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Abstract. Feedback shift registers with carry operation (FCSRs) are described, im- 
plemented, and analyzed with respect to memory requirements, initial loading, period, 
and distributional properties of their output sequences. Many parallels with the theory of 
linear feedback shift registers (LFSRs) are presented, including a synthesis algorithm 
(analogous to the Berlekamp-Massey algorithm for LFSRs) which, for any pseudo- 
random sequence, constructs the smallest FCSR which will generate the sequence. 
These techniques are used to attack the summation cipher. This analysis gives a unified 
approach to the study of pseudorandom sequences, arithmetic codes, combiners with 
memory, and the Marsaglia-Zaman random number generator. Possible variations on 
the FCSR architecture are indicated at the end. 
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1. Introduction 

Pseudorandom sequences, with a variety of statistical properties (such as high linear span, 
low autocorrelation and pairwise cross-correlation values, and high pairwise hamming 
distance) are important in many areas of communications and computing (such as cryp- 
tography, spread spectrum communications, error correcting codes, and Monte Carlo 
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integration). Binary pseudorandom periodic sequences are often generated in hardware, 
using linear feedback shift registers (LFSRs), and are referred to as "linear recurrence 
sequences." Certain register cells are "tapped," their contents are added modulo 2, and 
the sum is returned to the first cell of the shift register. (See Fig. 1. The qi ~ {0, 1} 
indicate existence or nonexistence of a tap. The symbol @ refers to addition modulo 2.) 

Many modern stream ciphers are designed by combining the output of several LFSRs 
in various nonlinear ways (and hence ultimately depend on a deep understanding of 
the linear feedback architecture). Since 1955, an enormous amount of effort has been 
directed toward the study of other ("nonlinear") feedback architectures (e.g., [ 13], [44], 
and [6]) which would give rise to fundamentally new or different kinds of pseudoran- 
dom sequences. However, these other architectures have proven extremely resistant to 
analysis: even simple properties such as the period of nonlinear feedback shift register 
sequences are essentially unknown. Despite 40 years of research, it is still the case that 
only the linear feedback architecture is adequately understood. 

In this paper we introduce a new but very simple feedback architecture for shift 
register generation of pseudorandom sequences, which we call "feedback with carry.'" 
shift registers (FCSR). These are the shift register analogues of the Marsaglia-Zaman 
pseudorandom number generators [36]. It turns out that sequences generated by an FCSR 
share many of the important properties enjoyed by linear recurrence sequences. However, 
the analysis of FCSR sequences involves a completely different mathematical toolkit: 
instead of arithmetic in finite fields, we use arithmetic in the 2-adic numbers. Although 
some of the results in this paper may be proven without the use of the 2-adic numbers, 
we have been unable to find any alternate approach to the main results (Theorems 4.1. 
9.5, 10.1, and 10.2). 

An FCSR is a feedback shift register together with a small amount of auxiliary memory. 
In its simplest form, the cells in the register consist of bits (0 or 1), while the memory 
contains a nonnegative integer (see Fig. 2). 

The contents (0 or 1) of the tapped cells of the shift register are added as integers 
to the current contents of the memory to form a sum, a.  The parity bit (~r (mod 2)) of 
~r is fed back into the first cell, and the higher-order bits ([cr/2J) are retained for the 
new value of the memory. (More details of the feedback procedure and simple hardware 
implementation are described in Section 3). 

The results in this paper are best described by exploiting the many parallels between 
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Fig. 2. Feedback with carry shift register. 

properties of LFSR sequences and those of FCSR sequences. Let us first recall the salient 
features of the LFSR theory. Note: Throughout this paper, Z denotes the integers, I_xJ 
denotes the greatest integer _< x, l-x1 denotes the least integer >_ x, and log denotes log 2 . 

Properties of LFSR Sequences 

1. The r taps q j, q2 . . . . .  qr on the cells of  an r-stage LFSR correspond to a connection 
polynomial 

q(X)  = q r X  r q - q r _ l X  r- 1 ~_ . . .  + q l X  __ 1 

with coefficients qi in Z/(2) .  The period (and many other properties) of the LFSR 
sequence may be expressed in terms of  the Ga[ois theory of  this polynomial. 

2. Suppose a = (a0, al, a2 . . . .  ) is a periodic sequence of bits obtained from a lin- 
ear feedback shift register of length r with connection polynomial q(X). If q(X)  is 
irreducible, and if ~, ~ GF(2 r) is a root of q(X),  then for all i = 0, 1,2 . . . .  we have 

a i  = T r ( A y  i )  

for some A E GF(2 r) (which corresponds to the choice of  initial loading of  the shift 
register). Here, Tr: GF(2') ~ GF(2) denotes the trace function. 

3. Any infinite binary sequence a = (a0, at, a2 . . . .  ) may be identified with its gener- 
ating function, A(X) = y~i~=o ai X i which is an element of the ring Z/(2)[[XI] of formal 
power series with coefficients in the integers modulo 2. It is well known (see I13]) that 
the sequence a is eventually periodic if and only if its generating.function is equal to a 
quotient of two polynomials, 

r(X) 
A(X) = - -  c Z/(2)[[XI] ,  

q(X) 

in which case the denominator q( X) is the connection polynomial for a linear feedback 
shift register which generates the periodic part of the sequence a. The sequence a is 
strictly periodic if and only if deg(r) < deg(q). 

4. The size of the smallest LFSR that generates a given periodic sequence a is called 
the linear complexity or equivalent linear span of a; it is an important measure of  



114 A. Klapper and M. Goresky 

the cryptographic security of the sequence. Such a shift register (of minimum size) 
may be found in an efficient way using the Berlekamp-Massey algorithm, which may 
be interpreted as the continued fraction expansion of the fraction r (X ) /q (X)  in the 
ring Z/(2)[[X]I of formal power series. This algorithm is optimal in two senses: (a) it 
determines the smallest LFSR whose output coincides with a; and (b) it does so with 
minimal information: only the first 2 - span(a) bits of the sequence a are needed. 

5. The generating function of the bitwise sum of two binary pseudorandom sequences 
a = (ao, al, a2 . . . .  ) and b = (bo, bl, b2 . . . .  ) is given by addition C(X) = A(X)  + 
B(X) ~ Z/(2)[[XII in the ring of formal power series. I f a  and b are periodic, then so is 
the bitwise sum c, and its equivalent linear span is no greater than the sum of the linear 
spans of  a and b. 

6. An m-sequence is a LFSR sequence of maximum possible period T = 2 ~ - 1 
(where the shift register has r stages). It is a remarkable but well-known fact that the 
m-sequences are exactly those sequences generated by LFSRs whose taps correspond to 
primitive connection polynomials. Such sequences are balanced and have the de Bruijn 
property: in any single period of  an m-sequence, every nonzero binary string of length r 
occurs exactly once. The autocorrelation function of  an m-sequence is two-valued; the 
out-of-phase values are all equal to - 1 .  

7. The 2 n - 1 cyclic permutations of  a single period of  an m-sequence form the 
nonzero codewords of a ("punctured") first-order cyclic Reed-Muller code. These codes 
are of  fundamental importance in coding theory and are prototypes of the general "finite 
geometry" codes. 

Properties of FCSR Sequences 

We now describe the main definitions and results of  this paper. 
1'. The r taps ql, q2 . . . . .  qr on the cells of an r-stage FCSR define a connection 

integer (see Definition 3.1) 

q = qr 2r + q~_12 r-~ + . . .  + q z 2  - 1. 

The period (and many other properties) of  the FCSR sequence may be expressed in terms 
of  number-theoretic properties of  this integer. 

2'. In Section 6 we prove that if a periodic sequence a = (a0, al, a2 . . . .  ) is generated 
by an FCSR with connection integer q, and if 2/ = 2 -I  6 Z / (q )  is the (multiplicative) 
inverse of  2 in the ring of  integers modulo q, then there exists A c Z / (q )  such that for 

all i = 0, 1, 2 . . . .  we have 

ai = ( A y  i (mod q))(mod 2). 

3'. Any infinite binary sequence a = (a0, a j, a2 . . . .  ) may be identified with the formal 
x--'~ a 2 i which is an element of  the ring Z2 of 2-adic numbers (see power series, o~ = ~ i = o  i 

Section 2). The sequence a is eventually periodic if and only if the 2-adic number o~ is 
rational, i.e., if there exist integers r, q such that 

r 
~ ' = - -  E Z 2 .  

q 
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In this case, the denominator q is the connection integer for an FCSR which generates 
the periodic part of the sequence a (see Theorem 4.1.) The sequence a is strictly periodic 
if and only i f a  < 0 and [rl < Iql (see Corollary 4.2). 

4'. The size of the smallest FCSR that generates a given periodic sequence a we call 
the 2-adic span of a (see Definition 9.1). Such a shift register (of minimum size) may 
be found in an efficient way using 2-adic approximation theory (see Section 10). Our 
algorithm is optimal in both of the above senses: it determines the smallest FCSR whose 
output coincides with a, and it does so with knowledge of only 2M + 2 log(M) bits of  
the sequence a (where M denotes the 2-adic span of a). Although our algorithm is based 
on de Weger's theory [47] of  approximation lattices, it differs from de Weger's algorithm 
in that ours is adaptive: each time a new bit is determined (say, by a known plaintext 
attack), it is used to quickly update the previously determined FCSR. Thus, the number 
of bits need not be known ahead of time. 

5'. Suppose two infinite, periodic sequences a = (ao, al ,a2 . . . .  ) and b = 
(b0, bl, b2 . . . .  ) are added with the caro' operation. This process is called the sum- 
mation combiner; it was invented by Massey and Rueppel [37], [44], and was suggested 
as a means for generating cryptographically secure binary sequences from insecure ones. 
The resulting sequence c = (co, ca, c2 . . . .  ) is given by addition y = ot + /3  ~ Z2 in the 
ring of 2-adic integers (where y = ~-~i~=o Ci 2i ) (see Section 2). In Theorem 9.5 we prove 
that the 2-adic span of the sequence c is approximately bounded by the sum of the 2-adic 
spans of  a and b. 

6'. An g-sequence is an FCSR sequence of maximum possible period T = q - 1 
(where q is the connection integer of the FCSR). The g-sequences are generated by 
FCSRs with connection integers q for which 2 is a primitive root. A single period of 
an/~ sequence is a cyclic shift of the sequence formed by reversing a single period of 
the binary expansion of the fraction 1/q. These sequences have been studied since the 
time of Gauss [ 12], [3, Theorem 1 ], 144, p. 219]. They have remarkable distribution and 
correlation properties (see Section 13) which are parallel to those of m-sequences. 

7'. The q - 1 cyclic permutations of a single period of an g-sequence form the nonzero 
codewords of  a Barrows-Mandelbaum 12], 133] arithmetic code. The generation of these 
codes using FCSR circuitry is new. 

In Section 11 we present a method for attacking the summation cipher. Suppose two 
periodic binary sequences a and b are summation-combined to give a binary sequence 
e. Although the linear span of c approaches the product of the linear spans of a and b, it 
follows from (5') above that the 2-adic span of c is only of the order of  the sum of the 
2-adic spans of  a and b. Furthermore, the rational approximation algorithm (4') above 
will find an FCSR which generates the sequence c with knowledge (approximately) 
2 .  span2(c) bits. 

There is a huge variety of possible variations on the "feedback with carry" theme, 
some of which we present at the end of this paper. 

It is remarkable that sequences generated with the FCSR architecture can be analyzed 
at all (although there still remains a number of interesting questions). It is even more 
remarkable that this simple feedback circuitry leads immediately to a variety of  deeper 
number-theoretic issues. We believe that FCSR sequences (and their generalizations) are 
likely to find many applications in stream cipher technology. 
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Related Literature 

The authors have published announcements (with sketch of proofs, or with no proofs at 
all) of  some of these results, in various conference proceedings [23], [24], [25], [26]. Our 
shift registers are nicely described in w 17.4 and w 17.5 of  [45], where various architectures 
for combining them with other shift register sequences are suggested. See also [10] (to 
appear). We also wish to draw the reader's attention to the subsequent developments 
[22], [271. 

The closely related paper of Marsaglia and Zaman [36] (see [35]) was recently brought 
to our attention: their random number generator may be described as an FCSR with two 
taps. whose cells contain integers modulo b (rather than modulo 2). (Here, b is some 
large integer.) Thus there is some overlap between their analysis and ours. In particular, 
Marsaglia and Zaman prove: (a) that the period of their generator is given by the order 
of  b modulo q = b '  + b ~ - 1 (where the taps occur on cells number r and s); and (b) 
that the output sequence of their generator may be identified with the b-adic expansion 
of a certain rational number a/q. These are the analogues of our Corollary 2.2 and 
Theorem 4. I, respectively. 

We also learned of the (apparently unpublished) manuscript [ 1 ] in which the Euclidean 
algorithm is proposed as a possible method for the efficient prediction of the Marsagl ia-  
Zaman generator. We have relied heavily on the p-adic approximation theory of [47] 
and [32]. Related results appear in [14], [30], [34]. 

Another important measure of  (nonlinear) complexity is the "maximum order com- 
plexity" [19], [20], [21] and its determination using the Blumer algorithm [4]. This is 
discussed briefly in Section 9, however, we do not understand the relationship between 
2-adic complexity and maximum order complexity. 

The summation combiner was previously shown to be vulnerable to the "correlation 
attack" of Meier and Staffelbach 138], [39]. 

2. Review of 2-Adic Numbers 

In this section we briefly review some basic facts about 2-adic numbers, and fix a notation 
for the 2-adic numbers; the interested reader may wish to consult one of the many 
excellent references on p-adic numbers, for example, [11], [29], or [28, Section 4.1, 
Example 31 ]. 

i A 2-adic integer is a formal power series o~ = y~i=oai2, with ai ~ {0, 1}. Such a 
power series does not converge in the usual sense, but it can nevertheless be manipulated 
as a formal object; the collection of all such power series forms the ring Z2 of 2-adic 
integers. The main difference between the ring Z2 and the ring Z/(2)[[X]]  of formal 
power series in X, is that addition in Z2 is performed by "carrying" overflow bits to 
higher-order terms, so that 2 i + 2 i = 2 i+1. Multiplication is defined by shift and add. 
Using these operations, Z2 becomes a ring with additive identity 0 and multiplicative 
identity 1 = 1 �9 2 ~ (Some readers may find it less confusing to think of formal power 
series in some indeterminate, Y, rather than 2, and to use the rule yi q_ yi = yi ~1. It 
turns out that the use of  the number 2 instead of Y facilitates many computations and 
comparisons between the 2-adic integers and the usual integers.) 
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The first surprising fact is that the number - 1 is represented by 

- 1  = 1-t-21 + 2 2 + 2 3 - t - . . .  

as may be verified by adding 1 to both sides of  the equation. It follows that Z2 contains 
all the integers. The negative integer - q  is associated to the product 

- q = ( 1 + 2 + 2  2 + 2  3 + . . . ) ( q o + q l 2 + . . . + q r 2 " ) .  (1) 

The inclusion Z C Z2 is compatible with addition and multiplication. There is a formula 
for multiplication by - 1 which is much simpler than (1). If ot = 2 r ( 1 + y~i~=o ai 2 i), then 

where di denotes the complementary bit. (Just check that c~ .1. -oe = 0.) In other words, 
the bit sequence for -c~ is obtained by keeping any leading string of O's as well as the 
first nonzero bit, then by complementing all subsequent bits. 

In the integers, only ,1,1 and - 1  have integer inverses. However, in Z2, any formal 
power series 

-- 1 .20 ,1,at2 I + a 2 2 2 , 1 , - . - ,  

which begins with 1 has a (multiplicative) inverse, 

~ - t  = 1 .2O.+b~2 I + b 2 2 2 + . . . ,  

as may be verified by long division. In particular, every odd integer q E Z has a unique 
inverse in Z2. Thus, the ring Z2 contains every rational number p / q  provided q is odd. 
We make this explicit in the following statement. 

Theo rem 2.1. There is a one-to-one correspondence between rational numbers ot -: 
p /q  (where q is odd) and eventually periodic binatw sequences a, which associates to 
each such rational number 6~ the bit sequence (ao, al, a2 . . . .  ) o f  its 2-adic expansion. 
The sequence a is strictly periodic ~f and only i f  ct < 0 and let] < 1. 

Proof.  Although the proof is standard, we include it here because it is the basis for 
many of the results in this paper. Let us first consider the strictly periodic case. Let 

7X~ 
a = (ao, aj, a2 . . . .  ) be a strictly periodic sequence of period T. Set ~ = Y~i=0 ai2i 

Computing in Z2, we find 

Hence 

:L 21"Or = a i 2 i , T  = a i , T  2i+v = Z ai2i = at -- a i2  i. 

i :0  i=0 i=T i:(] 

( v  "T-I ai2 i) 
Z..~i =0 

- ( 3 )  
(2 T -- 1) 
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is a negative rational number. Let us write ~ = p / q  as a fraction reduced to lowest terms 
with q positive. Then q is odd, p < 0, and Ipl < q. 

On the other hand, suppose that ot = p / q  is given in lowest terms with q an odd 
positive integer, p < 0 and [Pl < q. Let T = ordq(2)  be the smallest integer such that 
2 r --- 1 (mod q). Such a T exists because q is odd. Then 2 r - 1 is divisible by q, so 
set s = (2 T - l ) /q ,  and write s �9 ( - p )  = y]r~l ai2 i. Thus ot = sp / (2  r - 1). The 

calculations leading to (3) may be run backward to see that the segment a0, al . . . . .  ar - l  
is a single period of  a strictly periodic sequence. 

Now suppose that r = p / q  is an arbitral,  rational number. Let M = ]ot] be the next 
largest integer. If M > 0, then its 2-adic expansion is finite (i.e., it ends in an infinite 
string of  O's). If M < 0, then its 2-adic expansion ends in an infinite string of  l ' s  (see 
(2)). However, et = M + p ' /q  where p '  < 0 and IP'[ < q, so the 2-adic expansion 
for p ' /q  is periodic. It follows that the 2-adic expansion for the sum ~ = M + p ' /q  is 
eventually periodic (in fact, it is easy to see that the 2-adic sum of any two eventually 
periodic sequences is again eventually periodic). 

On the other hand, an eventually periodic sequence a = (a0, al, a2 . . . .  ) corresponds to 
czr i a rational number ot = ~ i=0  ai2 because it is given by a finite transient term y]/K~l ai2 i 

0(3 
(for some nonnegative integer K) plus a periodic term, ~i%g ai2i = 2K Y-]j=0 aJ+k 2J, 
both of  which are rational numbers. [] 

One simple consequence of  the proof of  Theorem 2.1 is the following old result of  
Gauss [12], [3, Theorem 1], I44, p. 2191. 

Corollary 2.2. If  p and q are relatively prime, - q  < p < O, and q is odd, then the 
period o f  the bit sequence for  the 2-adic expansion o f  ~t = p / q  is T = ordq(2). 

3. Feedback Shift Registers with Carry 

In this section and the next, we give the definition and derive the basic properties of 
FCSRs. Throughout this section, we fix an odd positive integer q e Z and let r -- 
Llog2( q + l)J (where / / denotes the floor or integer part). Write 

q + l  = q 1 2 + q 2 2 2 + . " + q r 2  r (4) 

for the binary representation of the integer q + 1 (so qr = I). The shift register uses 
r stages and Llog2(r)J additional bits of memory (or less: see below). The feedback 
connections are given by the bits {ql, q2 . . . . .  qr} appearing in (4). 

Definition 3.1, The FCSR with connection integer q is the register depicted in Fig. 2. 

(Notice that q0 = - 1  does not correspond to a feedback tap, and that the coef- 
ficients of  high powers of 2 are close to the output cell.) In Fig. 2, E denotes inte- 
ger addition. The contents of  the register at any given time consists of r bits, denoted 
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an-l .  a,,-2 . . . . .  a~-r+~, a,,-r. The operation of the shift register is defined as follows: 

A1. Form the integer sum or, = Zk=l  qkan-k + m n - l .  

A2. Shift the contents one step to the right, outputting the rightmost bit an_ r. 
A3. Place a,, = cr, (mod 2) into the leftmost cell of the shift register. 
A4. Replace the memory integer m,,_ I with m,, = (a,, - a , ) / 2  = Lan/2]. 

We refer to q as the connection integer because its binary expansion gives the analog 
to the connection polynomial in the usual theory of linear feedback shift registers. 

Implementation 

Fast hardware implementation of this operation may be simplified by using a ripple adder 
and by incorporating the memory m into the shift register as indicated in Fig. 3. (In this 
figure, individual memory bits are labeled m 2,  m I , m 0 although the memory could, of  
course, be much larger. The symbol I] denotes integer sum and FA. denotes a full adder.) 
The operation of the shift register may be described by replacing (AI)  . . . . .  (A4) with 
the following steps (B 1 ) . . . . .  (B3) which are easily seen to be equivalent. 

B1. Form the integer sum ~r,~ = ~ = l  qka,-k .  

B2. Add cr, i to the memory contents m,,-I = Y] m i 2  i in the ripple adder. 
B3. Move the answer back into the memory portion of the shift register. 
B4. Shift the whole register one step to the right, outputting the rightmost bit an-r. 

Memory. Requirements 

The fast hardware generator in Fig. 3 is limited to nonnegative values of the memory 
integer m. Moreover, we will see in Corollary 4.2 that any strictly periodic sequence o f  

bits may be generated by an FCSR using only nonnegative memory values. However, in 
order to generate efficiently a given eventually periodic sequence, it may be necessary 
to allow negative values for the memory. Moreover, the analysis in Sections 4 to 10 is 
valid whether the memory is positive or negative. So, for the remainder of the paper we 
will consider FCSR architectures with signed memory values. 

Let us consider an r-stage FCSR with odd positive connection integer q = - 1  + 
ql2 + --- + qr2 r. Let w = wt(q  + 1) be the number of  nonzero qi, i = 1 . . . . .  r, the 
Hamming weight of q 4- 1. A state of the FCSR is a specification of the memory m and 

Fig. 3. Shift register with ripple adder. 
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of all the cell contents. We shall say that a state is periodic if, left to run, the FCSR will 
eventually return to that same state. 

P r o p o s i t i o n  3.2. I f  an FCSR is in a periodic state, then the memory, is in the range 0 < 

m < w (which may therefore be accompl i shedby  using no more than [log2(w - l)J + 1 

bits o f  memory.,). I f  the initial memory  m , _  i > w, then it will monotonically decrease 

and will arrive in the range 0 < m < w w i t h i n / l o g 2 (m , _  t - w)J + r steps, l f  the initial 

memory, m,,-i  < 0, then it will monotonically increase and will arrive in the range 

0 < m < w within Vlog2(Imn_ 11)] + r steps. 

Proof.  First, obse rve tha t i f the in i t i a lmemoryva luem, ,_ l  lies in the range 0 < m,, l < 
W, then the same will be true for all later values of the memory. This follows from (A 1) 
and (A4) because or,, < w + m,,-i  < 2w so m,, = [o',,/2J < w. 

By the same argument, if the initial memory value is m,,_~ = w, then later values of 

memory will be no greater than w; but in this case, within r steps, the memory will drop 
below w (and will remain so thereafter) for the following reason. If the memory does 

not decrease (i.e., if m,, = w), then this means that a 1 appeared at all the tapped cells, 
that or,, = 2w, and that a,, = a,~ (rood 2) = 0 was fed into the register. The value of  a 

will fall below 2w when this 0 reaches the first tapped cell (if not before), at which time 

we will have m = L~r/2J < w. 
Moreover, if we initialize an FCSR with a larger memory value, m,,_ I > w. then with 

each step, the excess e,,-i = m,_~ - w will become reduced by a factor of  ~ that is, 
1 e, _< [ i e , , - l J .  So after Llog2(m,,_l - w)J + 1 steps, the memory will be no more than 

w. This follows from (A1) and (A4) which give 

e n  = r a n  - -  U )  ~--- - -  W < - -  U )  : . 

- 2 

Now let us consider the case of negative initial memory, m,,-i  < 0. By (AI) ,  it is 
possible that or, _> 0, in which case the next memory value will be m,, >_ 0 (where it will 

remain thereafter). So let us suppose that a~ < 0. Then by (A4), Im, I _< (Ics,.I + 1)/2 _< 

(Im,z-ll + 1)/2. Iterating this formula, we find that after K -- Vlog2(Im,,_~ I)] steps, 
either the memory m has become nonnegative, or else 

m n-  I 1 1 1 
Im[_< 2~ + ~ - E + 2 - - U ~ _ I + . . . + ~ < 2 ,  

in which case the memory must be m = - 1 .  There is a single situation in which the 
memory can remain at - 1  forever: if there are no feedback taps on the shift register 
(so q --- - 1 ) .  In this case, the memory will feed l ' s  into the shift register forever. How- 

ever, we assumed that q > 0 to rule out this possibility. If q > 0. then as soon as a 
nonzero feedback occurs, the memory will become nonnegative, where it will remain 

thereafter. [] 

4.  A n a l y s i s  o f  F C S R s  

In this section we use arithmetic in the 2-adic integers in order to determine the output 
sequence of a given FCSR. Suppose we fix an r-stage FCSR with connection integer 
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q = - 1 + qt2  + q222 q- " "  " q- q ,U,  with initial memory m r  I. and with initial loading 

ar-~, at- 2 . . . . .  a~, ao. (See Fig. 2.) The register will generate an infinite, eventually 
periodic sequence a = (ao, a~, a2 . . . .  ) of bits, to which we associate the 2-adic integer 

= a0 + a t2  + a222 + a323 q- . . .  E Z2 which we call the 2-adic value of the FCSR 
(with its initial loading and initial memory). Define 

r 1 i 

P = Z Z q ja i - j z i  -- m,._ IT ,  
i = 0  j = 0  

(5) 

r 
where we have set qo = - 1 so that q = Y~i=o q i 2 i "  

Theo rem 4.1. The output, a, ofan FCSR with connection integerq > 0, initialmemory 

value mr . I, and initial loading a,_ I, ar-2 . . . . .  a i, a0, is the bit sequence of  the 2-adic 
representation of  the rational number e~ --- p /q .  in other words. 

w--, "~ p 
ot : .~ ai2 i = -- r Z2. 

i =o q 
(6) 

It follows that for a given FCSR. distinct initial states will result in distinct output 

sequences, Theorems 4.1 and 2.1 and Proposition 3.2 give the following: 

Coro l l a ry  4.2. I f  a = (ao, al, a2 . . . .  ) is an eventually periodic binary sequence, then 

the associated 2-adic number c* = y~. ai 2i is a quotient of  two integers, ct = p / q ,  and 

the denominator q is the connection integer of  an FCSR which generates the sequence 

a. The sequence a is strictly periodic if and only if p < 0 and [p] < q. ht this case. the 

values o f  the memoD, must lie in the range 0 <_ m < wt(q + 1 ). 

Proof  of  T h e o r e m  4.1. The computations in this section parallel those in [13]. but 
here they take place in Z2 rather than in Z/ (2) [ [X]] .  Let us consider the transition 
from one state of the shift register to the next. Suppose that, for some given state, the 
value of  the memory is m,,_~ and that the contents of  the register is given by the r bits 

a,,_~, a,,-2 . . . . .  an-r, with a,, I the leftmost bit and a,,_, the rightmost bit, and where 
the register shifts toward the right. The next state is determined by calculating (A l) 

r 

crn = mn-I +- Z qia,~-i, 
i=1  

(7) 

writing the new memory contents as m,, = LG,/2] �9 and writing the new contents of the 
leftmost cell as a,, = or,, (mod 2) (see (A3) and (A4)). (The remaining bits are shifted 
once to the right.) These equations may be combined into the expression 

It follows that 

a,, = 2m,, + a,,. 

r 

an = Z qia,,-i + (m,, 1 - 2 m , , ) .  
i=1  

(8) 
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provided that n > r. Suppose the initial loading of  the register consists of  memory mr-1 
and with register bit values at - l ,  at-2 . . . . .  al, ao. Now substitute (8) into (6) for a to 
obtain 

c~ = a 0 + a l 2 + . . . + a r - 1 2  ~ - I + ~ a , , 2 "  
n = r  

] -~ x q- qian-i 2" + ( m n _  1 - -  2m,,)2", (9) 
n = r  \ i =  I / n = r  

where 

x = ao  + a l 2  + . . -  + a t - 1 2  r - j  

is the integer represented by the initial loading of the register. The second summation in 
(9) cancels except for the first term, m r - t ,  leaving 

'3~ r 

a = x + mr_12 ~ + qi2 a,,_i2 

= x +m~_12 r + ~ q i 2 '  
\ n = r  / 

i- 

: 1 2 r - i - I  X +mr-m2r + y ~ q i 2 i ( c t - ( a o 2 ~  +al21 + ' " + a r  i- )) 
i=1  

r r-I r- i -I  
~- X + m r - 1 2 r  + o ~ Z q i 2 i - - Z  Z q ' 2 i a j 2 J  

i=1 i=1 j = 0  

(where the inner sum is empty, hence zero, when i -= r in the third line). These equations 

give 

~ ' , r - i -  1 ' ' 
x +m,._12 r -- • ; - I  /--~j=0 qiZ'aJ 2J 

1 - -  Y~ri=l  qi2 i 

r - I  r - i - I  2 r 
= Z i = 0  ~ ' ~ j = 0  qiaj2 i+j - mr I (10) 

q 

since qo = -- l .  The double summation is over all pairs of integers 0 _<_ i, j _< r - l with 

i + j _ < r -  1. S e t t i n g k = i + j g i v e s  

r - - !  k 2" 
~-~i =o qi ak-i2k Z k = 0  - -  / / z r -  ] 

q 

as claimed. 

P = - .  ( ] l )  
q 

[] 

Co ro l l a ry  4.3. Changing the memory by b changes the value of  ~ by - b 2 r / q .  I f  
el = p / q  < 0, then the initial m e m o ~  m,_ I > 0 is nonnegative. 
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Remarks. There are three easy initial loadings which guarantee a strictly periodic 

output: 

1. set m ---- 1 and all the aj = 0 (SO p : - U ) ;  
2. set m ---- 1, a0 ---- 1, and all the other a j  : 0 (so  p : q - 2r+l); and 
3. s e t m = 0 ,  ar l : l , a n d a l l t h e o t h e r a j  = 0 ( s o p : - 2  r 1). 

If - q  < p < 0 and p is relatively prime to q, then by Corollary 2.2, the period of 
the sequence is T = ordq (2). i f  p and  q have a common factor, then the period is a 
divisor of ordq(2). If p > 0 or if p < - q ,  then the sequence has a transient prefix 
before it drops into a periodic state. It appears to be difficult to determine which positive 

fractions ot may be represented by (5) with mr-~ nonnegative. Most positive fractions 
require negative initial values for the memory. 

5. Initial Loading 

In this section we answer the reverse question: Suppose we are given a fraction c~ = p / q  

(with q an odd positive integer), how do we determine an FCSR and initial loading whose 

output sequence coincides with the 2-adic expansion o f ~ ?  Set r --  /log2( q + 1)]. Write 
q = y~=oqi2  i withq0  = - 1  a n d q i  c {0,1} f o r i  > 0. Consider an F C S R w i t h  

r stages and with connection integer q. The initial memory mr I and initial loading 
a0, al  . . . . .  ar 1 are related to p and q by (11) which may be solved using the following 
procedure: 

C1. Compute a0 + a l2  + . . .  + a r_ i2  r-1 = p / q  (mod 2r). (This is the first r bits 
in the 2-adic expansion for p / q . )  In general, computing modular quotients is 
apparently hard. However, when the modulus is a power of a prime they can be 
computed efficiently. It is straightforward to do so in time O(r2).  

r - I  i i 
C2. Compute y = ~ i = 0  Z j=0 q j a i - j  2 , say by a modified multiplication algorithm. 
C3. Compute m = (y - p ) / 2  r in time O(r) .  

Use ao . . . . .  ar I as the initial loading and m as the initial memory in an FCSR with 
connection integer q. This FCSR will output the 2-adic expansion of  p / q .  

Degenerate Initial Loadings 

Let us say that an initial loading is degenerate if the 2-adic number ~ ---- p / q  corre- 
sponding to the output sequence is an integer (in the usual sense). In this case, after a 
transient prefix, the FCSR outputs all O's (ifo~ > 0) or all l ' s  ( i f~  < 0). It is easy to see 
that there are only two possible degenerate final states: (a) m = 0 and all ai = 0; and 
(b)  m = wt(q + l) - 1 and all ai = 1. How long can the prefix be? (We wish to thank 
one of the referees for helping us to sharpen the following statement.) 

T h e o r e m  5.1. Consider an r-stage FCSR with a nontrivial tap on the last cell (i.e., 

with qr = 1). Suppose the initial loading is degenerate. I f  the initial memo�9 m > 0 is 

positive, then the output will stabilize to all 1 's after no more than [log2(1 + m)] steps 

(and it cannot stabilize to all 0 's). I f  the initial memo�9 m < O, then the output cannot 
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stabilize to all 1 's: i f  the register has at least two taps, then the output will stabilize to 
all 0 's within I-log 2 (wt(q + 1) + Iml - 1 )] steps; i f  it has only one tap, then the output 

will stabilize to all O's within [log2(Im 12r/(U - 1))] steps. I f  the initial memo~, m = 0, 
then the only degenerate initial loading is the trivial one consisting o f  all 0 's. 

Proof.  Suppose the value c~ = p / q  of the FCSR is an integer. First we consider the 
case that the initial memory is m > 0. Let us consider the possibilities o~ > 0 and ot < 0 
separately. 

If a > 0 is an integer, eventually the FCSR will output all O's. However, this is not 
possible: before the sequence has become all zero, the memory must have been cleared 
(otherwise, once the register has cleared, the memory would eventually feed a 1 back 
into the register). Now if the memory is cleared, when the last 1 in the register passes the 
last tap, it will feed a I back to the beginning of  the register. So the register will never 
be cleared. 

If a < 0 is an integer, then eventually the FCSR will output all 1 's. Since m _> 0 and 
p < 0 w e h a v e b y ( 1 0 ) , l p [  < x + m 2  r < ( l + m ) 2  r , w h e r e x  = a 0 + a l 2 + . . . + a r _ 1 2  r - I  

as in (9). If q 56 2 r -- 1, then q > 2 r and we conclude that Icel< 1 + m. The output, 

which is the 2-adic expansion of the integer ot becomes all l ' s  within Flog2(l + m)] 
steps by (2). A special argument must be made when q = 2 r - 1. 

Now consider the case of initial memory m < 0. We claim that the output string 
cannot degenerate to all l ' s :  if so, then a < 0 so p < 0. However, by (10) the only 
negative contribution to p is from x, and x < q. So, if p < 0, then bc~l < x / q  < 1 which 
therefore cannot be an integer (other than 0). 

Finally, if the initial memory m < 0 and if the output stream degenerates to all O's, 
then a > 0 and p > 0. It follows from (10) (see Lemma 9.4) that 

p < ([ml + w t ( q  + 1) - l ) T .  (12) 

Provided q 56 2 r - 1, we have q > 2 r, s o a  < wt(q + 1) + I m l -  I. So in this 

case, the output sequence is the (reverse of the) binary expansion for or, which takes 
]-log2(wt( q + 1) + Iml - 1)] bits, after which we have all O's. (In the case of  a single 
tap, q = 2 r - 1, s o u  = Iml2r/(2 r - 1).) [] 

6. Exponential Representation of FCSR Sequences 

One of  the most powerful techniques for the analysis of  shift register sequences is its 

exponential representation. Suppose a = (a0, a~, a2 . . . .  ) is a periodic sequence of  bits 
obtained from a linear feedback shift register of length r, with connection polynomial  

q ( X ) .  If q(X)  is irreducible and if ?' c G F ( 2 ' )  is a root of q(X)  in the finite field with 
2 r elements, then for all i = 0, 1,2 . . . .  we have 

ai = Tr (Ay  i) 

for some A e GF(2  r) (which corresponds to the choice of initial loading of the shift 
register). Here. Tr: GF(2  r) ~ GF(2)  denotes the trace function. In this section we 
derive a similar representation for periodic sequences of bits obtained from feedback 
shift registers with memory. 
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Theorem 6.1. Suppose a periodic sequence a = (ao, aj,  a2 . . . .  ) is generated by an 

FCSR with connection integer q. Let y = 2 -I E Z / ( q )  be the (multiplicative) inverse 
o f  2 in the ring Z / ( q )  o f  integers modulo q. Then there exists A ~ Z / ( q )  such that f o r  

all i = O, 1,2 . . . .  we have 

ai = A y  i (mod q)(mod 2). 

Here the notation (rood q) (rood 2) means that first the number A y  i should be reduced 
modulo q to give a number between 0 and q - [, and then that number should be reduced 
modulo 2 to give an element of Z/(2).  (Notice that there is no group homomorphism 
Z/ (q)  ~ Z/(2)  ifq is odd, so the notation (rood q) (mod 2) needs a precise definition.) 

Proof. Suppose the FCSR is in a state S, meaning the memory has some value m and 
the register is loaded with bits a0, al . . . . .  a~-i. Let us also suppose that the FCSR is in 
periodic mode, i.e., that the output sequence a = (ao, al . . . . .  ar - l ,  a . . . . .  ) is periodic 
with no transient prefix. Let T = ordq(2) denote the period of  this sequence (which 
may be much less than q - 1 ). To such a state S we associate its 2-adic value, f ( S ) .  By 
Theorem 4.1, f ( S )  is a 2-adic integer of the form 

f ( S )  - P - ~ _ a i 2  i, 

q i=0 

with 0 < p < q - 1. Now let S' denote the next state of the FCSR, so 

Thus, 0 <  p ' < q -  1 and 

7YG 

f ( S ' )  - -  17' - -  Z a i _ 1 2 i .  

q i=0 

! 

- 2  p + a 0  - P 
q q" 

or p = 2p '  - aoq c Z.  If  we read this equation modulo 2, we see 

p = a0 (mod 2). 

Reading this equation modulo q we obtain 

p '  = 2 - i p  (mod q). 

This shows that the sequence of  numerators (p, p ' , . . . )  is obtained by multiplying by y 
and reducing rood q, and that the sequence of  bits (ao, aj . . . .  ) is obtained by reducing 
the numerators modulo 2. Finally, the initial state is arbitrary and given by the choice of 
some A c Z/(q) .  [] 

Although Peterson and Weldon [41 ] consider only the case where q is prime and 2 is 
a primitive element modulo q, their proof of their Theorem 15.5 (p, 458) may be used in 
this situation to give another proof of Theorem 6.1. The proof presented here is useful 
because it extends verbatum to various generalizations of  the FCSR architecture which 
involve ramified field extensions of  the 2-adic numbers. 
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Table 1. The states of an FCSR with q = 37. 

Mem Register ao p n Mem Register ao p n 

0 I0011 1 1 0 2 01100 0 36 18 
1 01001 1 19 1 1 10110 0 18 19 
1 10100 0 28 2 1 01011 1 9 20 
1 01010 0 14 3 1 lOlO1 I 23 21 
I 00101 1 7 4 1 11010 0 30 22 
1 00010 0 22 5 1 11101 I 15 23 
0 10001 l 11 6 2 01110 0 26 24 
1 01000 0 24 7 1 10111 1 13 25 
1 00100 0 12 8 I I lO l l  1 25 26 
0 1(~)10 0 6 9 2 01101 1 31 27 
0 11001 1 3 10 2 00110 0 34 28 
1 11100 0 20 11 1 00011 I 17 29 
1 11110 0 10 12 1 00001 I 27 30 
1 II111 1 5 13 1 00000 0 32 31 
2 01111 1 21 14 0 IO000 0 16 32 
2 00111 1 29 15 0 11000 0 8 33 
1 10011 1 33 16 1 OllO0 0 4 34 
1 11001 1 35 17 1 00110 t) 2 35 

7. E x a m p l e  

Let us consider  the FCSR with connect ion integer q = 37 = 32 -t- 4 + 2 - 1. Then we 

have a five-stage shift register with feedback connect ions  on the first, second, and fifth 

cells, count ing from the left. The e lement  y = 2 -1 6 Z / ( 3 7 )  is V = t 9 .  

In Table 1 we consider  the initial loading such that the output sequence is given by 

a,, = yn (mod 37) (mod 2) 

for n = 0, 1 ,2  . . . . .  i.e., with the constant  A = 1, in the notation of the preceding 
section. The index n is recorded as the last co lumn of  Table 1. The co lumn "mem"  
indicates the integer value of the memory,  and a0 represents the output  bit (i.e., the 
r ightmost  bit in the register). Each state S of the shift register corresponds to a rational 

number  f ( S )  = - p / 3 7  and the numerator  p is also recorded in the table. The table 

therefore lists all the strictly periodic states of the FCSR. 

8. D i v i s i o n  b y  q i n  t h e  2 - A d i c  I n t e g e r s  

Consider  the effect of  driving an FCSR by introducing an input sequence b = (br, br+l, 
br+2 . . . .  ) to another input terminal  of the adder Z in Fig. 2. The generat ing funct ion 

analysis  in Section 4 is easily modified to incorporate this driving signal. Equation (7) 

becomes 

cr,, = b,, + m,,-i + ~--~ qia,z-i 
i=1 
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and (10) becomes 

r v ~ r - i - 1  
[~ + x + mr_12 r - ~-~i=l z..,j=O qi2iaj 2j 

r 
1 -- Y~i:I qi 2i 

where/~ = ~-~iLr bi 2i ~ Z2 is the 2-adic number represented by the driving signal b. 
This proves 

Theorem 8,1. An FCSR with connection integer q and initial loading ai = 0 (i = 
0, 1 . . . . .  r -- 1) and initial memory m r - I  : 0 which is driven by a signal b = 
bo, bl, be . . . .  has an output sequence which is given by the 2-adic integer cL = fl/q. 

Thus, if we interpret the Z-transform as a 2-adic number (rather than as a formal power 
series), then the transfer "function" becomes interpreted as division by q. The analogous 
result in the linear theory is the following: an LFSR with connection polynomial q (X) 
and with initial loading 0 which is driven by a signal f l (X)  = b r  X r  q- br+l Xr+l + . . .  

has an output sequence which is given by the coefficients of the formal power series 
expansion of  f l ( X ) / q ( X ) .  

9. 2-Adic Span and Complexity 

As in the case of linear span, the 2-adic span of a sequence is intended to measure how 
large an FCSR is required to output the sequence. In the case of  LFSRs, this is given by 
the number of bits in a register that outputs the sequence, and coincides with the degree 
of  the connection polynomial, i.e., the denominator of the rational function giving the 
power series whose coefficients are the bits of the sequence. 

In the 2-adic case, things are more complex. The number of bits in the connection 
number coincides with the size of  the basic register, but additional space is required for 
the memory. For purely periodic sequences, this extra memory is small (at most the log 
of the number of bits in the basic register), and if such sequences were our only concern 
we could ignore it. However, an eventually periodic sequence may require a considerable 
amount of memory. We would like to define the 2-adic span of an eventually periodic 
sequence a to be the number of  bits in the register + memory of  an FCSR which outputs 
the sequence a, however, even this definition must be approached with care because the 
memory value may grow as the FCSR runs (see the discussion at the end of this section). 
In the following paragraph we propose two natural notions: the span (an integer which 
counts the number of  bits in the register + memory) and the complexity (a real number) 
of a sequence a. If a is strictly periodic, then the number of cells in the basic register 
(not counting the memory) is rcomplexity(a)l. We show that these two complexity 
measures differ at most by log2(complexity(a)). From the mathematical point of  view, 
the complexity is the more natural number; from the engineering point of  view, the span 
is the more natural number. 

Let a -= (a0, al . . . .  ) be an eventually period sequence of bits. Suppose an FCSR 
with connection integer q = - 1  + ql21 + . . .  + qr2 r and initial memory m ouputs this 
sequence, and that qr = 1 (i.e., that r = [log2( q + 1)1). We associate to this register the 
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number 

~. --- r + max([log2(wt( q + l))J d- 1, Llog2(Iml) j + 1) + 1 

of bits in the FCSR, where wt(q + 1) denotes the number of  nonzero qi (for 1 < i < r). 
(See "memory requirements" in Section 3: memory values within the range 0 < m < 
wt(q + 1) may grow and shrink within this range; memory values outside this range will 
move montonically toward this range. The second "+1" is a "sign bit" which allows for 

possible negative memory values.) 

Definit ion 9.1. The 2-adic span ~.2(a) of  a binary, eventually period sequence a = 
(ao, al . . . .  ), is the smallest value of ,k which occurs among all FCSRs whose output is 
the sequence a. 

Now let ~ = ~ i ~ o a i  2i = p / q  ~ Z2 be the fraction in lowest terms whose 2-adic 
expansion agrees with the sequence a. 

Definition 9.2. The 2-adic complexity of the sequence a is the real number ~02(a) = 

log2(~(  p, q))  where ~ ( p ,  q) = max(IPl,  Iql). 

Proposition 9.3. I f  ct ~ i = ~-,i=o ai2 = p / q  is the rational number, reduced to lowest 
terms, corresponding to an eventually periodic sequence a, then the 2-adic span and 
complexity are related by 

](Z2(a) - 2) - ~2(a)l 5 log2(~2(a)). (13) 

Remark. It is also possible to estimate the above quantity in terms of the 2-adic span 
as follows: 

IO.2(a) - 2) - ~02(a)l _< log2(,k2(a) - 2)) + 1. (14) 

If ~02(a) > 4, then log2(~02(a)) < ~o2(a)/2 so (13) gives ~02(a) < 20.2(a) - 2), hence 
log2(~o2(a)) < 1 + log2(~.2(a) - 2), which gives the above inequality. If q92(a) < 4, then 
(14) may be checked directly (there are 240 cases with IPl _< 15 and q < 15). 

For notational simplicity, let us write ~. = ~.2(a), ~0 = ~o2(a), w = wt(q + 1), and 
= ~ ( p ,  q). We need to use the following estimates. 

L e m m a 9 . 4 .  Supposeq = - l  + q l 2 + ' " + q r 2 r  withq, = 1 .Letm E Zbeaninteger .  

Letai  c {0, l } forO < i < r - 1 a n d s e t x  = y ~ - ~ a i 2 i . a s i n ( 5 )  and( lO)def ine  

r - t  r - i - I  

P =  Z Z q i a j 2 i ~ - J - x - m Z r "  (15) 
i=1 j=o 

~- , r - i -  I 
The,, the double sum is bounded: Z ~ - I  z_.,j=o qiaj 2i+j < (w - I)2 r. Furthermore, 

1. if p > O, then m < w -  2 and 

( - m  - I )U  < p < (w - m  - l )U ;  (16) 
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2. if p < O, then m > O and 

m a x ( 0 ,  (m - w + 1)2 r )  _< [Pl < (m k- 1)2 r. (17) 

Proof .  The proof is a direct calculation,  

r 1 

Z qi 2i 
i=1 

r - i - 1  r - 1  r - 1  

Z aj2J < Z qi2i(2r-' -- 1) < Z q i 2 " =  (wt(q + 1) -- 1)U,  
j=0 i=1 i=1 

since qr = 1 does not appear in the sum. The other estimates follow from this and the 
fact t h a t O < x  < 2  r. [] 

P r oo f  of  P ropos i t i o n  9.3. Expanding  the absolute value and exponentiat ing,  (13) is 

equivalent  to 

- -  < 2 r m a x ( 2  kl~ 2 l~ ) 5 ~ log2(dP) .  (18)  
log2 (dO) - 

We do not know a uniform proof for this statement, and there are many cases to consider. 

C a s e l ( a ) : l p l > q a n d p < O .  By(15)  a n d ( 1 7 ) , w e h a v e m >  l a n d l P l < ( m + l ) 2  r. 
Note that for m = 1,2 we have 2 LIC'g(''~j = m. So, for r > 2 we find 

IPl (nz-t- 1)2" < < m2 r 2r'9'  logtm)/ 
log2(IPl) - r 

which verifies the first inequali ty in the cases m = 1,2. If m > 3 and r > 3, then 

[Pl (m + 1)2' m2" 
< < - - - -  < 2Ll~ r, 

log2(]p [) - r - 2 

which verifies the first inequali ty when r >_ 3. Finally, i f r  = 2 and m >_ 3, then by (17), 

l o g ~ ( p l )  > - - r + l o g 2 ( m - w + l )  > _ r + l  so 

_ _ 1 / 9 1  < __(m +__1)2" < __m2 ~ <_ 20og~m}J2r" 
log2(IPl) - r -t- 1 - 2 

Now consider  the second inequali ty under  the same condit ions:  p < 0 and Ipl > q > 
2" - 1. I f m  _< r,  then 

2r2max(ll,,g( . . . . .  Iog(u')j) < 2" max(m,  w) _< 2rr _< [Pl log2(lPl) 

as desired. So suppose m > r + 1. S i n c e  p < 0 we also have IPl >__ (m - w + 1)2  ~ (see 
(17)). So 

Ipl log2(IPl) > (m - u, + l )2 r ( r  + log2(m - w + 1)) 

> ( m - w + l ) 2  r ( r + l )  

> m 2 '  > 2Ll~ 

This concludes the proof of  Proposit ion 9.3 in the Case l(a). 
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Case l (b ) : [p l  > q a n d p > ( ) .  I f m  >_0, t h e n b y ( 1 6 )  w e h a v c m  < w - 2 .  Also,  

p u , , -  1 - m 2 , .  < 2 ~ < 2 ;~-2 < 2"w < 2rr < plogz(pS.  
log2(p)  - r 

I f m  < 0 ,  then 

P < q < 2 ~ < "~;--? _< 2"r < p log2(p) .  
l og2(P) - log 2 (q) - 

This concludes  the proof  in Case 1 (b). 

Case 2(a): IPl 5 q and p < 0. Since q _< 2 r4-1, 

q 2 '~ - I  
_ _ _  < - -  < 2 r _< 2 ; ~ - 2  

log2(@) log2(q) - r 

which proves the first inequality. By Corol lary  4.2 the sequence a is strictly periodic,  

and the memory  m may be taken to lie in the range 0 < m < w - 1. In particular, 

max(lml, w) = u, < r. Then 

9;"-2 = _9"+ll~ - < Uu,, < q log 2 q. 

(This last inequali ty holds even i f q  + 1 = 2" because u, = 1 in this case.) This  concludes  

the p roof  in Case 2(a). 

Case2(b): [P[ < q a n d p  > 0. The first inequality is p roven jus t  as in Case 2(a) above. 

The second inequali ty breaks into two further cases: m > 0 and m < 0. First, if m >_ (5, 

then by L e m m a  9.4(1 ), m _< w - 2 so 

2x-2 = 2,+ LIo.e(,,)l < 2"u, < q loge(q) .  

(The last inequali ty even holds if q + I = 2" because u, = 1.) Next suppose m < 0. 

By (16), 2 ~+1 > q > p > (Im[ - 1)2 r. Thus, Iml < 3, i.e., m = - 1  or - 2 .  Assuming  

q > 4 ,  w e h a v e  

2 ~, -e < 2"max(u, ,  Iml) _< q Ioge(q).  

The cases q < 3 may be checked separately. [] 

Proposi t ion 9.3 al lows us to relate the 2-adic spans of  two sequences to the 2-adic 

span of  their with-carry sum. 

T h e o r e m  9.5. Suppose a and b are periodic binary sequences. Let c denote tire binao' 
sequence obtained by adding the sequences a and b with carr3' (see [37] and 144]). Then 
the 2-adic complexity of  c is bounded as follows. 

The 2-adic span is bounded as follows, 

X2(c) _< )~2(a) + )~2(h) + 2 log2(X2(a)) + 2 logz()~2(b)) + 2. 
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Proof .  Suppose the binary sequences a and b correspond to 2-adic numbers  a = p l/q= 
and/4 = p2/q2, respectively. The sum-with-carry sequence c corresponds to the 2-adic 
number  

P2 Plq2 + P2ql ev + / 4  = P-2-1 + -- (19) 
ql q2 qlq2 

SO 

~p2(c) = Iog2(qb(plq2 + P2ql. qlq2))  

< Iog2(2qb(Pl, ql)OP(P2, q2)) = 1 + q92(a ) + ~02(b). 

On the other hand, by Proposit ion 9.3 

~._,(e) - 2 < ~02(c) + log2(~o2(e)) 

< ~2(a) q- q92(b) -F 1 -k log2(~2(a) Jr- cp2(b) q- 1) 

_< <p2(a) + ,:p2(b) + 1 + log2(~2(a)) + log2(~o2(b)) 

< 2.2(a) + 2.2(b) -- 2 + Iog~(~.e(a) - 2) + Iog2(),.e(h) - 2) 

+ Iogz(~0e(a)) + log2(cP2(b)) 

by (14). lt'ql >_ 4 and q2 > 4, then, as in the remark fol lowing Proposit ion 9.3, we have 

log2(cPz(a)) 5 1 + Iog2()v2(a) - 2) and the result follows. A special a rgument  must be 
made for q l = 3 or q2 = 3. [] 

The span may be much less than this if the fraction (19) is not in lowest terms. 
What is the 2-adic span of an m-sequence?  Although we do not know, it is easy to 

prove that there exist m-sequences  of maximal  2-adic span. 

T h e o r e m  9 . 6 .  S u l ~ p o s e  a is  a periodic sequence with period T = 2Iv _ 1. Suppose that 
2 r - 1 is prime. 7hen the 2-adic span of  a is T + 2. 

Proof.  Consider  an FCSR which generates the sequence a, and let q denote the con- 
nection integer. Then ordq(2) = T = 2 N - 1. Therefore 2 T _---- 1 (mod q). This says that 
2 I - 1 is divisible by q. However. by assumption,  2 r - I is prime, hence q = 2 r - 1. 

The 2-adic span is then at least log2( q + 1) + 1 = T + 1. However, any sequence of 
period T can bc generated by an FCSR with 7" bits in the basic register and one bit of  
carry (which is always zero) and one sign bit (which is always zero). [] 

More generally, the same proof shows that the 2-adic span of any periodic sequence 

with period T is greater than or equal to Iog2(r + 1 ) + 1, where r is the smallest prime 
divisor of 2 T - I. 

We remark that if 7" = 2 'v - 1 and i f2  T - 1 is prime, then both T and N are prime as 

well. However, the hypotheses of this theorem may be difficult to verify in practice. It 

is po~;sible that there are only finitely many primes of the tbrm 2 l - I, and in any case 

the largest prime known to date is q = 2 1 - I where T = 859 .433 .  An m-sequence  

generated by an LFSR with only 20 cells already has period T = 1. 048 ,575 .  So, a 
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verification of the hypothesis of the theorem for any larger m-sequence would mean 
discovering a new prime number. 

Complexity Profile. Following Rueppel [44], we would like to define the 2-adic com- 
plexity profile of a pseudorandom sequence a to be the function ~Pa whose value ~Pa(k) 
is the 2-adic span of the finite sequence a0, al ,  �9 �9 ak-~ consisting of the first k terms 
of a. However, it is not completely clear how best to define the 2-adic span of a finite 
sequence, since the memory may grow as the FCSR runs. A more meaningful notion 
may be the 2-adic complexity of a finite sequence. 

Let a = a0, al ,  as, ak-i  be a finite binary sequence. Define 

~ ( a ) = l ~ 1 7 6  ' U p , q )  Up.q) 

where the minimum is taken over all pairs (p, q) 6 Z • Z of integers, with q odd, such that 
the first k bits in the 2-adic expansion of the fraction p/q is precisely a0, al . . . . .  ak- i .  
(In the language of Section 10, 7r(a) is the minimum value oflog2(q~ ( f ) )  as f is allowed 

k-I  to vary in the kth approximation lattice Lk o f ~  = Y~/=o ai2i') 
Now let a = a0, al . . . .  be a possibly infinite binary sequence. The 2-adic complexity 

profile ~a(k) is the function 

lPa(k) = ~(a0,  al . . . . .  ak 1) 

whose values are the 2-adic complexity of  the first k terms in the sequence a. The 
algorithm presented in Section 10 may be used to compute the complexity profile. In 
fact (using the notation of Fig. 4), at the kth step in the algorithm we have ~Pa(k) -- 
log 2 (max(I f I, Ig I)). A highly random sequence a will exhibit a 2-adic complexity profile 
~Pa(k) which grows approximately as k/2. 

Maximum Order Complexity. The maximum order complexity of a sequence is the size 
of  the smallest (possibly nonlinear) feedback shift register (without memory) which may 
be used to generate the sequence (see [ 19], [20], [21 ], and [4]). The relationship between 
2-adic span and the maximum order complexity is unknown. 

10. Rational Approximation Algorithm 

Suppose a = (a0, al ,  a2 . . . .  ) is an eventually periodic binary sequence. We wish to 
consider the problem of finding an FCSR whose output sequence coincides with a. First 
recall that the analogous problem for LFSRs is completely solved by the Ber lekamp-  
Massey algorithm. This algorithm is optimal in two senses: 

1. It determines the smallest LFSR whose output coincides with a. 
2. It does so with minimal information: only the first 2 �9 span(a) bits of the sequence 

a are needed. 

Furthermore, the algorithm is adaptive. Each time a new bit is determined (say by a 
known plaintext attack), it can be used to quickly update the previously determined 
LFSR. Thus the number of  available bits does not need to be known ahead of time. 
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Rational ~-~.t)tm~ximat ion 

begin 

iui:,ut a , ' :  mttil the first n o u z e r .  -L-~ i~, f(,uud 

r  ~ r  1 " ~ k  I 

. /= (0.5) 

. , / = ( 2  ~ ~ , l )  

whi le  t he rv  are  m o r e  b i t s  do 

i u l m t  a new bit .~ 

~ - -  I t  -~- (tL. L)l: 

if . g 2  - gl = (I (u lod  2 t~l  } t h e n  

f -  2 f  

else if 4)(g) < (l)(f) t h e n  

I:,t  d I . ,  odd  am{ m i n i n l i z e  q)(J' f- dg) 

(.,/~ . f)  - ( . f  + ,Lq, -~g) 

else 

l : ' t  d ho o,hI aud m i n i m i z o  qb(: 1 ,t. d/') 

{9, ,1} {g �9 i ! l .  2.I') 

t i f f  

L , = L ~ - [  

od  

return :1 

end 

Fig. 4. Rational approximation algorithm for 2-adk numbers. 
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The Berlekamp-Massey algorithm is equivalent to finding the continued fraction 
expansion in the field Z/(2)[[X]] of formal power series, of the element A ( X )  = 
~ _ , ~ o a i X  i ~ Z/(2)[[XI] (see [7], [9], 140], and [48]). One might hope that the contin- 
ued fraction expansion in the field Q2 of 2-adic numbers of the element ot ---- ~_,i=oai2C~ i 
would exhibit similar optimality properties, but this is false. In fact, the continued frac- 
tion expansion may fail to converge properly (see [47]). There are a number of decoding 
algorithms available in the context of Hensel and arithmetic codes [ 14], [30], [34]. How- 
ever, there seem to be no published proofs that any of these algorithms satisfy both of 
the optimality properties mentioned above. 

In this section we present an analogue of the Berlekamp--Massey algorithm which has 
both optimality properties: It constructs the smallest FCSR which generates the sequence 
a (Theorem 10.1 ), and it does so using only a knowledge of the first 2M + 2 log M bits, 
where M is the 2-adic span of a (Theorem 10.2). Our algorithm is based on p-adic 
approximation theory. It is a modification of the procedure outlined by de Weger [47] 
and Mahler [32], which has the advantage that it is adaptive in the same sense as the 



134 A. Klapper and M. Goresky 

Berlekamp-Massey algorithm. (De Weger's algorithm is recalled in Section 14 where it 
is applied to pseudorandom sequences with base p.) 

For any pair of  integers f = (f l ,  f2) E Z x Z, we write 

r  = max(If1 [, l f21)- 

Assume we have consecutive terms a0, al . . . .  of  a binary sequence a which is the 
2-adic expansion of a number ~. We wish to determine a pair of  integers f = ( f l ,  f2) 
so that ~ = f l / f 2  and so that ~ ( f )  is minimal among all such pairs of integers. The 
corresponding FCSR may then be constructed as described in Section 5. In the rational 
approximation algorithm, given in Fig. 4, and in the rest of this section, if f = (f~, f2) 
is a pair of  integers and if d ~ Z is an integer, write d f  = (df l ,  d f2). 

Implementation Remarks. The congruence c~g2 - g j = 0 (mod 2 k+l) may be checked 
without performing the full multiplication at each stage, by saving and updating the 
previous values of  oeg2 - gl and a f2 - f l .  Inside the loop, in the second and third 
cases, the number d is chosen so as to minimize ~ ( f  + xg) (resp. ~ ( g  + x f ) )  among 
all possible odd integers x. As observed in [47], it may be computed by division. For 
example, suppose we are in the second case: otg2 - g l ~ 0 (mod 2 k* 1 ) and �9 (g) < �9 ( f ) .  
If g~ :fi +g2, then d is among the odd integers immediately less than or greater than 
(fl  - f2) / (g l  - g2) and - ( f l  + f2) / (gl  + g2). Thus it suffices to consider the value 
of r  -4- dg) for these four values of d. When g~ = +g2, one or the other of these 
quotients is not considered. If qb(g) > ~ ( f )  then the roles of f and g are switched. 

Theorem 10.1. Let g = (gl, g2) denote the output o f  the preceding algorithm when T 
bits ai are used. Then gz is odd, 

�9 g2 - gl = 0 (mod 27"), 

and any other pair g' = (g'l, g2 ) which sati,~fies these two conditions has �9 (g') > �9 (g ). 

Theorem 10.2. Suppose a = (ao, al,  a2 . . . .  ) is an eventually periodic sequence with 
associated 2-adic number a = Y~ ai2 i = p /q ,  with p, q E Z, and gcd(p, q) = 1. I f  
T > 12~(a)]  + 2 bits ai are used, then the 2-adic Rational Approximation Algorithm 
outputs g = (p, q). (Hence also i f T  > 2~,2(a) + 2[log2(~.2(a))].) 

The proofs of these two optimality results occupy the rest of this section, and utilize the 
methods of  [32] and [47]. Consider the kth approximation lattice for the 2-adic number 

L ~ = { h e Z x Z : o t . h 2 - h ~  = 0 ( m o d 2 k ) } .  

Then Lk D Lk+l D " " .  If f = (f l ,  f2) ~ Lk, then 2 f  = (2fl ,  2f2) c Lk+l. The 
elements ( f l ,  f2) e Lk with f2 odd represent fractions f l / f 2  whose 2-adic expansion 
agrees with that of a in the first k places. Two pairs of integers f ,  g ~ L k  form a basis 
for Lk if every element h ELk  may be written h = c f  -4- dg for some integers c, d ~ Z. 
Such bases exist and are described in the following lemma, which is a key observation 
of  [47]. Its proof is straightforward. 
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L e m m a  10.3. Two pairs of  integers f ,  g E Lk form a basis for Lk if and only if 
I f ig2 - f2gll = 2 k- 

Proof.  Suppose I f ig2 - f2gll = 2 k. Let h = ( h i ,  h2) c Lk. We search for c, d ~ Z 
so that 

cfl + d g j  = hi, 

c.f2 W dg2 = h2. 

By Cramer's rule. c = ( h l g 2  - g l  h 2 ) / ( f  l g2 - gl f2) while d = ( f  l h2  - h l f 2 ) / ( f l  g2 - 

g~ f2). Since f ,  g, h c Lk the numerators of these expressions are =-- 0 (mod 2k), so they 
are multiples of 2 k. It follows that c and d are integers, and we conclude that f ,  g form a 
basis of Lk, which proves the "if" part. In particular, f '  = (2 k, 0) and g'  = (t~k, 1) form 
a basis of Lk (where otk = a0 + cq2 + �9 - �9 + otk_12k-l). Next, let us suppose that f ,  g is 
any other basis of Lk. Then f and g may be written as integer linear combinations of  f '  
and g', i.e., there is a two-by-two matrix C of  integers so that 

( f~  g ' ) = c . ( f , ' ,  g'l"~ 
g2 ',fg_ g'2J 

On the other hand, it is possible to write f '  and g '  as integer linear combinations of 
f and g using another two-by-two integer matrix C'. It follows that C'  = C -~. So 
both det(C) and det(C - l )  = det(C) -~ are integers. Hence det(C) = •  Therefore 

.fig2 - gl f2  : +( f (g2 -- g'lf2) : • [] 

The proof of  Theorem I 0.1 is an immediate consequence of the following lemma. 

L e m m a  10.4. For each k, at the top of  the loop the following conditions hold: 

1. f and g are in Lk; .f~ and f2 are even; g2 is odd; 
2. (f ,  g) is a basis for Lk; 
3. f • Lk+l; 
4. g minimizes dp(h) over all elements h E L k  with h2 odd; 
5. f minimizes ~ (h )  over all elements h E Lk with hi and h2 even. 

Proof. We prove this by induction on k. It is straightforward to check that the conditions 
(1)-(5) hold initially. Let us suppose that the conditions hold at stage k. If g E Lk+j, 
then after passing through the loop and returning to the top, the new values of f and 
g are f '  = 2 f  and g '  = g, and it is straightforward to verify that the conditions hold. 
Therefore, assume we are back at stage k, and that g ~ L k + l .  Let f '  and g '  be the new 
values after updating. We treat the case when ~ (g )  < ~ ( f ) .  The other case is similar. 

I. We have 

~ '  g'2 -- g'l = or. (f2 + dg2) - (f l  + dgl) 

= ( t ~ . f 2 - f l ) + d ( o t . g z - g l )  

= 2 k + d 2  ~ ( m o d 2  k+l) 

= 0 (mod 2k+l), 
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since f and g are in Lk -- L t t l  and d is odd. Therefore g'  E Lk+l. Also, g is in Lk, so 
f '  = 2g is in Lk + I. The parity conditions on f and g are straightforward to check. 

2. By Lemma 10.3, we have flg2 - f2gl = 4-2k. Therefore f(g~ - J2g'l = 2gl(f2 + 
dg2) - 2gz(fl + dgl) = 2(fig2 - f2g~) = 4-2k+1. Again by Lemma 10.3, (g', f ' )  is a 
basis for Lk+l. 

3. We have g ~ Lk+l, so f '  = 2g ~ Lk+2. 
4. Suppose that minimality fails. Since ( f ' ,  g') form a basis for Lk ~ I, there are integers 

a and b so that 

do(ag' + b f ' )  < do(g') (20) 

and ag~ + b f4_ is odd. The latter condition is equivalent to a being odd since .~ is even and 
g~ is odd. By possibly negating both a and b, we can assume a is nonnegative. Further, 
if a = 1, then ag' + bf '  = f + (d + 2b)g and this contradicts the choice of d in the 
algorithm. Thus we can assume that a > 1. Equation (20) can be rewritten 

�9 (af  + (ad + 2b)g) < ap (,/" + d g ) .  (21 )  

Let c be the odd integer closest to d+2b/a.  Since a is odd, the quantity x = c -  (d+2b/a)  
satisfies Ixl < 1 hence Ixl < (a - l)/a.  Then 

dp(af + acg) = C~(af + (ad + 2b + ax)g) 

<_ ~ ( a f  + (ad + 2b)g) + alxldo(g) 

by the triangle inequality for ~.  The first term may be bounded using (21) and the second 
term is bounded by the induction hypothesis: ~(g)  <_ ~ ( f  + dg). Dividing by a gives 

1 
do( . /+  cg) < - ~ ( f  + dg) + I x l ~ ( f  + d g )  < do(f + dg) 

a 

which contradicts the choice of d. 
5. Suppose there is an element h' ~ Lk+j with h' l and h~ even, such that ~ (h ' )  < 

�9 ( f ' )  : 2do(g). We can write h' = 2h for some h ~ Lk, so do(h) < ~ ( g )  < do(f).  
If both hi and he are even, this contradicts the minimality of f .  If h2 is odd, this 
contradicts the minimality of g. It is impossible that h i is odd and h~ is even for k > 1 
since ot �9 h2  - hi ~ 0(mod 2k). [] 

Remarks. The algorithm runs correctly if we always update g and f by the first method 
((g, f )  = ( f  + dg, 2f) ) ,  independent of the relation between ~ ( g )  and ~ ( f ) .  The 
relation �9 (g) < q~ ( f )  was only used to verify property (5) above, which is not necessary 
for rapid convergence of the algorithm. However, property (5) ensures that the size of  f 
remains small, so it leads to better bounds on the complexity of the computations which 
are involved in the algorithm. Since the algorithm is adaptive there is, of course, no need 
to assume that the sequence a is eventually periodic. 

Proof of  Theorem10.2 .  By assumption, a : p / q  so q is odd and (p, q) ~ L~ for all 
k. The output from the algorithm is a pair g --- (gj, g2) c L7 which is 4P-minimal, so 
d o ( g 1 ,  g 2 )  --< do(P, q)- Hence 

Iglq[ 5 Ig]l[ql _< ~ do(p,q) <_ eP(p,q) 2 < 2r-2, 
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since by assumption T > 2log 2 (b(p, q) + 2. Similarly, Ipgzl ~< 2 r -2 .  However, otg2 - 
gl - 0 (mod 2 I )  so glq - pg2 (mod 2T), which implies that glq -~ pg2. Therefore 
(gl, g2) is some odd integer multiple of (p, q). By q~-minimality, this integer must be 
+1 which gives gl = P and g2 = q (or else gj = - p  and g2 = - q ) .  [] 

Complexity Issues. Suppose the rational approximation algorithm is executed with a 
sequence a which is eventually periodic, with rational associated 2-adic number a = 
p/q.  Then the rational approximation algorithm takes T = 21og2(dP( p, q)) § 2 < 
2~.2(a) + 2 [log20~2(a))] - 2 steps to converge. 

Consider the kth step. I f ag2  - gl ~ 0 (mod 2 k+l ), then we say that a discrepancy has 
occurred. The complexity of the algorithm depends on the number of discrepancies. To 
simplify the computation ofeg2 ,  we maintain ~f2 as well. When no discrepancy occurs, 
these values and the value of f can be updated with k bit operations. 

Suppose a discrepancy occurs. The minimization step can be done with two divisions 
of k-bit integers. The remaining steps take time O(k). Then ag2 and ~f2 can be updated 
with O(k)-bit  operations and two multiplications of k-bit integers by d. 

Let D be the number of discrepancies, and let M be the maximum time taken by 
a multiplication or division of T-bit integers. The Sch6nhage-Strassen algorithm 146], 
gives M = O(T log T log log T). This can be improved to M ~ T log T using Pollard's 
nonasymptotic algorithm and Newton interpolation for T < 23v on a 32-bit machine or 
T < 27o on a 64-bit machine [42]. These are ranges that are typical in current usage. 

The complexity of the algorithm is thus 4 D M  + O(T2). Strictly in terms of T, 
this is O ( T  2 log T log log T). However, if the sequence is chosen so that the number 
of discrepancies is small, the complexity is lower. In particular, a cryptographer de- 
signing a stream cipher should try to choose sequences for which many discrepancies 
occur. 

11. The Summation Cipher 

In the summation cipher [37], [44], several m-sequences al ,  a2 . . . . .  au are combined 
using "addition with carry.'" The resulting sequence is used as a pseudo-one-time-pad. 
These sequences have generated great interest since they appear to be resistant to attacks 
based on the Berlekamp--Massey algorithm. If the constituent sequences ai have coprime 
periods Ti, then the resulting sequence has linear span which is close to the period 
L = Ti �9 T2-. .  Tk of the combined sequence. 

However, by a generalization of Theorem 9.5, the 2-adic complexity of the combined 
sequence is no more than Ti § T2 + . . .  + 7~ + log2(k) so the 2-adic span is no more 
than y~ Ti + log2(k) + log2()-~ T, + log2(k)). Thus if the T, are similar in magnitude, 
the 2-adic span of the result is bounded by kL t/k + Iog2(k) § log2(kL l/k + log2(k)) 
and it may be much less. This throws considerable doubt on the security of  these stream 
ciphers. 

Here is a more algorithmic description of the attack: 

D1. Determine (perhaps by a known plaintext attack on a stream cipher system) 2.  T 
consecutive bits of the sequence b formed by applying the summation combiner 
to a l ,  a2 . . . . .  ak .  
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D2. Apply the rational approximation algorithm to this sequence of  bits, to find q 
and p. 

D3. Construct the FCSR which outputs the bit stream corresponding to the 2-adic 
number a = p / q  using the methods in Sections 4 and 5. 

The resulting FCSR uses at most T = Tr + ~ + . . .  + 7~ + O(log(~-~i (~)) )  + O(log(k)) 
bits of  storage and outputs the sequence h. The effectiveness of this attack may be 
minimized by using only k = 2 constituent m-sequences, with periods 7;, chosen so that 
27;' - 1 has no small prime factors, but then there is less benefit in the growth of the linear 
span (see [38] and [39]). 

For example, if we combine m-sequences of period 2 L - I with L = 7, I1, 13, 15, 
16, and 17. then the period and linear span of the resulting sequence are nearly 279. 

However, the 2-adic span is less than 2 is, so fewer than 2 I'~ bits suffice to find an FCSR 
that generates the sequence. The maximum number of single word arithmetic operations 
performed by the rational approximation algorithm on a 32-bit machine is about 242. 

12. Relationship to Arithmetic Codes 

Fix an odd, positive integer A. Recall that the codewords of the A N  (arithmetic) code 
consist of the binary representations of the integers A N ,  where the integers N are re- 
stricted to lie in some suitable range [41 ], [43]. 

Suppose q > 0 is an odd integer which we use as the connection integer for an FCSR. 
Set T = ordu(2). Then the output sequence of an FCSR with connection integer q is 
periodic and the period divides T. If the value of a given state of the FCSR is ol = - p / q  
and if this fraction is in lowest terms, then the period is exactly T. 

Theorem 12.1. The single periods qfthe periodic sequences generated by the FCSR are 
precisely the codewonts for  the cyclic A N code where A = (2 r - I ) /q and 0 < N < q. 

Proof. If the output sequence (ao, al . . . .  ) is periodic, then by (3) the 2-adic value of 
the shift register is 

p ZI'=-O 1 a i  2 i  
0 [ .  - -  

q 2 T -  1 

Therefore, 

T-I  (2 I -  1 
- - ~ a i  = p �9 2 i 

i =o q 
= p . A ,  

which shows that the first 7" bits are precisely the binary expansion of the integer pA.  [] 

13. Long Sequences 

It is desirable to generate pseudorandom sequences with large periods using simple shift 
register hardware. In the case of linear feedback shift registers, sequences of maximal 
period are obtained by using a primitive connection polynomial. By Corollary 2.2, the 
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maximum possible period for an FCSR with connection integer q is T = q - I. This 
period is attained if and only ifq is prime and 2 is a primitive root modulo q. In this case, 
for any initial loading of  the register, the output sequence will either degenerate into all 
0's or all 1 's. or else it will eventually drop into the big periodic state (see Section 5). To 
emphasize the analogy with m-sequences, we make the following definition. 

Definition 13.1. An &sequence is a periodic sequence (of period T = q - 1) which is 
obtained from an FCSR with prime connection integer q for which 2 is a primitive root. 

By Theorem 2.1 and Corollary 2.2, such a sequence is (a shift of) the reverse of the 
binary expansion, 

1 
- = b02 -I + bl2 -2 + b32 -3 + . . .  
q 

of the fraction I/q (see, for example, 128, Section 4.1, Example 31 ]). This binary ex- 
pansion is called a I/q-sequem:e in [3], any single period of which is a codeword in 
the Barrows-Mandelbaum arithmetic code [2], [33]. These sequences are balanced [12] 
and they have the generalized de Bruijn property I33], [3, Theorem 1, p. 370]: in any 
given period of the sequence, every binary string of length Llog2(q)l occurs at least once 
and every binary string of length I_log2(q)/ + 1 occurs at most once. The generation of 
Barrows-Mandelbaum arithmetic codes using FCSR circuitry is new. 

The autocorrelation function of a periodic binary &sequence a is in general quite 
difficult to determine. However, there is a well-behaved autocorrelation function "with 
end-around carry" [33], R,(a), which is an appropriate arithmetic analog to the usual 
autocorrelation function. (If a = y~a,,2" and a[i] = ~a,z2  ''-i = 2i~ denotes the 
2-adic numbers corresponding to the sequence a and to its shift by i steps, then Ri (a) 
is the number of l 's  minus the number of O's in any period of  the periodic tail of the 
bit sequence for the sum a + ~1i1.) Mandelbaum proved that (for 0 < i < q - 1) this 
function is two-valued with Ri(a) = 0 unless i = (q - I)/2,  in which case Ri(a) = 1. 
(See also [271.) 

There are efficient techniques for finding large primes q for which 2 is a primitive root 
(see 181) which are already implemented in current software systems such as Maple and 
Pari. For example, an FCSR based on the prime number 

q = 212x + 25 + 2 4 + 22 -- I 

needs only two bits of memory and has maximal period T = q - 1. Heilbronn (revising 
Artin's conjecture) conjectured, and Hooley [ 17] proved, that if an extension of  the 
Riemann hypothesis to the Dedekind zeta function over certain Galois fields is true, then 
the number N(n) of primes q < n for which ordq(2) = q - 1 is 

n ( n  ln2 In2(n) ~ 
N(n) = A.  ln2(n-----7 + O ln2(n) / .  

where A (=  0.3739558136 to ten decimals) is Artin's constant. In other words, 37.4% 
of all prime numbers have this property. 

There is another case in which large periods can be obtained. Suppose that q is a prime 
number such that q = 2p + 1 with p a prime number. Then sequences generated by 



140 A. Klapper and M. Goresky 

an FCSR with connection integer q will have period T >_ (q - 1)/2, which is half the 
maximum possible period. (This is because Fermat 's  congruence states that, if x is not 
a multiple of  q, then x q-I = 1 (rood q), so ordq(2) divides q - 1 = 2p and hence is 
equal either to 2, which is impossible; to p; or to q - 1.) It is apparently easier to check 
whether (q - 1)/2 is prime than it is to determine whether 2 is a primitive root modulo 
q. It was conjectured by Hardy and Littlewood [15], and is widely believed by number 
theorists, that the number of primes P(n) less than n of the form 2p + 1, p prime, is 
asymptotically given by 

n 
P(n)  ~ c2 . ln2(n), 

where c2 (=  0.0330080908 to ten decimal places) is a constant. 
Finally, long pseudorandom sequences may be generated by FCSRs with nonprime 

connection integer q. By Theorem 6.1 a large period is obtained if the powers of 2 
constitute a large cyclic subgroup of (Z/(q))* (the collection of invertible elements in 
Z/(q) ) .  The order of  (Z/(q))* is given by Euler's phi function, ~p(q) (the number of  
integers less than q which are relatively prime to q). The group (Z/(q))* is cyclic if and 
only i fq  is a power of  a prime, say q = p~. To determine whether 2 is primitive modulo 
p~, it suffices to consider primitivity modulo p and p2 [t 8, w 4.1 Theorem 2]. 

P r o p o s i t i o n  13.2. Suppose q = pe with p an odd prime and e > 2. Then 2 is primitive 
modulo q i f  and only i f2  is primitive modulo p2. This holds if  and only i f2  is primitive 
modulo p and p2 does not divide 2 p-I  - 1. In this case, the period is qg(p ~) = pe-1 (p _ 
1) = q(p  - l ) / p .  

One can ask about the abundance of primes p for which 2 is a primitive root modulo 
p2. All of  the primes p listed in Table 2 have this property. In fact, Hardy and Wright 
point out that the condition that p2 divides 2 p-~ - 1 holds for only two primes p less 
than 3 �9 107 [16, p. 73], and by computer search Bombieri has extended this limit to 
2 . 1 0  l~ [5]. (The two primes are 1093 and 3511 .) In both cases 2 is not primitive modulo 
p. Thus for a large number of primes, we need only check the primitivity of 2 modulo p. 
In fact, it is not known whether there are any primes p such that 2 is primitive modulo 
p but not modulo p2, though there is no compelling reason to believe there are no such 
primes. 

Table 2. Values of q giving rise to f-sequences for length <_ 8. 

Length Values of q giving e-sequences 

1 3 
2 5 
3 11, 13 
4 19, 29 
5 37,53,59,61 
6 67,83,101,107 
7 131,139,149,163,173,179,181,197,211,227 
8 269,293,317,347,349,373,379.389,419,421,443,461,467,491,509 
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Distributional Properties of ~-Sequences 

We next show that the sequences based on prime power connection integers for which 2 

is a primitive root have excellent distributional properties. That they are balanced follows 

easily from the primitivity of 2. 

Proposi t ion 13.3. Let q be a power of a prime p, say q = pe, and suppose that 2 
is primitive modulo q. Let a be any maximal period FCSR sequence, generated by an 
FCSR with connection integer q. The number of  zeros and the number of ones in one 
period of a are equal. 

Furthermore, we can consider higher-order distributions. We show next that these 

sequences are close to having the de Bruijn property that each subsequence of length 

log of the period occurs exactly once in each period. We show that for any two such 

subsequences, their numbers of occurrences can differ by at most two. 

Theorem 13.4. Let q be a power of a prime p, say q = pe, and suppose that 2 
is primitive modulo q. Let s be any nonnegative integer, and let A and B be s-bit 
subsequences. Let a be any maximal period, purely periodic FCSR sequence, generated 
by an FCSR with connection integer q. Then the numbers of  occurrences of A and B in 
a with their starting positions in afixed period of  a differ by at most 2. 

Proof. The purely periodic FCSR sequences with connection integer q are precisely 

the 2-adic expansions of rational numbers - x / q ,  with 0 _< x < q. Such a sequence has 

maximum period if and only if p does not divide x. Since 2 is primitive modulo q, the 

cyclic shifts of a correspond to the set of all rational numbers - x / q ,  with 0 _< x < q. 

Thus an s-bit subsequence A occurs in a if and only if it occurs as the first s bits in the 

2-adic expansion of some rational number - x / q  with 0 _< x < q and p not dividing 

x. Two rational numbers - x l / q  and --x2/q have the same first s bits if and only if 
- x l / q  - - x2 /q (mod  2*), i.e., if and only i fx i  --- x2 (rood 2s). Thus we want to count 
the number of x with a given first s bits, 0 _< x < q, and x not divisible by p. 

Let 2 r < q < 2 r+l . If s > r, there are either zero or one such x, so the result follows. 
Thus we may assume s _< r. 

We first count the number of x with the first s bits fixed and 0 < x < q, ignoring the 
s -  1 r divisibility condition. If A ---- a0 . . . . .  as - l ,  we let ot = ~-~-i=0 ai2i" Let q = ~i=oqi2 i, 

and q' X-,s I . 2i ---- z..~i=0 qi . If ~ < q', then every choice of a . . . . . . .  ar with ~7=~ai  2i < 
r 

~i=s qi 2i gives a unique x in the right range. Ifc~ >_ q', then every choice of a . . . . . . .  ar 

with Y~-~=s ai 2i < ~-~-~=.~ qi 2i gives a unique x in the right range. Thus for different 

choices of A, the numbers of such x differ by at most one. 

Next we consider those x for which 0 < x < q and p divides x. That is, x = py for 

some y, and 0 _< y < q / p  = pe I. As above, xi = PYl and x2 = py2 have the same 

first s bits if and only if the same is true of yl and y2. The preceding paragraph shows 

that the numbers of such y for different choices of the first s bits differ by at most one. 
However, i f x  = py, then y = A (mod 2 s) if and only i f x  = pA (mod 2s), so for any 

B and C, the number of xs divisible by p with first s bits equal to B differs from the 
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number of  x 's  divisible by p with first s bits equal to C by at most 1. We have 

I{x �9 0 < x < q, p Xx, andx  =- o! (mod 2s)}l 

= I{x ' 0 < x < q and x =oe (mod 2~)}]-I{x �9 0 < x < q , p l x ,  a n d x = a  (rood 2s)}l. 

As oe varies the two terms on the right-hand side vary by at most one from their values 
for any fixed choice ofoe. Thus the difference varies by at most 2. [] 

It is easy to check that the difference can be as large as 2. 

14. Related Constructions and Open Problems 

In this section we hope to convince the reader that there is an endless assortment of 
variations on the idea of the FCSR, most of which may be analyzed along the lines we 
have outlined, perhaps by using more sophisticated mathematical tools. 

Most of the results in this paper have straightforward generalizations to FCSRs with 
cell contents and feedback coefficients in Z / ( p )  where p is a prime number, not neces- 
sarily 2. Let 

q = - l  + q l p + q z p  2 + ' ' ' + q ~ p r  

denote the base p expansion of  a positive integer q -- - 1  (rood p). Then q is the 
connection integer for an FCSR with feedback coefficients ql, q2 . . . . .  qr in Z / ( p )  as in 
Fig. 2. With each clock cycle, the integer sum an = Y~=l qkan-k +mn-1  is accumulated, 
the register contents are shifted one cell to the right, the quantity an = an (mod p) is 
placed in the leftmost cell, and the new memory value is mn = kan/pJ �9 

r Let w = Y~i=l qi denote the sum of the coefficients in the base p expansion o f q  + 1. 
For any initial value of the memory m > 0, as the register runs, the memory will decrease 
until it is < w, and then the memory will remain < w. 

Suppose the FCSR is initially loaded with contents ar-1 . . . . .  ao c Z / ( p )  and with 
initial memory m c Z. Then the output of  the FCSR is the p-adic expansion of the 
rational number 

r - I  ~ - , r - i  i " " 
Z i = 0  Z....~j=0 qi p '  a j  p ) - -  m P  r 

a = (22) 
q 

I fq  is prime, then the periodic part of  the output sequence will have period T = ordq (p). 
The output will be strictly periodic if the numerator in (22) lies between - q  + 1 and 0. In 
this case, if ?/ = p-J  (mod q), then the successive values output by the FCSR are given 
by ai = A y  i (rood q) (rood p) for some constant A 6 Z/(q) .  If p is primitive modulo 
q, then the output sequence has maximal period T = q - 1, is balanced, and has the 
generalized de Bruijn property. 

Some of these observations appear in the important article [36] where linear recur- 
rences with carry are proposed, in the case that q + 1 = pa + pb is a sum of two pure 
powers of  p. There, the period of such a sequence is computed and it is observed that, 
in this case, only one bit of memory is needed. 

We may define the p-adic  span of an eventually periodic pseudorandom sequence a = 
a0, a j, a2 . . . .  of  elements a i C Z / ( p )  to be the size of the smallest FCSR which generates 
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de Weger(R0~ (LI,.. . ,  (17"-1) 
begin 

~' - -  a o  + ( z i p  + . .  �9 + ( t T - 1  �9 pT-I 

. f -  ( o , l ; ' - ' )  

ff = (p~-~,  l)  

r e p e a t  

Let d E Z mi,imize O(f + d.q) 

.f = . f +  ~#~ 

lr~terc}~ange ,/', g 

until r <- r 

return g 

end 

Fig. 5. De Weger's algorithm for p-adic numbers. 
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that sequence, and the p-adic complexity of the sequence to be logp (max (Id ], I q ])) where 

d ~ 
ot - - Z ai f f  

q i=0 

is the rational number (in lowest terms) whose p-adic expansion is the sequence a. 
The p-adic span and p-adic complexity are related as in Proposition 9.3 (but with log 2 
replaced by logp). The p-adic complexity of the (p-adic) sum of two sequences is no 
greater than the sum of their p-adic complexities plus 1. 

The algorithm in de Weger [47], which we briefly recall in Fig. 5, is an efficient way to 
approximate any finite pseudorandom sequence (with elements in Z / (p ) )  by a rational 
number, from which an FCSR may be constructed which duplicates the given sequence. 
It  is not "adaptive": it assumes an input consisting of T elements a0, a l . . . . .  aT-1 of the 
sequence. It exhibits an optimality property analogous to that of Theorem 10.2, but we do 
not know whether there is an adaptive algorithm which also exhibits the first optimality 
property (Theorem 10.1). (Our analysis in Section l0 is strictly specific to base 2.) If 
f ---- ( f l ,  f2 )  is a pair of integers, we use the previous notation qb ( f )  = max(I f l  I, l f21). 

It is possible to design, analyze, and build feedback with carry shift registers for which 
the cells contain elements of  some other finite field GF(pm).  We refer the reader to [22] 
for further information. 

A very interesting variant on the FCSR architecture (which we call a d-FCSR) is 
shown in Fig. 6. Each cell contains 0 or 1. The operation is analogous to that of  the 
FCSR in Fig. 3 except that each "carried" bit is delayed d steps before being added. 
There is an analogous d-step "combiner" which works just like the summation combiner 
[44, Figure 9.5 p. 217], except that the single cell for memory is replaced by a shift 
register of length d which delays the carry bit for d clock cycles before adding it back 
in. We refer to this operation as a sum with d-step carry. 

The key mathematical tool for analysis of the d-FCSR is the ring D of"zr-adic integers." 
These consist of formal power series a0 § a~ zr § a27r 2 -I-. - �9 in an indeterminate 7r, where 
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m 

c 

a,.~ ar2 ... a j  a c ,  

++ 
Fig. 6. A d-FCSR with d = 2. 

> 

ai  c {0, 1} and where rr satisfies the formal rule zr d = 2. Addition and multiplication 
in this ring are performed just as in the ring Z2 of  2-adic integers. However, carried bits 
are advanced d steps because 

1 + 1  = 0 + 0 z r + . . . + 0 z r  d - l + n  d. 

Thus, the sum with d step carry, described above, is precisely the sum operation in the 
ring D. 

The operations div rr and (mod re) make sense in this ring: If cr = % + ~rlzr + 
�9 . .  + Ors Jr ~ 6 D is a finite sum of powers of  zr with coefficients ai  ~ {0, 1 }, define 
~r(modJr) = oo E Z/(2)  andcr  (div 7r) = al + a 2 n  + - . .  +o~Jr  '~-l. A formal 
description of  a d-FCSR may be given using this language. 

A connection "integer" q = - 1  + q ln  + q27r 2 + . . -  + qrn r (where qi ~ {0, 1}) 
determines taps on a shift register, just as in Fig. 2. The contents of the memory m form 
a polynomial, m = mo + m l n  + m2zr 2 + . . .  + m~rr  s with m i C {0, 1}. The register 
operates as follows: 

1. Form the integer sum a '  r-1 Z i = 0  a iqr - i .  
2. Write cr' as a polynomial (with {0, 1 } coefficients) in zr using 2 = rcd. 
3. Using addition in D, form the sum cr = m + ~r' 6 D. 
4. Shift the contents of  the register to the right one step. 
5. Place the bit ar  = o" (mod Jr) into the leftmost cell. 
6. Replace the memory with m' = ~r (div 7r) = ( a  - a r ) / r c .  

There are notions of rr-adic span and complexity; the zr-adic complexity adds when 
two binary sequences are combined using the d-step carry combiner. Many of the con- 
structions and results in this paper have analogs in this more general setting, which we 
have described and analyzed briefly in [24], however there remain many interesting open 
problems concerning these registers. 

It is also possible to design and build shift register architectures in which the cells 
contain elements from some finite field G F ( p  r)  and in which the addition involves a 
d-step carry, thus combining all of the above ideas. The appropriate mathematical tool 
for the analysis of  this sort of architecture involves the theory of  p-adic fields and their 
ramified extensions, which goes beyond the scope of  the present paper. 

There are many relations between FCSR sequences and LFSR sequences which should 
be studied: What is the linear complexity (profile) of an e-sequence? What is the 2- 
adic complexity (profile) of  an m-sequence? When e-sequences and m-sequences are 
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combined (e.g., by bitwise sum or by summation combiner) does the complexity of the 
result approach the period? Schneier 's  book [45] proposes a number of  combiners which 
should be analyzed for 2-adic and linear complexity. Similar questions may be posed 
concerning d -FCSR sequences. 

For an LFSR with a fixed connection polynomial,  the set of output sequences forms a 
vector space; in fact, they form the codewords of  a first-order Reed-Mul le r  code. We do 
not know any simple characterization of  the set of output sequences of a given FCSR. 

Adaptive versions of  de Weger 's  algorithm should be developed for other prime bases, 
and for the d -FCSR architecture. The rate of convergence of  de Weger 's  algorithm (for 
other prime bases) should be studied. As mentioned in the Introduction and in Section 9, 
the appropriate connections with maximum order complexity [19], [20], [21], [4] should 
be made. 
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