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Abstract Urban simulations are an important tool for

analyzing many policy questions relating to the usage of

public space, roads, and communal transportation; they can

be used to predict the long-term impact of new construction

projects, traffic restrictions, and zoning laws. However, it is

unwise to rely upon predictions from a single model since

each technique possesses different strengths and weak-

nesses and can be highly sensitive to the choice of

parameters and initial conditions. In this article, we

describe a hybrid approach for combining agent-based and

stochastic simulations (Markov chain Monte Carlo,

MCMC) to improve the accuracy and reduce the variance

of long-term predictions. In our proposed approach, the

agent-based model is used to bootstrap the proposal dis-

tribution for the MCMC estimator. To demonstrate the

applicability of our modeling technique, this article pre-

sents a case study describing the usage of our hybrid

simulation method for forecasting transportation patterns

and parking lot utilization on a large university campus. A

comparison of our simulation results against an indepen-

dently collected dataset reveals that our hybrid approach

accurately predicts parking lot usage and performs signif-

icantly better than other comparable modeling techniques.

Developing novel architectures for combining the predic-

tions of agent-based models can produce insights that are

different than simply selecting the best model.

Keywords Agent-based modeling � Markov chain

Monte Carlo (MCMC) � Transportation simulation �
Urban modeling

1 Introduction

Benenson et al. (2004) present two motivations for defin-

ing urban agents as a distinct group within the general class

of autonomous agents:

1. urban agents often have a high degree of mobility

resulting in rapidly changing spatial relationships.

2. to succeed, urban agents require a strong capability to

perceive and adapt to the evolving urban environment

shaped by neighboring agents.

Urban simulation is a particularly fertile domain for

research in agent-based simulation since it requires

modeling a large number of interdependent agents making

sequential decisions within a small region. Agent-based

models have been used specifically to recreate urban

environments for a wide variety of domains including the

following: (1) civil and environmental transportation

analysis (Jin and Jie 2012), (2) geographic information

systems (GIS) for visualizing patterns and trends in spatial

areas (Jordan et al. 2012), and (3) archaeological studies of

land site usage in ancient civilizations (Kohler et al. 2012).

Although these urban simulations do not necessarily

have to model low-level physical interactions, incorporat-

ing spatial information and heterogeneity into agent-based

models can improve our ability to draw conclusions about

the behavior of complex systems in realistic environments,

which may be different from conclusions drawn with

artificial environments (Brown et al. 2005). With the

inclusion of GIS to represent a spatially, georeferenced
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environment, the impact of human behavior patterns can be

linked to specific spatial locations and when used correctly

can provide a powerful tool for policy-makers and the

public to understand the potential consequences of their

decisions (Gimblett 2002).

Yet, modelers attempting to analyze a complex urban

region face a similar problem to the six blind men touching

an elephant, who describe the whole elephant based on

touching it. Since none of the men can feel more than a

single small part of the elephant—the tail, the ear, a tusk,

the belly, the trunk, and the leg—they each bring back a

different report.1 In the same way, different modeling

techniques are very likely to produce slightly different

answers to the same question. This phenomenon poses

problems when urban simulations are used to influence

important public policy debates, regulatory decisions, and

to guide resource allocation. For instance, the public debate

about human influence on climate change has been shaped

by a disproportionate level of discussion about minor dis-

crepancies between predictions, while the general trend

consensus between models has remained largely ignored

(Edwards 1999).

In this article, we introduce a novel architecture for

combining two powerful modeling techniques: agent-based

models (ABM) and Markov chain Monte Carlo (MCMC)

estimators. Although both of these methods have a long

history of practical usage (summarized in the next two

sections), they have weaknesses as well. ABMs can be used

to simulate very complex social phenomena, but con-

structing easily reproducible agent-based models is diffi-

cult due to the possibility of emergent behaviors and lack

of formal representation. According to Wilensky and Rand

(2007), many ABMs, with the exception of a few classic

models, have never been replicated by anyone but the

original developer. It is difficult to bring mathematical

analysis tools to bear on the problem, so instead, models

are typically studied through empirical simulation studies

(Hinkelmann et al. 2011). Yet, the results of the simulation

study can vary considerably by changing the range, or even

the step size, of just one or two variables (Niazi et al.

2009).

On the other hand, the MCMC simulation process can

be described by a relatively simple set of mathematical

equations and a resampling procedure; this methodology is

sometimes referred as the most powerful idea in compu-

tational statistics (Press et al. 2007). The aim of the process

is to approximate the posterior distribution of the model

parameters based on the observed data. However, the

selection of the proposal distribution can have a significant

impact on model convergence. In cases where the proposal

distribution is far from the desired posterior distribution,

the algorithm may converge to a poor local minimum or

require a long time to achieve convergence (Gilks et al.

1995). The nearer the proposal distribution is to the target

distribution, the better the performance of the MCMC

algorithm (Mengersen and Tweedie 1996). The reader can

find more details about the role of proposal distribution in

Andrieu et al. (2003).

To address this problem, we constructed an agent-based

model to generate simulated data which is then used to

initialize the proposal distribution of the MCMC. The

combination of the two models, agent-based and MCMC,

produces a more accurate result than either of the parent

models and facilitates the MCMC convergence. An addi-

tional benefit is that manipulating the operation of an

agent-based model can empower researchers with better

intuitions about the reasons behind emerging group phe-

nomena rather than merely observing the unfolding of a

stochastic process (Oakes 2008). To demonstrate the

strengths of this approach, we present a case study on

modeling and predicting transportation patterns and park-

ing lot usage on a large university campus.

This article is organized as follows. In the next section,

we provide a brief overview of the related work in using

agent-based models to guide public policy decisions. Sec-

tion 3 introduces the MCMC family of methods. Then, we

summarize the key elements of our urban simulation for

forecasting transportation patterns and parking lot utiliza-

tion in Sect. 4. Section 5 presents our hybrid approach for

unifying agent-based and MCMC models. We conclude the

article by presenting a detailed comparison of our method

versus other similar modeling techniques.

2 Related work

Agent-based modeling has been used to analyze a variety

of complex public policy-related scenarios, including cli-

mate change negotiations (Gerst et al. 2012), water man-

agement decisions (López-Paredes et al. 2005), and

financial regulatory governance (Streit and Borenstein

2009). In general, ABMs are good at modeling a diverse

population of rational, self-interested agents, allowing

interesting social questions to be explored in simulation

before enacting new laws. For instance, Garlick and Chli

(2009) studied the effects of social influence and curfews

on civil violence by creating an agent-based model that

simulated the interactions between the police force and the

community. Some social simulations explicitly model

network interactions between agents; this is particularly

useful when studying influence propagation (Maghami and

Sukthankar 2012) and the self-repairing properties of

insurgent terrorist networks (Ilachinski 2012). Social

1 The parable of the blind men and the elephant appears in a number

of religions originating from the Indian subcontinent.
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choice mechanisms can be studied using agent-based

simulations as well as by game theory; for instance, Verella

and Wardak (2008) examined the effects of external stimuli

on collective opinion formation, in the context of voting

decisions.

Alternatively, interactions between agents can be gov-

erned by a combination of spatial and social constraints; in

these social systems, the behavior of the agents is strongly

affected by other agents in their local physical neighbor-

hood, which is easy to simulate, but often difficult to pre-

dict analytically. Examples of systems possessing these

characteristics include traffic and crowd evacuation simu-

lations, which are heavily influenced by geographic con-

siderations. To compare the effectiveness of simultaneous

and staged evacuation strategies in different road network

structures, Chen (2003) designed an agent-based simula-

tion that shows the collective behaviors resulting from the

interactions of individual vehicles during an evacuation.

Human behavioral data can be added to the emergency

evacuation and egress model to build a more realistic, and

consistent agent-based model was done by Pan et al.

(2007).

In contrast to crowd evacuation scenarios which are

often used to prepare for unique disaster situations, traffic

simulations are designed to characterize the effects of

repetitive behaviors. Klügl and Bazzan (2012) outline five

advantages agent-based methodologies have over other

types of traffic-related simulations including the following:

(1) ease of modeling bottom-up decision-making, (2)

capacity for imbuing entities with learning and adaptive

behavior, and (3) simplicity of generating a population with

heterogeneous behaviors. Also, it is often feasible to gather

survey and GPS data to verify the predictions of traffic

simulations.

Based on detailed trip survey data from seven Traffic

Analysis Zones (TAZs) in Ottawa, Canada, Jin and White

(2012) present an agent-based model for analyzing the

influence of neighborhood design on daily trip patterns. In

Dia (2002), results obtained from a behavioral survey of

driving behaviors were used to identify and fit a series of

agent behavior parameters defining driver characteristics,

knowledge, and preferences; the authors also present a case

study implementing a simple agent-based route choice

decision model within a microscopic traffic simulation tool.

However, neither of those works presents a systematic

evaluation of different modeling techniques through com-

parison with independently collected data. In our research,

a physical path planning system for modeling driving and

walking is used to supplement the activity-based micro-

simulation that governs agent behavior selection. The

model is seeded with a combination of demographic

information and survey data, and compared against inde-

pendently collected results. A detailed review of the

applications of agent-based modeling specially in modeling

traffic and transportation patterns can be found in Chen and

Cheng (2010).

ABMs have been successfully employed in a variety of

water management tasks (Barreteau et al. 2012; Gailliard

et al. 2012). Water management, an important aspect of

urban management, is affected by geography, weather

patterns, and human behavior, and is additionally compli-

cated by interdependencies between communities that

share the same watershed area. López-Paredes et al. (2005)

introduced an agent-based simulator called FIRMABAR

for integrated freshwater assessment of the Valladolid

metropolitan area. The simulator provides the policy-

makers with a tool to evaluate alternative water policies in

different scenarios.

Similar simulations can be used to study the combined

impact of climate change and human behavior on sustain-

able ecosystems. Hailegiorgis et al. (2010) presented an

agent-based system for modeling interactions between

climate change and conflict among herders in east Africa.

ENGAGE is an agent-based model that was introduced by

Gerst et al. (2012) to simulate the impact of locally het-

erogeneous policy preferences and constituent choice on

climate change negotiation at the international level. A

review of related work in this area can be found in Balbi

and Giupponi (2009).

In summary, agent-based models can be used to illu-

minate policy-makers on the ramifications of complex

environmental and infrastructure decisions. In the next

section, we describe the second key component of our

approach, MCMC.

3 Markov chain Monte Carlo

Markov chain Monte Carlo is a family of methods princi-

pally used to perform Bayesian inference with stochastic

simulation. The aim of the process is to approximate the

posterior distribution of the model parameters based on the

observed data. By using Monte Carlo simulations to per-

form the high-dimensional integration necessary to calcu-

late marginal and posterior distributions, algorithms such

as Metropolis–Hastings (MH) can make the Bayesian

inference process tractable (Metropolis et al. 1953). The

MH algorithm is the oldest and perhaps most commonly

used of these methods. The basic procedure is as follows:

• Select a proposal distribution Q (also known as the

proposal transition matrix)

• Initialize the starting point, x0
• Do

• Generate a candidate point xc, according to the prob-

ability Q(xc|xi)
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• Calculate the acceptance probability according to

aðxi; xcÞ ¼ min 1;
pðxcÞqðxijxcÞ
pðxiÞqðxcjxiÞ

� �
ð1Þ

• Choose xi?1 = xc with probability a, xi?1 = xi with

probability (1 - a)

Effectively, MCMC allows us to draw samples from a

distribution p(x) without having to know its normalization.

With these samples, it is possible to compute any quantity

of interest about the distribution of x, such as means,

confidence regions, or covariance.

Markov chain Monte Carlo has been successfully used in

a wide variety of scientific (Liu et al. 2011) and engineering

modeling applications (Liu et al. 2012). MCMC can also be

applied as part of the model fitting process in social predic-

tion problems. For instance, Cauchemez et al. (2004) use a

Bayesian MCMC approach to examine the main character-

istics that affect influenza disease transmission between

households. Similarly, the effect of spatial influences on

geopolitical conflicts has been modeled using an MCMC

formulation in which the likelihood of war involvement for

each nation is conditioned on the decisions of proximate

states (Ward and Gleditsch 2002). In our work, MCMC is

used as a simulation technique, and the sample set used to

characterize the posterior distribution is simply compared

against the output of other simulation techniques, rather than

used to perform Bayesian inference over model parameters.

Our research focuses on improving the performance of the

Metropolis-Hastings (MH) algorithm which is relatively

sensitive to the initial proposal distribution. It is because of

this sensitivity that researchers sometimes opt to use alterna-

tive MCMC algorithms, such as Gibbs sampling (Geman and

Geman 1984). Our proposedmethod is a variation on the idea

of using suboptimal inference and learning algorithms to

generate data-driven proposal distributions for the MH algo-

rithm(Andrieuet al. 2003).Analternate approach for creating

MCMC proposal distributions was introduced by Eaton and

Murphy (2007) who employed dynamic programming to

create a proposal distribution for MCMC in the space of

directed acyclic graphs. They showed that this hybrid tech-

nique converges to the posterior faster than other methods,

resulting in a more accurate structure learning of graphical

models and higher predictive likelihoods on test data.

De Freitas et al. (2001) introduced two different meth-

ods to overcome the problem of finding a good proposal

distribution. In the first approach, a mixture of two kernels

is used to drive the search process: (1) a variational kernel

to broadly explore the problem domain and locate regions

of high-probability and (2) a Metropolis kernel to explore

the local regions. One drawback with this method is that

finding a good variational kernel can be difficult to do.

To combat this issue, the authors proposed a second

technique called adaptive MCMC in which the proposal

distribution is updated at run-time based on the behavior of

Markov chain; in this article, we benchmark our proposed

method against adaptive MCMC. Our approach solves the

problem of identifying a good proposal distribution for

MCMC by constructing one from samples generated by our

agent-based model. Adaptive methods generally seek to

construct a better proposal distribution by combining sto-

chastic approximation and MCMC (Andrieu and Moulines

2006). One issue with this class of adaptive techniques is

that they often rely on certain mathematical assumptions

being valid and thus can only be used in a limited set of

conditions unlike our technique.

4 Urban simulation

In this section, we describe the development process for

our activity-based microsimulation, including the agent-

based model, survey data collection, activity profile gen-

eration, path planning, and simulation system; see Beheshti

and Sukthankar (2012) for additional details on the data

collection and model fitting procedures. For our urban

region, we selected the University of Central Florida main

campus, which is one the largest academic institutions in

the USA with almost 59,000 students and 10,567 staff. It is

adjacent to the Central Florida Research Park which is

home to 116 companies with approximately 9,500

employees. The presence of nearby businesses and exis-

tence of commuters traveling between multiple UCF

campuses give rise to a social system with a diverse and

complex set of transportation patterns.

4.1 Data collection

To simplify the data collection process, our initial study

focused solely on modeling student transportation, dining,

and building occupancy patterns. About 1003 students

responded to our online survey posted on KwikSurveys

that was advertised on various campus email lists. The

questions on the survey were grouped into six different

categories, related to possible places that could be visited

on the main campus:

1. Daily attendance patterns, including the days and times

that the participant arrives at and departs from the

main campus

2. Initial location, either the dorm (for on-campus

students) or the entrance that was used to enter the

campus (for commuting students)

3. Visitation frequency for on-campus dining locations

4. Usage patterns for recreation and athletic facilities
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5. Usage of administrative and other miscellaneous

locations

6. Frequency of parking lot and shuttle stop usage.

For categories three through six, students were specifically

queried about their visitation frequencies. For these

questions, responses included one of the following: never,

rarely, once a month, several times in a month, once a

week, several times in a week, and every day.

In addition to the survey data, our agent-based simula-

tion used publicly available statistics about UCF2 and the

main campus building map.3 A graph of the campus paths

and roads was created from the main campus building map.

The set of nodes in the graph is the union of the locations in

the survey, plus the junctions between the streets and

pathways. The edges of this graph represent the roads and

walkways among the nodes. The weights of the edges show

the distance between the connecting nodes. Each node and

edge has a tag. This tag for the nodes indicates whether

they are a location of interest on the map or merely a

junction. Figure 1 shows a snapshot of the map, and Fig. 2

shows the corresponding path planning graph.

4.2 Agent-based model

To perform transportation forecasting on the UCF campus,

we created an agent-based model for simulating the com-

mon activities (transportation, dining, recreation, and

building occupancy) performed by the 47,000 students on

the main campus. This number refers to the total number of

students on the UCF main campus. Each agent in the model

represents an individual student and has a unique set of

parameters that govern his/her activity profile. An agent’s

defining parameters are as follows: entrance, dormitory,

department, class building, arrive, depart, lunch, dinner,

beverage, recreation and wellness, parking, shuttle, and

miscellaneous. The first four parameters designate the

single (most common) value of the agents’ entry point to

the campus, housing situation, home department, and main

class building. Note that, we did not explicitly represent the

students’ class schedules in the model. Even though this

Fig. 1 The map used in the simulation. Gray spots are buildings;

black lines show the campus roads; and yellow lines indicate the

walkways. Parking lots are marked in green (student), blue (staff),

and red (faculty) (color figure online)

Fig. 2 The corresponding graph to the map in Fig. 1. The nodes

represent different locations on campus, and the edges show the paths

between them

2 http://www.iroffice.ucf.edu/character/current.html.
3 http://map.ucf.edu/printable/.
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would have improved the fidelity of the model, we felt that

addition would not generalize well to other types of urban

models. Arrive and depart are lists showing the times the

agent enters the campus and leaves it. The remaining

parameters are lists of locations for the agent’s dining,

recreation, and commuting. Additionally, each parameter

that includes a location has another matching parameter

that shows the time or frequency of visiting that location.

Rather than directly mapping the survey data to simu-

lated entities that match the exact preferences of one of the

survey respondents, we attempt to learn a general model of

the population by fitting a statistical distribution to the

answers of every question. For those questions that were

related to the time of visiting a location (e.g., campus

arrival and departure times), a Gaussian distribution was

used to create a continuous distribution of arrival and

departure times for the population of agents. For those

questions where the respondents provided frequencies

(e.g., how often campus dining locations were visited), we

evaluated the performance of several discrete distributions

and selected to the Poisson distribution as offering the best

fit for most of the questions.

After fitting the Poisson distribution on the qualitative

data, a mapping function is used to work with the values

obtained. This function maps the qualitative frequencies to

exact dates and times. Each term, from rarely to everyday,

is treated separately. For instance, the term rarely is

mapped to a random day in a 60-day period.

4.3 Activity-oriented microsimulation

When the simulation commences, all the agents are ini-

tialized with parameters that remain constant over the

lifetime of the agent and are used to create daily activity

profiles. Our simulation is implemented in the Netlogo

Wilensky (1999) environment.4

In this environment, time is discrete and simulated by

ticks where a tick is one unit of time. In our model, one tick

represents one hour of activity in the real world. When the

model starts, each agent runs within a loop. The loop

continues until the simulation is stopped. Figure 3 shows

the runtime process by which an agent activity profile is

generated. In this loop, whenever it is determined that the

agent should be somewhere on campus, it goes to the

enable (visible) state; otherwise, it goes to the disable

(hidden) state.

Based on the agent’s parameters, the activity profile

generator determines what should an agent do and where

should be at every time (tick). If sampling the agent’s

profile indicates that it should be on campus, then the

function compares the current time with the possible

activity times produced by the mapping function that maps

frequencies from the agent’s distribution model to specific

times and dates. If a match is found, then the agent opts to

travel to that location. Otherwise, the agent remains at its

department as its default place. On the other hand, if the

profile generator determines that the agent should not be on

campus, then the agent goes to (or remains in) the disabled

state.

Various constraints are checked before an agent decides

to go to a place. These constraints ensure the consistency of

the whole model with the real-world facts. The main

consistency checks are summarized below:

• daily schedule: Whenever an agent’s model generates a

date and time for visiting a location on campus, it

checks the agent’s arrival and departure times for that

day. Campus activities that fall outside those bound-

aries are eliminated.

• activity overlap: Whenever the agent’s model generates

trips that overlap in time, requiring the agent to be in

multiple places at once, one of the overlapping tasks is

shifted to a later time.

• campus constraints: Known information about the oper-

ation hours of administrative offices, classroom buildings,

and shuttle transportation is incorporated into the simu-

lation. If the agent’s model generates trips that violate the

known operation hours, those trips are discarded.

A shortest-path graph algorithm is used to choose the path

that an agent should traverse between its start and end

positions. To speed-up the model, an all pairs shortest-path

graph algorithm computes all of the shortest paths. A

slightly modified version of Floyd–Warshall algorithm

(Floyd 1962) was used for this purpose. All path planning

Fig. 3 Runtime generation of agent activity profiles

4 The complete code of this model can be accessed at this link: http://

code.google.com/p/ucf-abm/.
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occurs at initialization; candidate paths are stored in a look-

up table to be accessed later. The time complexity of

Floyd–Warshall algorithm is h(n3). The parameter values

used for all of the experiments are listed in Table 1.

5 Method

To evaluate the performance of our hybrid model, we

compared the performance of our model against several

other ABM and MCMC variants. Figure 4 shows the

relationship between the different methods in a schematic

way.

5.1 MCMC

To benchmark the performance of our improved hybrid

MCMC model (ABM-MCMC), we created a MCMC

simulation with a standard proposal distribution (MCMC).

Our MCMC simulation uses the Metropolis-Hastings

algorithm and is implemented with the mhsample func-

tion in the MATLAB Statistics toolbox.

Rather than creating one large monolithic simulation of

the entire urban system to explore a variety of scenarios,

here, MCMC is used to directly to forecast specific ques-

tions of interest, such as estimating the number of cars

entering the parking lots at different times of a day. One

can envision this as a two-dimensional diagram with the

horizontal axis corresponding to the time of a day, and the

vertical one showing the number of cars entering a specific

parking lot. The survey data from the questions about the

attendance pattern and frequency of parking lot usage are

used to initialize the MCMC model. Observations for the

Bayesian inference process are simply obtained based on

the results of the survey data for a simulation period of 90

days. Imagine that based on the survey data, a student

respondent enters the campus everyday before 9 am, leaves

at 5 pm, and reports his general usage of parking lot A as

being at a frequency of once a week. In this case, the

expectation is that the student would have occupied Lot A

twelve times (90/7) during the simulation period, so a

corresponding number of samples tagged with the reported

time range are produced and added to the input observation

data.

Table 1 The parameter settings

of ABM experiments
Parameter Value

Agents 47,000

Days 100

Time range 07:00–24:00

Random 

Initialization
Survey

Population Generation

ABM

Activity Based Micro Simulation
Route Planning

Generated Samples

Potential Observation

ABM Samples 

as Proposal

MCMC

Refining Proposal 

during Mixing

Random ABM

ABM+Survey

Adaptive MCMC

MCMC

ABM-MCMC

Fig. 4 A flowchart showing the relationship between the various

modeling methods. In the proposed hybrid model, ABM-MCMC, the

ABM is used to bootstrap the MCMC proposal distribution. In ABM

Random, the agent-based model is initialized with a student

population possessing randomly generated, but plausible schedules.

In ABM?Survey, the survey data are used to create the distributions

for generating agent activity profiles. MCMC employs the MH

algorithm with a standard proposal distribution, and in Adaptive

MCMC, the proposal distribution is refined during the mixing process
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Table 2 shows the parameter settings for MCMC used in

the experiments. The burn-in value refers to the number of

values that are discarded before the actual samples for the

Markov chain are generated. In order to remove the cor-

relation between the nearby samples, sometimes, the

samples are not gathered sequentially. The number of

samples that are thrown away determines the omission rate.

Here, two out of three samples are omitted. The last

parameter in the table shows the number of Markov chains

that are created.

5.2 ABM–MCMC

Similar to the notation that is used in Axtell (2003), we can

describe the relationship between the ABM and MCMC

models mathematically. The state of each agent i in the

agent-based model can be denoted by the vector xi 2 Xi

that can assume values in the range Xi � <ni . The state

space of the whole population can be designated as fol-

lows: X ¼ X1 � X2 � � � � � Xn; and the state of the model

at time t as xðtÞ � ðx1ðtÞ; x2ðtÞ; . . .; xnðtÞÞ 2 X; xi 2 Xi.

After convergence of the MCMC process, the following

condition will hold: x(t) ^ x(t ? 1). Here, X can be

designed to be same as the variable whose distribution we

are seeking using MCMC. The intuition is that the world

state, X, assumes the shape of target distribution. By

designing an appropriate agent-based model, this variable

will be close to the sought-after target distribution.

While we have enough samples from a variable x, it is

easy to compute its probability distribution function (PDF).

In this case, the samples drawn from the agent-based model

are used to determine the PDF of the proposal distribution.

In our experiments, we assign a probability value to each

point x proportional to its number of occurrences in

the population domain of the agent-based model:

q(a) = P(xi = a).
In our proposed unification of ABM of MCMC, the

input proposal distribution, q(x), for MCMC is derived

using the above assumptions. The samples that are pro-

duced by the ABM can be used to construct the proposal

distribution in the MCMC. It is worth noting that there are

other nonmathematical alternatives for combining the two

methods. For instance, it would be straightforward to

simply directly use MCMC as an embedded component to

model regions of the simulation where the total occupancy

is of more interest than the exact agent position.

In case of our case study, the final goal of the campus

modeling problem was to reach to a model describing the

transformation patterns of students. Accordingly, the

desired distribution should represent the time and location

of students. This information was retrieved from the agent-

based model by recording the x and y coordinates of agents

at each hour (tick) for 90 days. A Dirichlet distribution is

used as the unnormalized distribution, p(x). The general

PDF of the Dirichlet distribution can be expressed as

follows:

f ðx1; . . .; xk�1; a1; . . .; akÞ ¼
1

BðaÞ
Yi¼1

K

xai�1
i

Three variables, x, y, and time, form the three-dimensional

support of the applied Dirichlet distribution used by our

model. Hence, k in above formula is equal to three, and

x1, x2, and x3 correspond to x, y and time. The a values are

simply assumed to be equal to one. The proposal proba-

bility of each vector, containing x, y and time values, is

equal to the number of times the vector exists in the dataset

divided by the total number of records, under the

assumption that the agent-based model has produced

evenly distributed samples from the population domain.

The MCmultinomdirichlet function in R is used to

implement the proposed method; this function generates a

sample from the posterior distribution of a multinomial

likelihood with a Dirichlet prior.

5.3 Adaptive MCMC

We benchmark our proposed hybrid method against a

technique known as adaptive MCMC (De Freitas et al.

2001) in which the proposal distribution is updated at

runtime based on the behavior of Markov chain. For this

method, the Metropolis-Hastings algorithm from the

MCMC toolbox for MATLAB (Laine 2013) was used. Our

MCMC model assumes that the unnormalized distribution

is of the form of a Poisson distribution, the same as our

ABM model. For the proposal distribution, a Gaussian is

used. The MCMC attempts to find the most likely value of

the mean of the Poisson distribution (k in kxe�k

x! ).

6 Results

To evaluate the performance of the agent-based model

under different initialization conditions, we examined the

transportation forecasts produced by the simulation, both

through visualization and by comparing the predictions

against a dataset collected by the UCF Parking Services

office. The occupancy percentage of UCF student parking

garages (shown on the horizontal axis) predicted by every

modeling method is compared. Figure 5a–c show the

absolute differences between the forecasts for each

Table 2 The parameter settings for MCMC

Parameter a Burn-in Omission Rate Chains

Value [1 1 1] 1e ? 4 2 of 3 2
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modeling technique and the parking service data (closer to

zero is better). Note that, our hybrid method (shown at the

far right) consistently produces the best estimates,

improving upon both its parent techniques. The stability of

results obtained by different modeling methods is a con-

cern; in many agent-based models, small changes in initial

conditions can result in large changes in the final predic-

tion. Figure 6 shows the standard deviations obtained from

20 runs of the ABM?Survey and the proposed ABM-

MCMC methods. Note that, using the MCMC estimator

reduces the variance of the raw ABM model, resulting in

more consistent predictions.

The agent-based portion of our model can be used to

create useful visualizations to provide intuitions about the

students’ transportation patterns. One of the common

questions often asked by policy-makers is the density of

humans at various locations. Figure 7 shows the probabil-

ity of being in a location on campus for the students at

large. In this figure, darker circles show more populated

areas. In addition to the spots and buildings on campus, the

traffic on the streets and walkaways can be also predicted

by our method. Some obvious facts that can be easily

verified by a domain expert are also observed in this set of

results. For instance, as on most university campuses, the

student union is the most frequently visited place since it is

the venue for most events and many dining locations. The

wide drivable boulevard that surrounds the campus

dominates the road usage as it is the only way that can be

used by cars and shuttles to reach most points on campus.

7 Conclusion

Hybrid models are a powerful strategy for reconciling the

predictions of multiple models to present a unified picture

to policy-makers, while retaining the diversity and flexi-

bility of multiple approaches. This article introduces a new

hybrid modeling method for combining agent-based mod-

els with MCMC. We demonstrate that the proposed method

for initializing the MCMC proposal distribution with ABM

data significantly reduces the prediction error over standard

MCMC and also improves upon the ABM alone. We

hypothesize that the combined ABM-MCMC finds a more

general model of the posterior distribution than the ABM

alone. Although agent-based models are often difficult to

formally specify and reproduce exactly, the contribution of

the ABM can be entirely quantified by the single proposal

distribution, which makes it possible to reproduce the

results without replicating the entire ABM. In a case study,

we demonstrate that our method can be used to accurately

model and forecasting transportation patterns in a large

urban area. However, the value of the ABM-MCMC

modeling approach lies not only its ability to more accu-

rately predict variables such as parking lot occupancy, but
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Fig. 5 The absolute difference (plotted on a log-scale) between the

average occupancy percentage of the campus parking lots (shown on

the horizontal axis) as predicted by different modeling methods

compared to the UCF Parking Services data. Our proposed method

(ABM-MCMC), shown at the far right, yields consistently better

estimates of parking lot utilization with a close to zero absolute

difference
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also in the simplicity of the proposal distribution

representation.

Transportation modeling and analysis can play a key

role in facilitating effective urban planning, enabling

public policy-makers to tackle difficult resource allocation

decisions such as judging the relative merits of bicycle

facility enhancements, pedestrian-oriented development,

increases to public transit, and HOV lanes. University

communities are constantly weighing the benefits of new

construction: Is it better to add a parking lot or increase on-

campus housing? Yet, no single model tells the whole

story, and wise analysts guard themselves from avoidable

failures by examining the forecasts of many models across

a wide range of parameters. The human modeler always

remains an important part of the equation, and hence, it is

important to provide the user with flexible tools and easy-

to-understand representations. Our hybrid approach pro-

vides a simple way to relate the predictions of multiple

models through proposal distributions; we envision that

these distributions can serve as a common exchange format

between models. The proposal distributions produced by

the ABM are more complicated than the ones commonly

used to initialize MCMCs, but are still relatively simple to

express. By directly visualizing the proposal distribution,

the modeler can gain an understanding of the effects of

changing the parameters of the ABM.

One simple improvement that we are planning to make

in the future is to add faculty/staff into our agent-based

model; this was not a priority initially since previous work

has shown that faculty/staff activity profiles have a much

lower entropy and are inherently easier to predict than

student profiles (Eagle and Pentland 2006). Supplementing

the simulation with additional information about semester

class scheduling is likely to yield the largest forecasting

improvement at the cost of making the simulation less

applicable to other urban modeling problems. A large

amount of class attendance and scheduling information is

collected by the university and could be added to the

simulation without requiring additional survey efforts.
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