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Abstract. It is well-known that randomness is essential for secure cryptography. The
randomness used in cryptographic primitives is not necessarily recoverable even by the
party who can, e.g., decrypt or recover the underlying secret/message. Several crypto-
graphic primitives that support randomness recovery have turned out useful in various
applications. In this paper, we study randomness recoverable secret sharing schemes
(RR-SSS), in both information-theoretic and computational settings and provide two re-
sults. First, we show that while every access structure admits a perfect RR-SSS, there are
very simple access structures (e.g., in monotone AC0) that do not admit efficient perfect
(or even statistical) RR-SSS. Second, we show that the existence of efficient computa-
tional RR-SSS for certain access structures in monotone AC0 implies the existence of
one-way functions. This stands in sharp contrast to (non-RR) SSS schemes for which
no such results are known. RR-SSS plays a key role in making advanced attributed-
based encryption schemes randomness recoverable, which in turn have applications in
the context of designated-verifier non-interactive zero knowledge.

Keywords. Secret sharing, Randomness recovery, Lower bounds, Information theo-
retic security, Randomness recoverable attribute based encryption, One way function.

1. Introduction

Without randomness, secure cryptography is unachievable. The randomness used in
cryptographic primitives is not necessarily, efficiently and even sometimes information-
theoretically, recoverable. For example, the randomness used for an ElGamal ciphertext
is not efficiently recoverable even by a party holding the secret key. On the other hand,
several well-known constructions for PKE, such as the OAEP [7] and its variants [10,34,
37] are randomness recoverable (RR). Another notable RR-PKE construction is Yao’s
construction [39] based on injective trapdoor functions (TDF).
© International Association for Cryptologic Research 2024
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RR-PKE schemes have found applications in constructing optimistic fair exchange
protocols [32], signcryption schemes [30], proofs of correct decryptions in electronic-
voting applications in [26] (to avoid heavy zero-knowledge proofs) and recently in
CCA-secure PKE in [16].

In addition to PKE, RR variants of symmetric encryption schemes (SKE), attribute-
based encryption (ABE) and garbled circuits (GC) have been studied in the literature
[15,27].

1.1. RR Secret Sharing and Motivations

In this paper, we initiate the study of secret sharing schemes (SSS) [9,36] from a ran-
domness recovery point of view. In addition to being an interesting notion on its own, it
has applications in settings such as designated-verifier non-interactive zero-knowledge
(DV-NIZK) for NP [15,31], as we will discuss later.
Main Results We take the first steps toward delineating the notion of RR-SSS from

both information-theoretic and computational perspectives. First, we show that while
every access structure admits a perfect RR-SSS, there are very simple access structures
(e.g., in AC0) that do not admit efficient perfect RR-SSS. Our result also applies to the
weaker security notions including statistical security. Second, we show that the existence
of efficient computational RR-SSS for certain access structures in AC0 implies one-way
functions (OWF). Our second result provides strong evidence that realizing RR-SSS for
AC0 from assumptions not currently known to imply OWFs (e.g., worst-case complexity-
type assumptions) may be impossible.
Applications of RR-SSS andMotivationsAssuming the existence of RR-PKE, RR-SSS

for access structures in NC1 seems to be an important step towards single-key RR-ABE
for circuits in P (see Sect. 1.5). Single-key RR-ABE for P, in turn, is sufficient for DV-
NIZK for all NP [15,31]1. Currently, it is known how to base RR-ABE and DV-NIZK
on CDH and LWE [15,31] but it is still open whether they can be achieved using weaker
primitives such as TDFs (which by [15] is implied by RR-PKE and hinting PRG [29]).

Moreover, RR-SSS can be useful in applications in which proofs of well-formedness
are needed for recovered shares. This motivates the study of RR-SSS as an independent
primitive.

1.2. A Perfect RR-SSS for Every Access Structure

Let us first recall what an SSS is. In an SSS, a secret is shared among a set of participants
by giving a share to each one. The shares are computed by applying a public rule on the
secret and randomness. Only certain pre-specified subsets of participants are qualified
to recover the secret and the secret must remain hidden from every other subset of
participants. These requirements are called correctness and privacy, respectively, and
can be defined either in the computational or information-theoretic setting. The set of
all qualified subsets is called the access structure [20].

1Lombardi et al. [31] showed how to generically construct DV-NIZK from single-key weak function-hiding
ABE. These sorts of ABE can be constructed from single-key RR-ABE [15].
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Fig. 1. The ISN1 construction is not randomness recoverable in general .

In an RR-SSS, we additionally require that every qualified set, in addition to the secret,
is also able to recover the randomness.

The most well-known SSS, Shamir’s threshold scheme, is RR. In Shamir’s scheme,
a secret s ∈ F is shared among a set of n participants as follows (F is a finite field with
at least n + 1 elements). The randomness (r1, . . . , rt−1) ∈ F

t−1 is chosen (1 ≤ t ≤ n),
the polynomial f (x) = s + r1x + r2x2 + . . . + rt−1xt−1 is constructed, and the share
si = f (xi ) is given to participant i ∈ {1, . . . , n}, where x1, · · · , xn are some distinct
public elements ofF. It is easy to verify that only a subset A of size at least t is qualified to
recover the secret using the shares {si }i∈A. The corresponding access structure is called
the (n, t)-threshold access structure. It is also easy to see that in Shamir’s scheme, a
qualified set recovers the polynomial f (x), and hence, the randomness.

Not every SSS is RR. For example, consider the well-known Ito-Saito-Nishizeki
construction in [20] for a general access structure, which we refer to as the ISN1. The
secret is a single bit s ∈ F2 and the randomness is

R = {rA,i | A is a minimal qualified set and i ∈ A},

where a qualified set is called minimal if none of its proper subsets are qualified. The
rA,i ’s are randomly chosen bits subject to

∑
i∈A rA,i = s. The share of a participant i is

si = {rA,i | there exists a minimal qualified set A such that i ∈ A} .

It is easy to verify that the construction is information-theoretically both correct and
private. However, as shown in Fig. 1, the ISN1 construction is not RR in general.

A perfect RR-SSS construction A natural question to ask is whether every access
structure admits a perfect (i.e., information-theoretically secure) RR-SSS. The answer
to this question is not entirely trivial, but in the following, we show that another general
construction, also introduced by Ito-Saito-Nishizeki in [19] which we refer to as the
ISN2, is RR.

The secret is again a single bit s ∈ F2 and the randomness is

R = {rB | B is a maximal unqualified set},

where an unqualified set is called maximal if every proper superset of it is qualified. The
rB’s are randomly chosen bits. The share of a participant i is

si =
(
s +

∑

B

rB, {rB | B is a maximal unqualified set and i /∈ B}
)

.
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It is easy to verify that the construction is both perfectly correct and perfectly private.
Also, a minimal qualified set recovers the whole randomness.

Fact 1.1. The ISN2 construction [19] is RR.

1.3. Results on Perfect RR-SSS

We study the RR variant of some questions that have been extensively studied for (stan-
dard) perfect SSSs.
On Beimel’s conjecture for RR-SSSs The information ratio, defined to be the ratio

between the largest share size and the secret size, is an important parameter that measures
the efficiency of a SSS. Both ISN1 and ISN2 constructions have exponential information
ratios in the number of participants. A long-standing open problem in the theory of
secret sharing is to answer whether exponential upper bound is inevitable. Beimel [5]
has conjectured that this is the case.

Conjecture 1.2. (Beimel) There exists an ε > 0 such that, for every integer n, there
is an access structure with n participants such that every perfect SSS that realizes it has
information ratio 2�(nε).

Surprisingly, the best-known lower bound, due to Csirmaz [12], is �(n/ log n). We
prove that an exponential lower bound holds for perfect RR-SSSs.

Theorem 1.3. (Exponential lower bound for perfect RR-SSS) For every integer n,
there is an access structure with n participants such that every perfect RR-SSS that
realizes it has information ratio 2�(n).

We prove the theorem for an access structure on n participants, which is the union
of n/3 disjoint (3, 3)-threshold access structures (see Fig. 2); but the result holds in
general, i.e., for the union of n/k disjoint (k, k)-thresholds for every k ≥ 2. Similarly
to Csirmaz, we use the so-called Shannon-type information inequalities to prove an
exponential lower bound on the information ratio of this access structure for perfect
RR-SSSs.
On weaker security notions Several non-perfect security notions for secret sharing

have been proposed in the literature. It is well-known [22, Theorem 36] that any lower
bound derived using information inequalities applies not only to perfect security but also
to standard relaxations such as quasi-perfect [22, Chapter 5], almost-perfect [13,23], and
statistical security. The exponential lower bound of Theorem 1.3 is also valid for these
relaxations because we only use (Shannon-type) information inequalities in the proof.
Ruling out the existence of efficient perfect RR-SSS for mAC0. Access structures are

in 1-1 correspondence with monotone circuits. ThemAC0 class consists of all monotone
circuits of depth O(1) and polynomial size, with AND/OR gates with unbounded fan-in.
Unfortunately, the above result shows that we cannot have efficient perfect RR-SSS for
access structures even in mAC0.

On contrary, the class of access structures admitting efficient perfect (standard) SSSs
is much richer. In particular, it contains mNC1, the class of monotone circuits of depth
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O(log n) and polynomial size with AND/OR gates with a maximum fan-in of 2, which
is known to strictly contain mAC0. We refer to [6] for further discussion on the class
of efficient perfect SSSs. It is open whether every access structure in mP, the class
of monotone circuits of polynomial size with AND/OR gates with unbounded fan-in,
admits an efficient perfect SSS.

1.4. Results on Computational RR-SSS

In a computational SSS [35], we require that the sharing and reconstruction algorithms be
polynomial-time in the security parameter and the number of participants. Furthermore,
we require that a polynomial-time adversary cannot distinguish between the shares of
an unqualified set for every pair of secrets.

An unpublished result by Yao shows that assuming the existence of one-way functions,
every access structure inmP admits an efficient computational SSS. The construction is a
generalization of the results of Benaloh and Leichter [8] that constructs a perfect SSS for
polynomial-size monotone formulae. We refer to [38] for details of the construction. In
a recent work by Applebaum et al. [4], this result is extended to certain classes of access
structures that lack efficient representation. By assuming OWFs with sub-exponential
security, they construct computational secret sharing schemes with share sizes that are
poly-logarithmic in the representation size of the access structure (which corresponds to
the size of the truth table or the graph). It is open whether (efficient) computational SSS
for any class of access structures implies OWFs. Assuming the existence of OWFs, an
unpublished result of Rudich shows that computational SSS for mNP implies oblivious
transfer; see [5,28].
OWFs from RR-SSS for AC0 As we mentioned above, it is still open whether com-

putational (standard) SSS for any class of access structures implies OWFs. One main
obstacle to proving this possibly true statement is that the existence of efficient perfect
SSS for every access structure has not yet been (unconditionally) ruled out, even though
it is generally believed not to be the case, as it has been manifested in Beimel’s conjec-
ture (Conjecture1.2). However, by our result on the exponential lower bound for RR-SSS
(Theorem 1.3), the situation for RR-SSS is different. We use the method developed by
Impagliazzo and Luby in [18], together with a variant of Csirmaz’s framework [12] for
lower bounding the information ratio of perfect SSSs adapted for the computational
setting, to prove that existence of computational RR-SSS for certain access structures in
AC0 implies the existence of OWFs.

Construction of computational RR-SSS A perfect linear SSS can be converted into a
computational RR-SSS using a one-time KDM-secure SKE naturally and straightfor-
wardly. For the sake of completeness, in Sect. 5, we state this formally. In that section,
we introduce a type of PRG with a KDM-like security which turns out convenient in
constructing a simple computational RR-SSS from a perfect linear SSS with the same
access structure.

1.5. Applications of RR-ABE

The notion of RR-SSS was implicitly used as a key tool to obtain randomness recoverable
single-key attribute-based public-key encryption schemes [15,31], which in turn imply
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DV-NIZK for all NP [31]. Let us recall the definition of ABE. We have a master public
key mpk and a master secret key msk. For any attribute string x , we have an attribute
secret key skx , obtained as KGen(msk, x), where KGen is the key generation algorithm
of the ABE. We encrypt a message m under mpk and a given circuit C to get a ciphertext
ct . Now someone who has skx can decrypt ct to get m iff C(x) = 1.

We say that the ABE is RR if when C(x) = 1, then skx not only recovers m, but also
all the randomness used by the encryption algorithm.

In the single-key security notion, an adversary can ask for only one attribute secret key
skx , and has to win in an indistinguishability sense against a challenger who encrypts
with respect to some circuit C where C(x) = 0.

A standard way to build single-key RR-ABE is as follows: if |x | = n, then the master
secret key has n PKE secret keys (sk1, ..., skn) and mpk contains the corresponding
public keys (pk1, ..., pkn). An attribute secret key for x contains those ski where xi = 1.
To encrypt m under mpk and C , we share m according to C to get the shares. We then
encrypt each share under pki , and return all the ciphertexts. The notion of RR-SSS is a
key tool in realizing randomness recoverability for the above single-key ABE scheme,
as it allows us to recover the randomness used by sharing process, a major source of the
overall randomness.

2. Preliminaries

In this section, we present the necessary background.

2.1. Random Variables

We denote random variables (RV) by boldface characters and use supp(X) to denote the
support of RV X . We use the terms RV and distribution interchangeably throughout the
paper. The Shannon entropy of X is denoted by H(X). The entropy of X conditioned on
RV Y is denoted and defined by H(X|Y) := H(X,Y) − H(Y). The mutual information
between X,Y is defined and denoted by I(X : Y) := H(X) − H(X|Y).

Let us also recall the functional representation lemma [14, page 626], a well-known
lemma in information theory, that will be used in this paper. We use the notation X ≡ Y
for identically distributed RVs.

Lemma 2.1. (Functional representation lemma [14]) For every pair of jointly dis-
tributed RVs (X,Y), there exists a RV R, independent of X , and a mapping μ such that
(X,Y) ≡ (

X, μ(X, R)
)

Remark 2.2. Throughout the paper, we will consider a non-uniform model of compu-
tation, however, our results hold true for the uniform model.

We call the family X = {Xλ}λ∈N of RVs efficiently sampleable if there exists a family
of polynomial-time algorithms Sample = {Sampleλ}λ∈N such that Sampleλ(1

λ) ≡
Xλ. We call λ the security parameter and refer to X as a family of RVs, or simply an
RV, indexed by the security parameter. We recall that a function ε : N → R

≥0 is called
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negligible if for every d > 0 there exists some λ0 such that for every λ > λ0 it holds
that ε(λ) < 1

λd
.

Definition 2.3. (Computational indistinguishablity) Let X and Y be efficiently sam-
pleable distributions indexed by the security parameter λ. We say that X and Y are

computationally indistinguishable and write Xλ
c≡Yλ if for every family of polynomial

size circuits D = {Dλ}λ∈N (i.e., Dλ has polynomially many gates in the security param-
eter), there exists a negligible function ε such that

| Pr[Dλ(Xλ) = 1] − Pr[Dλ(Yλ) = 1]| ≤ ε(λ) .

We usually drop the security parameter and write X
c≡Y for Xλ

c≡Yλ, and D(Xλ) or
D(X) instead of Dλ(Xλ).

We will also face functions of the form ε(n, λ), indexed by two parameters, which
we require them to be polynomial in n and negligible in λ (e.g., to be of the form
poly(n)negl(λ)), where n will be the number of participants in secret sharing schemes.
To remove any confusion, we make the definition precise.

Definition 2.4. We say that, ε(n, λ), where ε : N×N �→ R
≥0, is polynomial in n and

negligible in λ if for every λ ∈ N, the function ε′
λ(n) := ε(n, λ) is polynomial in n, and

for every n ∈ N, the function ε′′
n(λ) := ε(n, λ) is negligible in λ. An example of such a

function is n2 1
2λ .

2.2. One-Way Function

Definition 2.5. (OWF) A function f : {0, 1}� → {0, 1}� is called a one-way function
(OWF) if the following two conditions hold:

1. There is a polynomial-time algorithm that on input x outputs f (x).
2. For every polynomial-size circuit family {Cλ}λ, the following probability is negli-

gible:

Pr[ f (Cλ( f (Uλ))) = f (Uλ)].

The following lemma is due to Impagliazzo, Levin, and Luby [17]. It was used by
Impagliazzo and Luby in [18] to prove that short-key SKE implies OWF. In Sect. 4,
we use this lemma, in a similar manner, to prove that computational RR-SSS for AC0

implies the existence of OWF.

Lemma 2.6. ([17]) If there is a polynomial-time computable function f : {0, 1}λ →
{0, 1}l(λ), a polynomial-time samplable distribution D = {Dλ}λ and a constant d > 0

such that f (Uλ)
c≡Dλ and for large enough λ, H(Dλ) ≥ H( f (Uλ))+ 1/λd , then there

is a OWF.
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2.3. Access Structure

In the secret sharing context, there is set of participants, which we denote by P , and a
distinguished participant called the dealer, which we denote by 0 /∈ P .

Definition 2.7. (Access structure) A non-empty subset � ⊆ 2P , with ∅ /∈ �, is called
an access structure on P if it is monotone; that is, A ⊆ B ⊆ P and A ∈ � imply
that that B ∈ �. A subset A ⊆ P is called qualified if A ∈ �; otherwise, it is called
unqualified. A qualified subset is called minimal if none of its proper subsets is qualified.
An unqualified subset is called maximal if every proper superset of it is qualified.

There is a natural one-to-one correspondence between access structures with n par-
ticipants and monotone Boolean functions with n variables.

2.4. Secret Sharing

A secret sharing scheme (SSS) can be defined in the following two equivalent ways. The
first definition is more useful for working in the information-theoretic setting, while the
second one is more useful in the computational setting.

Definition 2.8. (SSS in terms of jointly distributed RVs) A tuple
(
Si

)
i∈P∪{0} of jointly

distributed RVs is called a SSS on the set of participants P when |supp(S0)| ≥ 2. The
RV S0 is called the secret RV and its support is called the secret space. The RV Si is
called the share RV of the participant i ∈ P and its support is called his share space.

Definition 2.9. (SSS in terms of sharingmap)Let μ : S0×R → (Si
)
i∈P be a mapping

and R be a distribution on R, called the randomness RV. We refer to � = (R, μ) as a
SSS if |S0| ≥ 2. We call μ the sharing map and R the randomness space. Also, S0 is
called the secret space and Si is called the share space of participant i

The equivalence of these two definitions follows by the functional representation
lemma (Lemma 2.1).

The following notation will be used throughout the paper.

Notation 2.10. For a SSS � = (
Si

)
i∈P∪{0} and a subset A ⊆ P, we use the notation

SA for the projection of � on the components in A; i.e., SA := (
Si

)
i∈A. Also, for a

sharingmapμ : S0×R → (Si
)
i∈P ,μA stands for the projection ofμ on the components

in A. That is, if (si )i∈P = μ(s, r), then μA(s, r) := (si )i∈A.

Linear SSS We call a SSS with sharing map μ : S0 ×R → (Si
)
i∈P and randomness

R linear when R and all Si ’s, i ∈ P ∪ {0}, are vector spaces over a common finite
field, μ is a linear map and R is uniformly distributed over R. Throughout the paper,
for simplicity, we assume that he underline finite field is the binary field.
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2.5. Security Definitions for SSSs

The security of a SSS can be defined both in information-theoretic and computational
settings.

Definition 2.11. (Perfect security) We say that � = (
Si

)
i∈P∪{0} is a perfect SSS for

an access structure �, if the following two conditions hold:

• Perfect correctness H(S0|SA) = 0 for every qualified set A ∈ �.
• Perfect privacy I(S0 : SB) = 0 for every unqualified set B /∈ �.

If � is a perfect SSS for �, we also say that � realizes � perfectly or � admits �

perfectly.
Computational secret sharing is defined to realize a family � = {�n}n∈N of access

structures, where �n is an access structure with n participants with participants set Pn .
A computational SSS for � is a tuple � = (

R, μ) with

R = {Rλ,n}n,λ∈N ,

μ = {μλ,n : S0,λ,n × Rλ,n → (Si,λ,n
)
i∈Pn

}λ,n∈N ,

where for every λ, n ∈ N, the tuple
(
Rλ,n, μλ,n) is a secret sharing scheme with par-

ticipant set Pn . For simplicity, we drop the subscripts λ and n and simply say that
� = (

R, μ) with μ : S0 × R → (Si
)
i∈P is a family of SSSs indexed by λ and n. That

is, we implicitly assume that all the components of the scheme (i.e., the sharing map,
the secret, randomness, and share spaces and RVs) are indexed by λ and n.

Definition 2.12. (Computational security) Let � = {�n}n∈N be a collection of access
structures and � = (

R, μ) with μ : S0 × R → (Si
)
i∈P be a family of SSSs indexed

by the security parameter λ and n. We say that � is a computational SSS for � if the
following conditions hold:

• Efficient randomness sampling The RV R is polynomial-time sampleable in λ and
n.

• Polynomial secret length log |S0| is polynomial in λ and n.
• Efficient sharing The sharing map μ is polynomial-time computable in λ and n.
• Efficient secret reconstructionThere exists a polynomial-time algorithmRecon in λ

and n such that for every qualified set A ∈ �n and secret s ∈ S0, the reconstruction
error probability Pr[Recon(A, μA(s, R)) �= s] is negligible in λ and polynomial
in n (see Definition 2.4).

• Computational privacy for every unqualified set B /∈ �n and every pair of se-

crets s, s′ ∈ S0, μB(s, R)
c≡μB(s′, R). Additionally, we require that the negligible

function that exists for these two computationally indistinguishable distributions
by Definition 2.3 be polynomial in n (see Definition 2.4).

Remark 2.13. Note that we do not restrict n to be a function of λ; because, if we do
so, we have to change the access structure every time we change the security parameter,
which is generally an undesirable property. Nevertheless, we will occasionally consider
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the case of n = poly(λ) towards proving some of our theoretical results. Also note that
because n is an independent parameter, we have to parameterize the reconstruction error
and distinguisher’s advantage as functions of both n and λ. Nevertheless, we do not
require them to be negligible in n (not even reverse polynomial in n). For our purposes,
it suffices to require these quantities to be negligible in λ and polynomial in n (see
Definition 2.4).

If � is a computational SSS for � = {�n}n∈N, we may simply say that � is a compu-
tational SSS for �n . We also say that � realizes �n computationally or �n admits �

computationally.
The following lemma will be used later in the paper. Here, we present a sketch of the

proof. We refer to Appendix A for the full proof.

Lemma 2.14. Let � = (μ,R) be a perfect/computational SSS with t-bit secrets and
let S be an RV independent of R over the secret space. Then, for every unqualified set
B,

(S, μB(S,R))
c≡(S, μB(0t ,R)).

Proof. (Sketch) In the case of perfect SSS, the assertion immediately follows the in-
dependence of S and μB(S,R). Assume that � is a computational SSS. Let D be a
polynomial-size circuit that distinguishes (S, μB(S,R)) and (S, μB(0t ,R)) with non-
negligable probability. BecauseR is independent of S, there is a secret s ∈ supp(S) such
that D distinguishes (s, μB(s,R)) and (s, μB(0t ,R)) with non-negligable probability.
Let C(·) = D(s, ·). Then C distinguishes μB(s,R) and μB(0t ,R) with non-negligible
probability which contradicts the computational privacy of the SSS. �

2.6. Information Ratio

The efficiency of SSSs is usually measured using a parameter called information ratio.
The information ratio of an SSS with participants set P , secret space S0 and share space
Si for participant i ∈ P , is defined to be maxi∈P

log |Si |
log |S0| .

The perfect information ratio, or simply information ratio, of an access structure is
defined to be the infimum of all information ratios of all SSSs that perfectly realize it.

Beimel [5] has conjectured that there are families of access structures with exponential
information ratio in the number of participants; see Conjecture 1.2.

Remark 2.15. Beimel has also stated the conjecture in terms of share size instead
of information ratio in [5]; this corresponds to the case where the secret is a single bit.
There are access structures whose information ratio for exponentially-long secrets (in the
number of participants) may be significantly better than the information ratio achievable
for short secrets [3]. Nevertheless, it is widely believed that the stronger conjecture (i.e.,
for information ratio) holds true.

Csirmaz framework for lower bounding information ratio Following [11,25], Csirmaz
proposed a framework in [12] to prove lower bounds on the information ratio of perfect
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SSSs. His framework is captured in the following lemma which is based on the properties
of the entropy function as well as the correctness and privacy properties of perfect SSSs.

Lemma 2.16. (Csirmaz/Perfect) Let � = (Si )i∈P∪{0} be a perfect SSS for an access
structure�. For every subset A ⊆ P∪{0}, let f (A) = H(SA)

H(S0)
. Then, the following holds:

1. Non-negativity f (A) ≥ 0 for every A ⊆ P ∪ {0}.
2. Monotonicity f (A) ≥ f (B) for every B ⊆ A ⊆ P ∪ {0}.
3. Submodularity f (A)+ f (B) ≥ f (A∪ B)+ f (A∩ B) for every A, B ⊆ P ∪{0, }.
4. Strong monotonicity f (A) ≥ f (B) + 1 for every A ∈ � and B ⊆ A such that

B /∈ �.
5. Strong submodularity f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) + 1 for every

A, B ∈ � such that A ∩ B /∈ �.

If, using the inequalities (1.)–(5.), one can prove that for some participant i ∈ P , it
holds that f ({i}) ≥ σ , then σ will be a lower bound on the information ratio of the
underlying access structure.

2.7. Randomness Recoverable SSS

We call a SSS � = (R, μ) randomness recoverable (RR) if qualified sets, in addition to
the secret, can also recover the randomness; that is, there exists a function RNDrecover
such that for every qualified set A, Pr[RNDrecover(μA(R, s)) = R] = 1 for every
secret s. When � is a computational SSS, we require thatRNDrecover be a polynomial-
time algorithm, in the security parameter and the number of participants; we also allow
a negligible amount of error; i.e., Pr[RNDrecover(μA(R, s)) = R] can be negligible in
the security parameter and polynomial in the number of participants (see Definition 2.4
and Remark 2.13).

The following claim will be used in Sects. 3 and 4.

Claim 2.17. If � = (Si )i∈P∪{0} is an RR-SSS with perfect correctness (i.e., zero re-
construction error probability), then for every pair of qualified sets A, B, we have
H(SA) = H(SB), or equivalently f (A) = f (B), using the notation of Lemma 2.16.

Proof. Denote the support of Si by Si , for i ∈ P ∪ {0}. Let (R, μ), with μ : S0 ×
R → (Si

)
i∈P , be the equivalent SSS in terms of Definition 2.9, which exists by the

functional representation lemma (Lemma 2.1); that is,
(
S0, (Si )i∈P

) ≡ (
S0, μ(S0, R)

)
.

For simplicity, let us assume that (Si )i∈P = μ(S0, R). Since SP is a function of the
secret and randomness and every qualified set can recover both of them, it follows that
H(SP |SA) = 0, or equivalently H(SA) = H(SP ), for every qualified set A. The claim
then follows. �
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Fig. 2. The Moon-Moser access structure .

3. Exponential Lower Bound for Perfect RR-SSS

In this section, we show that the Moon-Moser access structure, to be defined below, has
an exponential information ratio for every perfect RR-SSS that realizes it. The result
also applies to weaker security notions such as statistical security as will be discussed
at the end of this section.
The Moon-Moser access structure Due to an old result by Moon and Moser [33], any

graph with n vertices has at most 3n/3 maximal independent sets. A graph with exactly
3n/3 maximal independent sets is easy to construct: simply take the disjoint union of
n/3 triangle graphs. Motivated by this example, we consider the access structure in
Fig. 2, which is the union of n/3 (3, 3)-threshold access structures, and refer to it as the
Moon-Moser access structure. Clearly, this access structure lies in AC0.

Theorem 3.1. For every n, there is an access structure in AC0 such that every perfect
RR-SSS that realizes it has information ratio 2�(n).

We first present a notation and a claim and then prove the theorem.
Notation Denote the set of participants of the Moon-Moser access structure, with n

participants, by P = {a1, b1, c1, . . . , an/3, bn/3, cn/3}, with {ai , bi , ci } be a minimally
qualified set for every i = 1, . . . , n/3 (see Fig. 2). Let � = (Si )i∈P∪{0} be a perfect
RR-SSS for this access structure and f be as in Lemma 2.16. For a participant pi ∈
{ai , bi , ci }, we define p′

i and p′′
i to be the cyclic rotations of pi by one and two positions,

respectively; i.e., a′′
i = b′

i = ci , b′′
i = c′

i = ai and c′′
i = a′

i = bi . Also, we denote a set
{pi1 , . . . , pik } simply by pi1 · · · pik .

Claim 3.2. For every qualified set A, every k = 0, 1, . . . , n/3, and all choices for
p1, . . . , pk with pi ∈ {ai , bi , ci }, the following inequality holds:

f (A) ≥ f (p1 p′
1 . . . pk p′

k) + 3n/3−k . (3.1)
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Proof of Claim 3.2. First, let us show that the following inequality is implied by In-
equality (3.1):

f (A) ≥ f (p1 p′
1 . . . pk−1 p′

k−1 pk) + 2 × 3n/3−k . (3.2)

By Inequality (3.1) we have:

f (A) ≥ f (p1 p′
1 . . . pk−1 p′

k−1 pk p
′
k) + 3n/3−k ,

f (A) ≥ f (p1 p′
1 . . . pk−1 p′

k−1 p
′′
k pk) + 3n/3−k .

Also by the monotonicity property, we have

f (p1 p
′
1 . . . pk−1 p

′
k−1 pk p

′
k ) + f (p1 p

′
1 . . . pk−1 p

′
k−1 p

′′
k pk ) ≥

f (p1 p
′
1 . . . pk−1 p

′
k−1 pk p

′
k p

′′
k )+ f (p1 p

′
1 . . . pk−1 p

′
k−1 pk ) .

Notice that p1 p′
1 . . . pk−1 p′

k−1 pk p
′
k p

′′
k is qualified and, hence, by Claim 2.17 we have

f (A) = f (p1 p
′
1 . . . pk−1 p

′
k−1 pk p

′
k p

′′
k )

. Therefore, Inequality (3.2) follows by adding the above three inequalities.
Now, we prove Inequality (3.1) by backward induction on k.
Base Denote m = n/3. For k = m, by strong submodularity property, we have:

f (p′′
1 p1 p

′
1 . . . pm p′

m) + f (p′′
2 p1 p

′
1 . . . pm p′

m) ≥ f (p′′
1 p

′′
2 p1 p

′
1 . . . pm p′

m)

+ f (p1 p
′
1 . . . pm p′

m) + 1 .

Since the sets p′′
1 p1 p′

1 . . . pm p′
m , p′′

2 p1 p′
1 . . . pm p′

m and p′′
1 p

′′
2 p1 p′

1 . . . pm p′
m are all

qualified, for every qualified set A, by Claim 2.17, we have:

f (A) = f (p′′
1 p1 p

′
1 . . . pm p′

m) = f (p′′
2 p1 p

′
1 . . . pm p′

m) = f (p′′
1 p

′′
2 p1 p

′
1 . . . pm p′

m) .

Therefore,

f (A) ≥ f (p1 p
′
1 . . . pm p′

m) + 1 ;

that is, Inequality (3.1) holds for k = n/3.
Induction Now suppose that by the induction hypothesis

f (A) ≥ f (p1 p
′
1 . . . pk−1 p

′
k−1 pk p

′
k) + 3n/3−k .

By Inequality (3.2), we also have:

f (A) ≥ f (p1 p
′
1 . . . pk−1 p

′
k−1 p

′′
k ) + 2 × 3n/3−k .
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By the monotonicity property, we have

f (p1 p′
1 . . . pk−1 p′

k−1 pk p
′
k) + f (p1 p′

1 . . . pk−1 p′
k−1 p

′′
k ) ≥

f (p1 p′
1 . . . pk−1 p′

k−1 pk p
′
k p

′′
k )+ f (p1 p′

1 . . . pk−1 p′
k−1) .

By adding the above three inequalities, noticing that p1 p′
1 . . . pk−1 p′

k−1 pk p
′
k p

′′
k is

qualified, and using Claim 2.17, we get:

f (A) ≥ f (p1 p
′
1 . . . pk−1 p

′
k−1) + 3n/3−(k−1) ;

that is, Inequality (3.1) holds for k − 1. This completes the proof of Claim 3.2. �

Proof of Theorem 3.1. Let pi ∈ {a1, b1, c1, . . . , an/3, bn/3, cn/3}. By letting k = 0 and
A = {pi , p′

i , p
′′
i } in Inequality (3.1), we have:

f (pi p
′
i p

′′
i ) ≥ 3n/3 .

Also, f (pi ) + f (p′
i ) + f (p′′

i ) ≥ f (pi p′
i p

′′
i ). Therefore, for every i ∈ {1, . . . , n/3}, for

at least one p ∈ {ai , bi , ci }, we have

f (p) ≥ 3n/3−1 . �

Remark 3.3. The above proof can be converted, in a straightforward manner, to a proof
for the case of an access structure that is the union of n/k disjoint (k, k)-thresholds.
Stated explicitly, every perfect RR-SSS that realizes the access structure that has

{a1,1, a1,2, · · · , a1,k}, {a2,1, a2,2, · · · , a2,k}, · · · , {an/k,1, an/k,2, · · · , an/k,k}

as its minimal qualified sets has information-ratio 2�(n log k/k). The best exponent is
achieved for k = 3, which justifies our choice for the Moon-Moser access structure in
this section.

Exponential lower bound for non-perfect RR-SSSs Besides perfect and computational
security, several non-perfect security notions for secret sharing have appeared in the
literature, including almost-perfect, quasi-perfect, and statistical. We refer to [21] for a
comprehensive study of these security notions. Kaced [22, Theorem 36] has shown that
any lower bound derived on the information ratio of (standard) SSSs using information
inequalities applies not only to perfect security but also to quasi-perfect security (which
can be shown to apply to almost-perfect and statistical security too). His result can also
be extended to the case of RR-SSSs. Since, we only used (Shannon-type) information
inequalities to derive our exponential lower bound on perfect RR-SSS, it also holds for
all mentioned non-perfect security notions.
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4. Computational RR-SSS for AC0 Implies OWF

In this section, we show that the existence of computational RR-SSS for some access
structures in AC0 implies the existence of OWFs. Our method is similar to Impagliazzo
and Levin’s method for proving that short-key SKE implies OWFs [18]. The idea is as
follows: if � = (μ, R) is a SSS for an access structure where B is unqualified, then
S||μB(S, R) and S′||μB(S, R) are computationally indistinguishable, where S and S′
are independent uniform RVs over the secret space. Indeed, when the SSS is perfect,
μB(S, R) reveals no information about S and so the two distributions are information-
theoretically indistinguishable. But when the SSS is computational, μB(S, R) reveals
some information about S. If this amount is not negligible, then we have two distributions
that are computationally indistinguishable but statistically distinguishable and we can
apply Lemma 2.6 to deduce the existence of OWF.

In Sect. 3, it was shown that there are access structures inAC0 that do not admit efficient
perfect RR-SSSs. In other words, an RR-SSS for such an access structure, that perfectly
hides the secret from unqualified sets, has to have shares with exponential length. Hence
intuitively, in a computational RR-SSS for such an access structure (because shares are
of polynomial length), there are unqualified sets that obtain a considerable amount of
information about the secret. This intuition is exactly phrased and proved in this section.

For simplicity, we first study the simpler case where in the definition of computational
SSS (Definition 2.12), we require the reconstruction error probability to be equal to zero.

4.1. Zero Reconstruction Error

In this subsection, we present a lemma, a claim, and a corollary for computational SSSs
with zero reconstruction errors. These results are modified in Sect. 4.2 to consider non-
zero reconstruction error and will be used in Sect. 4.3 to prove the main result of this
section.

A variant of Csirmaz’s framework (see lemma 2.16) adapted to the computational
setting with perfect correctness (i.e., zero reconstruction error) is needed. The following
lemma states this variant.

Lemma 4.1. (Csirmaz/Computational/Perfect correctness) Let � = (Si )i∈P∪{0} be
a computational SSS with perfect correctness for an access structure �. For A, B ⊆
P ∪ {0}, denote H(SA) with H(A) and H(SA|SB) with H(A|B), respectively. Then,
the non-negativity, monotonicity, and submodularity properties hold as in Lemma 2.16
and, one has the following modified formulation of strong monotonicity and strong
submodularity:

1. Strong monotonicity H(A) ≥ H(B) + H(0|B) for every A ∈ � and B ⊂ A such
that B /∈ �.

2. Strong submodularity H(A) + H(B) ≥ H(A ∪ B) + H(A ∩ B) + H(0|A ∩ B)

for every A, B ∈ � such that A ∩ B /∈ �.

Proof. Inequality (1) holds because A is qualified and due to the monotonicity property:

H(A) = H({0} ∪ A) ≥ H({0} ∪ B) = H(B) + H(0|B).
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Fig. 3. Union of (2, 2)-threshholds .

Inequality (2) follows from the following relations:

H(A) + H(B) = H({0} ∪ A) + H({0} ∪ B)

≥ H({0} ∪ A ∪ B) + H({0} ∪ (A ∩ B))

≥ H(A ∪ B) + H(A ∩ B) + H(0|A ∩ B).

In the first equality, we have used the fact that A and B are qualified. The first and second
inequalities follow by the submodularity and monotonicity properties, respectively.

�

Notation In what follows, let P = {a1, b1, a2, b2, · · · , an/2, bn/2} and � be an access
structure with minimally qualified sets {a1, b1}, · · · , {an/2, bn/2} (see Fig. 3). Note that
this access structure lies in AC0. According to Remark 3.3, �’s information ratio is
2�(n). For pi ∈ {ai , bi }, let p′

i be the other element of {ai , bi }; i.e., if pi = ai then
p′
i = bi and if pi = bi then p′

i = ai . Also denote {p1, p2, · · · , pk} with p1 p2 · · · pk
and use the notation in Lemma 4.1 for entropies.

Claim 4.2. Let � be a computational RR-SSS with perfect correctness for � and A be
a qualified set in � with H(A) ≤ c. Then for all k = 0, 1, · · · , n/2,

H( p1 p2 · · · pk) + c

2k
≥ H(A),

where pi is a uniform RV over {ai , bi } and pi ’s are independent.

Proof. We prove the claim by induction on k. Base: The base (k = 0) holds by the
assumption. Induction: Suppose that by the induction hypothesis we have:

H( p1 p2 · · · pk) + c

2k
≥ H(A), (4.1)
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where k < n/2. By the submodularity property

H( p1 p2 · · · pkak+1) + H( p1 p2 · · · pkbk+1) ≥ H( p1 p2 · · · pkak+1bk+1)

+H( p1 p2 · · · pk).
(4.2)

Since { p1, p2, · · · , pk, ak+1, bk+1} is qualified, then according to Claim 2.17, we have:

H( p1 p2 · · · pkak+1bk+1) = H(A). (4.3)

Summing up relations (4.1), (4.2) and (4.3), we get:

H( p1 p2 · · · pkak+1) + H( p1 p2 · · · pkbk+1) + c

2k
≥ 2H(A).

So:

H( p1 p2 · · · pk pk+1) + c

2k+1 = 1

2

(
H( p1 p2 · · · pkak+1)

+ H( p1 p2 · · · pkbk+1)
) + c

2k+1 ≥ H(A) .

�

The following corollary could be considered as a quantitative contrapositive for The-
orem 3.1.

Corollary 4.3. Let � be a computational RR-SSS for � with perfect correctness and
m-bit secrets and let n be a polynomial in λ. Then for large enough λ:

m

2
≥ H(0| p1 p2 · · · pn/2),

where pi is a uniform RV over {ai , bi } and pi ’s are independent.

Proof. Sharing algorithm’s running time and m are polynomials, so for large enough
λ we have 2

n
2 −1m ≥ H(A), where A is an arbitrary qualified set. Applying Claim 4.2

to this inequality, if follows that

H( p1 p2 · · · pn/2) + m

2
≥ H(A). (4.4)

On the other hand, { p′
1, p1, p2, · · · , pn/2} and { p′

2, p1, p2, · · · , pn/2} are qualified
sets, while { p1, p2, · · · , pn/2} is not. So, according to the (computational) strong sub-
modularity property,

H( p′
1 p1 p2 · · · pn/2) + H( p′

2 p1 p2 · · · pn/2)

≥ H( p′
1 p

′
2 p1 p2 · · · pn/2) + H( p1 p2 · · · pn/2) + H(0| p1 p2 · · · pn/2).



   34 Page 18 of 30 M. Hajiabadi et al.

Applying Claim 2.17, we get

H(A) ≥ H( p1 p2 · · · pn/2) + H(0| p1 p2 · · · pn/2).

Summing up the above inequality and Inequality (4.4), one gets the desired result. �

4.2. Non-zero Reconstruction Error

In this subsection, we provide variants of Lemma 4.1, Claim 4.2, and Corollary 4.3 that
do not assume zero reconstruction error.

When the reconstruction error is zero, the entropy of the secret conditioned on the
share of a qualified set is zero, because in this case, the secret is determined by the
qualified set’s share. When we allow the reconstruction algorithm to fail with some
bounded probability, this property no longer holds. The following is a variant of Fano’s
inequality that we will use to prove that in this case, conditioned on the share of a
qualified set, the entropy of the secret is o(1).

Lemma 4.4. Let X and Y be families of RVs such that Y has polynomial length and
f be a function such that Pr[Y �= f (X)] is negligible. Then H(Y |X) is o(1).

Proof. Define the indicator RV Z as follows:

Z =
{

1 if Y = f (X)

0 if Y �= f (X)
.

Since H(Z|X,Y) = 0, we have:

H(Y |X) = H(Y |X) + H(Z|X,Y)

= H(Y , Z|X)

= H(Z|X) + H(Y |X, Z)

≤ H(Z) +
∑

x∈Supp(X)

(
Pr[X = x, Z = 0]H(Y |X = x, Z = 0)

+ Pr[X = x, Z = 1]H(Y |X = x, Z = 1)
)

= o(1) +
∑

x∈Supp(X)

Pr[X = x, Z = 0]H(Y |X = x, Z = 0) (4.5)

≤ o(1) +
( ∑

x∈Supp(X)

Pr[X = x, Z = 0]
)

log(|Supp(Y)|) (4.6)

= o(1) + Pr[Z = 0] log(|Supp(Y)|)
= o(1). (4.7)

Equation (4.5) holds for two reasons: First, Z is a Bernouli RV with Pr[Z = 0] = o(1)

(indeed, this probability is negligable), so H(Z) = o(1); Second, when Z = 1, Y is
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determined by X ; therefore, H(Y |X = x, Z = 1) = 0. Inequality (4.6) holds because
H(Y) ≤ log(|Supp(Y)|). Equality (4.7) holds because Pr[Z = 0] is negligable and Y
has polynomial length. �

Lemma 4.5. Let� = (μ, R) be a computational SSS, n be a polynomial inλ and S0 be
an RV over the secret space. Then for every qualified set A, H (S0|μA(S0, R)) = o(1).

Proof. Let Recon be the reconstruction algorithm and δ = δ(λ, n) be the recon-
struction error. Then Pr[Recon(A, μA(S0, R)) �= S0] ≤ δ(λ, n) and because n is a
polynomial in λ, this probability is negligable. Also, the length of S0 is polynomial.
Therefore, according to Lemma 4.4, H(S0|μA(S0, R)) = o(1).

�

The following is a variant of Claim 2.17 that does not assume zero reconstruction
error.

Claim 4.6. Let � = (μ, R) be a computational RR-SSS, n be a polynomial in λ

and S0 be an RV over the secret space. Then for any two qualified sets A and B,
|H(μA(S0, R)) − H(μB(S0, R))| = o(1).

Proof. By Lemma 4.5, H(S0|μA(S0, R)) = o(1). Because � is RR, it can be proved
that similarly

H(R|μA(S0, R)) = o(1).

Therefore, H(S0, R|μA(S0, R)) = o(1) and, hence, H(S0, R) ≤ H(μA(S0, R)) +
o(1). On the other hand, μA(S0, R) is determined by S0 and R; thus H(μA(S0, R)) ≤
H(S0, R). Similar bounds hold for μB(S0, R). The claim follows from these
bounds. �

The following is a variant of Csirmaz’s computational framework (4.1) stated for the
case of the non-zero reconstruction error.

Lemma 4.7. (Csirmaz/Computational) Let � = (Si )i∈P∪{0} be a computational SSS
for an access structure � and n be a polynomial in λ. Then, the non-negativity, mono-
tonicity, and submodularity properties hold as in Lemma 2.16 and, one has the following
modified formulation of strong monotonicity and strong submodularity:

1. Strong monotonicity H(A)+o(1) ≥ H(B)+H(0|B) for every A ∈ � and B ⊂ A
such that B /∈ �.

2. Strong submodularity H(A)+H(B)+o(1) ≥ H(A∪B)+H(A∩B)+H(0|A∩B)

for every A, B ∈ � such that A ∩ B /∈ �.

Proof. Inequality (1) follows from the following relations:

H(A) + o(1) = H({0} ∪ A) ≥ H({0} ∪ B) = H(B) + H(0|B).
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The left-hand side equality follows from Lemma 4.6. The rest is as in the proof of Lemma
4.1. Inequality (2) follows from the following relations:

H(A) + H(B) + o(1) = H({0} ∪ A) + H({0} ∪ B)

≥ H({0} ∪ A ∪ B) + H({0} ∪ (A ∩ B))

≥ H(A ∪ B) + H(A ∩ B) + H(0|A ∩ B).

The equality follows from Lemma 4.6. The rest is as in the proof of Lemma 4.1. �

Below is a modification of Claim 4.2 stated for the case of the non-zero reconstruction
error.

Claim 4.8. Let � be a computational RR-SSS for �, n be a polynomial in λ and A be
a qualified set such that H(A) ≤ c. Then for k = 0, 1, · · · , n/2 one has:

H( p1 p2 · · · pk) + c

2k
+ o(1) ≥ H(A),

where pi is a uniform RV over {ai , bi } and pi ’s are independent.

Proof. Proof of this claim is achieved by applying appropriate and straightforward
modifications to the proof of Claim 4.2. Explicitly, Claim 2.17 is used there to deduce
H( p1 p2 · · · pkak+1bk+1) = H(A). Instead, we apply Claim 4.6 to deduce

H( p1 p2 · · · pkak+1bk+1) + o(1) ≥ H(A).

Also, the induction hypothesis should be modified to include the term o(1). �

Finally, we state a variant of Corollary 4.3 that does not assume zero reconstruction
error.

Corollary 4.9. Let � be a computational RR-SSS for � with m-bit secrets and n be a
polynomial in λ. Then

m

2
+ o(1) ≥ H(0| p1 p2 · · · pn/2),

where pi is a uniform RV over {ai , bi } and pi ’s are independent.

Proof. The proof is the same as the proof of Corollary 4.3 with the following exceptions:
Usages of Claim 4.2 and Claim 2.17 are replaced with those of Claim 4.8 and Claim
4.6, respectively. Indeed, these replacements substitute each claim with a corresponding
variant that is adapted to the case of the non-zero reconstruction error. Also, the variant
of strong submodularity that is stated in Lemma 4.7 should be used. �
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4.3. Main Result

Theorem 4.10. Let � be the union of n/2 disjoint (2, 2)-thresholds (see Fig. 3). If �

has a computational RR-SSS, then there exists an OWF.

Proof. As in the previous subsections, assume that {ai , bi }, 1 ≤ i ≤ n/2, are the
minimal qualified sets. Let � = (μ, R) be a computational RR-SSS for � with m-bit
secrets and n = poly(λ). For 0 ≤ i ≤ n/2, take pi to be a uniform RV over {ai , bi } and
set B = { p1, p2, · · · , pn/2}.

According to Corollary 4.9 we have,

m

2
+ o(1) ≥ H(0| p1 p2 · · · pn/2).

So if we let S0 be a uniform RV over the secret space, then

m

2
+ o(1) + H(μB(S0, R)) ≥ H(S0||μB(S0, R)).

Let S′
0 be a uniform secret independent of S0 and R. Then

H(S′
0||μB(S0, R)) = m + H(μB(S0, R)).

These together imply that

H(S′
0||μB(S0, R)) + o(1) ≥ H(S0||μB(S0, R)) + m

2
. (4.8)

On the other hand, because (S0, R) and (S′
0, R) have the same distribution, we have

S0||μB(S0, R)
c≡ S′

0||μB(S′
0, R). Also it follows from the computational privacy of the

SSS that S′
0||μB(S0, R)

c≡ S′
0||μB(S′

0, R). Putting these together, we get

S′
0||μB(S0, R)

c≡S0||μB(S0, R). (4.9)

Applying Lemma 2.6 to (4.8) and (4.9) (with Dλ = S′
0||μB(S0, R) and f (S0||R||B) =

S0||μB(S0, R)), we get the desired result. �

5. Construction of Computational RR-SSS

In this section, we observe that computational RR-SSS for NC1 can be based on simple
minicrypt primitives that have some kind of one-time KDM-like security. In particular,
we first observe that an efficient linear SSS (and generally, an efficient SSS with a
property that we call randomness simulatability) can be converted into a computational
RR-SSS assuming the existence of one-time KDM-secure RR-SKE. Next we introduce
the notion of linear-resistant PRG. Then, we see how an efficient perfect linear SSS can
be converted into an efficient computational RR-SSS, using a linear-resistant PRG.
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5.1. RR-SKE and KDM Security

First, we recall the definition of (RR-)SKE and (one-time) KDM-security.

Definition 5.1. (SKE/RR-SKE) Let M = {Mλ}λ∈N be a family of message spaces
and 
 = (Gen,Enc,Dec) be a tuple of probabilistic polynomial-time algorithms where

– Gen, called key-generation algorithm, on input 1λ returns a key k,
– Enc, called encryption algorithm, gets a message m and a key k as input and returns

a ciphertext ct ,
– Dec, called decryption algorithm, gets a ciphertext ct and a key k as input and

returns a message m or ⊥.


 is called a symmetric-key encryption (SKE) for M if for every m ∈ Mλ:

Pr[k ← Gen(1λ); ct ← Enck(m) : Deck(ct) = m] = 1 .

We call 
 randomness recoverable SKE (RR-SKE) if additionally there exists a
polynomial-time algorithm Recover such that:

Pr[k ← Gen(1λ); ct ← Enck(m; R) : Recoverk(ct) = R] = 1 ,

where R is the randomness used in the encryption algorithm.

Definition 5.2. Let � = (Gen,Enc,Dec) be an SKE with key-spaceK and message-
space M. We say that � is one-time KDM-secure, if for each efficiently computable
function f : K → M,

{k ← Gen(1λ) : Enck( f (k))} c≡{k ← Gen(1λ) : Enck(0| f (k)|)}.

The standard construction of Symmetric-Key Encryption (SKE) based on a pseudo-
random function is RR. In the next section, we will discuss SKE schemes that ensure both
randomness recoverability and one-time KDM-security. The work of [27] surveys RR-
SKE schemes that meet KDM-security criteria for projection functions (simple functions
where each output bit is dependent on only one input bit). Additionally, the research by [2]
demonstrates how to extend KDM-security from projection functions to general efficient
functions. However, this transformation does not maintain the randomness recoverabil-
ity. To the best of our knowledge, RR-SKE schemes that satisfy one-time KDM-security
for general efficient functions have not yet been addressed in the literature.

Lemma 5.3. Assume that � = (Gen,Enc,Dec) is a one-time KDM-secure SKE and
g : {0, 1}l1+l2+l3 → {0, 1}l is an effieciently computable function. Then one has

(x,Enck(g(k, x, y)))
c≡(x,Enck(0l))

where k is �’s key and has length l1 and (x, y) are jointy distributed RVs over {0, 1}l2 ×
{0, 1}l3 and independent of k.
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Here, we present a sketch of the proof. We refer to Appendix B for the full proof.

Proof. (Sketch) Let D be a polynomial-size circuit that distinguishes the distributions
(x,Enck(0l)) and (x,Enck(g(k, x, y))) with non-negligable probability. Because k is
independent of (x, y), there are (x, y) ∈ supp(x) × supp(y) such that D distinguishes
(x,Enck(g(k, x, y))) and (x,Enck(0l)). Let C(·) = D(x, ·) and f (·) = g(·, x, y).
Then C distinguishes Enck( f (k)) and Enck(0l) with non-negligible probability which
is in contradiction with the KDM security of �. �

5.2. RR-SSS from Randomness Simulatable SSS and One-Time KDM-Secure RR-SKE

Consider this simple construction for a computational RR-SSS using a general (i.e., not
necessarily perfect or linear) efficient standard SSS (which is known to exist for access
structures in mP, assuming OWF) and an RR-SKE with one-time KDM-security. The
construction is as follows. First, use the SSS to share s||k with randomness r to compute
the shares for the secret s, where k is the key of the SKE. Then, encrypt r under the
secret key k using the SKE and append the ciphertext to the shares. The correctness
and randomness recoverability requirements are trivial. Privacy follows from the KDM-
security of the SKE. However, in order for the proof to go through, we require a property
of the original SSS that we refer to as the randomness simulatability. Every linear SSS
has this property but it remains open whether every access structure in mP admits a
randomness simulatable SSS.

In the following, we first define the notion of randomness simulatable SSS. Then, we
present a theorem that formalizes the above construction.

Definition 5.4. (Randomness simulatable SSS) Let � = (R, μ) be a perfect or com-
putational SSS for an access structure. We say that SSS � is randomness simulatable, if
for each RV S over the secret space and each unqualified set B there exists an efficiently
computable function g and an efficiently sampleable RV R̂ independent of (S, R) such
that

(S,µB, R)
c≡(S,µB, g(S,µB, R̂)) ,

where µB = μB(S, R) denotes the share of the unqualified set B.

Notice that, ignoring the efficient computability of g and efficient sampleability of R̂,
the existence of g and R̂ is always guaranteed by the functional representation lemma
(Lemma 2.1). Also, in particular, linear SSSs are randomness simulatable. It is unclear
to us whether every access structure in mP —which is known to admit an efficient
computational SSS [40] (see also [38])—admits a randomness simulatable scheme.

Theorem 5.5. Let � be a one-time KDM-secure RR-SKE with �-bit keys. Let μi be
the sharing map of the i’th participant in a perfect/computational randomness simulat-
able SSS for an access structure with t-bit secret, t > λ, and ρ-bit randomness (i.e.,
the share of participant i is μi (s, r), where s is the secret and r is the randomness).
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Then, the SSS defined below is a computational RR-SSS for the same access structure.

Given a secret s ∈ {0, 1}t−� and a randomness r ∈ {0, 1}ρ:
– generate a key k ← Gen(1λ),
– let ct ← Enck(r),
– let μi (s||k, r)||ct be the share of i’th participant.

Proof. Correctness and randomness recoverability trivially hold. We prove privacy. Let
s ∈ {0, 1}t−� be an arbitrary secret and let B be an unqualified set in the access structure.
Let R be SSS’s randomness, k denote Gen(1λ) and µB denote μB(s||k, R). For ease
of notation, we simply denote the share of B for the secret s by µB ||Enck(R) (i.e., we
ignore the repetitions of Enck(R)). Based on the randomness simulatability of the SSS,
there exists an efficiently computable function g and an efficiently sampleable RV R̂
independent of (k, R) such that

(s||k,µB, R)
c≡(s||k,µB, g(s||k,µB, R̂))

Therefore, one has the following indistinguishability:

µB ||Enck(R)
c≡µB ||Enck(g(s||k,µB, R̂)) (5.1)

According to Lemma 2.14, one has

(k, μB(s||k, R))
c≡(k, μB(0t , R)).

In other words, (k,µB)
c≡(k,µ′

B), where µ′
B = μB(0t , R). Because g is efficiently

computable and R̂ is efficiently sampleable and independent of (k, R), we have

µB ||Enck(g(s||k,µB, R̂))
c≡µ′

B ||Enck(g(s||k,µ′
B, R̂)). (5.2)

On the other hand, because (µ′
B, R̂) is independent of k, by Lemma 5.3, we have:

µ′
B ||Enck(g(s||k,µ′

B, R̂))
c≡µ′

B ||Enck(0l). (5.3)

Equations (5.1), (5.2) and (5.3) then imply that

µB ||Enck(R)
c≡µ′

B ||Enck(0l) .

Because µ′
B ||Enck(0l) hides the secret s, privacy follows. �
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5.3. Linear-Resistant PRG

In this section, we present a variant of pseudo-random generators (PRG), with a KDM-
like security for the class of linear functions.

Recall that a polynomial-time deterministic algorithm, G : {0, 1}� → {0, 1}� that

maps λ-bit strings to �(λ)-bit strings is said to be PRG if �(λ) > λ and G(Uλ)
c≡U�(λ).

In the following definition, {0, 1} is identified with F2, the finitie field with two
elements, and + stands for the addition in the field or bitwise-XOR; that is, for x =
x1, . . . , x� and y = y1, . . . , y�, x + y = (x1 ⊕ y1)|| · · · ||(x� ⊕ y�).

Definition 5.6. Let G : {0, 1}λ → {0, 1}� be a polynomial-time deterministic algo-
rithm with � := �(λ) > λ. We call G a linear-resistant PRG if for every F2-linear

function L : {0, 1}λ → {0, 1}�, G(Uλ) + L(Uλ)
c≡U�.

Clearly, every linear-resistant PRG is also a PRG. However, the converse is not nec-
essarily correct. For example, if G : {0, 1}λ−1 → {0, 1}�−1 is a PRG, then so is
G ′ : {0, 1}λ → {0, 1}� defined as G ′(s1 · · · sλ) = s1||G(s2 · · · sλ). It is clear that G ′
is not linear-resistant.

It is easy to see that linear-resistant PRG implies one-time KDM-secure SKE against
the class of all affine functions: simply consider the standard one-time-pad encryption
scheme Enck(m) = G(k) + m. More precisely, if the input and output lengths of the
linear-resistant PRG G are λ and �, the key and message spaces of the constructed
scheme are K = F

λ
2 and M = F

�
2, respectively, and it has KDM-security against all

affine functions from F
λ
2 to F

�
2.

In particular, since this scheme is deterministic, the resulting SKE is RR.
Another variant of PRG that has a KDM-like property is the hinting PRG which

can be used to achieve one-time KDM-secure SKE against any class of functions that
can be computed in fixed polynomial time [27, Appendix B]. Also, note that both of
these primitives can be instantiated using a random oracle. Despite the similarity between
linear-resistant PRG and hinting PRG, the relationship between these primitives remains
open, as is the (im)possibility of constructing linear-resistant PRG from OWF. In contrast,
black-box separation between hinting PRG and PKE is known [1].

5.4. RR-SSS from Linear Perfect SSS and Linear-Resistant PRG

Consider the following simple construction for a computational RR-SSS using an effi-
cient (standard) linear perfect SSS and a linear-resistant PRG G. To share a secret s, use
the linear SSS to share s||r with randomness G(r) to compute the shares, where r is the
randomness. It is clear that every qualified set can recover not only s but also r . Privacy
follows from the linear-resistance security of the PRG. Notice that the class of access
structures that admit efficient linear SSS is equivalent to the class of monotone boolean
functions that admit efficient MSP (monotone-span programs [24]) which includes NC1

(e.g., using the Benaloh-Leichter [8] construction).
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We state the above construction in a theorem:

Theorem 5.7. Let μ be the sharing map of a perfect linear SSS for an access structure
with kλ-bit secrets, k > 1, and �-bit randomness (i.e., the shares of participants are the
outputs of μ(s, r), where s is the secret and r is the randomness). Let G : {0, 1}λ →
{0, 1}� be a linear-resistant PRG. Then, the SSS defined by the sharing map μ′(s, r) =
μ(s||r,G(r)) is a computational RR-SSS for the same access structure, where s ∈
{0, 1}(k−1)λ is the secret and r ∈ {0, 1}λ is the randomness with uniform distribution.

Proof. Correctness and randomness recoverability trivially hold. We prove privacy. Let
B be an unqualified set and let μB(s1||s2, r) = L1(s1)+ L2(s2)+ L3(r) be the share of
B for the secret s1||s2 and randomness r ∈ {0, 1}� in the perfect linear scheme, where
Li ’s are linear functions, s1 ∈ {0, 1}(k−1)λ and s2 ∈ {0, 1}λ.

By perfect privacy of the linear scheme, for any s ∈ {0, 1}(k−1)λ, the RVs L2(s)+L3(r)
and L3(r) have the same distributions, where r is a uniform RVs on �-bit strings (they cor-
respond to the shares of the secrets s||0λ and 0kλ, respectively). Therefore supp(L2(s)+
L3(r)) = supp(L3(r)) which implies that L2(s) + range(L3) = range(L3). As a re-
sult L2(s) ∈ range(L3) and because s is arbitrary, we have range(L2) ⊆ range(L3).
If f and g are linear functions from V to W such that range of g is a subspace of the
range of f , then for a suitable linear function h over V one has g = f ◦ h. By this fact,
there is a linear function L such that L2 = L3 ◦ L .

Let s, s′ ∈ {0, 1}(k−1)λ be two arbitrary secrets and r be as before. Again, by perfect
privacy of the linear scheme, L1(s) + L3(r) and L1(s′) + L3(r) have the same dis-
tributions (they correspond to the shares of the secrets s||0λ and s′||0λ, respectively).
Since G is linear-resistant, by a standard reduction argument, L1(s)+ L3(G(r)+ L(r))
and L1(s′) + L3(G(r) + L(r)) are computationally indistinguishable where r is a
uniform RV on λ-bit strings. Therefore, μ′

B(s, r) = L1(s) + L2(r) + L3(G(r)) and
μ′
B(s′, r) = L1(s′) + L2(r) + L3(G(r)) are computationally indistinguishable, which

is the desired result. �

We conclude this section with the following remark that relates the observations of
this section and the previous ones.

Remark 5.8. Notice that in the proof of Theorem 5.5, we do not require that the SKE
be KDM-secure against the whole class of efficiently computable functions. Indeed,
security against all the functions g for all unqualified sets is sufficient. Since the class
of linear SSSs is randomness simulatable with linear g’s, and one-time secure RR-SKE
against the class of linear functions is implied by linear-resistant PRG, Theorem 5.7
follows by Theorem 5.5, via a simpler construction though.

6. Conclusion

We initiated the study of SSS from the viewpoint of randomness recovery. By proving an
exponential lower bound for the information ratio of an RR-SSS that realizes some very
simple access structure in monotone AC0, we showed that the situation is very different
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for RR-SSS, compared to the standard SSS, for which the best-known lower bound is
sub-linear. We also managed to shed some light on the complexity of the computational
RR-SSS, by proving that computational RR-SSS for certain access structures in mono-
tone AC0 implies OWF. This computational result is essentially a consequence of our
information-theoretic lower bound; This can be justified by the very general idea that an
algorithm that hides the secret from a bounded adversary but is unable to do so against
an unbounded adversary implies OWF.

In the final section, we observed that an efficient perfect linear SSS can be converted
into a computational RR-SSS for the same access structure using a type of PRG that we
called linear-resistant PRG. We also noted that using a one-time KDM-secure RR-SKE,
one can convert an efficient perfect/computational SSS into an RR-SSS, assuming that
the SSS has the extra property of randomness simulatability.
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A. Full Proof of Lemma 2.14

In the case of perfect SSS, the assertion immediately follows the independence of S
and μB(S,R). Assume that � is a computational SSS, R = {Rλ}λ, S = {Sλ}λ and
t = t (λ). For contradiction, let poly be a polynomial and D = {Dλ}λ be a family of
polynomial-size distinguishers such that for infinitely many λ,

| Pr[Dλ(Sλ, μB(Sλ,Rλ)) = 1] − Pr[Dλ(Sλ, μB(0t (λ),Rλ)) = 1]| ≥ 1

poly(λ)
.

Therefore, for each λ, there is sλ ∈ supp(sλ) such that

| Pr[Dλ(sλ, μB(sλ,Rλ)) = 1] − Pr[Dλ(sλ, μB(0t (λ),Rλ)) = 1]| ≥ 1

poly(λ)
.

Therefore, for Cλ(·) = Dλ(sλ, ·) one has

| Pr[Cλ(μB(sλ,Rλ)) = 1] − Pr[Cλ(μB(0t (λ),Rλ)) = 1]| ≥ 1

poly(λ)
,

which contradicts the computational privacy of the SSS.
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B. Full Proof of Lemma 5.3

Let k = {kλ}λ where kλ = Gen(1λ), x = {xλ}λ, y = {yλ}λ and g = {gλ}λ. Assume that
the assertion is false and there is a polynomial poly and a polynomial-size distinguisher
D = {Dλ}λ and infinitely many λ for which:

| Pr[Dλ(xλ,Enckλ
(gλ(kλ, xλ, yλ))) = 1] − Pr[Dλ(xλ,Enckλ

(0l(λ))) = 1]| ≥ 1

poly(λ)
.

Because k is independent of x and y, for each such λ, there is (xλ, yλ) ∈ supp(xλ) ×
supp(yλ) such that:

| Pr[Dλ(xλ,Enckλ
(gλ(kλ, xλ, yλ))) = 1] − Pr[Dλ(xλ,Enckλ

(0l(λ))) = 1]| ≥ 1

poly(λ)
.

Letting Cλ(·) = Dλ(xλ, ·) and fλ(·) = gλ(·, xλ, yλ), we have

| Pr[Cλ(Enckλ
( fλ(kλ))) = 1] − Pr[Cλ(Enckλ

(0l(λ))) = 1]| ≥ 1

poly(λ)
,

which contradicts the KDM-security of �.
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