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Abstract. We present two efficient protocols which implement robust threshold RSA
signature schemes, where the power to sign is sharé&fipyers such that any subset
of T + 1 or more signers can collaborate to produce a valid RSA signature on any
given message, but no subseflobr less corrupted players can forge a signature. Our
protocols are robust in the sense that the correct signature is computed even if up to
T players behave in an arbitrarily malicious way during the signature protocol. This,
in particular, includes the cases of players who refuse to participate or who introduce
erroneous values into the computation. Our robust protocols achieve optimal resiliency
as they can tolerate up tt\ — 1)/2 faults, and their efficiency is comparable with the
efficiency of the underlying threshold RSA signature scheme. Our protocols require
RSA moduli which are the product of two safe primes, and that the underlying (cen-
tralized) RSA signature scheme is unforgeable. Our techniques also apply to the secure
sharing of the RSA decryption function.

We show that adding robustness to the existing threshold RSA schemes reduces to
solving the problem of how to verify an RSA signature without a public verification

* A preliminary version of the paper appeareddrypto '96 [GIJKR1].
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exponent. Our technical contribution focuses on solving this problem. Once a solution
to this problem exists it can be applied to any existing threshold RSA signature scheme
in order to achieve sbustthreshold safe prime RSA signature scheme.

Key words. RSA signatures, Threshold RSA, Threshold cryptography.

1. Introduction

The idea of distributed signature schemes is to depart from the single-signer approach
in which one person is the sole holder of a secret key, and to allow a group of people
to “hold” the key in such a manner that they can, as a group, produce signatures, yet
no person on his own can generate a signature. The signature which is generated by the
group is the same as if it were generated by a single signer. This ensures the important
property that the verifier of such a signature does not need to be aware of the method
(centralized or distributed) used to generate the signature.

We say that a distributed signature scheme(ig,a\)-threshold signature schemé
given a messaga, and a group ofN players, where each one holds a part of the secret
key, any subset of + 1 or more players can generate the signatureno/e say that
the scheme isecure or unforgeabli no coalition of T (or fewer) players can produce
a valid signature on a new message, even after the system has produced signatures for
many messages. Furthermore;Ta N)-threshold signature schemer@bust (or fault-
tolerani) if it can correctly compute signatures, even in the presence of Tijatbitrarily
malicious players.

Note that a simple secret sharing of the secret key and its reconstruction by a player
at signing time would not satisfy our requirement, as it allows future signatures to be
generated by a single player (i.e., such reconstruction would create a single point of
failure).

Robust threshold signature schemes have very important applications, and we exem-
plify this briefly. The secret key of a global certification authority will be an attractive
target for attacks. If the key is held in one site, then once this site is broken into, the
key is exposed. Yet, if the key is distributed amadXgsites, using &T, N)-threshold
signature scheme, then one needs to breakTirtol sites in order to learn the key or
forge signatures. In addition, once a site is broken into, it might exhibit arbitrary perfor-
mance, yet the system should still be able to generate signatures. Hence, we increase the
security and availability of a system by distributing the secret key. Furthermore, if the
key is held on a single site, then signatures cannot be generated if this site crashes. Note
that the trivial solution of key replication solves the availability problem, yet it requires
more sites to hold the full key, hence adding to the vulnerability of the system. A robust
threshold signature protocol can, in particular, tolerate up such crashes (and even
arbitrary malicious actions), thus increasing the availability of the signature operation
without decreasing its security.

Threshold signatures are part of the general approach knowhreshold cryptog-
raphyintroduced through the works of Desmedt [Des1], Boyd [Bo], Croft and Harris
[CH], and Desmedt and Frankel [DF1]. For an early survey on threshold cryptography
see [Des2]. Solutions for the case of the RSA signature scheme are especially impor-
tant because of its widespread use (a de facto standard). In addition, since in the RSA
cryptosystem the signing algorithm coincides with the decryption algorithm, solutions
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to shared RSA signatures usually lead to shared RSA decryption procedures which have
various applications, e.g., key escrow (see [Mi]) and secure distributed storage (see
[GGJR]). Desmedt and Frankel initiated the study of threshold RSA [DF2], which was
followed by De Santis, et al. [DDFY]. These papers provide solutions for the problem
of threshold RSA, however, they lack the robustness property.

The basic paradigm followed by known threshold signature schemesis as follows. Each
player P has a shard; corresponding to the signature keyGiven a messag® each
of the players?, participating in the signature generation computes a “partial signature”
which depends on the messagethe secret local keg;, and, possibly, other public
information. Partial signatures are then combined into the required full signatumne on
This combining operation does not require secrecy and thus can be executed in a public
form or by any (not necessarily trusted) single party. In particular, partial signatures do
not require secrecy protection. On the other hand, a single incorrect partial signature can
lead to a wrong final signature an. Therefore, in order to add the robustness property
to such a threshold signature scheme it suffices to solve the problem of verifying the
correctness of a single partial signature.

It turns out that in all known threshold RSA signature schemes (e.g., [DF2], [DDFY],
and [Ra2]), checking a partial signature reduces to checking an RSA signature produced
using the secret; held by the signing playeP,. In these partial signatures is in
fact a secret RSA exponent, and the partial signature has thenfiérmodn wheren
is the public RSA modulus. What makes this verification problem nontrivial is that the
corresponding verification exponasis unknown. In fact, this exponent must be hidden
even fromP, since the knowledge af; ande together allows him to factan and in
turn to forge signatures. Hence, the problem our paper focuses on is: how to verify an
RSA signature for which the modulus is known but the verification exponent is not.

Technically, the main contribution of our paper is in presenting and analyzing two
efficient solutions for the problem of verifying a partial signature. Once this problem is
solved the solution can be incorporated into any of the exiting threshold schemes [DF2],
[DDFY], [Ra2] in order to achieve a robust scheme. In this paper we exemplify this by
applying our current solution to the threshold RSA result of [RaZ2].

The first solution is achieved by employing extensions which we developed of the
Information Checking Protocalf Rabin and Ben-Or [Ral], [RB]. The second solution
draws from thaindeniable signature/ork initiated by Chaum and van Antwerpen [CA].

This later protocol is of independent interest and our solution has been already used
in other applications such as in [GKR] to achieve RSA-based undeniable signatures,
and [FGMY], and [Ra2] in the context of proactive RSA. Our solutions require RSA
composites of a special form, namely, the product of two safe primes (see Section 3).

We then combine this solution with an efficient threshold RSA scheme (e.g., [Ra2])
in order to achieve an efficient solution for rob($t N)-threshold RSA signatures, for
any threshold valu&, N > 2T + 1.

In a recent and independent work, Frankel, et al. [FGY] have extended the notion of
result-checkingntroduced by Blum and Kannan [BK], to the settingwitness-based
cryptographic checkingAmong the main motivations for that work is the generation
of a robust threshold RSA signature scheme. The result of [FGY] works for any form
of the RSA composite. While [FGY] provides a more general theoretical framework,
our techniques, specifically designed for safe prime RSA, result in much more efficient
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and practical solutions. In particular, our basic protocols involve just a small constant
number of modular exponentiations while in [FGY] a very large number of such costly
exponentiations is required (at lea®tk) exponentiations for a probability of error

of 27%).

Our scheme eliminates single points of failure from the system once the key is shared.
We assume a dealer which generates the RSA keys and shares the secret key among the
players, erasing afterward all the secret information it holds. The dealer is still a single
point of failure in the system, but its presence is now limited to a very short period of
time (the initialization of the system). In a recent result Boneh and Franklin [BF] showed
away to generate the RSA keys in a distributed fashion. Yet their solution cannot be used
in our setting as it does not provide a method for verifying the properties of the composite
modulus that we require. We note that, in principle, one could use generic results for
secure multiparty computation [GMW1], [BGW], [CCD] to generate, distribute, and
verify properties of an RSA key, but those are obviously too impractical for actual use.

2. Overview of Our Results

We briefly describe the basic construction underlying the existing threshold RSA
schemes. Given = pq, wherep andq are large primes angd(n) = (p — 1)(q — 1),

the public RSA key is a paiin, €), where gcde, ¢(n)) = 1, the secret key is a number

d, s.t.ed = 1 modg(n), and the signature on a messagés S, = m? modn. We

note that such a scheme applied directly to the signed mess&rot secure against
forgery; hereafter, we consider to be an encoding—e.g., using a hash function—of

the original message to be signed such that the resultant signature can be assumed to be
secure against forging.

Adistributed(T, N)-threshold signature scheme has two phases. In the first one, called
the Dealing Phase, the secret kkig shared among thié players, such that each player
P, has a “sharet, of d. These shares are created in such a manner that in the second
phase, which is called the Signature Phase, when a messiaggven, any subses of
T + 1 players can generate “partial signatures’= m% modn, i € S, which are then
combined to generate the signaturemfFor illustration and concreteness, we provide
in Section 3.3 details of one such threshold RSA scheme from [Ra2].

All of the existing RSA threshold schemeesgjuire, in order for the generated signature
to be correct, that all partial signaturgse correct as well. Consequently, these schemes
cannot tolerate faults. If we are to confront failures, we must be able to detect which of
the partial signatures provided by the players are improper. Once the incorrect partial
signatures are sieved out, the computation can be carried out the same way as in the case
where there are no faults.

In this paper we concentrate on providing solutions for the problem of detecting an
improper partial signature. In the known threshold RSA solutions (in particular, [DF2],
[DDFY], and [RaZ2]), the sharas, .. ., dy of the secret keyl can be viewed themselves
as RSA secret keys. Yet, for each of these keys the corresponding public exponent,
g = di‘1 mod ¢(n), is unknown. Furthermore, the public exponemhust nobe known
even to the signeP; as it would expose a multiple @f(n) and hence would allovi?,
to factorn [DelL] (and thus produce full signatures by itself without collaboration of
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a threshold of players). Hence, we are faced with the problem of checking a partial
signature for which we do not have a public exponent. Under the circumstances where
the public exponent is not known, there must be some other information that allows the
verification of such partial signatures.

To achieve this goal, additionaérification datadenotedviy, Vio, .. ., Van, IS gen-
erated in the Dealing Phase, wh&tgis a piece of information used by play@rduring
the Signature Phase to check the partial signatyprovided by another playé?, .

The following is a schema that represents in a generic way the phases and components
of a robust threshold RSA signature scheme:

Signature Phase

Dealing Phase (Protocol for player P;)

Dealer generates » = pg Broadcast o: = (m® mod n)
Public key : (e,n) For each partial signature o, do:
Private key : d l o
. m
Shaxie 1kliy d,dgeners;tmg 17. Black-Box 2
partia eys‘ Lo : N 24 Partial Signature Verification
Black-Box 1 ] J .
Dealing of verification data: “o; is good/bad
Vii, Viz, ..., Vo Generate signature on m from any subset

of T + 1 good players’ information

The protocols presented in this paper correspond to the “black-boxes” shown in the
schema. Using these protocols we can prove that there exist robust and unforgeable
threshold RSA signature schemes (see Theorem 3).

We observe that the addition of the verification protocols to an otherwise nonrobust
threshold signature scheme has an obvious performance cost. However, under normal
circumstances when the system is not under active attack one can avoid this extra over-
head: each player generates a signature from the appropriate number of broadcasted
partial signatures, and then checks the obtained combined signature using the known
public exponene. If the result is a proper signature, then there is no need for verification
of the partial signatures. Only if the combined signature fails should the verification
protocols that we provide be triggered.

The tradeoffs between different properties of a fault-tolerant threshold RSA depend
on the particular application of these techniques. For example, some applications may
require minimal communication between the players during the Signature Phase. Others
might need that partial signatures will be “publicly verifiable,” namely, that any person,
even outside the group of players, can verify every partial signature. We have devised
two different protocols for verification of partial signatures to address these different
requirements. The choice of which protocol to use depends on the needs of a specific
application.

The first protocol has@oninteractiveSignature Phase, and requires each playerto hold
local secret verification data. The second protocol requntesactionin order to verify
partial signatures, yet all the verification data is public (in particular, even parties not
present at the dealing phase can later act as verifiers of partial signatures). In the Dealing
Phase of the later protocol a publicly knowsamplemessage and its corresponding
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partial signatures are generated. In the Signature Phase of this protocol anyone can
verify a player’s partial signature by interacting with him, and using the sample signature
as the basis for the proof. Both solutions are efficient computationwise (a verification
involves only afew RSA exponentiations). Surprisingly, our noninteractive verification is
somewhat more efficient in computation than the interactive one. Communicationwise
the noninteractive solution is clearly optimal, while the interactive solution requires
the exchange of four messages between every two players. Both protocols enjoy the
fundamental property that they do not leak any information that can be used by the
players (even malicious ones) to forge signatures.

3. Preliminaries

3.1. Computation and Adversary Model

We assume that our computation model is composed of a depidyers{Py, ..., Py}

They are connected by a complete network of private (i.e., untappable) point-to-point
channels. In addition, they have access to a dedicated broadcast channel; by dedicated
we mean that if?, broadcasts a message, it will be recognized by the other players as
coming fromp,;.

These assumptions (privacy of the communication channels and dedication of the
broadcast channel) allow us to focus on a high-level description of the protocols. How-
ever, it is worth noticing that these abstractions can be substituted with cryptographic
techniques for privacy and authentication.

In addition to theN signing players, there exists a special entity, the ddalewho

generates (or is given) the secret signature key and is responsible for generating and
distributing the key shares and verification dsfia, Vi, ..., Vyn among the players.
This distribution occurs before the system starts producing signatures and we call this the
Dealing Phase. Only during this phase is the dealer active. It has no role during signature
generation. (In practical implementations one could destroy all data held by the dealer
at the end of the Dealing Phase.)

Our solutions deal with a special form of RSA, which is the following: the composite
n will be generated as a product of two primpsq of the formp = 2p’ + 1 and
g = 29’ + 1 where bothp’, g’ are primes. The size qf, q' is related to a global security
parameter.

THE ADVERSARY. We assume a computationally bounded adverséryvho cannot

break the underlying basic signature scheme. This adversary can corrupt u the

N > 2T +1 players in the network. We considemaliciousadversary who learns all the
information held by the corrupted players and hears the broadcasted messages. He may
cause corrupted players to behave in any (possibly malicious) way. Yet, the adversary
can never corrupt the dealBr* or read its memory. Nor can he tap the communication

line between two uncorrupted players.

1 In Section 7 we relax this assumption by showing how the dealing actions of the dealer can be verified by
the other players.
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3.2. Definitions of Threshold Signature Schemes

The following definitions of secure threshold signature schemes are from [GIKR2].
Related definitions can be found in [CMI]. We start by recalling the definition of signature
schemes in the traditional nondistributed setting.

Signature Scheme. A signature schemgis atriple of efficientrandomized algorithms
(Key-Gen, Sig, Ver). Key-Gen is thekey generatorlgorithm: on input a random string,
it outputs a pai(VK, SK), such thatvK is thepublic keyandSK s thesecret keyf the
signature schemsig is thesigningalgorithm: on input a messageand the secret key
SK, it outputssig, a signature of the message Ver is theverificationalgorithm. On
input a messagm, the public keyK, and a stringsig, it checks whethesigis a proper
signature ofm.

The notion of security for signature schemes was formally defined by Goldwasser, et
al. [GMR1] using various security flavors. The following definition captures the strongest
of these notions: existential unforgeability against adaptively chosen message attack.

Definition 1. We say that a signature scheie= (Key-Gen,Sig, Ver) is unforgeabldf

no adversary who is given the public Kéi generated bitey-Gen, and the signatures of

k adaptively chosen messages ..., mg, can produce the signature on a new message
m with nonnegligible probability.

Threshold Signature Schemes. Let S = (Key-Gen, Sig, Ver) be a signature
scheme. AT, N)-threshold signature scherfieS for S is a pair of protocolsThresh-
Key-Gen, Thresh-Sig) for the set of player§Py, . .., Py} (and for a designated dealer in
the case ofhresh-Key-Gen).

Thresh-Key-Gen is a key generation protocol carried out by a designated dealer to
generate a paifvVK, SK) of public/private keys with the same distribution lesy-Gen.

At the end of the protocol the private output of play®ris a valueSK; (related to the
private keySK). The public output of the protocol contains the public ké«.

Thresh-Sig is the distributed signature protocol. The private inpuPpfs the value
SK;. The public inputs for all players consist of a messagand the public keyWwK.
The output of the protocol is the vals& = Sig(m, SK). (The verification algorithm is,
therefore, the same as in the regular signature scliejne

Secure Threshold Signature Schemes.Our definition of security includes botim-
forgeabilityandrobustnesss defined below.

Definition 2. We say that a (T, N)-threshold signature schemeZS =
(Thresh-Key-Gen, Thresh-Sig) is unforgeableif no malicious adversary who corrupts

at mostT players can produce the signature on any new (i.e., previously unsigned) mes-
sage m, given the view of the protocolThresh-Key-Gen and of the protocol
Thresh-Sig on input messages;, . .., mg which the adversary adaptively chose.
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This is the analogous to the notion of existential unforgeability under chosen message
attack presented in Definition 1. Notice that now the adversary does not just see the
signatures ok messages adaptively chosen, but also the internal state of the corrupted
players and the public output of the protocols. Following [GMR1] one can also define
weaker notions of unforgeability.

In order to prove unforgeability we use the concepsiofiulatable adversary view
[GMR2], [MR]. Intuitively, this means that the adversary who sees all the information
of the corrupted players and the signaturemfcould generate by itself all the other
public information produced by the protoctitresh-Sig. In other words, the run of the
protocol provides no useful information to the adversary other than the final signature
onm.

Definition 3. A threshold signature schenmfaS = (Thresh-Key-Gen, Thresh-Sig) is
simulatabléef the following properties hold for any efficient (polynomial-time) adversary
againstZ S:

1. The protocolThresh-Key-Gen is simulatable. That is, there exists an efficient
(polynomial-time) simulato61M; that, on input the public keyK generated by
an execution ofrhresh-Key-Gen, can simulate the view of the adversary on that
execution.

2. The protocofrhresh-Sig is simulatable. That is, there exists an efficient simulator
SIM; that, on input the public input dfhresh-Sig (in particularVK andm), the
transcript of the execution &IM; (in particular the private information held by the
adversary), and the signatigig of m, SIM, can simulate the view of the adversary
on an execution ofhresh-Sig that generates as an output.

This is actually a stronger property than what we need. Indeed it would be enough
for us to say that the executions of the protoctiisesh-Key-Gen and Thresh-Sig give

the adversary no advantage in forging signatures for the scletmeother words, we
could allow the adversary to gain knowledge provided that such knowledge is useless
for forging. However, our stronger definition subsumes this specific goal and provides
a proof of security for any of the “flavors” of signature security as listed in [GMR1]
(see Proposition 1 below). Another important advantage of proving simulatability of the
protocol is that this property allows for securely composing the threshold protocol into
other application protocofs.

Proposition 1. If S is an unforgeable signature scherfizefinition 1) and 7S is a
simulatable threshold signature protog@efinition 3) for S, then7 S is unforgeable
(Definition 2).

Proof. We prove this for the case of an existential unforgeability against adaptive
chosen message attack. The proof is similar for weaker notions.

2 The simulators used in this paper all adanitxiliary inputand thus can bsequentiallicomposed [Go].
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Assume that7 S is forgeable, i.e., upon executirgthreshold signature genera-
tions on messagen;,, ..., Mg and outputting the appropriate signatures, an adversary
who corrupted at most players can produce a signature on a new (previously un-
signed) messagm. Denote this adversary hyl. Let us design a forgeF for the sig-
nature schemé. ForgerF has access to an oracle that provides signatures uhder
using a given public keyWK. In the construction off we make use of the adversary
A and the simulatorSIM; andSIM, of the adversaryd that are guaranteed to exist by
Definition 3.

First, 7 runs SIM; with public key VK to obtain the view of the adversary on
an execution of the key generation process that results on output of the publiikey
In particular, this adversary’s view contains the private information of the corrupted
players.

ThenF runsSIM, with adversaryA as follows. For each messagg queried byA,

F queries theS signature oracle to obtain the signaturemn and uses this signature
as input toSIM;.

In this way the whole view ofd from key generation to the distributed computation
of signatures on the messag®s, ..., mx chosen byA is generated byF with an
indistinguishable distribution from the real executiondl§ucceeds in forging a signature
on a new message, then so doeg. However, the latter contradicts the security of the
sighature schems. O

As we remarked earlier, Definitions 1 and 2 can be relaxed to allow weaker notions of
unforgeability [GMR1]. Proposition 1 holds also for these weaker notions. That is, if
TS is simulatable, the S inherits the same level of unforgeability theihas.

We now define the other important property of threshold schemes, namely, robustness.
This property ensures that the protocol will compute a correct output even in the presence
of malicious faults.

Definition 4. A threshold signature schenfeS = (Thresh-Key-Gen, Thresh-Sig) is
T-robustif even in the presence of an adversary who corriiptdayers, botlrhresh-
Key-Gen andThresh-Sig are guaranteed to complete successfully.

Remark(optimal resiliency). A consequence of our definition of security, that requires
both unforgeability and robustness (as lonJ ax less parties are corrupted), is that the
total numbem of players in the system must be at least-2 1. To see this, assume by
means of contradiction that there is a seqreN )-threshold signature scheme where up

to T players may be maliciously faulty ad = 2T. Consider the following adversary
strategy: crash the faulfly players during the signature computation protocol. Since the
protocol is robust this means that it will successfully complete anyway. However, this
means that the remaininf players can compute the signature on their own which is
in direct contradiction with the fact that the scheme is unforgeable for coalitiois of

or less players. Notice that this argument applies to our setting with a trusted dealer;
indeed, there is nothing a trusted dealer can do to avoid the above counterexample. An
important property of our schemes is that they achidve- 2T + 1 and thus they are
optimally resilient.
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Input Secret keyd, compositen,
number of playerd, and threshold'.

Secret Key Distribution—executed by the dealer.

1. Choose and han& valued;, €r [0..p(n) —1]forl <i < N -1, setdy = d —
ZiN;ll di modg(n).
2. Share the valug, using anyT -out-of-N Verifiable Secret Sharing (VSS) protocol.

Signature Generation
Input Messagen.

1. PlayerP, publishes partial signaturg = m% modn.
2. IfplayerP failsto give a partial signature all players reconstdjetsing the Reconstruction
Phase of the VSS protocol.

3. SetSy = [/, o modn.

Fig. 1. Secret key distribution and signature generation [Ra2].

3.3. Threshold Sharing of RSA functions

As said before, our contribution is in adding the robustness property to existing RSA
threshold signature schemes. Our techniques apply to several such schemes. For the sake
of illustration and concreteness we briefly describe here a particular solution to which
our techniques add robustness. We choose to present the solution of [Ra2] due to its
extreme simplicity. This solution is presented in Fig. 1 and is explained next. We stress
however that our techniques are applicable to several other nonrobust threshold RSA
schemes like the ones in [DF2] and [DDFY].

Given the secret kegl and p, q the dealer chooses random valaks. .., dy_1 €r
[0..¢(n) — 1], he then setdy = d — 3" di mod¢(n). For each value he further
shares this value using afiyout-of-N Verifiable Secret Sharing (VSS) protocol (e.qg,
[BGW] and [Pe] where the sharing is computed in a prime fiégldwith P > n). We
stress that this is a one-time operation.

On input a messag®a the protocol is carried out by having each player compute the
partial signature; = m®* modn and publish it. The signature &, = ]'[iN:1 md modn.

This works if all players are honest, however, a malicious player may contribute an
incorrect partial signature. Our techniques allow for testing each partial signature for
correctness. If a player fails to compute the correct partial signature, then his share
d; is reconstructed using the VSS Reconstruction Phase, and the partial signature is
recomputed.

Remark In order to simplify the description of our robustness technique, what we
described above is a simplified version of the protocol in [Ra2]. In particular, [Ra2]
presents ways to avoid revealing in the clear the shares of players who do not contribute
a correct partial signature (this can be desirable in case the player is not really corrupted,
but simply disconnected or lagging). Our techniques can be directly applied to add
robustness to the complete solution of [Ra2] as well.
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3.4. A Technical Issue

The methods which we describe in this paper for verifying a single RSA signature
pose a technical difficulty. A partial signatuse will be accepted as correct if either

oi = m% modn or o; = —m% modn. As it turns out this is not a serious problem. A
wrong sign can only influence the sign of the final signature, but then the correct sign
can be decided using the public verification exporeeon the produced signature.

3.5. Notation

For a positive integek we denotek] dzef{l, ..., k}. The public modulus is denoted by

n. We assume = pg, andp = 2p'+ 1,9 = 29’ + 1, wherep < g andp,q, p’, g’

are all prime numbersZ} denotes the multiplicative group of integers modajaand

e(n) = (p—1(q — 1) is the order of this group. For an elementc Z; we denote by
ord(w) the order ofw in Z;; and byind(w) the index ofw in this group (it holds that
ind(w) = ¢(n)/ord(w)). The subgroup generated by an elemer¢ Z* is denoted by

(w). The numbed € [¢(n)] denotes the (private) signature exponent. For any message
m e Z; we denote byg, the corresponding signature on namely,S, = m® modn.

4. Noninteractive Robust Threshold RSA

Here we present our noninteractive solution to the robustness problem of threshold RSA
signatures. Section 4.2 contains the protocol for dealing verification information during
the Dealing Phase, while in Section 4.3 we describe the protocol for verification of
partial signatures during the Signature Phase. (See the schema in Section 2 for the role
of these components in the full threshold signature protocol.) Our solution is based on the
Information Checking Protocol (ICP) from [Ral] and [RB]. The original ICP technique
is intended foone-timeverification of information provided by an untrusted party. In our
case we extend this technique to verificatiomufitiple partial signatures; in particular,
we extend ICP to work over the integers rather than over a prime field as originally
designed.

We first give a very rough sketch of the noninteractive solution. Consider two players
P andV, P generates a signature whith wants to verify. The verification will be
achieved by having botP andV hold auxiliary values. The prove? holds valuesd
(the secret key) ang. The verifierV holdsb andc, such thaty = bd + c. The values
d, y, b, andc are dealt to the corresponding parties during the Dealing Phase (and kept
secret by the parties). Given a messagethe prover generates the partial signature
md modn, and the additional informatiomY modn. P gives these values t4, who
verifies the partial signature by checking whettraf)’m® = mY modn.

An important technical aspect of this solution is that the equality bd + ¢ needs
to hold over the integers. The more natural approach of generating this equation modulo
¢(n), would enableP andV to combine their information and compute a multiple of
@(n) which, in turn, would allow for the efficient factorization of[DeL]. In the next
subsection we present an extension over the integers of the original ICP.
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ICP-Gen-Integers

Input RSA compositen, secret valuel € [¢(n)] known to D,
security parameters 8 ki, ko, ks = k; + ko + logn.

1. Choosé € [2¥1] andc e [2%8] with uniform distribution.
2. Computey = ¢ + bd over the integers.

3. Secretly transmiil andy to the proverP.

4. Secretly transmib andc to the verifierV.

Fig. 2. The ICP generation protocol.

4.1. Extensions of Information Checking

The following protocol is carried out by three players: a de@lemwho is nonfaulty,

and two additional players: prové® and verifierV, who can be either faulty or not.

In Fig. 2 we present the ICP generation protocol over the integers, carried out by the
dealer. The protocol gets as input the RSA composite, the sgceetd two security
parameter&; andk,. The computation carried out in the protocol is a function of the
security parameters.

For the following we denotg’ def [2latlogn  2ks],

Lemma 1l. Given values & [¢(n)] and y € ), for every possible value of b there is
exactly one possible value forec[2*¢] such that y= bd + c.

Proof. Since the computation is over the integers, there is exactly one vakuéoof
eachb, d, andy. Furthermore, ifo € [24] andy e [2*atloan 2%s] then value
¢ =y — bd is contained in [®] because

1< 2atlogn _ 2k1(/’(n) = Ymin — Bmaxdmax < € < Ymax — BminGmin = 2 — 1

which proves the lemma. O
Lemma2. Pr(yg)) <1/2%.

Proof. The number of options to choose different pairbaindc is 242, The range
YVis of size ¥ — 24atlogn From Lemma 1 it follows that each valyen this range can
be generated by2pairs(b, c). Consequently, ds, ¢ are chosen with uniform distribu-
tion, the probability ofy falling outside of this range is 4 (2% — 2katlogm)ks /oks gk —
1/2%, O

In a generic (one-time) application of ICP the variablesl andb, c are used by
playersP andV in anauthentication protocoin the following way: When the prover
P wants to prove to the verifie¥ that he holds the valug which he received fronD,
he sendsl andy to V. Upon receiving valued, y from P, the verifieracceptsﬁ (i.e.,
concludes thad = d) only if § = bd + c.
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Inthe following lemmawe prove the properties of the ICP over the integers with respect
to the generation protocol (Fig. 2) and the above described authentication protocol.

Lemma 3 (ICP over the Integers).

Completenesslif P and V follow the protocolthen V always accepts d in the au-
thentication protocal

SoundnessThe probability that P generatek § such that ¢+ bd = § when in fact
d + d is at mostl/2 + 1/2%. We denote this occurrence as QC

Zero-knowledge.Given h c the verifier learns no additional information on the value
d, i.e, for any value ¢, Prob[d = dy|b, c] = Prob[d = dg].

Proof. Completeness Immediate.

Soundness Notice that PEOC;) < Pr(OCy|ye)) + Py ¢ Y). From
Lemma 1 it follows that ify € ), thenP will be able to generate valuek § (where
d # d) which satisfy the equatioft = bd + ¢ with probability at most 121, Lemma 2
gives us the probability that falls out of this range. Combining these probabilities we
prove our lemma.

Zero-knowledge Valuesb andc are uniformly distributed and randomly chosen
independently frond, and hence reveal no information on its value. O

4.2. Generation of Verification Dat@Dealing Phasg

In order to generate the data for verification of partial signatures within the context of
the Dealing Phase, the dealer simply runs ICP-Gen-Integers (Fig. 2) for every pair of
playersP; andP;. All these invocations have as input the same RSA compasited
security parameteris;, kp. For the invocation wher®, is the proverP, and P, is the
verifier V, the secret key input id;, namely,P,’s secret partial key.

It will be seen later that a single pair of valuesc suffices forV to verify multiple
different partial signatures dP. This results in an efficient protocol for the dealer, as
the number of invocations to the ICP-Gen-Integers protocol during the Dealing Phase
depends only on the number of players but not on the number of signatures that the
system will need to generate.

As a result of the complete Dealing Phase, pldgenolds the following values:

1. His shared;.

2. Auxiliary authentication valueg 1, ..., yi n, Wherey; ; € Z is used to prove his
partial signature td;.

3. Verification dataVy, ..., Vn.i, whereV,; = (bji, ¢i), by € [24], andg;; €
[2%]. For eachj, the pairV;; is used to verify the correctness 8f's partial
signatures.

4.3. Partial Signatures Verificatio(Signature Phage

We show the protocol for verification of a partial signature where there are two players,
P andV, each holding the data which they received in ICP-Gen-Integers. The protocol
appears in Fig. 3. In the context of the Signature Phase this protocol will be carried
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Noninteractive Verification

Input PlayerV: b e [24], c e [2%e].
PlayerP: de[pn)], y=bd+c.
Both players: message € Z;;, RSA composite.

1. P broadcasts the signatué‘e, = m? modn and the auxiliary valu¥ = mY modn.
2. V checks ifSE]mC =Y. If yes, he concludes th&, = =m? modn and accepts it.

Fig. 3. The Noninteractive Verification protocol.

out by every pair of players. After executing all these invocations of the Noninteractive
Verification protocol, playeP, will take a subset o + 1 partial signatures which he
has accepted, and will generate the signaturson

Theorem 1 (Noninteractive Verification). Assume that a cheating proverRannot
break RSA with modulus fin particular, he does not know and cannot compute the
factorization of ). Letn= pg,where p<q,p=2p'+1,g=2q9'+1,and pq, p’,q

are all prime numbers

Completenessif P and V follow the protocolthen V always accepts the partial
signature
SoundnessA cheating prover P can convince V to accef, # +m? modn, with
probability at mostl/p’ + 1/2% + 1/2%.
Zero-knowledge.V does not learn any information beyond the signatuze=Sn®
modn, i.e, given &, b, c there is a polynomial time procedure to compute Y

Proof. Completeness Immediate.
Soundness First we examine the case wheyes Y = [2katloon 2] Notice
that the verifier uses a deterministic procedure to accept or reject the publish8dYair
Therefore the probability stated in the theorem is taken over the coin tosses of the dealer
in ICP-Gen-Integers which are consistent with the view of the prover (i.e., theyalue
order forP to convinceV to accepén, Y, it must hold thaly = ngc modn. We know
from the ICP-Gen-Integers protocol that= bd + ¢, and henceny = (m9)®m¢ modn.
By dividing these two equations we get that

YmY = (§m 9P modn. 1)

This means tha¥ mY must be in the subgrouf§,m9). Letk be the minimal value
such thaty mY = (§;m~%)% modn. Consequently, (1) is satisfied onlybf= kmod
ord(§,m~%). Sinceb is chosen at random with uniform distribution fromiR the
probability that a pait Sy, Y) satisfies 1 is

[2¢/ord(Sm=H1 11
24 ~ord(§m-d) 24

Pr(b = k mod ord(§.m~9)) <

Because of the special formofthere are only four elements &f whose order is smaller
thanp’, namely, the four roots of unity. §,m~¢ = +1 modnthenS, = +m? modn. If
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the prover could fin&, such tha§,m~9 is a nontrivial root of unity, then he could factor
n which we assume to be infeasible. For all other choic&lobrderord(énm‘d) >p.
This completes the proof for the case whgre ). However, from Lemma 2 we know
that the probability thay ¢ ) is at most 122, by combining these two probabilities
we get the desired probability.

Zero-knowledge Immediate since, knowinb, c, and$, = m? modn, the verifier
can computeY = mY = Sﬁymc modn. (We comment that since this is a noninteractive
procedure, the only role &f is in the verification of the information sent by the prover;
thus we do not need to consider—as is typical in the interactive case—arbitrary behaviors
of V.) O

The prover can compute the signature one time (for all players), and generate the
additional needed values for each player individually. To give a numerical example of the
amount of computation that the two parties carry out, assume that the desired probability
of error for the protocol is set to8°. In this case both; andk, can be set to 81. Then
the prover does one full exponentiation for the computation of the signature, also for
each player he computes another exponentiatiorkardk, (i.e., 162) multiplications.

The verifier on his part computes a single full exponentiation dadt2k; (i.e., 243)
multiplications.

Note that a single paitb, ) is sufficient forV to verify the multiple signature oP,
as forP to compute these values is equivalent to breaking RSA.

Remark Thevalue®, care used by as secret exponents in modular exponentiations.
Notice that we choose those exponents relatively shortKi.andk; bits, respectively).

Itis known that there are some attacks on RSA using short secret exponents (e.g., [Wi]),
but they do not apply in this case for the following reasons:

o those attacks use the knowledge of a public exponent which is not present here,
« more importantly the results of the exponentiati&isandm¢ areneverrevealed
by V, as they are used for internal checks only.

4.4. Performance Analysis

Computation.  Under normal operation of the system, i.e., when no faults occur,
each player needs to compute a partial signature which is a single exponentiation of an
exponent which is the length of the RSA modulus.

When faults occur the players need to engage in Noninteractive Verification. Each
such verification requireB to carry out an additional exponentiation of an exponent of
lengthks. The verifier needs to compute two exponentiations with exponents of length
at mostks.

When a player fails the noninteractive verification test, which means that it is faulty,
the private share of this player is reconstructed. This is done using the VSS Reconstruc-
tion Phase which is a computation which requires only a polynomial numbrah
multiplications.
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Memory. The size of secret memory required for each playéNis- 1) logn + 3N ks.

Communication. Signature generation requires one round of communication. If Non-
interactive Verification is invoked this requires an additional round of communication,
and the VSS Reconstruction Phase requires another additional round.

5. Interactive Robust Threshold RSA

Like in the noninteractive protocol the two components of the interactive protocol are
the protocol for dealing verification information during the Dealing Phase (5.1), and the
protocol for verification of partial signatures during the Signature Phase (5.2). (See the
schema in Section 2.)

The basicidea underlying the interactive solution is that RSA signatures can be verified
even if the verification exponentis unknown to the verifier, provided that the later is given
the correct RSA signature on a (suitably chosen and) known messafjgat is, there
will be a fixed and publisamplemessagev for which the partial signaturas® modn,

i =1,2,...,N, corresponding to th& players are all known. The choice af and
generation of sample signatures are all done during the dealing phase.

5.1. Generation of Verification DatéDealing Phasg

The verification information dealt during the initialization protocol (and used during the
Signature Phase to verify partial signatures) consists of a random pabijglemessage
w and and its corresponding sample partial signaturésnodn, for each one of the
partial keysd; held by the players. The sample signatures are broadcast to all players,
and can even be made public (Fig. 4).

In terms of our generic schema in Section 2, the verification da¥a jis= w; =
w9 modn, for alli, j. Notice that unlike in the noninteractive protocol, here ¥he's
are public. Furthermore, note that the commitments to the partial key also generate a
commitment to the signing key, i.e., the valuev® modn is also made public.

5.2. Verification of Partial Signature€Signature Phage

During the Signature Generation Phase, a shared signature is computed using the partial
signatures. Here, we provide a protocol by which each partial signature can be verified

Sample Partial-Signature Generation

Input Public: RSA modulus.
DealerD: key-sharesl € [p(n)],fori =1,2,..., N.

1. D chooses a random valueof high order inZ} and broadcasts values = w9 modn
fori=1,2,...,N.

Fig. 4. The sample signature generation protocol.
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by the other participants by interacting with the signer. This interactive protocol uses
challenges to the signer based on the messagdose signature is being verified and
on the sample message the challenge is verified using the alleged partial signature
of m and the known signature an. A successfully answered challenge by the signer
proves the correctness of the signaturemoiindeed, we show that if the signaturemn

is incorrect the signer has only negligible probability to convince the verifier to accept
its validity. In addition, we prove this protocol to kero-knowledgfGMR2], thus even
corrupted verifiers do not learn any information from the execution of this protocol that
may help in forging signatures.

Our solution is based on a protocol due to Chaum and van Antwerpen [CA], and further
developed in [Ch] and [BCDP], designed to prove in zero-knowledge the equality of the
discrete logarithms of two elements over a prime figjdelative to two different bases.

The protocol and the proof presented in the above papers do not workzZgvier
compositen as required here, in particular, since they strongly rely on the existence of
a generator for the multiplicative groufy;. We show a variant of the protocol that we
prove to solve our problem ovét,.

In the Signature Phase, each plafechecks the partial signatures produced by each
other playerP;. For clarity of presentation, we concentrate on two players only, the
prover (who is the signerp and the verifielV. The playerP has his secret signature
keyd e [¢(n)] and both players have access to a publicly known sample message
and its partial signature (under's key) wd modn. For anyx € Z* we denote by, the
corresponding signature &f on x under the keyl, namely,S, = x4 modn. By § we
denote the “alleged” signature ani.e., a string claimed (but not yet verified) to be the
signature ofx.

Figure 5 presents the basic Interactive Verification protocol. This description corre-
sponds to an interactive proof betwelerandV. The functioncommitis a commitment
function [Go], and adding this step to the protocol is done to achieve the zero-knowledge
condition (these are standard techniques, see [GMW?2], [BCC], and [Go]). Indeed, the

Interactive Verification

Input Prover: secred € [p(n)].
Common: RSA composite, sample message € Z;,
signatureS,, messagen € Z;;, claimedén.

1. V chooses, j er [n] and compute® &' miwi modn .
V — P: Q.

2. P computes AL Q? modn andcommit A).
P — V: commitA).

3.V — Pii,j.

4. P verifies thatQ = m'wl modn .
If equality holds, therP decommits toA.

5. V verifies thatA = §,S,] modn.
If equality holds, ther/ acceptsi:}n as the signature om,
otherwise it rejects.

Fig. 5. The Interactive Verification protocol.
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zero-knowledge condition is achieved through the properties of the commitment func-
tion, namely, (I)commitx) reveals no information or, and (Il) P cannot findx’ such
thatcommitx) = commitx’).

Commitment functions can be implemented in many ways, in particular using a se-
mantically secure encryption. In our context, one could use commitment functions based
on the RSA function (e.g., [GM] and [BR]) where the private key is not know {and,
possibly, not even known t8), and the public key is known to both parties. Commitment
to A is done byP by (probabilistically) encrypting this value, while decommitment is
done by having® reveal bothA and the string used for the probabilistic encryption.
This implementation of a commitment function is very efficient as it involves no long
exponentiations.

In the following theorem we state the security properties of the above Interactive
Verification protocol.

Theorem 2. Letn= pqg,where p<q,p=2p'+1,g=29'+1,and pq, p’,q are
all prime numbersAssuming that factoring n is hafgle., no cheating prover knows or
can compute the factorization of then the Interactive Verification protocol in Fi§is

a zero-knowledge proof system for the language EBL{(M, Sy, w, S,) € (Z})* st.
there exists d S, = +md modn and §, = w® modn}.

We therefore need to prove the following three properties:

Completenesslf P andV follow the protocol, the’/ always accepts the signature.

SoundnessNo cheating proveP* can convinceV to acceptS, # +md modn,
except for a negligible probabilit) (1)/p’.

Zero-knowledgéinformal). Any (possibly cheating) verifie* interacting with
prover P does not learn any information beyond the signae= m® modn.

The proof of completeness of the protocol is immediate and the zero-knowledge property
is argued above. Here we prove the soundness property. The following is the core claim
behind the proof of soundness.

Lemma4. The prover's cheating probability in the Interactive Verification protocol is
at most indw) /ord(Sn/m%) + 2((n — @(n))/n).

Proof. The prover's probability to cheat, i.e., to convingédo accep&y, is maximized
by choosingA that passe¥'’s test (in Step 3) with maximal probability (relative to the
valued, j chosen by/). Since the prover choosésafter having seen the “challeng®’
fromV (and based onits knowledgeﬁﬂ, m, w, d, andn), then the proof of soundness
needs to capture that some informationion (at least from the information-theoretic
point of view) is available to the prover when selectifig

In the actual protocoly choosesd, j randomly from the setr]; for simplicity of
analysis we assume that these values are chosen §rgmni,[and account for the event
that eitheri or j fall outside of this range in the prover’s probability to cheat. The
probability of such an event (i.e., thiabr j ¢ [¢(n)]) is at most Z(n — ¢(n))/n), and
it appears in the lemma’s bound. Therefore we assuer [¢(n)].
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We definel (Q) = {i € [¢(M)]: 3j, Q = m'wi modn}. We write §, = am?, for
a € Z:. In Step 3 the verifier will check whethex = §, S}, = o' mwd = o' QY.
As the valuex has been set then for adythe number of’s which satisfy thaty' =
AQ~9 is at mostp(n)/ord(e). Given Q, V's choice ofi is uniformly distributed over
I (Q), as for each e 1(Q) there is the same numbend(w)) of valuesj which
satisfy the equatio® = m'w! modn. Thus, the probability oP to succeed is at most
(p(n)/ord(a))/[1 (Q)|-

Now we show thatyQ, |1 (Q)| = 0 or |l (Q)| > ord(w). For values € | (Q) and
A such tham? e (w), it holds thati + A € 1 (Q) (because there exigt j’ such that
Q = mw! andm® = wl’ from which it follows thatQ = m'+2wi=1"). Therefore,
we get thatl (Q) = {ip + A: m® e (w)andA < ¢(n)} whereig is the minimal
element inl (Q). Thus, if I (Q) is nonempty, then its size equals the size of the set
D = {A < ¢(n): m* e (w)}. We proceed to bound the size Bf. Using standard
arguments it is easy to show thatsifis the minimal nonzero element &, then the
elements oD are exactly the multiples df (smaller thanp(n)). Thus,|D| = ¢(n)/3.
We end the proof by showing < ind(w). Leti; < i, < 8. The cosetsn' (w) and
mi2(w) are disjoint (a common element would imply thet—'* € (w) in contradiction
to the minimality ofs). Thus,m'(w), m*(w), ..., m*(w) ares disjoint cosets inZ;
each of sizeord(w). We haves < |Z*|/ord(w) = ¢(n)/ord(w) = ind(w). In sum,
[1(Q)| = |ID| = ¢(n)/8 > ¢(n)/ind(w) = ord(w). Combining all the above we get
our probabilitye(n)/ord(«)ord(w) = ind(w)/ord(«). O

We stress that the above lemma holds also for a computationally unbounded cheating
prover, and that the bound in the lemma is tight for such a prover (up to the term
2((n — @(n))/n)). Next, we show how to apply the lemma to prove the soundness of the
protocol in the case thatis chosen with the particular form stated in Theorem 2, and
the (cheating) prover cannot break RSA.

Proof of Theorem 2 (Soundness). The bound in Lemma 4 is given in terms of the
order of elements in the groufy;. Thus, in order to establish the exact bound for the
above special form afi we need to study the order of elements in this particular group.
There is one element of order 1 &} (the unit element), three of order 2{ and two
other nontrivial roots of 1), ¢ + 4g’ — 8 elements of order ranging betwegrand 2y’,
and the rest have all order which is at lep&t’. (This can be argued based on the special
form of p andq and the order of elements modulo these primes, and then using the
Chinese Remainder Theorem.) In particular, the order,afthich is chosen at random,
is at leastp’q’, with probability 1—4(p’ + q')/¢(n) > 1—2/p’, and therind(w) which
equalsp(n)/ord(w) is at most 4 (notice that(n) = 4p'q’).

As in the noninteractive protocol (see soundness part of Theorem 1), a successful
cheating ofP* happens when it convincés to accept a valu, = amd modn, for
a # £+1 modn. Notice that the prover (who knowy can compute such anfromm
andS,. This excludes the possibility thatwould be one of the nontrivial square roots
of 1, since knowledge of such an element would allow the prover to facttinerefore,
a = §,/m® must be of order at leagt. Finally, the expression — ¢(n)/n is at most
1/p" in this case. The corollary then follows by replacing these values in the bound
expressiorind(w)/ord(én/md) +2((n — @(n)/n) in Lemma 4. O
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5.3. Performance Analysis

Computation. Under normal operation of the system, i.e., when no faults occur, each
player needs to compute a partial signature which is a single exponentiation of an expo-
nent which is the length of the RSA modulus.

When faults occur the players need to engage in Interactive Verification. Each such
verification required to carry out three exponentiations of exponents of the size of the
RSA modulus, and a single commitment which is an efficient computation. The verifier
needs to compute four exponentiations.

When a player fails the interactive verification test, which means that it is faulty, the
private share of this player is reconstructed. This is done using the VSS Reconstruc-
tion Phase which is a computation which requires only a polynomial numbsrah
multiplications.

Memory. The size of the memory required for each playemis+ 1) logn.

Communication. Signature generation requires one round of communication. If In-
teractive Verification is invoked this requires four additional rounds of communication,
and the VSS Reconstruction Phase requires another additional round.

6. A Secure Threshold RSA Scheme

In this section we prove that the combination of the [Ra2] threshold RSA scheme (see
Fig. 1 in Section 3.3) with the robustness technigues developed in Sections 4 and 5
yields two secure solutions to threshold RSA signature schemes. Similar results can be
shown by combining our techniques with other threshold RSA solutions [DF2], [DDFY],
[Ra2].

Theorem 3. Assuming factoring is hard there exist efficiesitnulatable and robust
(T, N)-threshold RSA signature schemes for any valubl & 2T + 1, where the RSA
composite is the product of two safe prinfes., n = pg, p=2p'+ 1,9 = 29’ + 1,
and p p’, q,q are all prime numberns

Remark(simulatability versus unforgeability). The theorem proves that the two con-
structions aresimulatable Using Proposition 1 it follows that the resultant threshold
schemes are “as unforgeable as” the underlying signature scheme. Note that the hypoth-
esis of the theorem simply assumes that factoring is hard. This is indeed sufficient to
prove the simulatability and robustness of the schemes. However, in order to deduce un-
forgeability of the distributed schemes, one has to assume that the underlying signature
scheme is unforgeable (which is not known to rely only on the hardness of factoring).
Typically, such a scheme uses an encoding of the message (e.g., using a cryptographic
hash function) to which the RSA decryption function is applied.

Overview. Fixing an adversaryd, we present simulators such that the view of the
adversary on the execution of the protocol and its view on the execution of the simulator
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Input The number of player®l and thresholdr, the public keyn, e, the messagen, and its
signatureSy, = md modn.

SIM-1

Secret Key Distribution

1. Choose shared,...,dy_1 €r [L.n]. Sendds,...,dr to players Py, ..., Pr,
respectively.

2. Foreachdj, 1 <i < N — 1, run the ICP-Gen-Integers protocol.

. For the missing shary send to playeP; two random vaIueSNj € [2k] andéyj € [25a].

4. Using aT-out-of-N VSS protocol (as in [BGW] and [Pe]) share amoRg ..., Py the
valuedi forl<i <N —1inaprime fieldZp whereP > n.

w

Signature Generation

1. Computes; S md modn for 1 <i<N-1.
.~ A N-1 g

2. Seton = _sn/]_‘[i:l mdi

3. \Verify partial signatures:

(a) Forl<i < T carryout Noninteractive Verification (Fig. 3) as the verifier. Reconstruct
the sharesl; of the playersP, (1 < i < T) that fail the verification step (this recon-
struction uses the fact tha was shared among all players during the secret key
distribution phase).

(b) ForT +1<i < N — 1 carry out Noninteractive Verification (Fig. 3) as the prover.

(c) Fori = N carry out Noninteractive Verification (Fig. 3) as the prover in the following

s AbNG o
way. OutputYyj = 6~ m“Ni

Fig. 6. Simulator for the noninteractive case.

are indistinguishable. For simplicity, and without loss of generality, we assume that the
adversary corrupts playeH, ..., Pr.

6.1. Proof of the Noninteractive Scheme

The robustness of the protocol isimmediate, since Theorem 1 implies that the probability
that an incorrect partial signature is acceptetl ig1/p’ + 1/2 + 1/2%) which can be
made negligible.

The simulator is shown in Fig. 6. We analyze the information viewed by the adversary
which is generated by an execution of the protocol and the simulator.

Secret Key Distribution.

1. d; is a uniformly distributed value in [In] andd; is a uniformly distributed value
in [0..¢(n) — 1] which are statistically indistinguishable distributions.

2. The verification data dealt during the simulation through ICP-Gen-Integers is dis-
tributed exactly the same as in the real execution (including for the share

3. Foreachofthe VSS (asthe [BGW]VSS scheme is information theoretically secure)
the view of the adversary is simply uniformly distributed values iZp, and this
is what the simulator generates.
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Signature Generation.

1. The indistinguishability of the distribution ef ands; follows from the argument
on the distribution off, andd; for T +1 <i < N.

2. The simulated Noninteractive Verification protocol foxd < N is identical to a
real execution in the protocol.

6.2. Proof of the Interactive Scheme

The robustness of the protocol is immediate, since Theorem 2 implies that the probability
that an incorrect partial signature is accepte®{3 )/ p’ which is negligible.

The simulator is shown in Fig. 7. We analyze the information viewed by the adversary
which is generated by an execution of the protocol and the simulator.

Secret Key Distribution.

1. Clearly, and §, have the same exact distribution as in the real execution (a
random message and its signature).

2. dj is a uniformly distributed value in [In] andd; is a uniformly distributed value
in [0..¢(n) — 1] which are statistically indistinguishable distributions.

3. The valuesys, ..., wy_1 are generated in the same mannewuas. .., wy_1.

Input The number of playerd and thresholdr, the public keyn, e, the messagen, and its
signatureSy, = md modn.

SIM -2
Secret Key Distribution
. Choose arando§, € Z# and seth = & modn.
. Choose shareg, . . ., dn-1 €r [1..n]. Give d; to playerP.
. Computeb; 2 ﬁ)dl, s, N1 2 wIN-1 modn. Setwn 2 S;;/]—L’\:ll wj modn.
. Using theT -out-of-N VSS protocol (as in [BGW] and [Pe]) share amoRg ..., Py the

valueai forl1 <i < N —1ina prime fieldZp whereP > n.For1l<i < T setR’s
share ofdy uniformly at random to a value idp.

AW NP

Signature Generation

1. Computes; S md modn for T +1<i<N-1

2. Setsy = Sn/ ]_[i'\:ll&i modn.

3. For1<i < T carry out Interactive Verification (Fig. 5) as the verifier. Reconstdudbr
the players® who fail (this reconstruction uses the fact thatvas shared among all players
during the secret key distribution phase).

4. ForT +1<i < N — 1 carry out Interactive Verification (Fig. 5) as the prover.

5. Foron, wn simulate Interactive Verification as follows:

(a) Getthe questio and choose a random valu@nd computeommitr).

(b) Getthe valuesg j, computeAy = 6'N12)L modn. Rewind the simulator one step back
and givecommitAy).

Fig. 7. Simulator for the interactive case.
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It is easily argued that the distribution @f, whered; e [1..n] is statistically
indistinguishable from the distribution af; whered, € [0..¢(n) — 1].

4. The valued, ..., dy_1 are statistically indistinguishable fromh, ..., dy_1,
hence their sum mod(n) is statistically indistinguishable from the sum of the
di’s, hencedy mod ¢ (n) is statistically indistinguishable froay mod ¢ (n), thus
the valuewy is statistically indistinguishable fronay,.

5. The VSS for the valued, 1 <i < N — 1, is identical to the execution in the real
protocol.

6. The simulator does not knod and thus cannot share it using VSS, yet as the
[BGW] VSS scheme is information theoretically secure the view of the adversary
is simply T uniformly distributed values irZp, and this is what the simulator
generates.

Signature Generation.

1. Theindistinguishability of the distribution 6f mod n ands; mod n follows from
the argument on the distribution df andd; for1 <i < N.

2. The Interactive Verification protocol ford i < N —1isidentical to the execution
in the protocol.

3. Since the Interactive Verification protocol is zero-knowledge its simulation is in-
distinguishable from the real execution.

7. Verifying the Dealing Phase

Our basic security model assumes that the Dealing Phase is trusted, namely, that the
adversary is not active during this phase. This is necessary due to the fact that during
this phase the secret signature key is generated and held in a single place by the dealer.
Recent work [BF] has presented progress toward distributed solutions for the generation
of private RSA keys. At this point, this work may not be combined with our solutions
due to the special form of the RSA modulus that we assumed for the analysis of our
protocols. However, in many practical applications one can assume that the one-time
generation of a private signature key can be done in a safe environment (e.g., using a
protected computing device that is erased or destroyed after the dealing is done). In
other applications it is in the interest of the dealer to keep its private key secret (e.qg., in
the case of distribution of the decryption capability for the sake of key backup or key
escrow). This form of trust in the secrecy of the key does necessarily imply that the
dealing process was performed correctly (e.g., a party escrowing a key may be interested
in dealing the key incorrectly so it cannot be reconstructed later). Thus, it is important
to ensure that once the Dealing Phase is over, the players have a guarantee that the
system will work properly. In particular, that the information dealt to them is correct and
consistent.

In this section we show how to verify that the dealer performs correctly the sharing of
the keys and of the verification data in the interactive protocol of Section 5. This reduces
significantly the trust required from the dealer at system initialization. This contribution
of our work, i.e., specifying the steps to verify the correct dealing of the signature key,
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is important in addition to, and independently of, the aspect of verification of partial
signatures.

We first present the main steps of the Dealing Phase including the measures to
verify the actions of the dealer and other players. We then elaborate on some of these
steps.

1. The dealeD chooses primep andq, it sets the modulus = pq, and chooses the
private and public exponentsande, respectively. These parameters are chosen as
forany RSA system. We additionally impose pandq that they be of special form,
namely,p = 2p' + 1,9 = 29’ + 1, wherep’, g’ are prime humber4> broadcasts
the values oh ande, which will be used as thpublic key(or verification key) for
the system’s combined RSA signatures.

2. D shares the private exponahas specified by the underlying threshold signature
scheme (see Section 3.3).sends to each playd® its shared; in a private but
“openable way.” By “openable way” we mean that the sendeyanccipient of
the information can later show, if necessary, to other parties what the actual value
transmitted was. This can be implemented by sending the dalfrem D to P,
encrypted under a public key & (and later exposing the encrypted value to all
players).

3. TheN players collectively choose a random valuén Z* (using standard tech-

niques for collective coin tossing).

. D broadcasts the values = w% modn,i =1,..., N.

. EachP; checks that the value; broadcasted b in the previous step corresponds

to the valuesv andd; asP, holds. If not,P, “opens” the valual, sent fromD in
Step 2, and broadcasts it as an accusation agRin$tP,’s accusation is verified
by a majority of other players, theh is disqualified. Otherwise it i who is
disqualified.

6. Each player verifies the correct dealingdadind the correct signaturas, fori =
1, ..., N, by performing the verification procedure explained below. A player that
finds an inconsistency in this procedure votes for the disqualification of the dealer
(votes are broadcast to all players). If a majority of such votes are collected, the
dealer is disqualified. Otherwise, the players (if any) that vote for disqualification
are disqualified.

7. The deale destroys all the secret information it generated, including, d,
and the shared; .

[S2F 3

Disqualification of players is decided by majority vote, namely, we require more than
N /2 players to agree before a player is disqualified. Notice that if the dealer is disqualified
in the above protocol a new Dealing Phase (with a different dealer, rebooted machine,
etc.) needs to be initiated. Disqualified players need not necessarily be replaced. The
Dealing Phase can be successfully completed as long as there is a majority of good players
(see Lemma 5 below). However, for simplicity, we assume that disqualified players are
replaced (and a new Dealing Phase started). As a consequence, we assume that the
Signature Generation Phase is started after the Dealing Phase is completed successfully
with no player disqualified.

We elaborate on Step 6 of the above protocol.
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VERIFICATION OF SHARES AND SAMPLE SIGNATURES The following is a procedure by
which each player can verify the correct dealingdohto the sharesl, ..., dy, and
the correct value of the sample signatusgs= w® modn. (In what follows we omit
the modn notation.) Verifying the correctness of the shares means that the sum of the
di’s is d. The valuesw; are correct if they correspond to the partial signatusésfor
the verified shared;. Furthermore, the players need to establish that the VSS back-up
[Ra2] of all valued; is in fact the sharing of the value committed to by

We get that a correct sharing is verified by the equation

d= Xn:di. (A1)
i=1

In our case the explicit values of all the shadleare not available to each player, therefore
the checking of correct dealing is done using the equivalent of the above equation “in
the exponent,” namely, each player verifies that (remembewuthat w% )3

w = (ﬁ wi> . (A.2)
i=1

In order to be able to claim that the verification of (A.2) implies the correctness of (A.1)
we need to solve two problems. The first is the fact that there may be awalukich

is not a power ofw, i.e., there is no valuefor which w; = w'. The second problem is
that even if the values); are all exponents ab, the equality in (A.2) only implies that
the equality in (A.1) holds modulord(w), which may be a problem ib is an element

of low order.

To verify thatthe values); are indeed exponentswfwe use the following subprotocol
[CEG]. For each € [N] the dealerD chooses a value €r [¢(n)] and broadcasts
w’ = w'. The players collectively choose a randomthitf b = 0, D broadcasts the
valuer, otherwise it broadcasts the valdet+ r mod¢(n). In the first case, each player
can check whether” = w’, and in the second, whethef *% = w'w;. If w; ¢ (w),
then the probability thaD passes this test is/2. By repeating this proceduketimes
the probability that the dealer can cheat goes dowrto Phis protocol can be done
noninteractively if one is willing to assume the existence of ideal hashing functions
(random oracle).

As for the problem that the equality (A.1) is verified only modold(w), we point
out that because of the assumed fornpaindq (i.e., (p — 1)/2 and(q — 1)/2 being
prime numbers), the order of a random elemenis equal tog(n)/2 or ¢(n)/4 with
overwhelming probability. In the former case, the ordewos a multiple of the order
of all other elements iz} and then (A.2) implies (A.1). In the cased(w) = ¢(n)/4,
the element-w is of ordery(n)/2. Therefore, one solution to the above problem is
to repeat the described process for botAnd—w. If the above verification procedure

3 This is a specific verification which relates to the specific form in which the secretikeshared in [Ra2].
If the sharing ofd is done via a polynomial (this may occur in other threshold schemes), then the fact that all
the committed values interpolate into a single polynomial of degrean be verified in the exponent as well.
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is completed successfully for both values, then only the value @ carried to the
Signature Generation Phase.

In order to verify that the VSS sharing of the valuksorrespond to the desired value
committed to byw; we change the VSS sharing slightly. Instead of sharing the values
over a prime field we use a sharing using Feldman’s VSS over the integers. For details
see [Ra2] and [FGMY]. The Feldman secret sharing is designed is such a manner that
in addition to the sharing of a value, sdy it also exposes the valug = w%. As the
valuew; is exactly our witness value we immediately have the guarantee that the shared
value is the value committed to by the witness.

VERIFICATION OF THE PRIME FACTORS We need to check that the dealer chooses the
modulusn of the right form, i.e.n = pgwith p = 2p’ + 1 andq = 29’ + 1. Recently,
Gennaro et al. [GMR3] have presented a zero-knowledge proof to verify that a composite
is of a slightly different form, wher@, g are of the formp = 2p§ + 1 andq = qu +1.
Applying their techniques in our setting equates the dealers’ probability of cheating with
the probability of factoring his composite. See [GMR3] for details.

We summarize the properties of the Dealing Phase in the following lemma.

Lemma5. Assume that the composite n is chosen as specified andNetT2T + 1.

If there are atmost T cheating players during the above Dealing RPlaaskthe dealer is

not disqualifiedthen the good players end that phase with correct partial signatures on
w for every nondisqualified playeand the corresponding shares sum to the correct
exponent gdas chosen b¥. Moreoverif the dealer is honest nothing is learned by any
of the players that can help a coalition of less than T players to forge a signature

8. Conclusions and Further Applications

We presented two protocols for verifying partial signatures. The first protocol is a nonin-
teractive one, the second is interactive, yet provides the ability to have public verification
of the partial signatures. Both protocols are low on computation and communication,
thus, achieving an efficient, robust, threshold-RSA signature scheme.

Our techniques are closely related to the notion of undeniable signatures [CA]. Re-
cently, Gennaro et al. [GKR] achieved RSA-based undeniable signatures which build
on the Interactive Verification protocol presented and analyzed here (previous undeni-
able signature schemes were based on discrete logarithm-based systems). Undeniable
signatures are characterized by the fact that public information is not sufficient in order
to verify the signature but interaction with the signer is required for such verification.
The techniques based in our work can be further applied to separate between the signing
and verification processes in the sense that a signer could delegate the ability to verify
signatures to a third party while the latter cannot forge signatures.

The techniques developed here for shared RSA signature generation apply to shared

4 Another option is to test onlw. If ord(w) = ¢(n)/2, then no cheating foP is possible. lford(w) =
¢(n)/4 = p'q’, then the only possible cheating BYis to deal instead of the right exponehtthe exponent
d =d+ p'q’ (ord’ = d+ 3p'q’) which satisfies all equations far but not for valuesv’ of order 20'q’.
However, even in this case the equations are satisfied up to their sign (since in thjs"éas&w’d), and as
stated in Section 3.4 getting a right signature except for the wrong sign is acceptable in our setting.
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RSA decryption as well. Using these mechanisms, a user (acting as the dealer) shares
its private decryption key with a set of agents, such that the cooperation of at least
a threshold of these agents is required in order to decrypt messages intended for that
user; no coalition of less thah agents can decrypt such messages or learn about the
user’s decryption key. This has natural applications to key escrow systems. In such an
application the verifiability of the dealer’s actions is particularly important since the user
(acting as a dealer) may have a strong interest to share the wrong key in order to prevent
the eventual decryption by the agents of messages intended fgndsim
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