
ORIGINAL ARTICLE

Casey Reas Æ Ben Fry

Processing: programming for the media arts

Received: 15 January 2005 / Accepted: 19 August 2005 / Published online: 30 May 2006
� Springer-Verlag London Limited 2006

Abstract Processing is a programming language and environment built for the
media arts communities. It is created to teach fundamentals of computer program-
ming within the media arts context and to serve as a software sketchbook. It is used
by students, artists, designers, architects, and researchers for learning, prototyping,
and production. This essay discusses the ideas underlying the software and presents
its relationship to open source software and the idea of software literacy. Addi-
tionally, Processing is discussed in relation to education and online communities.

Keywords Software Æ Authoring tools Æ Software literacy Æ Education Æ
Online communities

1 Processing

Processing...
If you watch for it, you will notice this many times during the day. It displays

after swiping a debit card at the grocery, gas station, or ATM and after taking a
picture with a digital camera. Machines that process information are the digital
heartbeats of 21st century society, pumping information from one location to
another. Software is the medium that controls this flow of bits traversing the air
and surface of our planet. Understanding software and its impact on culture is a
basis for understanding and contributing to contemporary society. This essay
focuses specifically on the relation between software and the visual arts through
discussing Processing, a software language and environment originated by the
authors. The concepts and social context for the software are emphasized, but
we begin with a brief description of the software.

C. Reas (&)
Design | Media Arts, UCLA Design | Media Arts,
University of California Los Angeles,
11000 Kinross Avenue, Suite 245, Box 951456,
Los Angeles, CA 90095-1456, USA
E-mail: reas@ucla.edu
Tel.: +1-310-3826007

B. Fry
Broad Institute, 77, 7th St #2, Cambridge, MA 02141, USA
E-mail: fry@processing.org

AI & Soc (2006) 20: 526–538
DOI 10.1007/s00146-006-0050-9

Processing relates concepts of software to principles of visual form, motion,
and interaction. It integrates a programming language, development environ-
ment, and teaching methodology into a unified system. Processing is created to
teach fundamentals of computer programming within a visual context, to serve
as a software sketchbook, and to be used as a production tool for specific
contexts. It is used by students, artists, design professionals, and researchers for
learning, prototyping, and execution. The Processing language is a text pro-
gramming language specifically designed for generating and modifying images.
These programs are written in a minimal text editor with adjacent buttons to
run, stop, open, save, and export programs. The following program draws two
lines on the screen

size(200,200);
line(40, 180, 200, 70);
line(0, 60, 200, 160);

The numbers used in this program specify coordinates. The first row of code
creates a window of 200·200 pixels. The second and third rows draw lines at
specified locations in the window. Making the structure of the program slightly
more complex enables motion and response to information outside the com-
puter. The following program displays two similar lines, but makes them con-
trollable with the computer’s mouse

void setup() {
 size(200, 200);
}

}

void draw () {
 background(204);
 line(40, 180, 200, mouseY);
 line(0, mouseY, 200, 160);

527

Processing strives to achieve a balance between clarity and advanced features.
Beginners can write their own programs after only a few minutes of instruction,
but more advanced users can use libraries of increasingly complex functions
when they are ready for a new challenge. Many computer graphics and inter-
action techniques can be discussed including vector/raster drawing, image pro-
cessing, color models, events, network communication, object-oriented
programming, etc. Processing is easily extended to create sound, send/receive
data in diverse formats, and export other 2D and 3D file formats. Processing
was created because we thought we could develop a better tool for creating our
research and art projects and could simultaneously develop a better environment
for teaching concepts of software and interaction within design and art schools.
Common personal experiences helped us to clarify our goals. We had both been
using computers since childhood and had studied visual design for our under-
graduate degrees. We both worked professionally creating software (Fry worked
for Netscape and Reas worked as an interface design consultant for Microsoft,
the New York Times, and J.P. Morgan). Most importantly, we were both
studying with Professor John Maeda at the MIT Media Laboratory when the
concept for the project was conceived. The culture of his Aesthetics and Com-
putation group and our experience working on the Design by Numbers project
were the greatest influence on Processing. This shared history is the foundation
for our attitudes toward design, media arts, and technology.

2 Software

A group of beliefs about the software medium combine to set the conceptual
foundation for Processing. Decisions related to designing the software and
environment are made with these beliefs as a reference.

2.1 Software is a unique medium with unique qualities

Concepts and emotions may be expressed in this medium which are not pos-
sible to express in other media. Software requires its own terminology and
discourse and should not be evaluated in relation to prior media such as film,
photography, and painting. History shows technologies such as oil paint,
cameras, and film have changed artistic practice and discourse, and while we
do not claim new technologies improve art, we do feel they enable different
forms of communication and expression. Software is unique among artistic
mediums in its ability to produce dynamic form, process gestures, to produce
behavior, simulate natural systems, and integrate various media including
sound, image, and text.

2.2 Each programming language is a distinct material

As with every media, different materials are appropriate for different tasks.
When designing a chair, a designer decides to use steel, wood or other materials
and makes this choice based on the context in which the chair will be used in
relation to her personal ideas and tastes. This scenario transfers into writing
software. The abstract animator and programmer Larry Cuba describes his

528

experience, ‘‘Each of my films has been made on a different system using a
different programming language. A programming language gives you the power
to express some ideas, while limiting your abilities to express others.’’ (Cuba
1987, p 111) There are many languages available to select from and some are
more appropriate to use than others depending on the goals of the software.
Processing utilizes a common computer programming syntax which makes it
easy for people to extend their knowledge gained through its use to many diverse
programming languages.

2.3 Sketching is necessary for the development of ideas

It is necessary to sketch in a similar medium to the final medium and
therefore to sketch electronic media, it is important to work with electronic
materials. Painters often construct elaborate drawings and sketches before
executing the final work. Architects traditionally work first in cardboard and
wood to better understand their forms in space. Musicians work with a piano
before scoring a more complex composition. This methodology is universal
through the arts. Just as each programming language is a distinct material,
some are better for sketching than others and artists working in software
must also have environments for working through their ideas before executing
final code. Processing was built to act as a software sketchbook, making
it easy to explore and refine many different ideas within a short period of
time.

2.4 Programming is not just for engineers

Many people think programming is only for people who are good at math
and other technical disciplines. One reason programming remains within the
boundaries of this type of personality is that similarly minded people usually
create programming languages. It is possible to create different kinds of
programming languages that engage people with visual and spatial minds.
Alternative languages such as Processing expand the programming space to
people who think differently. An early alternative language was Logo, de-
signed in the late 1960s by Seymour Papert as a language concept for children
(Papert note). Through Logo, children are able to program many different
media including a robotic turtle and graphic images on screen. A more
contemporary example is the Max programming environment developed by
Miller Puckette in the 1980s. Max is unique because programs are created by
connecting lines to boxes, representing the program flow and logic more like
a flowchart than lines of text. It has generated enthusiasm from thousands of
artists who use it as a base for creating audio and visual software. The same
way graphical user interfaces (GUIs) opened up computing for millions of
people, alternative programming environments will continue to enable new
generations of artists and designers to work directly with software. We hope
Processing will help many artists and designers to approach software and that
it will stimulate interest in other programming environments built for the
media arts.

529

3 Literacy

Processing does not present a radical departure from the current culture of
programming, but re-positions it in a way that is accessible to people who are
interested in programming, but may be intimidated or not interested in the type
of programming that takes place in computer science departments. The com-
puter, which originated as a tool for fast calculations, has slowly evolved into a
medium for expression and Processing views computers from this perspective.

As early as 1974, Ted Nelson wrote about the minicomputers of the time in
Computer Lib/Dream Machines, ‘‘the more you know about computers...the
better your imagination can flow between the technicalities, can slide the parts
together, can discern the shapes of what you would have these things do.’’
(Nelson 2003, p 306) In this book he discusses potential futures for the computer
as a media tool and clearly outlines ideas for hypertexts (linked text which set
the foundation for the Internet) and hypergrams (interactive drawings). Other
developments led to prototypes for today’s personal computers at XEROX
PARC in the mid-1970s. The Dynabook vision included more than hardware. A
programming language was written to enable, for example, children to write
storytelling and drawing programs and musicians to write composition pro-
grams. In this vision there was no distinction between a computer user and
programmer.

Thirty years after these optimistic writings, we find ourselves in a different
place. A technical and cultural revolution did occur through the introduction of
the personal computer and the Internet but people are overwhelmingly using the
software tools created by professional programmers rather than making their
own. This situation is described clearly by John Maeda in his book Creative
Code, ‘‘To use a tool on a computer, you need do little more than point and
click; to create a tool, you must understand the arcane art of computer pro-
gramming.’’ (Maeda 2004, p 113) The negative aspects of this situation are the
constraints imposed by software tools. As a result of being easy to use, they
obscure some of the computers potential. To fully explore the computer as an
artistic material, its important to make the ‘‘arcane art or computer program-
ming’’ into widely understood principles.

Processing strives to make it possible and advantageous for people within the
visual arts to learn how to build their own tools—to become software literate.
Alan Kay, a pioneer at Xerox PARC and Apple, explains what literacy means in
relation to software:

The ability to ‘‘read’’ a medium means you can access materials and
tools created by others. The ability to ‘‘write’’ in a medium means you
can generate materials and tools for others. You must have both to be
literate. In print writing, the tools you generate are rhetorical; they
demonstrate and convince. In computer writing, the tools you gen-
erate are processes; they simulate and decide. (Kay 1989, p 191).

Making these processes which simulate and decide requires learning an arti-
ficial language, such as one of the programming languages which exist today or
one which will be invented in the future. Processing, the language we have been
developing for the last 3 years, focuses on teaching the foundations of most

530

existing artificial languages and focuses further on the elements of these lan-
guages that are advantageous to the visual arts. Processing is an excellent
environment for beginners because there are immediate visual results, its com-
plexity is scalable, there is focused online community support, and it supports
teaching a broad range of fundamentals. These software fundamentals include:
variables, control structures, functions, pixel operations, procedural and object-
oriented concepts, signal processing, 2D/3D graphics, vector and raster graph-
ics, and transformations. Processing helps people with moderate skills to become
more literate through its concise programming structures, familiar syntax, clear
examples, and additional libraries.

4 Open

While the open source software movement is having a major impact on our
culture and economy through the development of initiatives such as Linux, it is
having a minute influence on the culture surrounding software for the media
arts. There are scattered small projects, but companies such as Adobe and
Macromedia dominate software production and therefore control the future of
software tools for use within the arts. As a group, artists and designers lack the
technical skills to support independent software initiatives. Processing strives to
apply the spirit of open source software innovation to the domain of the arts.
We strive to provide an alternative to available commercial software and to raise
the awareness and skills of members of the arts community to stimulate interest
in similar initiatives. Our goal is to make Processing easy to extend and adapt
and to make it available to as many people as possible. Processing probably
would not exist without its ties to open source software. Using existing open
source projects as guidance and for important components including the text
editor and parser has allowed the project to develop within a relatively small
amount of time without a large team of programmers. Individuals are more
open to donate their time to an open source project and therefore the software
evolves without a budget. These factors enable the software to be distributed
without cost, which enables access to people who cannot afford the high prices
for commercial software. Opening the Processing source code allows people to
learn from its construction and to learn through extending it with their own
code. People are encouraged to publish the code for their programs written in
Processing. The same way the ‘‘view source’’ function in web browsers
encouraged the rapid expansion of the Web, access to other peoples’ Processing
code enables members of the community to learn from each other and the skills
of community raise as a whole. An example involves software for a camera
tracking objects in a live video image, thus allowing people to interact with the
software through their bodies directly, rather than through a mouse or key-
board. The original code, written by Robert Hodgin, worked well but was
limited to tracking only the brightest object in the frame (Fig. 1). Karsten
Schmidt (a.k.a. Toxi), a more experienced programmer, used the code Robert
posted on the web as a base for writing more general code that could track
multiple colored objects at the same time. Using this improved tracking code as
infrastructure enabled Laura Hernandez Andrade, a graduate student at UCLA
to build Talking Colors, an interactive installation which superimposes emotive

531

text about the colors people are wearing on top of their projected image (Fig. 2).
Sharing and improving code enables people to learn and to build projects that
would be too complex without assistance.

5 Education

Processing makes it possible to introduce concepts of software in the context of
the media arts and also to open media art concepts to a more technical audience.
The generality and origins of the Processing syntax make it a base for future
learning. Skills learned through Processing enable people to learn other pro-
gramming languages suitable for different contexts including web authoring,
networkings and communications, microcontrollers, and computer graphics.

There are many established curricula for computer science (and thousands of
variants), but by comparison there have been very few classes striving to inte-

Fig. 1 Computer vision motion tracking software explorations by Robert Hodgin (2003)

Fig. 2 Talking Colors software by Laura Hernandez Andrade (2004)

532

grate media arts knowledge with core concepts of computation. Using the
classes initiated by John Maeda as a model, diverse hybrid courses are being
created using Processing. Processing has proved useful for short workshops
ranging from 1 day to a few weeks. Because the environment is so minimal,
students are able to begin programming after only a few minutes of instruction.
The Processing syntax, similar to other common languages, is already familiar to
many people and this allows students with more experience to begin writing
advanced syntax almost immediately. In a 1 week workshop at Hongik Uni-
versity in Seoul during summer 2003, the students were a mix of design and
computer science majors and both groups worked toward synthesis. Some work
was more visually sophisticated and some more technically advanced, but it was
all evaluated within the same set of criteria. Students like Lee Soo-jeong entered
the workshop without any previous programming experience and while she
found the material challenging, was able to learn the basic principles and apply
them to her vision (Fig. 3). During critiques, her strong visual skills set an
example for the students from more technical backgrounds. Students such as
Kim Tai-kyung from the computer science department quickly understood how
to use the Processing software, but was encouraged by the visuals in other
students’ work to increase his aesthetic sensibility. His work with kinetic
typography is a good example of a synthesis between his technical skills and
emerging design sensitivity (Fig. 4). Processing is used for teaching longer
introductory classes for undergraduates and for topical graduate level courses.
Within the United States alone, it has been used at small art schools, private
colleges and public universities. At UCLA, for example, it is used to teach a

Fig. 3 Software exploration by Lee Soo-jeong (2003)

533

foundation class in digital media to second year undergraduates and has been
introduced to the graduate students as a platform for topical explorations. In the
undergraduate Introduction to Interactivity class, students read and discuss
the topic of interaction and make many examples of interactive systems using
the Processing language. Each week new topics such as kinetic art or the role of
fantasy in video games are introduced, the students learn new programming
skills, and they produce an example of work addressing the weekly topic. For
one of their projects, the students read Sherry Turkle’s ‘‘Video Games and
Computer Holding Power’’ and were given the assignment to write a short game
or event exploring their personal desire for escape or transformation. Leon
Hong created an elegant flying simulation where the player floats above a body
of water and moved toward distant island (Fig. 5). Muskan Srivastava wrote an
eating game, where the objective was to consume an entire table of deserts
within ten seconds (Fig. 6). Teaching basic programming techniques while
simultaneously introducing introductory theory of new media allows the stu-
dents to directly explore their ideas and develop a deep understanding and
intuition about interactivity and digital media.

In the graduate level Interactive Environments class at UCLA, Processing is
used as a platform for experimentation with computer vision. Using existing
sample code, each student has 1 week to develop software that uses the body as
an input via images from a video camera. Zai Chang developed a provocative
installation called White Noise where participants’ bodies are projected as a
dense series of colored particles. The shadow of each person is displayed with a
different color and when they overlap, the particles exchange, thus appearing to

Fig. 4 Software exploration by Kim Tai-kyung (2003)

534

exchange substances and infect the other with their unique substance (Fig. 7).
Reading information from a camera is an extremely simple action within the
Processing environment, and this fosters quick and direct exploration within
classes that might have previously required weeks of programming tutorials to
lead up to similar projects.

6 Network

Processing takes advantage of the strengths of web-based communities and this
has allowed the project to grow in unexpected ways. Thousands of students,
educators, and practitioners across five continents are involved in using the
software. The project website serves as the communication hub, but contributors
are found remotely in cities around the world. Typical Web applications such as

Fig. 5 Mr Zephyr flight simulation software exploration by Leon Hong (2004)

Fig. 6 Software exploration by Muskan Srivastava (2004)

535

bulletin boards host discussions between people in remote locations about fea-
tures, bugs, and related events.

Processing programs are simply exported to the Web, which supports net-
worked collaboration and individuals sharing their work. Many talented prac-
titioners and students have been rapidly learning and publishing their work, thus
inspiring others. Websites such as Jared Tarbell’s Complexification.net and
Robert Hodgin’s Flight404.com present explorations into form, motion, and
interaction created in Processing. Tarbell creates images from know algorithms
such as Henon Phase diagrams and invents his own algorithms for the creation of
images such as his Substrate images reminiscent of urban patterns (Fig. 8). On
sharing his code from his website, he writes, ‘‘Opening one’s code is a beneficial
practice for both the programmer and the community. I appreciate modifications
and extensions of these algorithms.’’(Tarbell 2004) Hodgin is a self-trained
programmer who is using Processing to explore the software medium. It has
allowed him to move deeper into the topic of simulating natural forms and

Fig. 7 White Noise software by Zai Chang (2004)

Fig. 8 Substrate software by Jared Tarbell (2003)

536

motion than he was able in the Flash environment, while still providing the
ability to upload his software to the Internet. His highly trafficked website doc-
uments these explorations through displaying the running software as well as
documentation in for form of text, images, and movies (Fig. 9). Websites such as
those developed by Jared and Robert are popular destinations for younger artists
and designers and other interested individuals. By publishing their work on the
web in this manner, they gain recognition within the community.

Many classes taught using Processing publish the complete curriculum on the
Web and students publish their software assignments and source code for others
to learn from. The websites for Daniel Shiffman’s classes at New York Uni-
versity, for example, include online tutorials and links to the students’ work. The
tutorials for his Procedural Painting course cover topics including modular
programming, image processing, and 3D graphics by combining text with run-
ning software examples. Students maintain a web page containing all of their
software and source code created for the class. These pages provide the pro-
fessor with an easy way to review their performance and allows greater access to
the other members of the class.

The Processing website is a place for people to discuss their projects and share
advice. The Processing discourse section of the website, an online bulletin board,
has over two thousand members, with a subset actively commenting on each
others work and helping others with technical questions. For example, a recent
post focused on a problem with writing code for simulating springs. Over the
course of a few days, messages were posted discussing the details of Euler spring
implementations versus the Runge–Kutta method. While this may sound like an
arcane discussion, the differences between using one method over another can
cause a project to work well or to fail. This thread and many others like at are
becoming concise Internet resources for students interested in detailed topics.

To date, the Internet reference has been translated into Chinese (traditional
and simplified), Korean, Japanese, Indonesian, French, Spanish, Italian, and
Turkish and more should be completed by summer 2006. Affiliated websites
have been introduced in Japanese, Korean, and Hebrew to foster communities

Fig. 9 Flight404 website by Robert Hodgin (2004)

537

in other nations. These efforts extend the Processing network to thousands of
people outside the English speaking populations.

7 Conclusion

The Processing approach to programming blends into established methods. The
core language and additional libraries make use of Java, which also has elements
identical to the C programming language. This heritage allows Processing to
make use of over 30 years of programming language refinements and makes
Processing understandable to many people who are already familiar with writing
software.

Processing is unique in its emphasis and tactical decisions relating to its
context within the media arts. Processing makes it easy to write software for
drawing, animation, and reacting to the environment and it is easily extended to
integrate with additional media types including audio, video, and electronics.
Modified versions of Processing are under development by community members
to enable programs to run on mobile phones and to program microcontrollers.

The network of people and schools using the software continues to grow and
refined releases of the core software are in development. In the 3 years since the
original idea for the software, it has evolved organically through presentations,
workshops, classes, and discussions around the globe. We plan to continually
improve the software and foster its growth, with the hope that 1 day the practice
of programming reveals its potential as the foundation for a more dynamic
media.

8 Links

http://www.processing.org
http://www.acg.media.mit.edu
http://www.classes.dma.ucla.edu/Fall05/28
http://www.complexification.net/
http://www.flight404.com/version7/
http://www.stage.itp.tsoa.nyu.edu/�dts204/ppaint/

References

Cuba L (1987) Calculated movements. Published in Prix Ars Electronica Edition ‘87:
Meisterwerke der Computerkunst. H.S. Sauer

Kay A (1989) User interface: a personal view. In: Laurel B (ed) The art of human–computer
interface design, Addison-Wesley, Reading, MA

Maeda J (2004) Creative code. Thames & Hudson, London
Nelson T (2003) Computer lib/dream machines. In: Wardrip-Fruin N, Montfort N (eds) The

new media reader. MIT Press, London
Tarbell J (2004) Complexification.net (http://www.complexification.net/medium.html)

538

	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Fig1
	Fig2
	Fig3
	Fig4
	Sec10
	Fig5
	Fig6
	Fig7
	Fig8
	Fig9
	Sec11
	Sec12
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5

