of AI would 
have a tough time admitting it. IBM wants to sell technology, 
not theoretical assertions. What is and remains the focus is 
the machine and the associated “theology” it has propagated 
and perpetuates. Before addressing this aspect, one more 
remark: the word impossible to avoid in reading the volumes 
dedicated to AI (in support or critical of it) is complexity.

In previous publications, Nadin (2013, 2015, 2017a) 
argued that this concept loses its epistemological signifi-
cance when used arbitrarily. There is no complexity in the 
game of chess, as there is no intelligence in having an effec-
tive procedure (remember Hilbert?), or what has by now 
become an algorithm, defeat a human player, disadvantaged 
by a machine’s sheer number-crunching power. Gödel pro-
duced the proof that a certain formal system (going back 
to Hilbert) is not decidable; that is, it cannot be fully and 
consistently described. Chess is decidable; so is Go; and 
so are many of the newest targets of AI masquerading as 
machine learning (deep, deeper, etc.). Indeed, as I general-
ized from Gödel to what I call G-complexity (Nadin 2014) 
it became clear:

Thesis 5 The living is G-complex.

That is, it is not decidable, while the domain of physics—
from the simpler aspects of movement (change in position) 
to the more complicated, including the physics of measuring 
gravitational waves associated with the coming together of 
the universe, is decidable9. Within a unified system perspec-
tive, observables over states of the system form the starting 
point. Therefore, let us consider the phase space of physical 
or chemical processes and compare them to the phase space 
of living processes—a valuable suggestion from Giuseppe 
Longo (2013).

In the non-living, mapping from states to numbers cap-
tures the nature of change as quantitative, i.e., subject to 
measurement. In the living, mapping to numbers only par-
tially describes the nature of change, especially as a conse-
quence of the empirical fact (knowledge acquired through 
observation over a well-defined duration interval) that the 
observables making up the phase space continuously change. 

8 Does Deep Blue use artificial intelligence? https ://www.resea rch.
ibm.com/deepb lue/meet/html/d.3.3a.ht.

9 The 2017 Nobel Prize in Physics was awarded for decisive con-
tributions to the LIGO detector and the observation of gravitational 
waves.

https://www.research.ibm.com/deepblue/meet/html/d.3.3a.ht
https://www.research.ibm.com/deepblue/meet/html/d.3.3a.ht
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Therefore, to account for the dynamics of life, it becomes 
necessary to perform mappings from states to meaning (as 
the parameter of change) as it relates to the self-preservation 
of life. In practical terms, this suggests the need to generate 
sequences of maps (observables over the various parts of 
the continuum of life, such as early existence, childhood, 
maturity, etc.), and to examine, for each of the variables, 
their change, their relation to previous and possible future 
states. The number and variety of parameters describing the 
non-living is finite (no matter how numerous they can be). 
Interactions in lifeless matter and among non-living enti-
ties are described by the dynamics of action–reaction, i.e., 
deterministic causality (including, for instance, processes 
described in chaos theory, i.e., dynamic systems). Infer-
ences from parts—a sample from a stone, a liquid, or a gas, 
etc.—are possible and effective because interactions through 
which matter and energy are interlocked, are preserved (up 
to a certain scale). Variations (an expression of imperfect 
descriptions or measurements) average out. Of course, the 
finer the granularity of observations or measurements, the 
higher the possibility that what is measured might be noise, 
not the phenomenon as such. One thing is sure: the dynamics 
of lifeless matter is fully and most of the time consistently 
described through the variables relating the past to the pre-
sent. And one other thing is evident. There is no intelligence 
at work in the physico-chemical processes.

Intelligence emerges and resides in the living. It is 
a necessary characteristic of the living and cannot be 
detached from it. Given the action of self-preservation 
of life, the dynamics of the living cannot be described 

and explained without considering the possible future—
which, obviously, includes death. The number of variables 
describing the dynamics of the living is as open-ended as 
the possible-future-based choices it faces as it unfolds, 
in an individualized manner, over its viability interval. 
The interlocking of energy and matter in the living makes 
possible the simultaneous condition of sameness (in spe-
cies, in offspring) and difference, expressed as irreducible 
individuality, of which lifeless matter has none. Inferences 
from parts to whole, fully possible in the decidable (the 
physico-chemical) are misleading in the living. Interac-
tions through which living matter and energy are inter-
locked, are specific to every life level: cells, membranes, 
tissues, organism, etc. There is intelligence at each level 
because self-preservation of life implies awareness and 
the whole of life.

8.1  Playing god

Intelligence is not the outcome of a repeatable effective 
procedure, but rather an expression of adaptive behavior. 
Lifeless matter is homogenous; atoms, molecules, and 
aggregates are of the same nature. Life embodied in mat-
ter is heterogenous, from the cell level to tissues to organs, 
up to the organism. This heterogeneity is reflected in the 
undecidable expression of intelligence: never fully describ-
able, never consistent (the same action can be interpreted 
by an observer as intelligent or lacking intelligence).

Fig. 9  From tools extending 
physical abilities to machines—
inventions, not discoveries
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The various “cults” and “churches” of the theology of 
determinism morphed into the machine religion. From 
the “stable” of authors represented by agent-priests and 
publishers of newer and newer versions of the same issue 
forth headlines such as “We are in the Presence of a For-
midable Creature”10 associating artificial intelligence with 
the oriental mythical creature Djinn. In the absence of a 
better explanation of why intelligence is not the outcome 
of calculations only, the call for measuring more (“Shut 
up and measure”) without knowing why, sounds more like 
a religious commandment than a scientific principle. The 
theology of reductionism pushes the authority of the god 
it made up; not realizing that authority itself is a bound-
ary condition.

8.2  Extending human capabilities

The drive to extend human capabilities informs tool making 
(Fig. 9). For the longest segment of humankind’s history, the 
focus was on physical abilities. Hunting and gathering, as 
well as, later on, agriculture, benefited from augmenting the 
application of the force of muscles. Eventually manufacture 
(making things by hand), the trades, and industrial activities 
led to more tools, and even to the expectation of automat-
ing their use. That is how machines emerge and change the 
nature of work.

In the process of conceiving tools—an expression of 
intelligence, i.e., understanding and learning embodied in 
the tool—intelligence itself changes. Adaptive processes 
notwithstanding, the creative act of tool-making is consub-
stantial with the re-creation of the human being itself. Far 
from being passive embodiments, tools embody knowledge 
of oneself and of the pertinent activity. The making and use 
of tools trigger an open-ended cycle of adaptive processes. 
Individuals using a hammer, for instance, are physically and 
also mentally “enhanced,” that is, their intelligence changes. 
There is nothing exceptional in the observation that the 
human being might see in the tool more than what he or she 
contributed to it, more than an expression of human abili-
ties. Even in our days, one asks, “How come…?” (…a lever 
helps to move a heavy object or helps to lift it). The answer 
today is in the straightforward physics of the tool, and in 
the simple mathematics describing that physics. Together 
they make engineering possible. This answer, associated 
with actions and objects chosen, was derived inductively, 
one application after the other, not deductively, and even less 
axiomatically. The inductive nature of activities leading to 
tools, invented through trial and error, does not preclude the 

forming of explanations. But such explanations have nothing 
to do with the particular practical experience. As opposed 
to the tools and machines that are an extension of the indi-
vidual, the Turing machine is a construct disconnected from 
the experience.

The conception and making of tools is part of the human 
being’s self-constitution through what we do. In this self-
constitution, there are rational elements (choices made, 
tested, validated) and irrational elements: “The tool does 
it because….” (Here we can fill in anything we can think 
of, such as “I am a better person,” “I am lucky,” “There is 
some force out there that does it,” “The spirit moves it”). 
The limits of our knowledge are not in words or language. 
(Remember how the rush to capture the Higgs boson at 
CERN forced a huge explanatory effort because the Standard 
Model of particle physics did not have an appropriate lan-
guage for explaining it.) The limits of knowledge are in our 
activity—to which words and/or language often belong. The 
hypostatized tool—the CERN accelerator—is yet another 
instance of missing the connection between what we do and 
the outcome of our activity. There was no “God” particle 
to find—but only what scientists predicted—based on a 
given model of the physical world and the forces at work in 
this world. For many, including scientists of high repute, it 
appeared as though the tool was magical—just as humans 
have considered tools of all kind throughout their history. 
It seems that the quest for higher authority is not as much 
a symptom of the beginnings (of humankind facing reality 
while unable to understand it), but one of implicit limitations 
otherwise difficult to deal with. Machines emerge as the self-
constitution of the human beings enables and requires—for 
reasons of life self-preservation—higher efficiency. Tools 
“extended” arms and legs, and “made” muscles seem more 
powerful on account of energy spent by the person using 
them. When energy other than that of the human being, or 
of oxen or some other animals, is used to augment efficiency, 
the result is the machine (the engine) that does what one or 
several humans would have done, but with energy from out-
side (hydraulic seems to come first). If the tool as an exten-
sion of physical attributes was hypostatized, the machine, 
using the invisible energy of what moves it, “gives it life,” 
becomes one of the gods, and in the long term, the god of 
determinism.

The clock (behind which, in its pendulum embodiment, 
one identifies gravity) impressed upon Descartes (and others) 
reductionist views. The machine that humans made, the engi-
neered, has become the model for those who made it (like the 
gods of religion). One can imagine how more subtle machines, 
such as computers and artificial neurons, suggest associations 
that extend so far as to form religions and sects of the machine. 
The mechanical procedure that Hilbert challenged in regard 
to proving mathematical statements is by now a logical pro-
cedure. Not unlike the hypostatized machines of the past, it 

10 Reproduced on Edge.org a report from the Süddeutsche Zeitung, 
Oct. 13, 2017. https ://www.edge.org/conve rsati on/andri an_kreye -we-
are-in-the-prese nce-of-a-formi dable -creat ure.

https://www.edge.org/conversation/andrian_kreye-we-are-in-the-presence-of-a-formidable-creature
https://www.edge.org/conversation/andrian_kreye-we-are-in-the-presence-of-a-formidable-creature
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becomes (1) an explanation for how the human being operates; 
(2) in particular how the mind or brain (depending on which 
faction one upholds) operates; (3) the model of it.

“The brain is a computer,” has been stated in many ways 
by too many (with high Google scores) to be simply ignored. 
(This actually means that a subset of reality, i.e., the brain, is 
the outcome of computation.) In reality, the digital machine 
is a construct, an embodiment of a logic (Boolean) applied to 
a language with a vocabulary consisting of two letters. (Other 
types of machines might have a different structure.) This fact 
does not preclude the view that it is equivalent to a human 
being, but has even led (as we have seen) to the notion that 
reality is the outcome of a larger computation. McCarthy (in 
a text co-signed with Pat Hayes 1969, p. 5) went even fur-
ther in the direction of machine idolatry. “The physical world 
exists and already contains some intelligent machines called 
people.” Let’s repeat: “intelligent machines called people.” If 
so, why AI?

8.3  Why AI?

Indeed, Weizenbaum (1975, p. 71) stated that, “Since we 
can all learn to imitate universal Turing machines, we are by 
definition universal Turing machines ourselves.” He added, 
“That is, we are at least [sic!] universal Turing machines.” 
The constitution of a universal church based on faith in com-
putation, on algorithms in particular, is the result of ignoring 
the second part of Weizenbaum’s assertion: “…we are at least 
universal Turing machines.” By this he meant not the “physi-
cally embodied machines, whose ultimate goal is to transcend 
energy or deliver power,” but rather the “abstract machines that 
exist only as ideas” (which is the case of the Turing machine).

Of course, no one would question the accomplishments 
associated with computation. Practically, everyone in the 
world either uses computers or is affected by their ubiquitous 
presence. By now everything is either seen as an outcome of 
computation or will soon be computerized—or abandoned. 
Intelligence is only the most provocative aspect. That a 
decidable entity—the Turing machine—is equated with the 
undecidable brain, or for that matter with any other part of 
the living, is not only accepted on faith—indeed, there is no 
evidence for this—but also promulgated as the only accept-
able expression of science. Once again, the premise, i.e., 
the famous Hilbert challenge, is relegated to the drawer of 
insignificance.

9  The a‑Turing machine is only one 
among others possible

With the Turing machine, the real beginning of automated 
calculation was reached. Behind his theoretic machine lies 
the problem of the possibility of an automatic testing of 

mathematical statements. Hilbert’s formalist credo was that 
mechanical calculations were the basis for such testing. The 
meta-level of the enterprise is very relevant:

a) objects in the reality of existence → representations → 
acts upon representations → new knowledge inferred 
from representations

b) objects → numbers → counting → measurement → 
ideas about objects → ideas about ideas

Hilbert’s conjecture that mathematical theories from 
propositional calculus could be decided—Entscheidung 
is the German for decision, as in proven true-or-false—by 
logical methods performed automatically was rejected. This 
means: we cannot reduce pragmatics or semantics to syntax.

The consensus is clear: Turing provided the mathematical 
proof that machines—by necessity operating at the syntactic 
level—cannot do what mathematicians perform (the prag-
matic level) as a matter of routine, i.e., develop mathemati-
cal statements and validating them in reference to reality 
(semantic level). No less important is the insight into what 
machines can do, which we gain from Turing’s analysis. 
Recalling a conversation with Turing (in 1947), Wittgen-
stein wrote (1980): “‘Turing’s machines’: these machines 
are humans who calculate. And one might express what he 
says also in the form of games.” Turing (1948a, b) also gave 
a description: “A man provided with paper and pencil and 
rubber, and subject to strict discipline, is in effect a universal 
machine.” At a different juncture, he added: “disciplined 
but unintelligent” (1951). Gödel would add, “mind, in its 
use, is not static, but constantly developing” (1972). “Strict 
discipline” means: following instructions. Instructions are 
what the algorithm, the effective procedure, is. In contrast, 
intelligence at work often means shortcuts, new ways for 
performing an operation, even a possible wrong decision. 
Therefore, non-algorithmic means not subject to pre-defined 
rules, but rather discovered as the process advances, are part 
of intelligent performance.

Automatic machines (a-machines as Turing labeled them) 
can carry out any computation that is based on complete 
instructions. The machine’s behavior is pre-determined. 
It also depends on the time context: whatever can be fully 
described as a function of something else with a limited 
amount of representations (numbers, words, etc.) can be 
“measured,” i.e., completed on an algorithmic machine. 
The algorithm is the description (the “recipe”). With the 
a-machine, a new science is established: the knowledge 
domain of decidable descriptions of problems.

Turing knew better than his followers. In the same 
1951 paper, Turing suggested different kinds of compu-
tation (without providing details). Choice machines, i.e., 
c-machines, involve the action of an external operator. 
Even less defined is the o-machine (the oracle machine 
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advanced in 1939), which is endowed with the ability to 
query an external entity while executing its operations. 
The c-machine entrusts the human being with the ability 
to interact on-the-fly with a computation process (as, for 
example, in supervised learning neural networks). The 
o-machine is rather something like a knowledge base, a 
set subject to queries, and thus used to validate the com-
putation in progress. Turing insisted that the oracle is 
not a machine; therefore, the oracle’s dynamics is associ-
ated with sets. Through the c-machine and the o-machine, 
the reductionist a-machine is opened up. Interactions are 
made possible—some interactions with a living agent, 
others with a knowledge representation limited to its 
semantic dimension.

9.1  The other Turing machines

The theoretic construct known as the Turing machine—in 
its a-, c-, and o-embodiments—will eventually become 
a machine proper within the ambitious Automatic Com-
puting Engine (ACE) project. (In the USA, the ENIAC 
at the University of Pennsylvania and the IAS at Prince-
ton University are its equivalents.) “When any particular 
problem has to be handled, appropriate instructions…are 
stored in the memory…and the machine is ‘set up’ for 
carrying out the computation,” (Turing 1986). Further-
more, Turing diversifies the family of his machines with 
the n-machine, an unorganized machine (of two different 
types), leading to what is known today as neural networks 
computation (the B-type n-machines having a finite num-
ber of neurons).

Von Neumann (who contributed not only to the archi-
tecture of the Turing machine-based computer, but also 
to the neural networks processing of data) asserted that, 
“…everything that can be described with a finite number 
of words, could be represented using a neural network” 
(Siegelmann and Sontag 1991). This is part of the longer 
subject of the Turing completeness or recurrent neu-
ral nets. Coupled Turing machines, networks of Turing 
machines, oracles via quantum randomness, and infinite-
time Turing machines are extensions impossible to ignore 
because they are the outcome of new questions regarding 
the nature of computation. Let it be noted again that inter-
active computations are not reducible to Turing algorith-
mic processing. External input, through which interactiv-
ity is obtained, cannot be modeled by a Turing machine. 
Without going into details: the tape on the Turing machine 
is supposed to have all input available from the start. Inter-
activity undermines the fulfillment of this condition. Inter-
active computation opens up the possibility of semiotic 
grounding. Meaning becomes part of the computation 
through the process of interaction.

9.2  Intelligence vs. data processing

With this information in mind, ignored as much as semi-
otics was in the years preceding and following the Dart-
mouth Conference, we return to yet another ambiguity that 
marred the conversation about computers. Computers in 
the a-machine embodiment process data. Intelligence is 
different from data processing, even within the scope of 
what was described as physical symbol processing. The 
premise for intelligence is the understanding of what it 
takes to address a question leading to some action or to 
no action.

Thesis 6 Intelligence is the ability to formulate a meaning-
ful question.

Understanding conjures information. Data becomes infor-
mation once it is associated with meaning. Wheeler (1989) 
exemplified this in interpreting radioactive decay: the click 
on the Geiger counter makes sense if we reference it to the 
process it documents: the decaying atom (Davies 2004). 
This is an a-causal process. Under “participatory universe,” 
Wheeler understood the epistemological universe in which 
we do not just reflect what we encounter in the world, but 
we especially contribute meaning to the perception. Sub-
jects co-constitute what is, including their own being in the 
world. The sound of the heartbeat is another example. The 
sound as such can be captured as data (frequency, intensity, 
spectrum). More important is the question: What does it say? 
(What does it mean?) A machine listening to the heartbeat 
without referencing it to the cardiovascular reduces the pro-
cess to the physics of sound generation and propagation. A 
good cardiologist seeks the meaning.

In the absence of a semantic dimension, computation 
enlisted the heroic effort of ontology engineers, who “trans-
late” encyclopedias (like Britannica or Wikipedia) into the 
language of computers. This pseudo-semantic dimension 
(based on descriptions using first-order logic) still cannot 
supplant what semiotics would afford: the pragmatic dimen-
sion (Fig. 10).

Fig. 10  Syntax (formal aspects of representations), semantics (link 
between representation and the represented), pragmatics (sign inter-
pretation process through various activities involving representations)
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Intelligence, itself a human construct, an abstraction, 
is supposed to describe what is needed to attain a goal. 
Human performance is not the automatic consequence of 
the nomothetic, i.e., of the laws describing the dynamics of 
the world. Even the deployment of tools, never mind their 
invention, proves this. There is no intelligence at work in 
the fact that the living, and for that matter, the non-living 
fall down, not up. Gravity explains the direction of falling, 
and physics accounts for its details (the laws, i.e., the nomo-
thetic). However, there is intelligence at work, in implicit or 
explicit expression, in “falling the right way” that is, in such 
a manner as to prevent harm or minimize the consequences 
of falling. Intelligence does not change the laws of physics, 
but is conducive to discovering such laws and to informing a 
behavior corresponding to explicit or experiential awareness 
of physics. Learning is the process through which this takes 
place. Learning covers awareness of the nomothetic aspects 
of life, but also the ideographic aspects, i.e., the perception 
of uniqueness. There is creativity at work in human expres-
sion, regardless of whether it is the formulation of an idea or 
saving seeds, nailing two planks together, or finding a new 
path towards a mountain peak.

There is more, much more to the dynamics of change than 
falling. The entire gamut of motion—how the living moves 
in the process of self-preservation of life—is part of the 
same awareness. So is awareness of chemistry; for instance, 
what can or should be eaten, inhaled, drunk, used for clean-
ing, or what should be avoided, or what is missing. This 
shorthand description of intelligence at work in the living 
documents the empirical observation that it is pragmatically 
driven. No experiment can prove it or test it. The historic 
record, similar to that of evolution, carries the meaning with 
it. The syntax of all the sequences through which actions are 
performed partially explains the outcomes: a wrong move 
and one gets hurt; a wrong substance in the food chain can 
undermine self-preservation of life. The semantic dimension 
adds to the understanding of choices: What does it mean to 
fall on ice or into water as it applies to motoric expression, 
or to other choices in the physico-chemical realm? The prag-
matics integrates all levels.

10  Timing vs clocking

Definitory is the Why? question, the goal for whose attain-
ment all living resources are deployed. Intelligence is evi-
dent after, not before. It is not a tool box. The intelligence of 
the living is purposeful, or better yet, goal-driven. Pseudo-
semantics made available through contorted ontology engi-
neering facilitates the “understanding” of speech by comput-
ers, i.e., the fast referencing from a word (e.g., egg or dog) 
used in a conversation to the encyclopedia. The “understand-
ing” of images, or of sounds (via machine learning) is also 

facilitated through digital definition (e.g., “This is a stone, 
not a…”). The premise of intelligence is the understand-
ing of means (the “is” situation) and purpose (the possible 
future). Intelligence is implicit in the process: the grip on the 
hammer (which even Merleau-Ponty was aware of) or on the 
handle of the cup of water is anticipatory. But the outcome 
is by no means monotonic: the same activity might be suc-
cessful—lifting a full cup without spilling—or not.

The program at the Dartmouth Conference—and its con-
tinuation in a variety of meetings, publications, experiments, 
etc.—missed the necessary condition of intelligence, which 
is the understanding of what is to be achieved and of the 
means required. If AI had been formulated as “Automation 
of tasks associated with intelligence,” no one could have 
objected to it. It was not intended as deception. I do not 
question the integrity of those involved, but rather their 
premises. Everyone present believed that intelligence can 
be obtained in the non-living artificial. They did not under-
stand that:

1) Nobody is born intelligent.
2) Everyone achieves intelligence in the process of self-

constitution through what one does.

I am not prepared to dispute the machines’ outcomes, 
and even less to set limits (what they can or cannot achieve). 
Nevertheless, it escapes my understanding why the confron-
tation was focused on performance—automate the playing of 
checkers (Schaeffer et al. 2007), for instance—and not really 
on intelligence as an expression of the creative nature of all 
life processes. The renewal of cells in the body, at various 
rhythms, within the time span of life is probably the most 
powerful example of living intelligence resulting in creativ-
ity. The outcome is the self-preservation of life, pragmati-
cally expressed through performance in any and all activi-
ties, including the invention and playing of chess, checkers, 
Go, or any other game. But I prefer to take another exam-
ple here, because it brings into the discussion the notion of 
rhythm, and thus that of duration and time, impossible to 
ignore when posing questions regarding intelligence.

Bernstein (1967) provided empirical evidence regarding 
the co-variation of the elements engaged in human motion. 
The neuromotor system consists of more elements than 
what a machine would require to execute the same opera-
tion. Moreover, these components seem to have a different 
rhythm in their activity, almost as though different clocks 
are at work. Yet, consistency across tasks is accomplished. 
The interaction among joints, digits, muscles, sensory units, 
etc. suggests a very interesting configuration: centralized 
(with the brain as center) and decentralized coordination, 
hierarchical and non-hierarchical modes in which local 
intelligence—i.e., understanding and central intelligence 
are interrelated. A moment of force in a joint crossed by 
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several muscles is reached through many possible configu-
rations. There is a state variability and there are many tra-
jectories leading to what was described as “bliss of motor 
abundance” (Latash 2012). Concretely, changes are unique 
expressions, best described by what Bernstein called “repeti-
tion without repetition.” It is clearly different from the rep-
etition cycles defining the physical (from the astrophysical 
to the microlevel). You need one duration machine, i.e., the 
clock, to account for strict repetition and to predict events 
within the repetitive patterns of physics: the next eclipse, 
the behavior of rockets in outer space, the breakdown of 
a bridge or an engine. You need means different from the 
clock to describe variable rhythms in the living. Duration 
as “a number of change” (arithmos kineseos) in respect to 
the before and after (the proteion and the husteron, as Aris-
totle formulated it) is pertinent to movement, which is, of 
course, a form of change. Nevertheless, duration is estab-
lished after the change, not normatively (as in the function-
ing of a machine) before. Duration of similar movements 
is variable on account of the integrated nature of the living 
(holistic entity). Quantitative descriptions of non-living mat-
ter dynamics (rate of change) are appropriate because the 
non-living physical clock is of the same nature as the change 
it helps characterize. This is not the case with the living. All 
that such a clock could help describe is the sequence of dura-
tions pertinent to the physical aspect of any form of exist-
ence. The clock, pertinent to physical phenomena, returns, at 
best, a record of duration. Probably rhythm would be a more 
appropriate way to describe timing in the unfolding of life.

The “clocks that are not clocks” in the living have vari-
able rhythms: matter is influenced by the mind. Time flies 
when we’re having fun; time freezes when we are tormented.

11  Intelligence is possible 
only over the threshold of G‑complexity

To seek intelligence that can readily play chess, navigate, 
diagnose (disease or even some mechanical or electrical 
system malfunction), learn math or a language is to set a 
static target, and declare success on having reached the 
desired goal: winning a game, reaching a destination (i.e., 
engineering such as in GPS-based navigation), arriving at a 
correct diagnosis, etc. The mechanistic view of intelligence 
assumes well-defined targets. The navigation system guides 
the driver (or an autonomous vehicle) towards the identi-
fied destination. Open-ended choices: How do I get a nice 
view of the Eiffel Tower? Or: What about the bridge that 
just got washed away by a storm or some other event not 
present in the database? Checking the best database of skin 
conditions can be helpful in diagnosing a skin condition. But 
what about new skin conditions, associated with behaviors 
impossible to index because they pertain more to possible 

futures than to the statistics of what already happened? The 
thermostat, discussed at the Dartmouth Conference, unin-
telligently automates temperature control. However, ther-
moregulation in the living requires a different understanding. 
Thermal receptors in the skin and throughout the body are 
distributed; neuronal activity also extends throughout the 
entire person. There is, of course, central coordination (via 
the central nervous system), but not to the extent of getting 
the same temperature in the whole body—some body parts 
are “kept” cooler than others. Shivering triggers warmth. 
Sweating increases heat dissipation. Intelligence is at work 
at each level of the organism, whether in the thermo-regula-
tion or in any other form of self-control. The target changes; 
intelligence provides means for adaptive behavior.

We have here examples of the concrete instantiation of 
what G-complexity ascertains: There is a threshold between 
the living and the non-living above which intelligence is 
manifest, and below which it is impossible (or can be mim-
icked, at best). To rely on the laws of physics, or on the 
model of forces that would explain everything within a uni-
fied field of physics, is epistemological suicide. No wonder 
Swift made fun of those considering the machine that might 
write books on philosophy, poetry, politics, laws, mathemat-
ics, and theology (Peirce 1887a, b). Without pursuing the 
distinction here, we make reference to the almost universally 
accepted mechanistic view of homeostasis—projecting a 
machine understanding of how the organism works (Can-
non 1932, 1945)—and the anticipatory view of allostasis 
(Sterling and Eyer 1988), involving feed-forward processes. 
Allostasis captures the dynamics of possible future events 
ahead of their real influence as they become actual. Even 
when you declare that some part of the organism (e.g., 
the brain) is a machine (a computer), or that the organism 
behaves like a machine (homeostasis), the living does not 
miraculously change its undecidable condition only to align 
with the religion that inspired the reductionist view. The tor-
tured logic of deterministic theology cannot “turn water into 
wine.” The living remains undecidable; anticipatory action, 
couched in complexity, is definitory.

11.1  “Inherent impotencies”

On this note, we can revisit the machine view as such. What 
Peirce defined as the “two inherent impotencies” of every 
machine not only deserves to be recalled, but also given our 
attention:

In the first place, it is destitute of all originality, of all ini-
tiative. It cannot find its own problems; it cannot feed itself. 
It cannot direct itself between different possible procedures. 
[...] In the second place: it has been contrived to do a certain 
thing, and it can do nothing else. (Peirce 1887a, b).

First an observation of principle: The matter-energy inter-
locking, as pertinent to a fundamental law of physics and 
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chemistry, makes us aware of the fact that everything expe-
rienced in culture is at the same time what it is (a book, an 
idea, a machine, a game) and the historic record, i.e., what 
it took to make it, to become what we experience. It took 
matter and energy, of course, but it also took interactions 
through which the living manifests itself as self-preserving 
its life.

What does this mean? We will not be able to replicate any 
characteristic of the living, not even its reactive component, 
without spending the energy and engaging the interlocked 
matter that made it possible in the first place. Surrogates do 
not come cost free. To make something out of nothing, and 
to make it quasi-instantaneous—although it took a long time 
to become what it is—qualifies as magic—which almost all 
religions lay claim to. We shall see why not only a knee or 
hip replacement (within the spare-parts medical notion of 
the human as a machine) is energy expensive and inten-
sive, but even in “playing” checkers or chess, the automation 
comes at a high cost.

Machine learning discovered this through trial and error. 
Speech recognition, into which ontology engineering and 
neural networks converge, has behind it training on many 
years of data. Plus: this data were also transcribed—at a 
huge, but unavoidable cost. What is missing before we can 
employ the label “intelligent” is the realization that for the 
living, “We know more than what we learned” (Nadin 2003), 
and even Polanyi’s (1966) thought, “We know more than we 
can tell,” are indicative of life itself as learning, not a func-
tion added. That is, there is implicit knowledge at play in 
the living, coming from interactions, but not available in the 
artificial (where interaction is physical per Newton’s laws). 
To assume that what we know came exclusively from outside 
the knowing subject—as is the case with any machine—
leads to explanations that cannot exclude the magical. A 
great deal of living knowledge is generated from inside, 
because the living, as the state of being alive (process, not 
outcome), integrates the individual with the world. Cogni-
tive activity aggregates data from all others parts of the liv-
ing subject and facilitates associations.

In articulating these thoughts, I am aware of how AI, 
as physical symbol processing, and its negation through 
machine learning, evolved. Of course, AI practitioners of 
the symbolic processing initial steps are by now resigned 
to the thought that their honorable work has not captured 
intelligence, even though the automation of tasks associated 
with intelligence is convincing.

This realization seems to escape the thinking behind the 
newest developments in connectionism. The tenor of the day 
is that what happens in deep and deeper learning is diffi-
cult to explain, but is nevertheless intelligent (more or less 
because we say so). We have voice recognition (of good 
performance; the margin of error is close to that of human 
performance in a context of noise), image recognition; we 

have vision systems of robust performance; there are fraud 
detection applications working as a matter of routine (in 
insurance claim evaluations and diagnostic systems). One 
application leads to another: you identify images either by 
having them labeled by people playing, over the Internet, 
some game designed to engage as many as possible in the 
exercise, or by training networks to recognize them. Others 
use the knowledge associated with labeling images—e.g., 
stop sign, work of art, X-ray, scribble—for making new 
images. The same holds true for sound, video, writing—for 
anything. It is almost like what the ignition engine made 
possible: cars: tractors, airplanes, and so much more. But 
while nobody has claimed that the ignition engine works like 
the motoric system in the living, almost everyone involved in 
neural networks posit that they try to emulate how neurons 
in the brain work when recognizing a face, finding some-
one in a crowd, hearing a conversation in a noisy room of 
many conversations, discovering styles of painting or music 
composition, automatically generating trailers for new mov-
ies, etc.. Such claims go further: learning of learning, or 
even a network designing itself for some challenging tasks 
(mentioned earlier in this text), never mind “neural nets for 
generating music”11.

11.2  That is not how the brain works

Recurrent neural networks (RNN), with or without convolu-
tional layers, detect “sentiment” (which for Amazon reviews 
means positive or negative assessments) the way “a brain 
would do.” Radford, Jozefowicz, and Sutzkever (2017) give 
away the extent to which such artificial neural networks use 
pattern recognition for generative purposes. Images can be 
generated on the fly; so can sentences be classified (to sup-
port lawyers trying to match arguments to articles of the 
law). “Remembering” (retrieval, after all) is the desired 
function of neural networks associated with the so-called 
“differentiable memory.” The Turing machine translated 
into neural networks (Graves et al. 2014) further increases 
performance for specific applications, as usually explained 
in relation to how the brain works.

Just for a starter: No, that is not how the brain works. 
The open-ended variety of neurons, not to say the continu-
ous remaking and the ever-changing map of connections, 
the integrated nature of all processes—involving the entire 
body—are only indicative of how the living unfolds. Shallow 
descriptions of synapses, serving as arguments for claiming 
“The Unreasonable Effectiveness of Recurrent Neural Net-
works” (Karpathy 2015) at best make us aware of the nature 
of the undecidable nature of cognitive processes. Big Data 

11 Kyle McDonald gives many examples. See http://www.kylem 
cdona ld.net/.

http://www.kylemcdonald.net/
http://www.kylemcdonald.net/
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(from monitoring the body and the brain) and very powerful 
resources of algorithmic computation are at work in artificial 
processes to emulate how the human functions, but deliver-
ing at most comparable performance devoid of meaning. In 
the living, the data are scarce. Actually, it is always infor-
mation, i.e., data associated with meaning, which is totally 
absent from neural networks (Graves et al. 2016). Living 
processes are not known for their speed, but rather for a 
rhythm congruent with life.

A good review of deep learning (LeCun et al. 2015) of 
less than 3 years ago is already dated. arXiv, a digital plat-
form meant to be a repository, turns descriptions of hun-
dreds of new attempts in deep learning into a cascade of 
breakthroughs, neither peer-reviewed nor sufficiently clear in 
their claims. As of the writing of this study, Hinton himself, 
terribly suspicious of all kinds of claims, returned to his 
capsule networks (Sabour et al. 2017) as an alternative to 
the multilayered networks. This in itself is an invitation to a 
closer look at the entire development in question.

12  A wager in the age of deep learning 
euphoria

AlphaGo Zero (Silver et al. 2017) gave writers the chance to 
run away with the trophy: “The AI that has nothing to learn 
from humans” is the headline (Chan 2017). The memora-
ble “When will AI exceed human performance? Evidence 
from AI Experts” (Grace et al. 2017) opened the fireworks 
spectacle. Previously, Google’s Deep Mind team—the new 
celebrities of our time of stardom inflation—did not mind 
writing about superhuman performance. In Marvel comics, 
this makes sense; in Nietsche’s Übermensch12)), it marked 
the death of God—but not a replacement by neural networks. 
Still, except for a sense of proportion, there is nothing to 
object over hyperbole reflecting the age in which everybody 
runs faster and faster after the prize (or is it price?). Setting 
the reporting aside (or simply letting the dust settle), we 
remain with two open questions:

1. Is reinforcement learning “without human data, guid-
ance or domain knowledge beyond the game rules” 
really AI?

2. Can this neuronal network that “improves the strength 
of the tree research” crack the protein folding problem 
(specifically identified as the next target on which accu-
mulated experience will be used)?

12.1  The price of mimicking

AI, in its so-called symbolic implementation (propositional 
knowledge driven) is as artificial as artificial gets, but it is 
not, even by those who conceived it, intelligence. Stockfish 
8 (software developed to play chess) and AlphaZero (deep-
learning based chess playing) confronted each other. The 
better deterministic machine behaved in the way that the 
mathematics of dynamic systems predicts: initial conditions 
determine the outcome to a large extent. Applied to chess, 
this means: white (which always moves first) wins most of 
the time. AlphaZero won 50% of the games when it played 
white. It is evident that playing chess was successfully auto-
mated. Like all automated performance, it is of many orders 
of magnitude higher than the performance of live players. 
Just as anecdotal evidence: the highest-ranking poker players 
lost big to Libratus in a 20-day tournament of no-limit Texas 
Hold ‘Em. But this is not an expression of intelligence. The 
challenge is, could deep learning reverse the result? Could 
it reach the non-deterministic condition of living players?

The seductive goal of achieving intelligence in something 
other than the living is quite different from automating tasks 
usually associated with intelligent actions. The automated 
playing of checkers, with its roughly 500 billion possible 
positions (Schaeffer et al. 2007), or of chess (several times 
larger space of permutations, which Shannon described quite 
well) did not involve any intelligence, but rather brute force 
computation and the appropriate mathematics of reinforced 
learning. That Go, with yet an even larger possible space 
of choices, posed more challenges is obvious. However, 
AlphaGo, the winning neuronal net over some of the game’s 
champions, as well as AlphaGo Zero, playing against itself 
and discovering, unassisted (unsupervised learning) how to 
play, make us aware of what distinguishes automation from 
intelligence. One is the domain of data processing. AlphaGo, 
like Big Blue, picked up patterns from games played previ-
ously by masters. AlphaGo Zero was only exposed to what 
Go is. In the first case, the inductive aspect dominated—not 
unlike pattern recognition of speech, images, sounds, etc. 
In the second, deductive and abductive inferences contrib-
uted to the success. The program played millions of games 
against itself. This is how a huge amount of data was gen-
erated, and eventually the previous AlphaGo was defeated 
(100 games to 0)13.

The statement that there was nothing to learn from 
humans ignores that intelligence, informed by cultural 

12 Friedrich Nietsche, Thus Spoke Zarathustra: A Book for All and 
None, composed in four parts between 1883 and 1885 and published 
between 1883 and 1891.

13 For the record: the no-data starting point has been attempted 
before. Indeed, the “self-learning evolutionary chess program” 
(Fogel 2004) and the subsequent steps (2005, 2006) in the direction 
of a “New Philosophy of Machine Intelligence” (Fogel 1995, 2006) 
deserve at least some reference. The evaluation function is at the core 
of evolutionary computation.
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interactions, is embodied in the game itself. Its rules encode 
knowledge. AlphaGo Zero did not invent a new game, and 
even less a new language of interactions that generalize over 
cultural or social existence. The novel reinforcement of pat-
terns (which the authors call “learning,” in the tradition 
of machine learning mathematics) algorithm is ingenious, 
associating probabilities to each move and selecting better 
choices via a Monte Carlo Tree Search (MCTS). This is 
reinforcement, but different in nature from that accumulated 
over the history of people played Go. The narrative—full 
sequence of moves—is the expression of successful syntax. 
But when living subjects play the game, they enter the space 
of story-making, not with the purpose of winning the lottery 
of large numbers, but rather of reshaping themselves in the 
experience. With enough computing power, each lottery can 
be won. But lotteries are only games of chance, not meaning-
ful stories. Each real game tells a new story. There is origi-
nality at play, not at winning the lottery, as an expression of 
the uniqueness of each player. Winning the lottery is never 
an original (or creative) act.

12.1.1  The game and the story

The success of Go automation brought back history: the 
“blood vomiting game” of almost 200 years ago, when the 
reigning champion—of a Japan different from today’s—
faced a younger opponent. He lost his life in the extended 
context of the confrontation. The anecdotal importance is 
significant for the cultural dimension of any game, from the 
hide-and-go-seek of our childhood to the new digital games 
competitions followed by tens of millions. Neural networks 
based applications can beat any computer game, and even 
the metagames (betting on the outcome or other aspects). 
This clear-cut outcome is only proof of their determinis-
tic prowess. Imagine championships of competing neural 
networks watched by neural networks and adjudicated by 
yet other networks. Borges must be laughing in his grave: 
the map literally replaced the territory. Within this world 
of competing neural networks, there is no need for human 
experience. But the story is the experience of the journey. 
Its meaning is the difference between who we were when we 
first stepped on the path towards the mountain peak, and who 
we are after we reached it (or even after we gave up trying to 
reach it). We are our questions. So far, no computer-based 
application, AI or deep learning, ever formulated a question 
(never mind a meaningful questions).

Automation of the game produces winning narrations, 
but never a story. There is no intelligence in the timeline 
of any event. Time series are not expressions of intelli-
gence, but testimony to action–reaction and the duration—
not the time—involved. Stories are expressions of shared 
intelligence. What succeeds is the meaning, which has no 

correspondent in any of the sophisticated operations that 
take place in the neural network.

12.1.2  Target‑driven

As a matter of fact, from the simplest to the most compli-
cated network, independent of the techniques used, we have 
here an example of a deterministic teleological (i.e., driven 
by the target, the desired outcome) convergence machine. 
The wedge, the lever, the pulley, and the hammer are as 
intelligent as any neural network, regardless of the number 
of layers or of the mathematics (statistics, probability theory, 
recursion, etc.); likewise, the internal combustion engine. 
The intelligence is that of the humans who made them, who 
learned from their use, who perfected them, and who were 
changed by the experience. No network is self-perfecting, 
from its own resources. None is creative, but can be used 
creatively. The Otto cycle14 in the combustion engine is 
like a neuronal network: it maximizes the net work (no pun 
intended) that the engine produces (Fig. 11).

This is the engineering target—less complicated than 
distinguishing from among millions of images, or words, 
or any other data. The mixture of air and vaporized com-
bustible substance is contained in a cylinder that has a 
piston at one end. You compress the mixture adiabatically, 
a spark ignites it, the pressure increases rapidly, the piston 
is pushed outwards causing expansion, and the work is 
performed. The equations express the equipartition theo-
rem. The result is clear: an equation describing how the 
compression ratio (the pressure leading to ignition vs. the 

Fig. 11  Convergence engineering is of the same nature regardless of 
the medium for calculation

14 http://web.mit.edu/16.unifi ed/www/FALL/therm odyna mics/notes /
node2 6.html.

http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node26.html
http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node26.html
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pressure of expansion after ignition) affects the efficiency. 
The engine designers do curve fitting.

Let us summarize what happens in a network (Many 
details are left out, but not ignored). An artificial neural 
network (ANN) with hidden layers could be trained in a 
variety of ways. Imagine building an ignition engine and 
determining the geometry of the cylinder, the piston, the 
optimal moment for getting the electrical spark, etc. In the 
absence of the physics underlying the engine’s function-
ing, you attach weights to your choices: longer, shorter, 
etc. Actually, an ANN could even be used to optimize the 
functioning of such an engine. What in deep learning is 
called back propagation is only comparing the desired 
output (minimum of compression ratio) and the actual 
output. What propagates is the error—better yet, the lack 
of knowledge at the beginning, when you seek in the dark-
ness of hunches.

The input values are weighted (something like important, 
not so important, marginally important, etc.). Lets say

Given that the expected output is generated under the 
given selection of a parameter p (length of cylinder, or what-
ever) according to the weight (w) attached to it, we end up 
with

In real life, engineers worked on the engine by adjust-
ing the weight associated with a parameter. In an ANN, 
the adjustment reflects the mathematics of convergence: A 
sequence Sn of numbers (which means data in the interval 0 
to n) is qualified as convergent if it tends to limit S:

if for any ∈ > 0, there is a number N such that ⎜Sn − S < Σ 
for m > N.

There is convergence in any and every algorithmic 
endeavor; the effective procedure that Hilbert challenged 
is actually represented by the convergence of the derived 
result (in his case, the desired but actually impossible proof 
of mathematical statements). This can be any repetitive 
structure, or, as we have seen, any decidable entity, i.e., that 
can be fully and consistently described. Feedforward units 
(frequently convolutional nets) and recurrent networks (with 
memory components such as LSTM) (Greff et al. 2016) exe-
cute the mathematics of long sequences of inferences. The 
number of steps depends on the number of hidden layers in 
feedforward procedures, and the duration within which a 
recurrent net recognizes a pattern (process usually described 
as remembering, although no remembering can take place 
since no membering is possible).

(1)error = function (expected vs. actual output).

(2)error = (desired output − −expected output).

(3)error = (desired output − −�.�).

lim Sn
n→∞

= S,

There are also attempts to mimic the living, in the sense 
that the matter-energy interlocking (mentioned previously 
in respect to maintenance of unity in diversity) is pursued 
via energy-base models: attach a score to each possible con-
figuration of the variables. Factor graphs (which are non-
probabilistic models) have led to what is called “structured 
prediction.” (An early attempt is Bell Labs “Graph Trans-
former Networks,” eventually used in reading bank checks 
and other documents.)

But I do not want to write the history (and pre-history) 
of deep learning. Much more in this domain is to come. 
We are prepared to be amazed. What will not change is the 
reality that machine learning with a well-defined target (as 
complicated as one chooses) and immense datasets (remem-
ber, immense in Elsasser’s understanding in describing it) 
is quite different from how the living operates. The oft-
repeated sentence (almost a credo) is that “We learn from 
the brain how to get better in deep learning.” For the sake 
of clarity: the theology of the machine is based on circular 
thinking and the associated misrepresentations. For any-
one with a modicum of knowledge regarding the brain, it 
is evident that this is not how the brain, or better yet, the 
integrated organism (of the human being or any other being) 
works. One (and only one) recent discovery: as the brain and 
its extension through the entire body is formed, it already 
gets involved in the making of the organism. Developmental 
processes are the expression of the aggregate living entity. 
Birth defects, such as abnormal muscle development (Levin 
et al. 2017), are an integrated expression of the way all parts 
of the organism come together. Communication channels 
from the brain to the body structure are essential to self-
repair processes.

12.1.3  Back to neural networks

There are no two identical neurons. There are no two identi-
cal synapses. Moreover, they are in continuous remaking, 
some more often, some only once or a few times. The map of 
their ever-changing map of connections is different in nature 
from the connections among ANN. The integrated nature 
of all processes—involving, as just pointed out, the entire 
organism—stands in no relation to the shallow description in 
the deep learning maps. A weighted sum of ANN inputs and 
the involvement of activation function is, of course, a good 
mathematical tool for describing phenomena of the same 
nature as those taking place in the artificial network. Error 
propagation (how one ANN-derived functioning affects the 
others) is a powerful method that relies on robust mathemat-
ics. Calculating the gradient in connection to the network 
weights and following the gradient in the back propagation 
are also convincing techniques.

Nevertheless, in the living, targets are continuously 
changing, and, more important, the data on which the 



238 AI & SOCIETY (2019) 34:215–242

1 3

living relies are minimal most of the time. Actually, the 
living operates on information, again, data associated with 
meaning. The rather high consumption of energy to achieve 
what the living performs naturally, with limited resources, 
is indicative of the illusions of deep learning as the new 
frontier of AI.

Various neural network aficionados have taken note of 
the fact that AlphaGo (in the Fan and Lee configurations) 
were distributed over 176 GPUs and 48 TPUs, respectively. 
AlphaGo Zero and AlphaGo Master run on a single machine 
with 4 TPU. TPU stands for the Tensor Processing Unit 
developed by Google. One remark: “It took about 30 + days 
of wallclock to train. That’s about 110 megawatt hours 
(MWh) worth of energy required.”15 That translates into 
over 500 years of a person learning how to play Go. Having 
been affirmed that the energy balance reflects the law of 
conservation, it is not surprising that what took centuries to 
become a culturally shared language (that of the game) takes 
a huge amount of energy to be mimicked! Moreover, these 
are not reproducible experiments. First, because the energy 
required has its high price; second, because the secrets of 
the engineering (the setting of parameters) are protected.

12.1.4  Understanding is not optional

AlphaGo Zero, or whatever follows along the line of deter-
ministic algorithmic computation (whether in deep learn-
ing configuration or any other form), might break many 
records, or might open all kinds of new avenues. Some men-
tion sparse coding: a kind of standard technique similar to 
dynamic programming. Others have their eyes on proof pro-
cedures, in the sense that interconnections (characteristic of 
complicated phenomena conjuring complicated mathemati-
cal descriptions or others) and networking seem congenial.

The major players in the world economy (Google, IBM, 
Apple, Intel, GM, Samsung, Nvidia, etc.) have acquired deep 
learning start-ups, often without really knowing why. Those 
active in the field are not disillusioned characters. From aca-
demia or from research facilities, they exercise a great deal 
of influence (including access to public and private funding), 
but also warn about misunderstandings. François Chollet put 
it quite bluntly: “Current supervised perception and rein-
forcement learning algorithms require lots of data, are ter-
rible at planning, and are only doing straightforward pattern 
recognition” (Yao 2017). The contrast is to human beings, 
able to “learn from very few examples, can do very long-
term planning, and are capable of forming abstract models 

of a situation….” Spoiled by the qualifier “father of deep 
learning” (I’m sure he would give credit at least to Rumel-
hart), Hinton points to evolution in describing “features that 
are early in a sensory pathway”16—an idea that Bernstein 
documented decades back, in the early stages of anticipa-
tion (Nadin 2015), and which Fogel applied (as mentioned 
above). Against this background of realistic self-assessment 
appear various so-called contributions that run against the 
elementary understanding of how ANN and their varia-
tions—probabilistic PNN, time-delay TDNN, convolutional 
CNN (even better, ConvNet), recurrent RNN, Hopfield net-
work, and Boltzmann machine, self-organizing map SOM, 
long short-term memory LSTM, and others—actually work. 
The initial claims, suggestive of what happens in the living, 
deserve at most an ironic “of course,” since biological con-
nections and mathematically inspired artifacts share more in 
the label than in anything else.

The syntactic condition (which undermined symbolic AI) 
is, by the nature of the processes triggered, impossible to 
transcend. There is no semantic (at most the pseudo-seman-
tics delivered by ontology engineers), and there is no prag-
matics. Does it really matter if such a device understands 
why a vehicle has to stop at the red traffic light?

The so-called idiot-savant (a term relabeled as autistic 
savant) is like some of the most impressive networks. For 
example, they “memorize telephone directories, they know 
exactly how many matches fell from the box, etc. These are 
precise operations performed without any of idea of mean-
ing, and even less of how (“I saw how many cards are in the 
deck”)”. Every amazing performance of an idiot-savant that 
we are aware of can be accomplished in the ANN domain. 
But there is no intelligence to it. Rather, once we analyze 
it, after the event, we find that lack of intelligence char-
acterizes the unusual (even phenomenal) performance. In 
reference to a totally different domain: you can get the most 
attractive reproductions of impressionist paintings (and 
other artworks) in Dafen, China, where the largest mass pro-
ducer—60% of the global volume—of knock-off canvases is 
located. There is no difference between the syntactic level at 
which copies of paintings by van Gogh, Monet, Picasso, etc. 
are produced and the manner in which neural networks do 
the same. Do they understand what they do, in the manner 
in which those who created the copied images understood 
them? Is there any creativity to be identified in the effort?

This question can be repeated ad nauseam in respect to 
many other activities often labeled “intelligent.” To qualify 
as intelligent, an action has to be performed within an under-
standing of what it means. Otherwise, it is an automated 
procedure for what intelligent entities would perform—or 
maybe not—given a context as large as the culture, social 15 Hacker News: Google supercharges machine learning tasks with 

TPU custom chip (googleblg.com), https ://news.ycomb inato r.com/
item?id=11724 763. See also: The relationship between clockspeed 
and power consumption is nonlinear, https ://elect ronic s.stack excha 
nge.com/quest ions/12205 0/what-limit s-cpu-speed . 16 See http://opsbu g.com/deep-learn ing.

https://news.ycombinator.com/item?id=11724763
https://news.ycombinator.com/item?id=11724763
https://electronics.stackexchange.com/questions/122050/what-limits-cpu-speed
https://electronics.stackexchange.com/questions/122050/what-limits-cpu-speed
http://opsbug.com/deep-learning
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norms, political values, etc., in which it operates. When 
Lin, Tegmark, and Rolnick (2017) ask “Why does deep and 
cheap learning work so well?” they correctly point to its 
mathematics and physics. The probability that an image (of 
which each pixel can take 256 values) is a cat relates to 
the  2561,000,000 probabilities (an immense number, larger 
than that of atoms in the universe, ca.  1078). As the authors 
describe the process, the ANN “performs a combinatorial 
swindle”: exponentiation (at the power of one million!) is 
replaced by multiplication. The 256 values that each pixel 
can take no longer leads to νn (exponentiation), but to ν x n 
(multiplication). As already mentioned in the previous sec-
tion, the living works with rather few values, but they are 
significant. In the network, there is no way to assess signifi-
cance. An infant recognizes a cat in the pragmatic space, 
not by searching endlessly in the mathematical domain of 
syntactic possibilities.

Thesis 7 Neural networks are closed to meaning.

With this in mind, the rather audacious target of address-
ing (point 2 in the prior section) based on the impressive 
Learn-Go-By-Yourself deep learning implementation 
appears questionable under the light of adequacy, more 
than under the light of performance—no matter how energy 
intensive.

12.2  12.4 Decidable vs. undecidable

Thesis 8 If artificial neural networks, in whichever configu-
ration, could be used to explain (never mind anticipate) pro-
tein folding, so could any deterministic device, such as the 
ignition engine or the hammer (both already mentioned).

This statement is open to many interpretations, including 
the understanding that neural networks, as deterministic 
instantiations of data processing at the syntactic level, are 
not capable of describing protein folding as an anticipation-
driven process (no repetition of any kind!).

It is at this juncture that the G-complexity perspective 
(Nadin 2013, 2014, 2017a) again begs for attention. Gödel’s 
fundamental distinction between the decidable and the unde-
cidable generalized to reality provides the criterion for defin-
ing the living, embodied in matter, in contradistinction to 
the non-living. Physics provides effective tools and methods 
for nomothetically describing the non-living. This includes, 
of course, cause-and-effect causality, eventually challenged 
within a quantum mechanics view. Distinctions grounded 
in the realization of stochastic processes allowed for refine-
ments that will continue to be made. The non-living can be 
fully and consistently described. Maybe the qualifiers “fully” 
and even “consistently” are a bit too sharp, but it is beyond 
question that the non-living is decidable—even if at quantum 

level, or at large scale interstellar dynamics, more distinc-
tions would prove necessary.

The living is undecidable. Causality in the living does 
not exclude the deterministic aspect of the non-living, but 
rather complements it. Where the non-living is the realm of 
action–reaction, the living is defined by anticipation: action 
driven by a possible future (sometimes called retrocausa-
tion, Werbos 2008). The reductionist–deterministic view of 
non-living matter was confirmed, over centuries of experi-
ment: either as thought-experiments (Gedankenexperimente) 
or in the setting of measurements that translate the decidable 
into numbers subject to confirmation through replication.

Protein folding is among the living processes through 
which life is defined. The unfolding of the stem cell is 
another example. They are anticipatory in the sense that 
no folding is a repeat, as no act of creation via the stem 
cell results in any identical outcome. This is yet another 
instantiation, empirically proven, for even a longer time 
than any experiment pertinent to the non-living, of “repeti-
tion without repetition” characteristic of the undecidable. 
G-complexity defines life. A repeat statement: Anticipation 
is couched in G-complexity. The threshold—the decidable 
vs. the undecidable—is, like everything else in reality, prob-
ably less clear-cut than we might wish (used as we are by 
now to the universe of zero and one, or Yes and No). But it 
is effective to the extent that computation embodied in the 
non-living is decidable—and this includes the infinite loop 
problem. Computation in the living is undecidable.

That IARPA, in its misleading call for research of what 
they define as Anticipatory Intelligence does not understand 
the meaning of anticipation is probably amusing. I answered 
my colleague, who congratulated me for IARPA’s catching 
up: “Thank heaven, they are not. The distance is increasing. 
Why would I wish to have the intelligence community trail-
ing me?” Well, they do, but that is a different story. That 
AlphaGo Zero engineers even consider unlocking the secrets 
of protein folding is, however, epistemologically aggravat-
ing. It is like proving that Earth is flat against all evidence 
to the contrary. Their convergence machine is pretty good. I 
feel happy to be proven right that neural networks are con-
vergence machines. From among all those practitioners in 
the field with whom I have shared my definition, two felt that 
there was something to it. Hinton wrote to me, “Neural nets 
converge to a state that locally minimizes the error.” Patrick 
Eklund also wrote (September 23, 2017) “The sequence of 
parameter values converges through iteration. Optimization 
is a convergence (but convergence is not always optimiza-
tion).” Well, protein folding is the opposite of convergence; 
it is infinite divergence, there is no repetition of any fold.

Acknowledgements instead of any conclusion This study was in pro-
gress when in the summer of 2017 Karamjit Gill announced a memorial 
issue dedicated to Hubert Dreyfus’s legacy. It is the outcome of almost 
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30 years of work in computation—writing programs, testing ideas, 
carrying out experiments—and of no less intense dedication to under-
standing how computation has changed us. During this long prepara-
tion, I experienced Dreyfus’s prosopagnosia three times. Indeed, he 
could not recognize me (as he had the same problems with others). My 
enthusiasm for computation made him often lose patience. He wanted 
to write a review of The Civilization of Illiteracy, but in the end could 
not find time for it. Weizenbaum imparted to me many insights into 
academic life: you can have a chair at MIT, but if you do not bring in 
the money, there was no electricity in the room where the chair was 
located. In Hamburg (Mediale 1998) and later in Berlin (2004), we 
disagreed as only Talmudic scholars would—mainly because Weizen-
baum and I were into debunking the rapidly growing mythology of the 
“mother of all machines.” Some of the thoughts in my text go back to 
conversations with both of them. As I was finishing yet another review 
of this text, the news reached me: a Weizenbaum Institute (for the 
networked world) was funded in Berlin. Guilt (the Nazis decimated his 
family in Germany) and a “slap in the face” of America for the recogni-
tion it did not give Weizenbaum combine in the establishment of an 
institution that will have to live up to his provocative thinking. Other 
conversations—with McCarthy and Minsky—a short exchange with 
Simon, and another with Pat Hayes are also reflected in the text. Over 
many years, Lotfi Zadeh listened patiently to my arguments and shared 
some of his own with me, challenging me with his examples. Also 
over many years, Pamela McCorduck and Terry Winograd assisted, not 
always agreeing with what I had to say. After the preprint (https ://arxiv 
.org/ftp/arxiv /paper s/1712/1712.04306 .pdf) was published, I received 
feedback from Jaron Lanier, Soren Brier, Ilkka Tuomi, Michael Win-
kler and Jaime Cárdenas García, Maximilian Schich, Clarissa Sieck-
enius de Souza, and Frank Dufour. Dr. Eric Topol graciously read the 
paper and so did Pascal Honoré. It helped a lot. No, this study was 
not supported by any grant, except that of Elvira Nadin’s generous 
willingness to be the sounding board for ideas that would not qualify 
as middle of the road statements—and often coming up with her own 
insights. I remain responsible for all my inferences, faulty or otherwise. 
Several reviewers, some more competent than others, not only endorsed 
publication, but also expressed reserve. For this I am more grateful than 
for uncritical endorsement.
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