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Abstract It has been just over 100 years since the birth of

Alan Turing and more than 65 years since he published in

Mind his seminal paper, Computing Machinery and Intel-

ligence (Turing in Computing machinery and intelligence.

Oxford University Press, Oxford, 1950). In the Mind paper,

Turing asked a number of questions, including whether

computers could ever be said to have the power of

‘‘thinking’’ (‘‘I propose to consider the question, Can

computers think?’’ ...Alan Turing, Computing Machinery

and Intelligence, Mind, 1950). Turing also set up a number

of criteria—including his imitation game—under which a

human could judge whether a computer could be said to be

‘‘intelligent’’. Turing’s paper, as well as his important

mathematical and computational insights of the 1930s and

1940s led to his popular acclaim as the ‘‘Father of Artificial

Intelligence’’. In the years since his paper was published,

however, no computational system has fully satisfied Tur-

ing’s challenge. In this paper we focus on a different

question, ignored in, but inspired by Turing’s work: How

might the Artificial Intelligence practitioner implement

‘‘intelligence’’ on a computational device? Over the past

60 years, although the AI community has not produced a

general-purpose computational intelligence, it has con-

structed a large number of important artifacts, as well as

taken several philosophical stances able to shed light on the

nature and implementation of intelligence. This paper

contends that the construction of any human artifact

includes an implicit epistemic stance. In AI this stance is

found in commitments to particular knowledge represen-

tations and search strategies that lead to a product’s suc-

cesses as well as its limitations. Finally, we suggest that

computational and human intelligence are two different

natural kinds, in the philosophical sense, and elaborate on

this point in the conclusion.
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intelligence � Epistemic stance

1 Introduction: the imitation game

Turing proposed to answer the ‘‘Can computers think’’

question by introducing a gedanken experiment called the

imitation game (Epstein et al. 2008; Turing 1950). In the

imitation game a human, the ‘‘interrogator’’, asks questions

of two different entities, one a human and the other a

computer. The interrogator is isolated from the two

respondents so that he/she does not know whether the

human or computer is answering. Turing, in the language

of the 1940s, comments that ‘‘the ideal arrangement is to

have a teleprinter communicating between the two rooms’’,

ensuring the anonymity of the responses. The task of the

interrogator is to determine whether he/she is communi-

cating with the computer or the human at any time during

the question answering session. If the interrogator is unable

to determine, on average, whether the human or the

machine is responding to questions, Turing contends that

the computer has to be seen as ‘‘thinking’’, or, more

directly, to possess intelligence.

The historical timing of Turing’s paper is very instruc-

tive. It appeared before computers were challenged to

understand natural human languages, play expert level
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chess, recognize visual scenes, or control robots in deep

space. Turing (1936), Church (1936) and Post (1943) had

already formally specified what it meant to compute, and

had by that time hypothesized limits on what was com-

putable. This sufficient model for any computation is often

called the Church/Turing hypothesis (Turing 1936). How-

ever, the radio-tube-based-behemoths of Turing’s time

were used mainly to work out the trajectories of ordnance

and to break complex ciphers. It is important to realize

then—given the very limited nature of actual tasks

addressed at that time by computers—that the most

important result of Turing’s imitation game was to chal-

lenge humans to consider whether or not thinking and

intelligence are uniquely human skills. The task of Turing’s

imitation game was an important attempt to separate the

attributed skills of ‘‘thinking’’ and ‘‘intelligence’’ from

their human embodiment.

Of course, no informed critic would contend that elec-

tronic computers, at least as presently configured, are

universally intelligent—they simply do a large number of

specific but complex tasks—delivering medical recom-

mendations, guiding surgeries, playing chess or backgam-

mon, learning relationships in large quantities of data, and

so on—as well as, and often much better than, their human

counterparts performing these same tasks. In these limited

situations, computers have passed Turing’s test. Face-

tiously, with the power and scope of current computation, it

could also be said that humans have failed Turing’s test for

machine-based intelligence.

It is interesting to note, also, that many in the research

community are still trying to play/win this challenge of

building a general purpose intelligence that can pass the

Turing test in any area where a human might challenge it.

This can be seen as useful, of course, for it requires the

computer and program designer to address the more com-

plete and complex notion of building a general-purpose

intelligence. Perhaps the program closest to achieving this

goal is IBM’s Watson, the winner of the Jeopardy televi-

sion challenge of February 2011, see Wikipedia Watson

Computer (Ferrucci 2012). Commercially available pro-

grams addressing the quest for general intelligence include

web chat bots, such as Apple’s Siri. The Turing challenge

remains an annual event, and the interested reader may

visit Wikipedia at Turing Test Loebner Prize, for details.

In fact, the AI community often uses forms of the imi-

tation game to test whether their programs are ready for

actual use. When the computer scientists and medical

faculty at Stanford were ready to deploy their MYCIN

program they tested it against a set of outside medical

experts skilled in the diagnosis of meningitis infections

(Buchanan and Shortliffe 1984). The results of this analysis

were very interesting, not just because, in the double-blind

evaluation, the MYCIN program out performed the human

experts, but also because of the lack of a general consen-

sus—only about 70 % agreement—on how the human

experts themselves would treat these patients. Besides

evaluating many deployed expert systems, a form of Tur-

ing’s test is often used for testing AI-based video games,

chess and backgammon programs, computers that under-

stand human languages, and various forms of web agents

(Sowa 1984).

The failure, however, of computers to succeed at the

task of creating a general-purpose thinking machine begins

to shed some understanding on the ‘‘failures’’ of the imi-

tation game itself. Specifically, the imitation game (and

Turing’s paper) offer little hint of a definition of intelligent

activity nor do they offer specifications for building intel-

ligent artifacts. Some critics contend that Turing chose to

avoid trying to offer a specific definition of intelligence

(Epstein et al. 2008). Deeper issues remain that Turing did

not address: What IS intelligence? What IS grounding or

how may a human’s or a computer’s statements be said to

have ‘‘meaning’’? Finally, can humans understand their

own intelligence in a manner sufficient to formalize or

replicate aspects of it on a computer?

Perhaps the greatest contribution of artificial intelligence

(and, in general, of computation) to the study of knowledge

and human cognitive processing is to cash-out Ryle’s

‘‘ghost in the machine’’ (Ryle 2002). Artificially intelligent

artifacts offer a direct challenge to mind/body dualism.

Many (mostly rationalist) philosophers, including Des-

cartes, Leibnitz and Spinoza contend that a non-material

substance, e.g., Descartes’ res cogitans (Descartes 1996/

1680), is required (is necessary) to support human intel-

lection. Computation has demonstrated an alternative: The

mind/brain is a processor, composed of billions of sub-

processors, and the resulting product, whether thought,

feeling, or action, is an artifact of this processing. It follows

that the human mental world can be grounded in a physical

embodiment, can generate an infinite range of emotions

and actions with a finite instruction set, and that the mind

itself is a complex system composed of many interacting

components (Minsky 1986).

It remains the fact, however, that designing and building

a program for a computer is a human intellectual activity,

and requires sufficient answers to questions such as: How

can I represent for the computer entities and processes

occurring in this natural world? How do I understand and

represent complex interacting processes? How can I mea-

sure success within the sub-constraints of a complex task?

How do I capture teleology or goal-directed behavior? All

these questions entail an implicit epistemic stance.

This paper considers these issues, especially the

responses to the challenge of building intelligent artifacts

that the artificial intelligence community has taken since

Turing. In the next section we give a brief overview of
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several AI programs built over the past 60 years to be

‘‘intelligent’’ problem solvers. We see, often apart from the

practical stance of the program’s original designers, many

of the earliest approaches to AI as having an a priori bias

towards the empiricist or rationalist or pragmatist traditions

for understanding an external world. In the third section we

present a constructivist rapprochement that addresses many

of the epistemic assumptions of early AI work. Finally, we

offer some preliminary conjectures about how a Bayesian

model might be epistemologically plausible.

2 AI programs as adventures in rationalism,
empiricism, and pragmatism

The study of epistemology considers how the human agent

knows itself and its world, and, in particular, whether this

agent/world interaction can be considered as a topic for

scientific study. The empiricist, rationalist, and pragmatist

traditions have offered their differing answers to this

question and artificial intelligence researchers have made

these approaches concrete with their programs. We are not

suggesting that individual AI program designers ARE

rationalists, empiricists, or pragmatists, rather that their

approaches to problem solving can be understood from

these various perspectives. It is only natural that a disci-

pline that as its focus engages in the design and building of

artifacts that are intended to capture intelligent activity

would intersect with philosophy and psychology, and in

particular, with epistemology. We describe this intersection

of disciplines in due course, but first we look at these

philosophical traditions themselves.

Rationalism may be described as that philosophical

position where, in the acquisition and justification of

knowledge, there is a bias toward utilization of unaided

reason over sense experience (Blackburn 2008). Clear and

distinct ideas become a reality in themselves, and the sine

qua non of mathematics and science. Perhaps the most

influential rationalist philosophers after Plato were Leib-

nitz, Spinoza, and Descartes, central figures in the devel-

opment of modern concepts of the origins of thought and

theories of mind. Descartes attempted to find a basis for

understanding himself and the world purely through

introspection and reflection. Descartes (1996/1680) sys-

tematically rejected the validity of the input of his senses

and even questioned whether his perception of the physical

world was ‘‘trustworthy’’. Descartes was left with only the

‘‘reality’’ of thought: the reality of his own physical exis-

tence could be reestablished only after making his funda-

mental assumption: ‘‘Cogito ergo sum’’. Establishing his

own existence as a thinking entity, Descartes inferred the

existence of a God as an essential creator and sustainer.

Finally, the reality of the physical universe was the

necessary creation and its comprehension was enabled

through a veridical trust in this benign God.

Descartes’ powers of abstraction and emphasis of clear

and distinct ideas (the same powers that produced his

mind/body dualism) offered excellent support for his cre-

ation of mathematical systems including analytic geome-

try, where mathematical relationships could provide the

constraints for characterizing the physical world. It was a

natural next step for Newton to describe Kepler’s laws of

planetary motion in the language of elliptical relationships

of distances and masses. Descartes’ clear and distinct ideas

themselves became a sine qua non for understanding and

describing ‘‘the real’’. His physical (res extensa) non-

physical (res cogitans) dualism supports the body/soul or

mind/matter biases of much of our own modern life, lit-

erature, and religion (How else might we interpret the spirit

is willing but the flesh is weak).

The origins of many of the rationalists’ ideas, especially

the primacy of abstraction, can be traced back at least to

Plato (Blackburn 2008). The epistemology of Plato sup-

posed that as humans experience life through space and

time we gradually come to understand the pure forms of

real life separated from material constraints. In his phi-

losophy of reincarnation, the human soul is made to forget

its knowledge of truth and perfect forms when reborn into a

new existence. As life progresses, the human, through

experience, gradually comes to ‘‘remember’’ the forms of

the disembodied life: learning is remembering. In his cave

experience, in book seven of The Republic, Plato intro-

duces his reader to these pure forms, the perfect sphere,

beauty, and truth.

Mind/body dualism is a very attractive exercise in

abstraction, especially for agents confined to a physical

embodiment and limited by senses that can mislead, con-

fuse, and even fail. This same rationalist power of

abstraction is also at the core of computation. How else can

sets of symbols or patterns of a process represent ‘‘some-

thing else’’, whether the trajectory of ordnance or patterns

of human speech? Rationalism’s embodiment entering the

AI-age can be found in the early twentieth century analytic

philosophers, the symbol-based AI practitioner (Simon

1981), and especially in the works of the linguist (Chomsky

1957). It provides a natural starting point for work in AI as

we see subsequently.

Empiricism may be described as that philosophical

position that links all knowledge to experience. It often

takes the form of denying that there is any a priori

knowledge, or any knowledge necessary truths, or any

innate knowledge supporting general principles (Blackburn

2008). Aristotle was arguably one of the first proponents of

the empiricist tradition, although his philosophy also con-

tained the ideas of ‘‘form’’ and the ability to ‘‘abstract’’

from a purely material existence. However, Aristotle
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rejected Plato’s doctrine of transcendent forms, noting that

the act of abstraction does not entail an independent exis-

tence for the abstraction. For Aristotle the most important

aspect of nature is change. In his Physics, he defines his

‘‘philosophy of nature’’ as the ‘‘study of things that

change’’. He distinguishes the matter from the form of

things: a sculpture might be ‘‘understood’’ as the material

bronze taking on the form of a specific human. Change

occurs when the bronze takes on another form. This mat-

ter/form distinction also supports the computer scientists’

notions of symbolic computing and data generalization,

where sets of symbols can represent entities in a world and

abstract relations and algorithms describe how these enti-

ties can share common characteristics, as well as be sys-

tematically altered. Abstracting form from a particular

material existence supports computation, the manipulation

of abstractions, as well as theories for data structures and

languages as symbol-based representations.

In the world of the enlightenment, the empiricist tradi-

tion of Locke, the early Berkeley, and Hume, distrusting

the abstractions of the rational agent, remind us that

nothing comes into the mind or to understanding except by

passing through the sense organs of the agent. On this view

the rationalist’s perfect sphere, or absolute truth, simply do

not exist. Locke suggests that the human at birth is tabula

rasa, a blank slate, where all language and human

‘‘meaning’’ is captured as conditioning across time and

experience. What the human agent ‘‘internalizes’’ are the

human-perceptible aspects of a physical existence; what it

‘‘knows’’ are loose associations of these physical stimuli.

The extremes of this tradition, expressed through the Scots

philosopher David Hume, include a denial of causality and

the ability to prove the existence of an all-powerful God.

There is an important distinction here, the foundation of an

agnostic/skeptic position: it is not that a God doesn’t/can’t

exist, it is rather that the human agent can’t know or prove

that He/She does exist.

The empiricist tradition was especially strong in the first

half of the twentieth century leading into the AI movement,

where its supporters included A. J. Ayer and Rudolph

Carnap, proponents of logical empiricism, who tried to fuse

empiricism with a logic-based rationalism, as well as the

behaviorist psychologist B. F. Skinner.

Pragmatism, as proposed by Peirce (1958) and James

(2002), suggests that the meaning of a doctrine is the same

as the practical effects of adopting it and contend that

beliefs are true if they work satisfactorily in the widest

sense of the word (Blackburn 2008). Whereas empiricism

and rationalism can be seen as self-based characterizations

of knowing, particularly as epistemology seems to be the

product of internalized thought experiments, pragmatism

asks what an action or stance will ‘‘effect’’ or ‘‘do’’ in a

specific world environment. In short, pragmatism asserts

meaning, as well as an ethical valence, to a word or action

as it is externalized in an active world

In Pragmatism (James 1981), James asserts that ‘‘27’’

may mean one dollar too few or equally a board one inch

too long. He asserts, ‘‘What shall we call a thing anyhow?

It seems quite arbitrary, for we carve out everything, just as

we carve out constellations, to suit our human purposes’’.

Further James claims ‘‘We break the flux of sensible reality

into things, then, at our will. We create the subjects of our

true as well as of our false propositions. We create our

predicates also. Many of the predicates of things express

only the relations of the things to us and to our feelings.

Such predicates, of course are human additions’’.

Pragmatism, then, purports to ground all thoughts,

words, and actions in their expected consequences. An

example of this epistemological stance, from James, in the

Varieties of Religious Experience (James 2002) is that the

truth, as well as any imputed value, of a particular religious

stance is what that stance does for an individual’s life, for

example, help deal with an addiction problem or encourage

the performance of charitable acts. This form of pragma-

tism allows little critique, however, as one person’s reli-

gious values can directly contradict those of others, for

instance with various ‘‘inquisitions’’ or ‘‘fundamentalist

actions’’ all justified in the name of some religion. An

important consequence of the pragmatist philosophy was

Dewey (1916), a colleague of James and Peirce, who had

an important impact on twentieth century education both in

the US and worldwide.

A computer program designer/builder makes specific

assumptions about his/her application domain, including:

What will a program’s variables represent? How will data

relationships be captured? What strategies will support

control algorithms? What is the relationship between the

‘‘perfect’’ and the ‘‘good enough’’ solution? These ques-

tions must be addressed in the program design and creation

through the selection of specific software tools, for exam-

ple, the explicit separation of domain knowledge/logic

from control algorithms, as is common in building expert

systems. These choices may be seen as a program builder’s

epistemic stance or inductive bias about an application

domain. Many modern artificial intelligence practitioners

have implicitly adopted empiricist, rationalist, and/or

pragmatist views of the world. We conclude this section

with several examples of each tradition.

From the rationalist perspective came the expert system

technology where knowledge was seen as a set of clear and

distinct relationships (expressed in if/then or condition/

action rules) encoded within a production system archi-

tecture that could then be used to compute decisions in

particular situations. In fact, these systems are often seen as

extremely brittle, for example when an application situa-

tion does not exactly fit the logic specification, and too
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often, the human user is expected to be the interpreter for

the interpreter.

Figure 1 offers a simplified example of the production

system approach, where a rule set—the content of the

production memory—is interpreted by the production

system. When the if component of the rule is matched by

the data in the working memory, the rule is said to ‘‘fire’’

and its conclusion then changes the content of the working

memory preparing it for the next iteration of the system.

The reader can observe that when the system is run in this

‘‘data-driven’’ mode it is equivalent to a modus ponens

interpreter of if/then rule relationships.

Interestingly enough, when the same production system

is run in goal-driven mode it can be seen as an abductive

(Peirce 1958) interpreter. In this situation the goals we wish

to solve—the explanations we want to prove ‘‘best’’—are

contained in the working memory and the production

system takes these goals and matches them to the conclu-

sions, the action or then components of the rules. When a

conclusion is matched the rule again ‘‘fires’’ and the system

puts the if pattern of the rule into the working memory to

serve as a subgoal for the next iteration of the system,

matching the conclusions of new rules. In this abductive

mode the system searches back through a sequence of

subgoals to see if it can make the case for the original

goal/explanation to be true. Abduction is an unsound form

of reasoning, so the abductive interpreter can be seen as

generating possible explanations for the data. In many

cases, some probabilistic or certainty factor measure is

included with each rule supporting the interpreter’s likeli-

hood of producing the ‘‘best’’ explanation.

In the work of Newell and Simon (1976) and Simon

(1981) this production system interpreter was taken a fur-

ther step towards cognitive plausibility. On the Newell and

Simon view, the production memory of the production

system was a characterization of the human long-term

memory and the if/then rules were seen to encode specific

components of human knowledge. On this approach,

human expertise for the practicing physician or the master

chess player, for example, was acknowledged to be about

50,000 such rules (Newell and Simon 1976). The working

memory of the production system was seen as the human’s

short-term memory, or as describing a ‘‘focus of attention’’

for what the human agent was considering at any specific

time (neuroscientists now localize this component of

human processing in Broadmann’s areas of pre-frontal

cortex). Thus the production system was proposed as a

cognitive architecture that took the current focus of the

agent and used that to ‘‘fire’’ specific components of

knowledge (rules) residing in long-term memory, which, in

turn, changed the agent’s focus of attention. Furthermore,

production system learning (Rosenbloom et al. 1993) was

seen as a set of procedures that could encode an agent’s

repeated experiences in a domain into new if/then rules in

long-term (production) memory. The production system is

often seen as an embodiment of Newell and Simon’s

physical symbol system hypothesis Newell and Simon

(1976) described in their 1976 Turing award lecture and

discussed further in the conclusion.

Early design of robot systems (Fikes and Nilsson 1971)

can also be seen as a rationalist exercise where the world is

described as a set of explicit constraints that are organized

as ‘‘states’’ with operators used to generate new states to

accomplish a particular task. ‘‘States’’ of the world are

represented as a set of predicate calculus descriptions and

then these are checked by a set of ‘‘move’’ rules that are

used to generate new states of the world, much as the

production system did in the previous example. Figure 2a

presents a start state and a goal state for a configuration of

blocks and a robot arm. These states are then changed by

applying ‘‘move’’ predicates, as can be seen in the state

space of Fig. 2b. Problems can happen, of course, when the

actual world situation is not represented precisely as the

logic specifications would suggest, e.g., when one block or

the robot arm accidentally moves another.

Several later approaches to the design of control systems

take a similar approach. When NASA designed a planning

system for controlling the combustion systems for deep

space vehicles, it expressed the constraints of the propul-

sion system as sets of propositional calculus formulae.

When the control system for the space vehicle detected any

anomaly it searched these constraints to determine what to

do next. This system, NASA’s Livingstone, proved very

successful for guiding the space flight in deep-space situ-

ations (Williams and Nayak 1996, 1997).

There are many other examples of this rationalist bias in

AI problem solvers. For example, case-based reasoning

uses a data base of collected and clearly specified problem

solving situations, much as a lawyer might look for earlier

Fig. 1 A production system; in the traditional data-driven mode, a

pattern in the working memory matches the condition of a rule in the

production memory. When this occurs, the action of that rule takes

place, producing new information for working memory and the

system continues to iterate towards a solution
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legal precedents, cases that can be modified and reused to

address new and related problems (Kolodner 1993).

A final example of the rationalist perspective is the

suggestion that various forms of logic in representation and

inference, can be sufficient for capturing intelligent

behavior (McCarthy 1968; McCarthy and Hayes 1969;

Kowalski 1979). Many interesting and powerful represen-

tations have come from this work including non-monotonic

logics, truth-maintenance systems, and assumptions of

minimal models or circumscription (McCarthy 1980, 1986;

Luger 2009).

From the empiricist view of AI there is the creation of

semantic networks, conceptual dependencies, and related

association-based representations. These structures, delib-

erately formed to capture the concept and knowledge

associations of the human agent, were then applied to the

tasks of understanding human language and interpreting

meaning in specific contexts. The original semantic net-

works were, in fact, taken from the results of psycholo-

gists’ (Collins and Quillian 1969) reaction-time

experiments. The goal was to design associative networks

for computer-based problem solvers that captured the

associative components of actual human memory. In their

reaction time experiments shown in Fig. 3, Collins and

Quillian (1969) hypothesized that the longer the human

subject took to respond to a query, for example, ‘‘Does a

bird have skin?’’, the further ‘‘apart’’ these concepts were

assumed to be in the human memory system. Closely

associated concepts would support more immediate

responses.

A number of early AI programs sought to capture this

associative representation, first Quillian (1967) himself,

with the creation and use of semantic networks. Wilks

(1972) basing his research on earlier work by Masterman

(1961) who defined around 100 primitive concept types,

also created semantic representations for the computer-

based understanding of human language. Schank and

Colby (1975) with their conceptual dependency represen-

tation, created a set of association-based primitives inten-

ded to support language-based meaning to be used for

(a)

(b)

Fig. 2 a The start and goal

states of a blocks-world

problem, and the set of

predicate descriptions for each

state and b presents part of the

state space search representing

the movement of the blocks to

attain a goal state. The move

procedure (stated as

preconditions, add, and delete

constraints on predicates) is one

of many possible predicates for

changing the current state of the

world. a Start = [handempty,

ontable(b), ontable(c), on(a,b),

clear(c), clear(a)]. Goal =

[handempty, ontable(a),

ontable(b), on(c,b), clear(a),

clear(c)]. b Move(pickup(X),

[handempty, clear(X), on(X,Y)],

[del(handempty), del(clear(X)),

del(on(X,Y)), add(clear(Y)),

add(holding(X))])

326 AI & Soc (2017) 32:321–338

123



computer understanding or translation. Finally, Sowa

(1984) created a conceptual graphs language whose

structures could be reduced to forms of first-order logic.

This approach allows a transduction of the earlier asso-

ciative network schemes to a more rationalist-based rep-

resentation (that can also support alternative interpretations

of semantic closeness).

From the empiricist perspective, neural networks and

‘‘deep’’ semantic networks were also designed to capture

associations in collected sets of data and then, once trained,

to interpret new related patterns in the world. For example,

the back-propagation algorithm in training phase takes a

number of related situations, perhaps surface patterns for

an automated welder or phone patterns of human speech,

and conditions a network until it achieves a high percent-

age of successful pattern recognition. Figure 4a presents a

typical neuron from a back-propagation system. The input

values for each neuron are multiplied by the (conditioned)

weights for that value and then summed to determine

whether the threshold for that neuron is reached. If the

threshold is reached the neuron fires, usually generating an

input signal for other neurons. The back-propagation

algorithm, Fig. 4b, differentially ‘‘punishes’’ those weights

responsible for incorrect decisions. Over the time of

training the appropriately configured and conditioned net-

work comes to ‘‘learn’’ the perceptual cues that solve a

task. And then the trained network can be used to solve

new related tasks.

Back-propagation networks are an example of super-

vised learning, where appropriate rewards and/or punish-

ments are used in the process of training a network. Other

network learning can be unsupervised where algorithms

classify input data into ‘‘clusters’’ either represented by a

prototype pattern or by some ‘‘closeness’’ measure. New

input patterns then enter into the basins of attraction

offered by the currently clustered patterns. In fact, many

successful families of networks have been created over the

Fig. 3 A semantic net ‘‘bird’’

hierarchy (left) that is created

from the reaction time data

(right) of human subjects

(Collins and Quillian 1969).

This figure is adapted from

Harmon and King (1985)

Fig. 4 a Presents a single artificial neuron whose input values,

multiplied by (trained) weights, produce a value, net. Usually using

some sigmoid function, f(net), produces an output value that may, in

turn, be an input for other neurons and b is a simple backpropagation

network where input values move forward through the nodes of the

network. During training the networks weights are differentially

‘‘punished’’ for incorrect responses to the input. Figures are adapted

from Luger (2009)
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years. There have also been many obvious—and scientifi-

cally useless—claims that neural connectivity (networks)

ARE the way humans performed these tasks, and therefore

appropriate representations for use in computer-based

pattern recognition.

In an interesting response to the earlier rationalist

planners for robotics described above, Brooks at the MIT

AI laboratory created what he called the ‘‘subsumption’’

architecture (Brooks 1989, 1991). The subsumption archi-

tecture was a layered collection of finite state machines

where each level of the solver was constrained by layers

below it. For example, a ‘‘wander’’ directive at one level of

the robot’s controller would be constrained by a lower level

that prevented the agent from ‘‘running into’’ other objects

during wandering.

The subsumption architecture is the ultimate knowl-

edge-free system in that there are no memory traces (states)

ever created that could reflect situations that the robot had

already learned through pattern association. Obviously

such a system, although sufficient to explore its local

environment, would not be able to find its way around a

complex environment, for example, the roadways and

alleys of a large city such as New York or Mumbai. Brooks

acknowledged the fact of a memory free solver, in entitling

his 1991 paper ‘‘Intelligence Without Representation’’

(Brooks 1991).

Other examples of representations with an empiricist

bias include artificial life and genetic algorithms. These

approaches, where information is usually encoded as bit-

strings and whose operators include mutation and crossover

(Luger 2009), may be characterized as association and

reward based solvers that are intended to capture survival

of the fittest. Their advocates often saw these approaches as

plausible models incorporating evolutionary pressures to

produce emergent phenomena, including the intelligent

behavior of an agent.

Interesting examples of the pragmatist epistemological

stance are programs meant to communicate with human

agents. In the simplest sense, these programs do question

answering, as for example, Apple’s Siri or IBM’s Watson.

In a more demanding environment, programs are able to

have a dialogue or a more complete conversation with a

human user. Typical examples of this task might be when a

user gets on-line to change a password or, more interest-

ingly, to get financial, insurance, or hardware trou-

bleshooting advice. In these situations the responding

program must have some notion of teleology, or the

implicit purpose of the conversation.

Chakrabarti (2014) and Chakrabarti and Luger (2014,

2015) has created such a system where probabilistic finite

state machines, Fig. 5, monitor whether the human agent’s

implied goal is met by the computational dialogue system.

Figure 5 depicts a finite state machine representing a

troubleshooting conversation, where the states are the

components of the conversation {Start, Greeting, Elicita-

tion, Troubleshooting, Fixed, Dissatisfaction, Conclusion},

and the transitions are speech acts and dialog acts {Ex-

pressive, Assertive, Declarative, Goal-Fulfillment} (Searle

Fig. 5 A probabilistic finite

state automaton for

conversations in the

‘‘troubleshooting’’ domain,

from Chakrabarti and Luger

(2015). Each state transition

contains a probability measure

specifying its likely use
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1969, 1975; Chakrabarti 2014; Chakrabarti and Luger

2015). Meanwhile, at each step in the communication, a

data structure, called a goal-fulfillment-map, Fig. 6, cap-

tures the knowledge necessary to answer particular ques-

tions (Chakrabarti 2014; Chakrabarti and Luger 2015).

This dialog management software demonstrates a

method for combining content semantics, in the form of

goal-fulfillment maps, within the pragmatic constraints of a

conversation. A good conversation depends on both a goal-

directed underlying process and a grounding in a set of

facts about a knowledge domain. Chakrabarti’s (2014,

2015) approach combines content semantics in the form of

a rationalist-type knowledge engine with pragmatic

semantics in the form a conversation engine to generate

artificial conversations.

The knowledge engine employs specifically designed

goal-fulfillment maps that encode the background knowl-

edge needed to drive the conversations. The conversation

engine uses probabilistic finite state machines that model

the different types of conversations. Interestingly, Chak-

rabarti (2014) and Chakrabarti and Luger (2015) used a

form of the Turing test to validate the quality, using Grice’s

maxims (1975), of the dialogue management software.

Transcripts of computer generated conversations and

human-to-human dialogues in the same domain were

judged as roughly (approximately 86 %) equivalent, with

the computational dialogue significantly (p\:05) more

focused on the task or goal of the conversation.

To this point in Sect. 2 we have focused, from an

epistemic perspective, on a number of artificial intelligence

representational schemes and their related search strategies.

A number of critics of traditional AI, including Brooks

(1989), Dreyfus (1979, 2002), Merleau-Ponty (1962) and

Clark (2008) suggest that human skilled behavior does not

require use of such explicit mental representations and/or

focused search. Brooks’ robot (seen earlier in this section)

finds its way in the world by actively exploring that world.

Similarly, Dreyfus (2002), taking examples from the

acquisition of expertise in playing chess and driving,

describes how, over time, skills become more fluid and

spontaneous responses to game and road situations,

replacing explicit search algorithms applied to complex

static representations.

Merleau-Ponty (1962) describes an ‘‘intentional arc’’

where a human does not simply receive input passively

from an external world and then processes it. Rather, the

active agent is set to respond to the requirements of things,

as a world affording, based on past experiences, certain

actions. On this viewpoint, the best representation of the

world is suggested to be the world itself. Clark (2008)

makes similar conjectures of an external world that offers

‘‘scaffolding’’ to support intelligent action: The mind

Fig. 6 A goal-fulfillment map

that supports discussion of a

financial transaction, from

Chakrabarti and Luger (2015)
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moves into the organisms’ environment. Clark’s example is

of a human using paper and pencil or a calculator to do

complex arithmetic: an external world supports and enables

this intellectual activity.

Stochastic models, and in particular dynamic Bayesian

networks (DBN), can offer architectures that address these

epistemic concerns of Brooks, Dreyfus et al. In particular,

Bayes’ theorem supports the active interpretation of envi-

ronmental cues based of past experiences while the DBN

supports acquisition of new information over time. With

the analysis of a helicopter’s rotor system, research sup-

ported by the US Navy, we have the ability to interpret

dangerous situations while not supported by any explicit

knowledge base of the situation (Chakrabarti et al. 2005).

This is the story of the next section.

3 Modern AI: probabilistic models

Although the probabilistic approach to problem solving

became popular in the late 1980s and early 1990s, its roots

go back to the Reverend Thomas Bayes in the mid-eigh-

teenth century (Bayes 1763). Early work in probabilistic

computer-based problem solving included optical character

recognition in the late 1950s and other work at IBM, Bell

Laboratories and Carnegie Mellon University. Researchers

at Stanford used Bayesian technology in the 1970s in the

Prospector program’s algorithms for discovering minerals.

But it wasn’t until the 1990s that probabilistic methods

became generally accepted, mostly through the use of

statistical methods for language understanding, the

research of Pearl (1988, 2000) and the successes of

Bayesian Belief Networks, an important simplification of

the complexity issues required of traditional Bayesian

technology.

As we present next, the Bayes formula expresses a

relationship between newly acquired data (the posterior)

and what the problem-solving agent has already seen or

experienced (the prior). This algorithmic relationship

between the prior and posterior has much intuition sup-

porting it, for example, the ability to understand new lan-

guage utterances is in a large part due to previous

experience, knowledge, and use of that language. Using the

terminology of modern philosophy, linguistics, and psy-

chology, we call this learning activity ‘‘constructivist’’.

Constructivism may be described VandenBos (2007)

‘‘as the theoretical perspective, central to the work of

Piaget (1954, 1970), that people actively build their per-

ception of the world and interpret actions and events that

surround them in terms of what they already know’’. It

follows that a person’s present state of knowledge has a

major influence on how and what new information is

acquired. Unlike empiricism, constructivism is appropriate

for producing generalizations (the diameter of a glass is

related to its volume) but is more often used to produce

most likely responses, given data (glass A holds more

water than glass B).

Bayes’ theorem (1763) offers a plausible model of this

constructivist world-view. It is also an important modeling

tool for much of modern AI, including AI programs for

natural language understanding, robotics, and machine

learning. Consider the general form of Bayes’ relationship

used to determine the probability of a particular hypothesis,

hi, given a set of evidence E:

pðhi jEÞ ¼
pðE j hiÞ � pðhiÞPn

k¼1ðpðE j hkÞ � pðhkÞÞ

where pðhi jEÞ is the probability that a particular hypoth-

esis, hi, is true, given evidence E; pðhiÞ is the probability

that hi is true overall, i.e., how likely hi is to occur; pðE j hiÞ
is the probability of observing evidence E when hypothesis

hi is true; n is the number of possible hypotheses.

By Bayes’ formula, the probability of an hypothesis

being true, given a set of evidence, is equal the probability

that the evidence is true given the hypothesis times the

probability that the hypothesis occurs. This number is

divided by, or normalized by, the probability of the evi-

dence itself. The probability of the evidence occurring is

seen as the sum over all hypotheses presenting the evidence

times the probability of that hypothesis itself. This ‘‘nor-

malization’’ measure forces the probability pðhi jEÞ to be a

fraction in the 0–1 range. As we see shortly, because that

denominator, the probability of the evidence, remains the

same for all hypotheses, it is often ignored.

As an example, the left side of Bayes’ equation gives the

probability of a hypothesis hi given evidence E. Suppose

the evidence E for a person is: headache, high temperature,

and vomiting, and there are three hypotheses hi: a cold,

viral infection, or allergies, Bayes’ formula can then be

used to determine which of these hypotheses is most likely,

or the best explanation, given evidence E. The right side of

Bayes’ equation describes how prior knowledge and

experience relates to the interpretation of the hypotheses.

The expression pðE j hiÞ asks how often the evidence, a

headache, etc, occurs when a particular hypothesis, say

allergies, is known to be true. pðhiÞ asks how likely that

hypothesis itself is to occur.

There are limitations to using Bayes’ theorem as just

presented as an epistemological characterization of the

phenomenon of interpreting new (a posteriori) data in the

context of (prior) collected knowledge and experience.

Most important is the fact that the epistemic subject is not a

calculating machine. We simply don’t have all the prior

(numerical) values for all the hypotheses and evidence that

can fit a problem. In a complex situation such as medical

diagnostics where there can be hundreds of hypothesized
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diseases and thousands of symptoms, this calculation

grows exponentially. We next address this combinatorial

issue with three simplifications/extensions of Bayes’ rule:

naive Bayes, greatest likelihood measures, and Pearl’s

Bayesian belief networks, including dynamic Bayesian

networks.

The calculation of the right hand side of Bayes’ formula

requires the repeated determination of values for pðE j hiÞ.
When the evidence E is a set of parameters (usually rep-

resented as a vector), it is often assumed these parameters

are independent, given the hypothesis. For example, if the

hypothesis is a viral infection vi, and the evidence set is

headaches h, high temperature t, and vomiting v, these

three pieces of evidence are assumed to be independent

given a viral infection. In most realistic situations this

independence assumption is not justified. When this inde-

pendence is ignored, the algorithm is called naive Bayes. In

this example naive Bayes calculates pðE j hiÞ as

pðh j viÞ � pðt j viÞ � pðv j viÞ, a radical improvement both in

compute time as well as in the need for obtaining more

probability measures such as pðh j vi ^ tÞ or pðh j vi ^ t ^ vÞ.
A second simplifying approach to using Bayes’ rule is to

acknowledge that the denominator on the right hand side of

the equation, p(E), is the same for all hi. and thus does not

need to be used (or even calculated). This means that,

absent the normalization effect of the denominator, the

resulting will no longer be a probability measure. Thus, if

we wish to determine which of all the hi has the most

support given the evidence E, we look for the largest value

of pðE j hiÞ � pðhiÞ. This is called determining the argmax of

all the hypotheses, given the evidence:

argmaxðhiÞ is the largest for all hi of pðE j hiÞ � pðhiÞ

In a dynamic interpretation, as sets of evidence

themselves change across time, we will call this argmax

of hypotheses given a set of evidence at a particular time

the greatest likelihood of that hypothesis at that time. We

show this relationship, an extension of the Bayesian

maximum a posteriori (or MAP) estimate, as a dynamic

measure over time t:

glðhi jEtÞ ¼ argmaxðh1ÞpðEt j hiÞ � pðhiÞ

This model is both intuitive and simple: the most likely

interpretation of new data, given evidence E at time t, is a

function of which interpretation is most likely to produce

that evidence at time t and the probability of that

interpretation itself occurring. The Bayesian greatest

likelihood approach can be viewed as a more

sophisticated (and mathematically plausible) alternative

to the Stanford certainty-factor algebra commonly used in

goal-driven rule-based expert systems (Luger 2009). This

greatest likelihood relationship can also be interpreted as

an example of Piaget’s assimilation, discussed further in

Sect. 4, where newly encountered information fits (is

interpreted by) the patterns created from prior experiences.

Pearl (1988, 2000), proposed the Bayesian Belief Net

(BBN) to addresses the complexity of data and inference

with full Bayesian reasoning. The BBN makes two

assumptions: first, that reasoning is not circular, that is, that

no component of the model can either directly or indirectly

influence itself (i.e., that the graph of the model has no

cycles), and second, that every variable is independent of

all its non-descendents, given knowledge of its parent(s).

This graph-based description is intended to capture implicit

causality (Pearl 2000). This assumption captured in the

BBN representation the implicit causality of situations. In

the example of Fig. 7, the occurrence of a traffic accident

causes traffic to slowdown and the flashing lights of rescue

vehicles.

In the BBN example of Fig. 7, suppose you are driving

in a familiar place where you are aware of the likelihood of

traffic slowdowns, construction, and accidents. These

likelihoods are reflected in probability tables similar to that

of Fig. 7, where the top row says that the probability of

both construction (C) and bad traffic (T) being true(t) is 0.3.

Solving this problem under full Bayesian assumptions

would require a 32-row probability table where each of the

five variables can be true or false. But factoring by the

assumptions of Bayesian belief networks, where C and A,

L and C, and A and B are independent of each other,

reduces this table to 20 rows, a component of which is

presented in Fig. 7b.

Now suppose, without any further obvious reasons, you

begin to slow down; so bad traffic (T) becomes true. This

Fig. 7 A Bayesian belief network (BBN) for the bad traffic example

and a table giving sample probability values for construction, C, and

bad traffic, T. The probabilities for the five parameters of the BBN

will be in one 20-row table
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means that in the table of probabilities bad traffic (T) can

no longer be false, so the sum of the probabilities for the

first and third lines of the table in Fig. 5, the construction

possibilities (t or f) when there is bad traffic (T = t), must

be 1.0. This means that with the slowdown of traffic the

probability of construction gets much higher (0.75). Simi-

larly the probability of an accident (A) also increases.

(These probabilities are not shown).

Now suppose you drive along further and you notice

Orange Barrels (B) along the road and blocking a lane of

traffic (Weighted orange plastic barrels are often used in

the U.S. at road projects to control traffic flow). This means

that on another probability table (again, not shown here)

B is true (t), and in making the probabilities sum to 1.0, the

probability of Construction (C) gets much higher. As the

probability of Construction gets higher, with the absence of

Flashing Lights, the probability of an Accident decreases.

The most likely explanation for what you are experiencing

now is construction, and the likelihood of an accident goes

down, and is said to be explained away.

The driving example just described demonstrates what is

called a dynamic Bayesian network (DBN). As the

perceived information changes over time, first slowing

down and then seeing orange traffic control barrels, the

probabilities in the table change to reflect each new (pos-

terior) piece of information. Thus at each time period

where there is new information, the values reflecting the

probabilities of that time period will change. Each state of

the table reflects the best explanation for what is currently

happening.

As a further example of dynamic Bayesian network

(BN) problem solving, Chakrabarti et al. (2005, 2007)

analyze a continuous data stream from a set of distributed

sensors, which represents the running ‘‘health’’ of the

transmission of a Navy helicopter rotor system through a

steady stream of sensor data. This data consists of tem-

perature, vibration, pressure, and other measurements

reflecting the state of the various components of the

transmission system. An example of this data can be seen

in the top portion of Fig. 8, where the continuous data

stream is broken into discrete and partial time slices.

Chakrabarti et al. (2005, 2007) then use a Fourier

transform to translate these signals into the frequency

domain, as shown on the left side of the second row of

Fig. 8 Real-time data from the transmission system of a helicopter’s

rotor. The top component of the figure presents the original data

stream (left) and an enlarged time slice (right). The lower left figure is

the result of the Fourier transform of the time slice data (transformed)

into the frequency domain. The lower right figure represents the

hidden states of the helicopter rotor system
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Fig. 8. These frequency readings were compared across

time periods to diagnose the running health of the rotor

system. The model used to diagnose rotor health is the

auto-regressive hidden Markov model (AR-HMM) of

Fig. 9. The observable states of the system are made up of

the sequences of the segmented signals in the frequency

domain while the hidden states are the imputed health

states of the helicopter rotor system itself, as seen in the

lower right of Fig. 8.

The hidden Markov model (HMM) technology is an

important stochastic technique that can be seen as a variant

of a dynamic BBN. In the HMM, we attribute values to

states of the network that are themselves not directly

observable. For example, the HMM technique is widely

used in the computer analysis of human speech, trying to

determine the most likely word uttered, given a stream of

acoustic signals (Jurafsky and Martin 2008). In the heli-

copter example, training this system on streams of normal

transmission data allowed the system to make the correct

greatest likelihood measure of failure when these signals

change to indicate a possible breakdown. The US Navy

supplied data to train the normal running system as well as

data sets for transmissions that contained faults. Thus, the

hidden state St of the AR-HMM reflects the greatest like-

lihood hypothesis of the state of the rotor system, given the

observed evidence Ot at any time t.

To summarize, it is not surprising that the AI problem

solving products of the past 60 years have met with limited

successes. To give them their due, they have been useful in

many of the application domains for which they were

intended, designed, and deployed. But as models of human

cognition, able to generalize to new related situations, even

to generalize and interpret their various results, they were

not successful, and, in the context of this paper, could not

pass Turing’s test. The success of the AI practitioner as the

designer and builder of new and useful software languages

and artifacts is beyond question; the notion that this effort

emulates the full set of cognitive skills of the human agent

is simply naive.

The problem is both epistemological and pragmatic. How

does the human agent work within and manipulate elements

of a world that is external to, or more simply, is not, that

agent? And consequently, how can the human agent address

the overarching epistemological integration of the agent and

its ever-changing environment? And how does (or even can)

the human agent understand this integration?

4 Towards an epistemic stance

Creating any computer program, including the supposed

‘‘intelligent program’’, is the product of human design and

computer language skills. Every program built is a product

or ‘‘artifact’’ of its human creator. In a programs creation

lies an implicit ‘‘ontology’’, or what symbols and patterns

of symbols might ‘‘mean’’ when interpreted, as well as an

‘‘epistemology’’, or an a priori commitment to a particular

‘‘symbol system mapping to world objects’’ view of the

world. This also represents a specific commitment to a

lebenswelt, or lifeworld, of how symbols and systems of

symbols, when interpreted, interact with each other within

their environment. If progress in AI is going to evolve, we

best acknowledge these differing ontological commitments

to what is ‘‘real’’ and in what sense running programs may

be said to have ‘‘meaning’’.

An important aspect of a running program is that it can

be deconstructed, taken apart, its system of symbols

examined, and their relation to a possible world be cri-

tiqued. Newell and Simon suggest so much in their Turing

Award lecture (Newell and Simon 1976): ‘‘Each new

program that is built is an experiment. It poses a question to

nature, and its behavior offers clues to an answer. Neither

machines nor programs are black boxes; they are artifacts

that have been designed, both hardware and software, and

we can open them up and look inside. We can relate their

structure to their behavior and we can draw many lessons

from a single experiment.’’ Thus, we explore the ontolog-

ical commitments of the program designer, as well as his/

her implicit epistemic stance.

We have found through experimentation that the purer

forms of rationalism, although excellent for capturing

computation with clear and distinct components of human

knowledge, often fail in areas of imprecision and uncer-

tainty. From an empiricist perspective, representing and

learning associations has proved a powerful tool, but not

always sufficient for discovering appropriate generaliza-

tions and capturing higher level relationships. While the

pragmatists correctly argue that all action, including lan-

guage, is ‘‘about’’ intention and goal satisfaction, they have

offered few modeling tools or mechanisms for how this

might be achieved. Probabilistic reasoning is an implicit

acknowledgement that actions in the world are to be

understood as a function of the current knowledge and

experience of the interpreting agent. We propose, as a

natural extension of our discussions, the continued

Fig. 9 The data of Fig. 8 are processed using an auto-regressive

hidden Markov model. States Ot represent the observable values at

time t. The St states represent the hidden ‘‘health’’ states of the rotor

system, safe, unsafe, faulty at time t
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exploration and use of a constructivist epistemology as a

foundation for building programs that are intended to

produce ‘‘intelligent’’ behavior. We also propose that

program designers be aware of the full range of tools

available for problem solving, many of which have been

mentioned in this paper. Especially important are algo-

rithms and representations supporting an active goal-driven

and model-refining approach to solutions.

We view a constructivist and model-revising episte-

mology as a rapprochement between the empiricist,

rationalist, and pragmatist viewpoints. The constructivist

hypothesizes that all understanding is the result of an

interaction between perceived energy patterns from the

world and conditioned mental categories imposed on the

world by the intelligent agent (Piaget 1954, 1970; von

Glaserfeld 1978). Using Piaget’s descriptions we assimilate

external phenomena according to our current understand-

ing and accommodate our understanding to phenomena that

does not meet our prior expectations.

Constructivists use the term schemata to describe the a

priori structure used to mediate the experience of the

external world. The term schemata is taken from the British

psychologist (Bartlett 1932) and its philosophical roots go

back to (Kant 1781). On this viewpoint observation is not

passive and neutral but active and interpretative.

Perceived information, Kant’s a posteriori knowledge,

never fits precisely into our preconceived and a priori

schemata. From this tension the schema-based biases a

subject uses to organize experience are either modified or

replaced. The use of accommodation in the context of

unsuccessful interactions with the environment drives a

process of cognitive equilibration. The constructivist

epistemology is one of cognitive evolution and continuous

model refinement (Glymour 2001; Gopnik 2011a; Sakha-

nenko et al. 2006). An important consequence of con-

structivism is that the interpretation of any perception-

based situation involves the imposition of the observers

(biased) concepts and categories on what is perceived. This

constitutes an inductive bias.

When Piaget proposed a constructivist approach to

understanding the external world, he called it a genetic

epistemology. When encountering new phenomena, the

lack of a comfortable fit of current schemata to the world

‘‘as it is’’ creates a cognitive tension. This tension drives a

process of schema revision. Schema revision, Piaget’s ac-

commodation, is the continued evolution of the agent’s

understanding towards equilibration.

Schema revision and continued movement toward

equilibration is a genetic predisposition of an agent for an

accommodation to the structures of society and the world.

It combines both these forces and represents an embodied

predisposition for survival. Schema modification is both an

a priori reflection of our genetics as well as an a posteriori

function of society and the world. It reflects the embodi-

ment of a survival-driven agent, of a being in space and

time.

There is a blending here of the empiricist and rationalist

traditions, mediated by the pragmatist requirement of agent

intention and survival. As embodied, agents can compre-

hend nothing except that which first passes through their

senses. As accommodating, agents survive through learn-

ing the general patterns of an external world. What is

perceived is mediated by what is expected; what is

expected is influenced by what is perceived: these two

functions can only be understood in terms of each other.

Further, we can ask why a constructivist epistemology

might be useful in addressing the problem of understanding

intelligence itself? How can an agent within an environ-

ment understand its own understanding of that situation?

We believe that constructivism also addresses this problem

of epistemological access. For more than a century there

has been a struggle in both philosophy and psychology

between two factions: the positivist, who proposes to infer

mental phenomena from observable physical behavior, and

a more phenomenological approach which allows the use

of first person reporting to enable access to cognitive

phenomena. This factionalism exists because both modes

of access to cognitive phenomena require some form of

model construction and inference.

In comparison to physical objects like chairs and doors,

which often, naively, seem to be directly accessible, the

mental states and dispositions of an agent seem to be

particularly difficult to characterize. We contend that this

dichotomy between direct access to physical phenomena

and indirect access to mental phenomena is illusory. The

constructivist analysis suggests that no experience of the

external (or internal) world is possible without the use of

some model or schema for organizing that experience. In

scientific enquiry, as well as in our normal human cogni-

tive experiences, this implies that all access to phenomena

is through exploration, approximation, and continued

model refinement.

The dynamic Bayesian network described in Sect. 3,

with implementation details described in Figs. 8 and 9,

offers an approximation of the constructivist epistemology.

The conditioned (prior) variables and relationships in the

Bayesian network captures the relational knowledge of the

complex system as well as the conditioned aspects of their

interactions. Monitoring these systems across time, using

an auto-regressive hidden Markov model, captures the

changing state of the entire system. Interpreting that state

as it evolves over time, based on the conditioning of the

running system, supports a goal-focused interpretation of

the state of the helicopter transmission: ‘‘everything is

going fine’’, ‘‘hey, something might be stressing the sys-

tem’’, or ‘‘it is time to get this thing onto the ground’’.
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Interestingly, a justification for the use of the hidden

Markov modeling technology is that the actual state of

complex systems often cannot be deterministically known.

We humans only have access to the perceptual cues afforded

to our senses by these complex running systems. (This is

much like understanding another person’s speech—we only

have perceptual cues and do not know what is going on

within that person). Although the actual state of such systems

is ‘‘hidden’’ from the observer, an approximation of that state

can be ‘‘constructed’’ through the ‘‘assistance’’ of appropri-

ate hidden Markov model software. A similar constructivist

approach for understanding and generating human language

dialogs can be seen in Sect. 2, Fig. 5 (Chakrabarti 2014;

Chakrabarti and Luger 2015).

There are (at least!) three further issues that need to be

addressed in developing a mature epistemological stance.

The first is context switching, the second is an agent’s

active exploration within and between particular proba-

bilistic systems, and the third is the nature of ‘‘meaning’’ or

as it is sometimes called, ‘‘symbol grounding’’.

We humans, and this may not be equally necessary for

machines, actively participate in our world through what

can be called anticipatory contexts. This fact may result

from the limited processing capability of our pre-frontal

cortex and Broadmann’s areas, or through the limited

bandwidth of our cortical communication mechanisms. But

for whatever reason we focus directly on one thing at a

time, with alternative interpretative scenarios remaining in

the near subconscious. There needs to be further research,

along the lines of Sakhanenko et al. (2006, 2008) on model

failure and context switching in data interpretation: What

are the limitations of a particular model? When are models

no longer suitable for active interpretation of new data, or

Piaget’s accommodation? What model might afford the

next best interpretative context?

The second issue is that we humans, through goal driven

activity, explore our environment not just through our

already conditioned models for reality, but also by con-

tinuously exploring and refining current interpretive con-

texts. We learn by trying things, by doing things and by

mistakes. Gopnik et al. (2004) and Gopnik (2011a, b)

describe how children learn by actively exploring their

environment. Other current psychologists and philosophers

support and expand this pragmatic and teleological account

of human developmental activity (Glymour 2001; Kushnir

et al. 2010). Klein et al. (1999) describe how physicists

actively explore alternatives in coming to know the current

state of their systems (in his examples, particle beam

accelerators). Newell and Simon (1976) describe how

computers, both hardware and software, can be understood

through the active study of their behavior. Pearl (2000) and

Rammohan (2010) have proposed algorithms for counter-

factuals, for actively exploring causality relationships

within the contexts of Bayesian networks. The insight here

is that intelligent understanding of a constantly changing

environment must be active, purposive, and integrative.

Finally, where does ‘‘meaning’’ come from? One

intriguing answer might be that many physical systems,

once excited, require (need, seek) stasis. This could also be

seen as the satisfaction of the pragmatists’ intentionality.

AI research, as well as research in physics, Hopfield (1984)

has proposed different algorithms for the real-time inte-

gration of new (a posteriori) information into previously (a

priori) learned patterns of information (Demptster 1968).

Among these algorithms is loopy belief propagation (Pearl

2000) that integrates new data into a system of plausible

beliefs, by constantly iterating this system towards equi-

librium, or equilibration as Piaget might describe it. The

system in stasis includes identification of the most likely

explanation (hypothesis) for the new data, given the orig-

inal state of the system.

To summarize, a system can be in a priori equilibrium

with its continuing states of learned knowledge. When pre-

sented with novel information characterizing a new situa-

tion, this a posteriori data perturbs the equilibrium. The

loopy belief propagation algorithm then iterates by sending

‘‘messages’’ between near-neighbors’ prior and posterior

components of the model, until it finds convergence or

equilibrium in the form of a particular greatest likelihood

hypothesis (meaning?) that explains that novel information.

We conclude with several general comments about

human intelligence and the AI research community’s

implicit assumption of epistemic stances.

5 Conclusion

In concluding, we present three issues relating to the

arguments of this paper. First, we conjecture that, at our

current level of knowledge, human intelligence and

machine intelligence are two different philosophical kinds.

On this conjecture, although it can be extremely useful to

compare both systems’ properties and products, the sys-

tems still remain different entities and species. In Turing’s

sense of computational equivalence (Copeland 2015), it has

not been shown how to build each system from the other.

Nonetheless, the two systems can share properties: just

as birds and airplanes can both fly, so humans and com-

puters can share properties including perception, thinking,

and learning. Furthermore, Turing’s test for intelligence is

agnostic both as to what a computer might be composed of,

vacuum tubes, flip-flops, silicon, or even tinker toys, as

well as what language processes are used to make it work.

All Turing required for ‘‘thinking’’ was that the machine

responses be roughly equivalent to those of a human. As

noted earlier, it was an impressive insight on Turing’s part,
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that machines, at the primitive stages of the 1940s, would

be thought to have the power of thinking.

We humans do not have the freedom to select our own

architecture and embodiment for assimilating information

about ourselves and our environment. The particulars of

our human dispositions and social context mediate our

interactions with the world. We possess auditory and visual

systems sensitive to a certain bandwidth; we view the

world as erect bipeds, having arms, legs, and hands; we are

in a world of weather, seasons, sun, and darkness; we are

part of a society with evolving goals and purposes; we are

individuals that are born, reproduce, and die. These are our

critical support and offer a medium for our understanding,

learning, and problem solving.

A machine’s embodiment and constraints are quite dif-

ferent. For example, Miller’s (1956) ‘‘7 plus and minus 2’’

memory limitation for short term human processing will

not constrain a computer; neither will Newell and Simon’s

observation (1972) of human’s memory constrained game

playing search as ‘‘iterative deepening’’. Nor, conversely,

has it been shown that currently understood neural network

architectures can be equivalent to human cortical pro-

cessing. Current machines are quite effective at broad and

exhaustive data searches, such as is found in Watson

(Ferrucci 2012), or a search engine’s web crawling. And

still, when it comes to addressing problems that are

exponentially complex such as the games of chess or

gomoku, machines have to deal with many of the same

constraints we humans must: working through heuristics to

find good enough solutions.

Our second concluding comment, an extension of the

first, is that since the human and machine share important

properties/skills, we can, with a scientifically supported

methodology, compare the processes that support these

skills. This endeavor began as early as Leibnitz and Hobbes

(who conjectured that reasoning was nothing more than

reckoning Hobbes 2010/1651) in the seventeenth century,

it became more detailed in the 1940s with the research of

McCulloch and Pitts (1943) and Hebb’s conjectures about

human learning (Hebb 1949), and further showed impor-

tant results in the Information Processing Psychology of the

1950s. It was Allen Newell and Herbert Simon in their

1976 Turing Award lecture Newell and Simon (1976) that

clarified this cognitive information-processing task with

their physical symbol system hypothesis.

The physical symbol system hypothesis proposed that

‘‘the necessary and sufficient condition for a physical

system to exhibit general intelligent action is that it be a

physical symbol system.... Sufficient means that intelli-

gence can be achieved by any appropriately organized

physical symbol system.... Necessary means that any agent

that exhibits general intelligence must be a physical symbol

system’’.

The necessary component of this hypothesis has long

been disproved by multiple psychological and computa-

tional experiments demonstrating that human intelligent

action can be described and explained by non-representa-

tion-based models and without the use of explicit symbol

manipulation (Ferrucci 2012; Brooks 1989; Dreyfus 1979;

Merleau-Ponty 1962). The sufficient component of this

hypothesis has lead to a wealth of new experiments and

explanations for cognitive tasks. In fact, the sufficient

component of Newell and Simon physical symbol system

hypothesis has supported the discipline of cognitive sci-

ence and much of the current research in computational

linguistics (Miller 1956; Newell and Simon 1972; Sun

2008; Miller 2003; Pinker and Bloom 1990).

Finally, our third comment is that most artificial intel-

ligence researchers and software developers are agnostic

about the previous two issues. They simply want to make

computational artifacts that reflect what a human user

might, on observing their effects, call ‘‘intelligent’’. But the

primary point of this paper is that in the process of

designing and building computational processes that are

intended to produce such products, humans do make

epistemic commitments. Whether these are a result of how

we think about the world, or whether they are designed

towards the strengths of a particular computational system,

these programs are human creations and so take on an

(often implicit) epistemic stance.

As noted throughout the paper, this stance can support

both strengths as well as severe limitations in the final artifact

created. It must also be noted that most AI technology is not

focused on novel or exciting goals such as playing chess,

being a Jeopardy champion, or controlling robots in deep

space. Rather, they are focused on and developed to support

the quality of human existence, whether this be as a health

monitor or advisor, a recommender system for travel routes,

an expert system for giving medical or diagnostic advice, or

simply supporting better human understanding and com-

munication (Chakrabarti and Luger 2015). As support for

human centric interaction, advice, and decision-making the

program builder’s underlying epistemic assumptions remain

important.
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