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Abstract. The Schnorr identification and signature schemes have been among the
most influential cryptographic protocols of the past 3 decades. Unfortunately, although
the best-known attacks on these two schemes are via discrete logarithm computation,
the known approaches for basing their security on the hardness of the discrete loga-
rithm problem encounter the “square-root barrier.” In particular, in any group of order p
where Shoup’s generic hardness result for the discrete logarithm problem is believed to
hold (and is thus used for setting concrete security parameters), the best-known t-time
attacks on the Schnorr identification and signature schemes have success probability
t2/p, whereas existing proofs of security only rule out attacks with success proba-
bilities (t2/p)1/2 and (qH · t2/p)1/2, respectively, where qH denotes the number of
random oracle queries issued by the attacker. We establish tighter security guarantees for
identification and signature schemes which result from �-protocols with special sound-
ness based on the hardness of their underlying relation, and in particular for Schnorr’s
schemes based on the hardness of the discrete logarithm problem. We circumvent the
square-root barrier by introducing a high-moment generalization of the classic forking
lemma, relying on the assumption that the underlying relation is “d-moment hard”: The
success probability of any algorithm in the task of producing a witness for a random in-
stance is dominated by the dth moment of the algorithm’s running time. In the concrete
context of the discrete logarithm problem, already Shoup’s original proof shows that the
discrete logarithm problem is 2-moment hard in the generic group model, and thus, our
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assumption can be viewed as a highly plausible strengthening of the discrete logarithm
assumption in any group where no better-than-generic algorithms are currently known.
Applying our high-moment forking lemma in this context shows that, assuming the
2-moment hardness of the discrete logarithm problem, any t-time attacker breaks the
security of the Schnorr identification and signature schemes with probabilities at most
(t2/p)2/3 and (qH · t2/p)2/3, respectively.

Keywords. Signatures, Identification Schemes, Sigma Protocols, Forking Lemma.

1. Introduction

The Schnorr identification and signature schemes [17,18] have been among the most
influential cryptographic protocols of the past 3 decades, due to their conceptual sim-
plicity and practical efficiency. Accordingly, the analysis of their security guarantees
has attracted much attention over the years. Though from the onset, it was observed
that their asymptotic security can be tied to that of the discrete logarithm problem, and
characterizing their concrete security has remained an elusive feat. On the one hand, to
this day there are no known attacks on these schemes that improve upon the existing
algorithms for computing discrete logarithms. On the other hand, essentially all known
security reductions to the discrete logarithm problem are non-tight, which may lead to
significant blowups when setting concrete security parameters (i.e., the group size), and
hence to degraded efficiency.1 Concretely, the known approaches for basing the secu-
rity of the Schnorr identification and signature schemes on the hardness of the discrete
logarithm problem encounter the “square-root barrier.”

The square-root barrier In order to base the security of the Schnorr identification
scheme and signature scheme on the hardness of the discrete logarithm problem, one
has to transform any malicious impersonator and any malicious forger, respectively,
into a discrete logarithm algorithm. The existing approaches are based on the classic
“forking lemma” of Pointcheval and Stern [15] (see also [1,2,5,13] and the references
therein). The difference between the various approaches is reflected by the different trade-
offs between the success probability and the running time of their discrete logarithm
algorithms.

For the Schnorr identification scheme, any malicious impersonator that runs in time t
and breaks the security of the scheme with probability ε can be transformed for example
into a discrete logarithm algorithm that has success probability roughly ε2 and runs in
time roughly t . Similarly, for the Schnorr signature scheme, any malicious forger that
runs in time t , issues qH random oracle queries and breaks the security of the scheme
with probability ε can be transformed into a discrete logarithm algorithm that has success
probability roughly ε2/qH and runs in time roughly t .

Thus, in any group of order p where Shoup’s generic hardness result for computing
discrete logarithms is believed to hold [20], this leads to the bound ε ≤ (t2/p)1/2 on
the security of the Schnorr identification scheme, and to the bound ε ≤ (qH · t2/p)1/2

1These exclude reductions in the generic group model [20] and algebraic group model [7], as discussed
below.
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on the security of the Schnorr signature scheme. (We refer the reader to Sect. 3 for a
variety of other trade-offs that were established over the years, all of which lead to the
same square-root bounds, as recently observed by Bellare and Dai [3] and by Jaeger and
Tessaro [12].)

However, the best-known attack on the security the Schnorr identification and signa-
ture schemes is via discrete logarithm computation, which has success probability t2/p
in such groups. For example, for a 256-bit prime p, the success probability of the best-
known 280-time attack on the Schnorr identification scheme is roughly 2−96, whereas the
square-root bound only rules out attacks with success probability greater than 2−48. (For
the Schnorr signature scheme, this gap only increases due to the additional dependency
on qH.)

Awider perspective: Identification and signatures from�-protocolsThe square-root
barrier is encountered not only when proving the security of the Schnorr identification
and signatures schemes, but also when proving the security of additional ones, such
as the Okamoto identification and signature schemes [14] (see [1,13] for various other
examples). The Schnorr and Okamoto schemes are prime examples of the more gen-
eral approach of constructing identification schemes based on �-protocols with special
soundness, and of constructing signature schemes based on such identification schemes
via the Fiat–Shamir paradigm [1,9]. In such schemes, the square-root barrier arises
due to the rewinding-based methodology underlying their security proofs, as we further
discuss in Sect. 3.

It should be noted that additional approaches were suggested as alternatives to basing
the security of the Schnorr identification and signature schemes on the hardness of
the discrete logarithm problem. Shoup [20] and Fuchsbauer, Plouviez and Seurin [8]
provided tight security proofs in the generic group model and in the algebraic group
model, respectively, and Bellare and Dai [3] provided tight security proofs based on
the hardness of their multi-base discrete logarithm problem. These approaches do not
encounter the square-root barrier, at the cost of considering either idealized models that
considerably restrict attackers, or a newly introduced interactive problem instead of the
long-studied discrete logarithm problem.

1.1. Our Contributions

We establish tighter security guarantees for identification and signature schemes by
circumventing the square-root barrier. Our approach applies to schemes that result from
�-protocols with special soundness based on the hardness of their underlying relation
R ⊆ X ×W , and in particular to the Schnorr and Okamoto identification and signature
schemes based on the hardness of the discrete logarithm problem.

We prove our results by introducing a high-moment generalization of the classic
forking lemma, relying on the assumption that the success probability of any algorithm
in the task of producing a witness w ∈ W given a random instance x ∈ X is dominated
by the dth moment of the algorithm’s running time. In what follows, we provide a
high-level description of our assumption and then state our bounds on the security of
identification and signature schemes.
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Our assumption: d-moment hardness Given a relation R ⊆ X × W underlying a
�-protocol, and a distribution D over pairs (x, w) ∈ R, we put forward the d-moment
assumption that considers the task of producing a witness w given an instance x that
is sampled via D. Informally, in its most simplistic form, our assumption asks that the
success probability of any algorithm A in this task is at most E

[
(TA,D)d

]
/|W|, where

TA,D denotes the random variable corresponding to A’s running time.2 We refer the
reader to Sect. 3 for a formal statement.

In the specific context of the discrete logarithm problem, instances are of the form
x = (G, p, g, h) where G is a cyclic group of order p that is generated by g, and
h is a group element. The relation R consists of all pairs ((G, p, g, h), w) for which
h = gw, and the distributionD consists of a group generation algorithm that produces the
description (G, p, g) of the group, together with a uniformly distributed group element
h.

As recently observed by Jaeger and Tessaro [12], already Shoup’s original proof shows
that the discrete logarithm problem is 2-moment hard in the generic group model [20].3

Thus, our assumption can be viewed a highly plausible strengthening of the discrete
logarithm assumption in any group where no better-than-generic algorithms are currently
known for the discrete logarithm problem. In such groups, the generic hardness of the
problem is used for setting concrete security parameters, and thus, the assumption that
the discrete logarithm problem is 2-moment hard can be viewed as identifying some
of the core essence of the problem’s generic hardness in the form of a standard model
assumption.

Tighter security for identification schemes Given an identification scheme resulting
from a �-protocol for a relation R, we follow the approach underlying the classic
“forking lemma” of Pointcheval and Stern [15], and show that any attacker can be
transformed into an algorithm A that takes as input an instance x ∈ X and produces
(with a certain probability) a witness w ∈ W such that (x, w) ∈ R. However, unlike
existing variants of the forking lemma (see, for example, [1,2,5,12,13]), we design our
algorithm A with the goal of optimizing the trade-off between its success probability and
the dth moment of its running time. Assuming the d-moment hardness of the relation
R, this trade-off leads to the following tighter bound on the success probability of the
attacker when considering the standard notion of security against passive impersonation
attacks (in Sect. 3 we demonstrate that the existing variants of the forking lemma do not
circumvent the square-root barrier when relying on our assumption):

2More generally, our assumption asks that the latter probability is at most � · E
[
(TA,D)d

]
/|W|ω for

functions � and ω of the security parameter. Looking ahead, the Schnorr identification and signature schemes
will correspond to � = ω = 1, whereas the Okamoto identification and signature scheme will correspond to
� = 1 and ω = 1/2.

3In fact, Shoup proved the following stronger statement: For any t ≥ 0, the success probability of any
algorithm in computing the discrete logarithm of a uniformly distributed group element, conditioned on running
in time at most t , is at most t2/p. This implies, in particular, 2-moment hardness (with � = ω = 1).
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Table 1. A comparison of the security guarantees for the Schnorr and Okamoto identification schemes pro-
vided by the square-root bound and by our bound, for groups of size ≈ 2λ .

Attacker’s running time Security parameter Square-root bound Our bound
t λ (t2/p)1/2 (t2/p)2/3

264 256 2−64 2−85.34

280 256 2−48 2−64

2100 512 2−156 2−208

Theorem 1.1. (informal) Let ID be an identification scheme with special soundness
for a relation R ⊆ X × W . If R is d-moment hard, then any attacker that runs in time
t breaks the security of ID with probability at most (td/|W|)d/(2d−1).

In particular, our theorem yields the following corollary for the Schnorr and Okamoto
identification schemes (Table 1 exemplifies our concrete improvement over the square-
root bound for a few typical choices of parameters):

Corollary 1.2. (informal) Assuming that the discrete logarithm problem is 2-moment
hard, then any attacker that runs in time t breaks the security of the Schnorr and Okamoto
identification schemes with probability at most (t2/p)2/3, where p is the order of the
underlying group.

Tighter security for signature schemes We show that our approach extends to estab-
lishing tighter security guarantees for signature schemes that are obtained from iden-
tification schemes via the Fiat–Shamir paradigm [9]. The generic analysis of the Fiat–
Shamir transform in this context [1], when combined with Theorem 1.1, yields the bound
ε ≤ qH · (td/|W|)d/(2d−1) on the success probability of any malicious forger that runs
in time t and issues qH random oracle queries assuming the d-moment hardness of the
underlying relation. Although this bound may already be useful on its own, we never-
theless show that it can be further improved by applying our proof technique directly
for reducing the dependence on qH:

Theorem 1.3. (informal) Let ID be an identification protocol with special soundness
for a relation R ⊆ X × W , and let SIGID,H be its corresponding signature schemes
obtained via the Fiat–Shamir transform using the hash function H. If R is d-moment
hard and H is modeled as a random oracle, then any attacker that runs in time t and
issues qH random oracle queries breaks the security of SIGID,H with probability at
most (qH · td/|W|)d/(2d−1).

It is worth emphasizing that some dependency on qH seems to be unavoidable for a
very large class of reductions which includes in particular all reductions based on the
underlying paradigm of the forking lemma [6,10,16,19].

As above, our theorem yields the following corollary for the Schnorr and Okamoto
signature schemes (Table 2 exemplifies our concrete improvement over the square-root
bound for a few typical choices of parameters):
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Table 2. A comparison of the security guarantees for the Schnorr and Okamoto signature schemes provided
by the square-root bound and by our bound, for groups of size ≈ 2λ .

Attacker’s running time Attacker’s oracle queries Security parameter Square-root bound Our bound
t qH λ (qH · t2/p)1/2 (qH · t2/p)2/3

264 250 256 2−39 2−52

280 260 256 2−18 2−24

280 260 512 2−146 2−194.67

2100 280 512 2−116 2−142.67

Corollary 1.4. (informal) Assuming that the discrete logarithm problem is 2-moment
hard, then any attacker that runs in time t and issues qH random oracle queries breaks
the security of the Schnorr and Okamoto signature schemes with probability at most
(qH · t2/p)2/3, where p is the order of the underlying group.

1.2. Subsequent Work

The recent work of Segev and Shapira [21] presented an explicit high-moment forking
lemma that distills the information-theoretic essence of the our approach. Similarly to
the general forking lemma of Bellare and Neven [5], their lemma consists of a stand-
alone probabilistic lower bound, which does not involve any underlying cryptographic
primitive (such as an identification protocol or a signature scheme) or any idealized model
(such as the random oracle model). Equipped with their lemma, within our framework
of dth moment hardness, Segev and Shapira established concrete security bounds for
the Bellare–Neven and BLS multi-signature schemes that are tighter than the concrete
security bounds established by Bellare and Neven [5] and Boneh, Drijvers and Neven
[4], respectively. Their tighter bounds are derived in the random oracle model based on
the standard model second-moment hardness of the discrete logarithm problem (for the
BN scheme) and the computational co-Diffie–Hellman problem (for the BLS scheme).

Additionally, the recent work of Segev, Sharabi and Yogev [22] provided a generic
framework for analyzing the dth moment hardness of a wide range of computational
problems. In particular, their framework established the second-moment hardness of the
computational co-Diffie–Hellman problem in the generic group model. Thus, as with the
discrete logarithm problem, the assumption that the computational co-Diffie–Hellman
problem is second-moment hard in the standard model can be viewed as identifying
the core essence of the problem’s generic hardness in the form of a standard model
assumption.

1.3. Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present the basic
notation and standard cryptographic primitives that are used throughout the paper. In
Sect. 3, we formally define our d-moment assumption and demonstrate that the existing
variants of the forking lemma do not circumvent the square-root barrier when relying
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on our assumption. In Sects. 4 and 5, we present and prove our bounds on the security of
identification and signature schemes, respectively, from which in Sect. 6 we derive con-
crete security bounds for the Schnorr and Okamoto identification and signature schemes.

2. Preliminaries

In this section, we present the basic notions and standard cryptographic primitives that
are used in this work. For an integer n ∈ N, we denote by [n] the set {1, . . . , n}. For
a distribution X , we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X we denote by x ← X the process of sampling a
value x from the uniform distribution over X .
�-protocols Let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Xλ × Wλ for any λ ∈ N,
for sets X = {Xλ}λ∈N and W = {Wλ}λ∈N. A �-protocol � for the relation R is a
4-tuple (P1,P2,V, C), where P1 is a probabilistic polynomial time algorithm, P2 and
V are deterministic polynomial time algorithms, and C = {Cx }x∈X is an ensemble of
efficiently sampleable sets. The protocol π is defined as follows:

1. The algorithmP1 on input (x, w), where x ∈ Xλ and w ∈ Wλ, produces a message
α and a state st.

2. A challenge β is sampled uniformly at random from the challenge set Cx .
3. The algorithm P2 on input (st, β) produces a message γ .
4. The algorithm V on input (x, α, β, γ ) determines the output of the protocol by

outputting either 0 or 1.

In terms of completeness, we ask that for every λ ∈ N and for every (x, w) ∈ Rλ, it
holds that V(x, α, β,P2(st, β)) = 1 with an overwhelming probability over the choice
of (α, st) ← P1(x, w) and β ← Cx . In terms of soundness, we consider the following
standard special soundness property for �-protocols. Roughly, the property requires that
given an instance x ∈ X and two accepting transcripts for x which share the same first
message α but differ on their second message β, one can efficiently compute a witness
w ∈ W such that (x, w) ∈ R.

Definition 2.1. Let � = (P1,P2,V, C) be a �-protocol for a relation R ⊆ X ×
W , and let t = t (λ) be a function of the security parameter λ ∈ N. Then, � has t-
time special soundness if there exists a deterministic t-time algorithm WitnessExt for
which the following holds: For every λ ∈ N, for every instance x ∈ Xλ, and for every
(α, (β, γ ), (β ′, γ ′)) such that V(x, α, β, γ ) = V(x, α, β ′, γ ′) = 1 and β 
= β ′ it holds
that (x,WitnessExt(x, α, (β, γ ), (β ′, γ ′)) ∈ R.

Identification schemes An identification scheme consists of a �-protocol for a relation
R ⊆ X ×W and of an algorithm Gen that produces a distribution over instances x ∈ X
together with a corresponding witness w ∈ W such that (x, w) ∈ R. We say that an
identification protocol has t-time special soundness if its underlying �-protocol has
t-time special soundness.

Additionally, we consider the standard notion of security against passive imperson-
ation attacks, asking that a malicious prover on input an instance x produced by Gen
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should not be able to convince the verifier to accept even when given access to an oracle
that produces honestly generated transcripts for the instance x . In what follows, given an
identification protocol, we let Transx,w denote an oracle that (when queried without any
input) runs an honest execution of the protocol on input (x, w) and returns the resulting
transcript (α, β, γ ).

Definition 2.2. Let t = t (λ) and ε = ε(λ) be function of the security parameter
λ ∈ N. An identification scheme ID = (Gen,P1,P2,V, C) is (t, ε)-secure against
passive impersonation attacks if for any t-time probabilistic prover P̄ = (P̄1, P̄2) it
holds that

AdvPA-IMP
ID,P̄

(λ)
def= Pr

[
PA-IMPID,P̄(λ) = 1

]
≤ ε(λ)

for all sufficiently large λ ∈ N, where the experiment PA-IMPID,P̄(λ) is defined as
follows:

1. (x, w) ← Gen(1λ).
2. (α, st) ← P̄Transx,w

1 (1λ, x).

3. γ ← P̄Transx,w

2 (st, β) for β ← Cx .
4. If V(x, α, β, γ ) = 1 then output 1 and otherwise output 0.

In this work, we consider identification schemes that are simulatable: There exists an
efficient algorithm that on input x ∈ X , for (x, w) ← Gen(1λ), samples a transcript
(α, β, γ ) from the distribution of honest executions of the protocol on input (x, w).4

Definition 2.3. Let t = t (λ) be function of the security parameter λ ∈ N. An identifica-
tion schemeID = (Gen,P1,P2,V, C) is t-time simulatable if there exists a t-time algo-
rithmSim such that the distributions {(x, w, (α, β, γ ))}λ∈N and {(x, w,Sim(1λ, x))}λ∈N
are identical, where (x, w) ← Gen(1λ), (α, st) ← P1(x, w), β ← Cx and γ ←
P2(st, β).

Note that for any simulatable identification scheme ID we can thus assume that mali-
cious provers do not query the transcript generation oracle Transx,w as such queries can
be internally simulated given the instance x . Specifically, if ID is tSim-time simulatable
then any malicious prover P̄ that runs in time tP̄ and issues qP̄ queries to the transcript
generation oracle can be simulated by a malicious prover that runs in time tP̄ + qP̄ · tSim
and does not issue any queries. Such a malicious prover is in fact attacking the �-protocol
underlying ID with respect to the distribution over instances that is determined by Gen.

Finally, for considering the standard transformation of identification schemes to sig-
nature schemes via the Fiat–Shamir paradigm, we rely on the following notion of first-
message unpredictability (originally referred to as “min-entropy of commitments” by
Abdalla et al. [1]):

4In the language of argument systems, the notion of simulatability can be thought of as honest verifier
zero knowledge. The two notions are equivalent if all valid instance–witness pairs (x, w) are sampled by Gen
with strictly positive probability.
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Definition 2.4. Let δ = δ(λ) be function of the security parameter λ ∈ N. An
identification scheme ID = (Gen,P1,P2,V, C) is δ-first-message unpredictable if
for any λ ∈ N, for any (x, w) produced by Gen(1λ) and for any α∗ it holds that
Pr
[
α = α∗] ≤ δ(λ), where (α, st) ← P1(x, w).

Signature schemes A signature scheme is a tuple SIG = (KG,Sign,Verify) of algo-
rithms defined as follows:

• The algorithm KG is a probabilistic algorithm that receives as input the security
parameter λ ∈ N and outputs a pair (sk, vk) of a signing key and a verification key.

• The algorithm Sign is a (possibly) probabilistic algorithm that receives as input a
signing key sk and a message m and outputs a signature σ .

• The algorithmVerify is a deterministic algorithm that receives as input a verification
key vk, a message m and a signature σ , and outputs a bit b ∈ {0, 1}.

In terms of correctness, the standard requirement for signature schemes asks that

Pr
[
Verifyvk(m,Signsk(m)) = 1

] = 1

for every λ ∈ N and for every message m, where the probability is taken over the choice
of (sk, vk) ← KG(1λ) and over the internal randomness of Sign and Verify. In terms
of security, we rely on the following standard notion of existential unforgeability under
adaptive chosen message attack (see, for example, [11]) which naturally generalizes to
the random oracle model by providing all algorithm access to the oracle.

Definition 2.5. Let t = t (λ) and ε = ε(λ) be function of the security parameter λ ∈ N.
A signature scheme SIG = (KG,Sign,Verify) is (t, ε)-existentially unforgeable under
adaptive chosen message attacks if for t-time probabilistic algorithm F it holds that

AdvForgeSIG,F (λ)
def= Pr

[
ForgeSIG,F (λ) = 1

] ≤ ε(λ)

for all sufficiently large λ ∈ N, where the experiment ForgeSIG,F (λ) is defined as
follows:

1. (sk, vk) ← KG(1λ).
2. (m∗, σ ∗) ← FSignsk(·)(1λ, vk). Let Q denote the set of all messages with which

F queried its oracle.
3. If Verifyvk(m

∗, σ ∗) = 1 and m∗ 
∈ Q then output 1, and otherwise output 0.

3. Our Assumption: d-Moment Hardness

In this section, we first formally define the computational assumption on which our
approach is based. Then, we demonstrate that the existing approaches for proving the
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security of identification schemes and signature schemes that are based on �-protocols
with special soundness do not yield improved results when relying on our assumption.

The assumption In what follows, we consider relations R = {Rλ}λ∈N, where Rλ ⊆
Xλ ×Wλ for any λ ∈ N, and distributions D = {Dλ}λ∈N where each Dλ produces pairs
(x, w) ∈ Rλ. For any such distribution D and for any probabilistic algorithm A, we
denote by TA,Dλ

the random variable corresponding to the running time of A on input
x where (x, w) ← Dλ.

Definition 3.1. Let d = d(λ), � = �(λ) and ω = ω(λ) be functions of the security
parameter λ ∈ N, and let R = {Rλ}λ∈N be a relation, where Rλ ⊆ Xλ × Wλ for
any λ ∈ N. We say that R is d-moment (�,ω)-hard with respect to a distribution
D = {Dλ}λ∈N if for every algorithm A it holds that

Pr [(x, A(x)) ∈ Rλ] ≤ � · E [
(TA,Dλ

)d
]

|Wλ|ω ,

for all sufficiently large λ ∈ N, where the probability is taken over the choice of (x, w) ←
Dλ and over the internal randomness of A.

When �(λ) = 1 and ω(λ) = 1 for all λ ∈ N, we will simply say that the relation R is
d-moment hard. As discussed in Sect. 1.1, in the specific context of the discrete logarithm
problem the relation R consists of all pairs ((G, p, g, h), w) for which h = gw, and
the distribution D consists of a group generation algorithm that produces the description
(G, p, g) of the group, together with a uniformly distributed group element h. Given that
the discrete logarithm problem is 2-moment hard in the generic group model [12,20],
the assumption that the discrete logarithm problem is 2-moment hard (in the standard
model) can be viewed as identifying the core essence of the problem’s generic hardness
in the form of a standard model assumption.

Existing approaches Extensive research has been devoted over the years for analyz-
ing the security of identification schemes and signature schemes that are based on �-
protocols with special soundness. For concreteness, we focus in this discussion on iden-
tification schemes as they already capture the main difficulties. (The reader is referred
to Sect. 5 for a discussion on transforming such schemes into signature schemes via the
Fiat–Shamir paradigm [9].)

Given an identification scheme that is based on a �-protocol for a relation R, the
security of the scheme is proved by showing that any malicious prover P̄ can be trans-
formed into an algorithm A that takes as input an instance x ∈ X and produces two
accepting transcripts (α, β, γ ) and (α, β ′, γ ′) with β ′ 
= β. The special soundness of the
�-protocol guarantees that these two transcripts can then be used to retrieve a witness
w ∈ W such that (x, w) ∈ R. To the best of our knowledge, all known approaches for
the construction of such an algorithm A are based on the following fundamental idea:
The algorithm A uses the malicious prover P̄ to obtain an accepting transcript (α, β, γ ),
and then rewinds it to the same first message α and feeds it with fresh challenges β ′ with
the hope of obtaining an additional accepting transcript (α, β ′, γ ′) with β ′ 
= β.
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This fundamental idea traces back to the classic “forking lemma” of Pointcheval and
Stern [15], later generalized and refined by Bellare and Neven [5], and by Kiltz, Masny
and Pan [13]. The difference between the existing approaches is reflected by the different
trade-offs between the success probability of the algorithm A and its running time.

Given a malicious prover P̄ that runs in time t and breaks the security of the identifica-
tion scheme with probability ε, then on one end of the spectrum P̄ is invoked roughly 1/ε

times, leading to an algorithm A with constant success probability and running time t/ε
[13]. On the other end of the spectrum, P̄ is invoked only twice, leading to an algorithm
A with success probability roughly ε2 and running time 2t [5]. When the relation R cor-
responds to the discrete logarithm problem in a group of order p where Shoup’s generic
hardness result is believed to hold, in both cases one obtains the bound ε ≤ (t2/p)1/2

(which is inferior to our bound ε ≤ (t2/p)2/3). More generally, if the discrete logarithm
problem is d-moment (�,ω)-hard for some d ≥ 2, � ≥ 1 and ω ≤ 1, one obtains the
bound ε ≤ (� · td/pω)1/d in the first case and the bound ε ≤ (� · td/pω)1/2 in the
second case (both of which are inferior to our bound ε ≤ (� · td/pω)d/(2d−1)).

An approach that is closer to ours is to optimize the trade-off between the success
probability of the algorithm A and its expected running time [2,12,15]. In their recent
work, Jaeger and Tessaro [12] showed that in the generic group model any algorithm A
with an expected running time E[T] computes the discrete logarithm of a random group
element with probability at most (E[T]2/p)1/2 (omitting small constants for simplicity),
and this can be used for establishing concrete bounds for algorithms that do not have a
strict running time.5

In this setting, given a malicious prover P̄ that runs in time t and breaks the security
of the identification scheme with probability ε, Bootle et al. [2] suggested the following
algorithm A: It invokes P̄ once, and only if successful, then it repeatedly rewinds A to the
same first message and feeds it with a fresh challenge until it succeeds again.6 A simple
argument shows that A’s success probability is roughly ε, and its expected running time
is t . A similar algorithm A suggested by Pointcheval and Stern [15] has constant success
probability and expected running time t/ε. In both cases, using the work of Jaeger and
Tessaro one again obtains the bound ε ≤ (t2/p)1/2 as above (which is inferior to our
bound ε ≤ (t2/p)2/3).7

4. Tighter Security for �-Protocols and Identification Schemes

In this section, we introduce our high-moment forking lemma for establishing tighter
security guarantee for �-protocols and identification schemes. We first focus on our
result for �-protocols, and then extend it to identification schemes.

5More generally, if the discrete logarithm problem is d-moment hard for some d ≥ 2, their approach
shows that any algorithm A with an expected running time E[T] computes the discrete logarithm of a random
group element with probability at most (E[T]d/p)1/d .

6The rewinding technique of Bootle et al. is actually a more general one that is motivated by recent
protocols with a generalized special soundness property (for which the classic forking lemma is insufficient).

7More generally, if the discrete logarithm problem is d-moment (�, ω)-hard, then using the expected time
rewinding techniques of Bootle et al. and of Pointcheval and Stern one obtains the bound ε ≤ (� · td/pω)1/d

(which is inferior to our bound ε ≤ (� · td/pω)d/(2d−1)).
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Given a �-protocol for a relation R, we follow the approach underlying the forking
lemma [15], and show that any malicious prover P̄ can be transformed into an algorithm
A that takes as input an instance x ∈ X and produces (with a certain probability) two
accepting transcripts (α, β, γ ) and (α, β ′, γ ′) for x such that β ′ 
= β. Assuming that
� has special soundness, these two transcripts can then be used to retrieve a witness
w ∈ W such that (x, w) ∈ R.

However, unlike existing variants of the forking lemma, we design our algorithm
A with the goal of optimizing the trade-off between its success probability and the dth
moment of its running time. Assuming thatR is a d-moment (�,ω)-hard relation (recall
Definition 3.1), this trade-off leads to an upper bound on the success probability of the
malicious prover P̄.

At a high level, given a malicious prover that runs in time t and convinces the verifier
with probability ε, the description of our algorithm A is quite intuitive. First, it invokes
the malicious prover to obtain a transcript (α, β, γ ) of the protocol. Then, if this transcript
is accepted by the verifier, it rewinds the malicious prover B ≈ 1/ε1/d times, providing
it with randomly sampled challenges β1, . . . , βB and obtaining respective responses
γ1, . . . , γB . If any one of these additional transcripts (α, βi , γi ) is accepted by the verifier
and βi 
= β, then the algorithm A successfully retrieves a witness.

Ignoring various approximations and other technical challenges, we prove that the
algorithm A has success probability roughly B · ε2 ≈ ε2−1/d , and the dth moment
of its running time is at most ε · td/Bd ≈ td . Thus, assuming that R is a d-moment
(�,ω)-hard relation leads to the bound ε ≤ (� · td/|W|ω)d/(2d−1) on the probability
of a t-time malicious prover to convince the verifier. This should be compared with the
approaches discussed in Sect. 3, leading roughly either to success probability ε2 and dth
moment td , or to success probability ε and dth moment at least td/εd−1, or to constant
success probability and dth moment at least td/εd—all of which lead to inferior bounds.
Formally, we prove the following theorem:

Theorem 4.1. Let d = d(λ), � = �(λ), ω = ω(λ), tW = tW(λ) and tP̄ = tP̄(λ) be
functions of the security parameter λ ∈ N, and let � = (P1,P2,V, C) be a �-protocol
with tW-time special soundness for a relation R ⊆ X × W . If R is d-moment (�,ω)-
hard with respect to a distribution D, then for any malicious prover P̄ that runs in time
tP̄ it holds that

Pr
[
V(x, α, β, γ ) = 1

] ≤
(

� · (32(tP̄ + tV + tW)
)d

|Wλ|ω
) d

2d−1

+ 2

|Cλ| ,

for all sufficiently large λ ∈ N, where the probability is taken over (x, w) ← Dλ,
(α, st) ← P̄1(x), β ← Cx and γ ← P̄2(st, β), and where tV = tV(λ) denotes the
running time of the algorithm V, |Cλ| denotes the size of the challenge set Cx for any
x ∈ Xλ.

Recall that the notion of security against passive impersonations attacks for an identi-
fication scheme ID = (Gen,P1,P2,V, C) is obtained from the experiment considered
in Theorem 4.1 for its underlying �-protocol, by additionally providing the malicious
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prover with access to a transcript generation oracle (recall Definition 2.2). As discussed
in Sect. 2, if ID is tSim-time simulatable (recall Definition 2.3), then any malicious
prover P̄ that runs in time tP̄ and issues qP̄ queries to the transcript generation oracle can
be simulated by a malicious prover that runs in time tP̄ + qP̄ · tSim and does not issue
any queries. Thus, Theorem 4.1 immediately yields the following corollary:

Corollary 4.2. Let d = d(λ), � = �(λ), ω = ω(λ), tSim = tSim(λ), tW = tW(λ),
tP̄ = tP̄(λ) and qP̄ = qP̄(λ) be functions of the security parameter λ ∈ N, and let
ID = (Gen,P1,P2,V, C) be a tSim-time simulatable identification protocol with tW-
time special soundness for a relation R ⊆ X × W . If R is d-moment (�,ω)-hard
with respect to Gen, then for any malicious prover P̄ that runs in time tP̄ and issues qP̄
transcript generation queries it holds that

AdvPA-IMP
ID,P̄

(λ) ≤
(

� · (32(tP̄ + qP̄ · tSim + tV + tW)
)d

|Wλ|ω
) d

2d−1

+ 2

|Cλ| ,

for all sufficiently large λ ∈ N, where tV = tV(λ) denotes the running time of the
algorithm V, and |Cλ| denotes the size of the challenge set Cx for any x ∈ Xλ.

In the remainder of this section, we prove Theorem 4.1.

Proof of Theorem 4.1. Let P̄ = (P̄1, P̄2), and for any λ ∈ N let ε = ε(λ) =
Pr
[
V(x, α, β, γ ) = 1

]
, where (x, w) ← Dλ, (α, st) ← P̄1(x), β ← Cx and γ =

P̄2(st, β) (without loss of generality we assume that P̄2 is deterministic given st). Let
B = �1/ε1/d − 1�, and consider the following algorithm A: �

The algorithm A

Input: An instance x ∈ Xλ.

1. Sample (α, st) ← P̄1(x), β0 ← Cx and compute γ0 = P̄2(st, β0). If V(x, α, β0, γ0) = 0
then output ⊥ and terminate.

2. For every j ∈ [B] sample β j ← Cx and compute γ j = P̄2(st, β j ). If for every j ∈ [B] it
holds that either V(x, α, β j , γ j ) = 0 or β j = β0, then output ⊥ and terminate.

3. Output w = WitnessExt(α, (β0, γ0), (β j∗ , γ j∗ )), where j∗ is the minimal index for which
V(x, α, β j∗ , γ j∗ ) = 1 and β j∗ 
= β0.

The following lemma establishes a lower bound on the success probability of the algo-
rithm A:

Lemma 4.3. For any λ ∈ N, it holds that either Pr [(x, A(x)) ∈ R] ≥ B · ε2/8 or
ε < 2/|Cλ|.
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Proof of Lemma 4.3. Whenever the algorithm A reaches Step 3, the witness extraction
algorithm WitnessExt guarantees that (x, A(x)) ∈ R. Therefore,

Pr [(x, A(x)) ∈ R]

= Pr

⎡

⎣V(x, α, β0, γ0) = 1 ∧
⎛

⎝
B∨

j=1

{
V(x, α, β j , γ j ) = 1

∧ β j 
= β0

}
⎞

⎠

⎤

⎦ (4.1)

=
∑

st

⎛

⎝Pr [st] · Pr

⎡

⎣V(x, α, β0, γ0) = 1 ∧
⎛

⎝
B∨

j=1

{
V(x, α, β j , γ j ) = 1

∧ β j 
= β0

}
⎞

⎠

⎤

⎦

⎞

⎠

(4.2)

where (x, w) ← Dλ, (α, st) ← P̄1(x), β0, . . . , βB ← Cx and γ j = P̄2(st, β j ) for every
j ∈ {0, . . . , B}; and we assume without loss of generality that for any λ ∈ N, x ∈ Xλ

and for any (α, st) produced by P∗
1(x) it holds that the state st consists of λ, x and α (in

addition to any other information determined by P∗
1). We note that in Eq. (4.1), the first

probability is solely over the choice (x, w) ← Dλ, (α, st) ← P̄1(x), whereas the second
probability is conditioned on st and is solely over the choice of β0, . . . , βB ← Cx . To
avoid overcluttered notation, we avoid conditioning on st explicitly where clear from
context.

In what follows, for every state st, let β∗
st denote the lexicographically first β ∈ Cx

for which V(x, α, β, P̄2(st, β)) = 1. If no such β exists, let β∗
st = ⊥. It thus holds that

Pr [(x, A(x)) ∈ R]

=
∑

st

⎛

⎝Pr [st] · Pr

⎡

⎣V(x, α, β0, γ0) = 1 ∧
⎛

⎝
B∨

j=1

{
V(x, α, β j , γ j ) = 1

∧ β j 
= β∗
st

}⎞

⎠

⎤

⎦

⎞

⎠

where for every statest, the probability is taken only over the choice ofβ0, . . . , βB ← Cx .
The above equality follows from the fact that given st, the set of “good” challenges β on
which P̄ outputs is determined, and the fact that β1, . . . , βB are sampled independently
and uniformly at random.

Then, for every fixed state st, the events V(x, α, β0, γ0) = 1 and {V(x, α, β j , γ j ) =
1 ∧ β j 
= β∗

st} j are independent, and therefore,

Pr

⎡

⎣
B∨

j=1

{
V(x, α, β j , γ j ) = 1

∧ β j 
= β∗
st

}⎤

⎦ = 1 − Pr

⎡

⎣
B∧

j=1

{
V(x, α, β j , γ j ) = 0

∨ β j = β∗
st

}⎤

⎦

= 1 −
B∏

j=1

Pr

[
V(x, α, β j , γ j ) = 0

∨ β j = β∗
st

]

≥ 1 −
B∏

j=1

min
{

1, Pr
[
V(x, α, β j , γ j ) = 0

] + Pr
[
β j = β∗

st
]}
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≥ 1 −
(

1 − max

{
0, ε(st) − 1

|Cλ|
})B

,

where ε(st) = Prβ
[
V(x, α, β, P̄2(st, β)) = 1

]
for each st. Denoting ε̃(st) = max {0,

ε(st) − 1/|Cλ|} for every st, we obtain

Pr [(x, A(x)) ∈ R] ≥
∑

st

(
Pr [st] · ε(st) ·

(
1 − (1 − ε̃(st))B

))

≥ Est

[
ε̃(st) ·

(
1 − (1 − ε̃(st))B

)]
.

The following claim (which is proved in Appendix A.1) provides a lower bound on
the above term Est

[
ε̃(st) · (1 − (1 − ε̃(st))B)]. Note that this term is the expectation

of a non-convex function of ε̃(st) over the interval [0, 1], and therefore, such a lower
bound is not directly implied by Jensen’s inequality. �

Claim 4.4. It holds that Est
[
ε̃(st) · (1 − (1 − ε̃(st))B)] ≥ 1

2 · B ·
(
ε − 1

|Cλ|
)2

.

Given Claim 4.4, it holds that either ε < 2/|Cλ| or Pr [(x, A(x)) ∈ R] ≥ 1
2 · B ·(ε/2)2,

and this concludes the proof of Lemma 4.3.
The following lemma establishes an upper bound on the dth moment of the running

time of the algorithm A (recall that TA,Dλ
denotes the random variable corresponding

to the running time of A on input x where (x, w) ← Dλ):

Lemma 4.5. For any λ ∈ N, it holds thatE
[
(TA,Dλ

)d
] ≤ 2(1+ B)d ·(tP̄ + tV + tW

)d ·
ε.

Proof of Lemma 4.5. The description of A yields that with probability 1 − ε it runs in
time at most tP̄+ tV, and with probability ε it runs in time at most (1+ B) ·(tP̄ + tV

)+ tW
(for simplicity we assume that the time required for sampling a uniform β ∈ Cx is
subsumed by tP̄ + tV). Therefore,

E

[
(TA,Dλ

)d
]

≤ (
tP̄ + tV

)d · (1 − ε) + (
(1 + B) · (tP̄ + tV + tW

))d · ε

≤ (
tP̄ + tV

)d + (
(1 + B) · (tP̄ + tV + tW

))d · ε

≤ 2(1 + B)d · (tP̄ + tV + tW
)d · ε. (4.3)

where Eq. (4.3) follows from the fact that B ≥ 1/ε1/d − 1 (and thus 1 ≤ (1 + B)d ·
ε). �

Equipped with Lemma 4.3 and Lemma 4.5, the assumption that R is a d-moment
(�,ω)-hard relation with respect to the distribution D implies that either ε < 2/|Cλ| or

B · ε2

8
≤ Pr

[
(x,A(x)) ∈ R]
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≤ � · E [
(TA,Dλ

)d
]

|Wλ|ω

≤ � · 2(1 + B)d · (tP̄ + tV + tW
)d · ε

|Wλ|ω

≤ � · 2d+1 Bd · (tP̄ + tV + tW
)d · ε

|Wλ|ω

≤ � · Bd · (4(tP̄ + tV + tW)
)d · ε

|Wλ|ω

Our choice of B = �1/ε1/d − 1� guarantees that Bd−1 ≤ ε−(1−1/d), and therefore,

ε2− 1
d ≤ ε

Bd−1 ≤ � · 8 · (4(tP̄ + tV + tW)
)d

|Wλ|ω

leading to

ε ≤
(

� · 8 · (4(tP̄ + tV + tW)
)d

|Wλ|ω
) d

2d−1

.

Therefore, overall we obtain

ε ≤ max

⎧
⎨

⎩

(
� · 8 · (4(tP̄ + tV + tW)

)d

|Wλ|ω
) d

2d−1

,
2

|Cλ|

⎫
⎬

⎭

≤
(

� · (32(tP̄ + tV + tW)
)d

|Wλ|ω
) d

2d−1

+ 2

|Cλ| .

5. Tighter Security for Signature Schemes

In this section, we show that our approach extends to establishing tighter security guar-
antees for signature schemes that are obtained from identification schemes via the Fiat–
Shamir paradigm [9]. The generic analysis of the Fiat–Shamir transform in this context
[1] shows that if any malicious prover that runs in time t breaks the security of the
identification scheme with probability at most ε, then any malicious forger that runs in
time roughly t and issues qH random oracle queries breaks the security of the signa-
ture scheme with probability at most roughly qH · ε. Therefore, given our result from
Sect. 4, if the relation R ⊆ X ×W underlying the identification scheme is a d-moment
(�,ω)-hard relation, then any such forger breaks the security of the signature scheme
with probability at most roughly qH · (� · td/|W|ω)d/(2d−1).

Here, we show that the latter bound can be further improved by applying our proof
technique directly, showing that any forger as above breaks the security of the signature
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scheme with probability at most roughly (qH · � · td/|W|ω)d/(2d−1). Note that some
dependency on qH seems to be unavoidable, at least for a very large class of reductions
which includes in particular all reductions based on the underlying paradigm of the
forking lemma [6,10,16,19]. In what follows, we first recall the standard transformation
from identification schemes to signature schemes via the Fiat–Shamir paradigm [1,9],
and then state and prove our result.

LetID = (Gen,P1,P2,V, C) be an identification scheme for a relationR ⊆ X×W ,
and let H be a hash function mapping triplets of the form (x, m, α) to challenges in Cx .
The Fiat–Shamir paradigm then defines the following signature scheme SIGID,H =
(KG,Sign,Verify):

• KG(1λ) samples (x, w) ← Gen(1λ) and outputs sk = (x, w) and vk = x .
• Sign(sk, m) parses sk = (x, w) and outputs σ = (α, β, γ ), where (α, st) ←
P1(x, w), β = H(vk, m, α) and γ ← P2(st, β).

• Verify(vk, m, σ ) parses σ = (α, β, γ ) and outputs 1 if and onlyV(vk, α, β, γ ) = 1
and β = H(vk, m, α).

Note that the value β in fact does not have to be included in the signature σ = (α, β, γ ) as
it can be computed given vk, m and α. Alternatively, in some identification protocols, for
any x ,β andγ there is a unique and efficiently computableα for whichV(x, α, β, γ ) = 1,
and in such cases, the value α does not have to be included in the signature σ = (α, β, γ ).

We prove the following theorem (the reader is referred to Sect. 2 for the standard
notions of tSim-time simulatability, tW-time special soundness, and δ-first-message un-
predictability for identification protocols):

Theorem 5.1. Let d = d(λ), � = �(λ), ω = ω(λ), tSim = tSim(λ), tW = tW(λ),
δ = δ(λ), tF = tF (λ), qH = qH(λ) and qSign = qSign(λ) be functions of the security
parameter λ ∈ N, and let ID = (Gen,P1,P2,V, C) be a tSim-time simulatable iden-
tification protocol with tW-time special soundness and δ-first-message unpredictability
for a relation R ⊆ X × W . If R is d-moment (�,ω)-hard with respect to Gen, and
the hash function H is modeled as a random oracle, then for every tF -time algorithm F
that issues qH oracle queries and qSign signing queries it holds that

AdvForgeSIGID,H,F (λ)

≤
(

qH · � · (32(tF +qSign · tSim + tV + tW)
)d

|Wλ|ω
) d

2d−1

+2 ·
(

q2
H + 1

|Cλ| +qSign · q2
H · δ

)

for all sufficiently large λ ∈ N, where tV = tV(λ) denotes the running time of the
algorithm V and |Cλ| denotes the size of the challenge set Cx for any x ∈ Xλ.

At a high level, the proof of Theorem 5.1 follows a similar outline to that Theorem
4.1, while carefully handling additional technical challenges that arise when considering
the unforgeability of signatures schemes in the random oracle model, as to minimize the
increase in the adversary’s success probability. Concretely, let F be a forger that runs in
time t , issues at most qH random oracle queries and produces a successful forgery with
probability ε. Our algorithm A invokes the forger to obtain a message–signature pair
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(m, σ = (α, β, γ )), while simulating the random oracle and the signing oracle using
the simulatability of the underlying �-protocol. Then, it checks that this pair is a valid
one and that the forger queried the random oracle for the hash value of (x, m, α). If so,
it rewinds the forger B ≈ 1/ε1/d times to the point just before (x, m, α) was queried,
simulating a fresh random oracle from that point on each time, and obtaining respective
message–signature pairs (m1, σ1 = (α1, β1, γ1)), . . . , (m B, σB = (αB, βB , γB)). If any
one of these additional pairs (mi , σi ) is a valid one, and in addition αi = α and βi 
= β,
then the algorithm A successfully retrieves a witness.

Technical challenges and approximations omitted, we prove that the algorithm A has
success probability roughly B · ε2/qH ≈ ε2−1/d/qH, and the dth moment of its running
time is at most ε · td/Bd ≈ T d . Thus, assuming that R is a d-moment (�,ω)-hard
relation leads to the bound ε ≤ (qH · � · td/|W|ω)d/(2d−1) on the advantage of a t-time
forger which issues qH random oracle queries in breaking the existential unforgeability
of the signature schemes via an adaptive chosen message attack.

Proof of Theorem 5.1. For any λ ∈ N let ε = ε(λ) = AdvForgeSIGID,H,F (λ), and B =
�1/ε1/d − 1�. We make the following assumptions about the forger F without loss of
generality:

• F does not issue the same query twice to H, as F can always store the answers
received from the oracle.

• After querying the signing oracle Sign(sk, ·) on a message m and receiving a
signature σ = (α, β, γ ), F does not query H on (vk, m, α). This is without loss of
generality, since in the real experiment ForgeSIGID,H,F (λ), it is always the case
H(vk, m, α) = β, and hence, F can just store this value.

• If FH,Sign(sk,·)(vk) outputs a pair (m, σ = (α, β, γ )) and F queried H for y =
H(vk, m, α), then β = y. If this is not the case, then it necessarily holds that
Verify(vk, m, σ ) = 0, and thus, ForgeSIGID,H,F (λ) = 0.

• F never outputs a message m on which it has queried Sign(sk, ·). �

Consider the following algorithm A (which uses the algorithms Sim and WitnessExt
provided by the simulatability and special soundness of ID, respectively):

The Algorithm A

Input: An instance x ∈ Xλ.

1. Set vk = x , sample randomness r ← {0, 1}∗ for F , sample qH hash
values �y0 = (y0,1, . . . , y0,qH ) ← Cq

x , and sample qSign transcripts
(α′

0, β ′
0, γ ′

0), . . . , (α′
qSign

, β ′
qSign

, γ ′
qSign

) ← Sim(x).

2. Invoke (m0, α0, β0, γ0) ← FH,Sign(sk,·)(vk; r)while simulating the oracles to F as follows:

• H-queries: For each i ∈ [qH] respond to the i th query with y0,i .
• Sign-queries: For each i ∈ [qSign] let m denote the i th query and responds as follows. If

H(vk, m, α′
i ) was already queried and the response was different than β ′

i , then output ⊥
and terminate. Otherwise, respond with the signature σ = (α′

i , β
′
i , γ

′
i ).

3. If V(x, m0, α0, β0, γ0) = 0 or if F did not query for H(vk, m0, α0) then output ⊥ and termi-
nate. Otherwise, let i∗ ∈ [qH]denote the index of query in which F queried forH(vk, m0, α0).
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4. For every j ∈ [B]:
(a) Sample y j,i∗ , . . . , y j,q ← Cx . If y j,i∗ = y0,i∗ then skip to the next iteration.

(b) Invoke (m j , α j , β j , γ j ) ← FH,Sign(sk,·)(vk; r) while simulating the oracles as in Step
2 with the following modification: For each � ∈ {i∗, . . . , q} respond to F’s �th H-query
with y j,�.

(c) If m j = m0, α j = α0, β j = y j,i∗ and V(x, α j , β j , γ j ) = 1 then output w =
WitnessExt(α0, (β0, γ0), (β j , γ j )) and terminate.

5. Output ⊥.

The following lemma establishes a lower bound on the success probability of the
algorithm A:

Lemma 5.2. For any λ ∈ N, it holds that either

Pr [(x, A(x)) ∈ R] ≥ B · ε2

8 · qH

or

ε < 2 ·
(

q2
H + 1

|Cλ| + qSign · q2
H · δ

)

.

Proof of Lemma 5.2. Denote by I0 the random variable corresponding to the index of
the H-query in which F queries H with (vk, m0, α0) in its invocation in Step 2. If in
this invocation F does not query H with (vk, m0, α0) or if β0 
= y0,I0 , then we set
I0 = 0. Similarly, for each j ∈ [B] denote by I j the random variable corresponding
to the index of the H-query in which F queries H with (vk, m j , α j ) in its invocation
in the j th iteration of Step 4. If in this invocation F does not query (vk, m j , α j ) or if
β j 
= y j,I j , then we set I j = 0.

For every i ∈ [qSign] let Bad0,i denote the event in which A aborts in the i th Sign-
query of F in its invocation in Step 2. That is, if we denote by m the i th Sign-query of
F in its invocation in Step 2, then Bad0,i is the event in which F already queried H with
(vk, m, α′

i ) in an earlier stage of this invocation, and the response was different than β ′
i .

For every j ∈ [B] and i ∈ [qSign], let Bad j,i be defined analogously with respect to the
j th invocation of F in Step 4, and letBad� = ∨

i∈[qSign] Bad�,i for every � ∈ {0, . . . , B}.
Since transcripts sampled using Sim are distributed identically as honestly generated
transcripts, then by the δ-first-message unpredictability of the identification scheme ID,
it holds that

Pr
[
Bad�

] ≤
qSign∑

i=1

Bad�,i

≤
qSign∑

i=1

qH · δ

≤ qSign · qH · δ.
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Whenever A reaches Step 4c, it is guaranteed that it invokes the witness extraction
algorithm on two accepting transcripts with distinct challenges. Therefore,

Pr [(x, A(x)) ∈ R]

= Pr

⎡

⎣
(
V(x, m0, α0, β0, γ0) = 1

∧ I0 > 0 ∧ Bad0

)
∧

⎛

⎝
B∨

j=1

⎧
⎨

⎩

V(x, m j , α j , β j , γ j ) = 1
∧ I0 = I j ∧ y j,I j 
= y0,I0

∧ Bad j

⎫
⎬

⎭

⎞

⎠

⎤

⎦

=
qH∑

i=1

Pr

⎡

⎣
(
V(x, m0, α0, β0, γ0) = 1

∧ I0 = i ∧ Bad0

)
∧

⎛

⎝
B∨

j=1

⎧
⎨

⎩

V(x, m j , α j , β j , γ j ) = 1
∧ I j = i ∧ y j,i 
= y0,i

∧ Bad j

⎫
⎬

⎭

⎞

⎠

⎤

⎦

=
qH∑

i=1

∑

x,r,{(α′
�
,β′

�
,γ ′

�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛

⎜
⎜
⎝Pr

[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

× Pr

⎡

⎢⎢
⎢⎢
⎣

V(x, m0, α0, β0, γ0) = 1
∧ I0 = i ∧ Bad0

∧
⎛

⎝∨B
j=1

⎧
⎨

⎩

V(x, m j , α j , β j , γ j ) = 1
∧ I j = i ∧ y j,i 
= y0,i

∧ Bad j

⎫
⎬

⎭

⎞

⎠

⎤

⎥⎥
⎥⎥
⎦

⎞

⎟
⎟
⎠

≥
qH∑

i=1

∑

x,r,{(α′
�
,β′

�
,γ ′

�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛

⎜⎜
⎝Pr

[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

× Pr

⎡

⎢
⎢⎢⎢
⎣

V(x, m0, α0, β0, γ0) = 1
∧ I0 = i ∧ Bad0

∧
⎛

⎝∨B
j=1

⎧
⎨

⎩

V(x, m j , α j , β j , γ j ) = 1
∧ I j = i ∧ Bad j

∧ ∀� ∈ {i, . . . , qH} y j,� 
= y0,�

⎫
⎬

⎭

⎞

⎠

⎤

⎥
⎥⎥⎥
⎦

⎞

⎟⎟
⎠

where (x, w) ← Gen(1λ), and the values r, {{y j,�}�∈[qH], m j , α j , β j , γ j } j∈{0,...,B} and
{(α′

�, β
′
�, γ

′
�)}�∈[qSign] are distributed as in the description of A.

For every y0,1, . . . , y0,i−1, let us denote �y[i − 1] = (y0,1, . . . , y0,i−1) and �τ =
{(α′

�, β
′
�, γ

′
�)}�∈[qSign]. For every i , x , r , �τ and �y[i − 1], denote by (y∗

i (i, x, r, �τ , �y[i −
1]), . . . , y∗

qH
(i, x, r, �τ , �y[i − 1])) the lexicographically first tuple of qH − i + 1 values

in Cx for which the following holds: In the simulation FH,Sign(sk,·)(x; r) (where the
oracles are simulated to F as in the description of A using the values �τ and �y[i −
1], y∗

i (i, x, r, �τ , �y[i − 1]), . . . , y∗
qH

(i, x, r, �τ , �y[i − 1])), F outputs (m, α, β, γ ) such
that:

• V(x, m, α, β, γ ) = 1;
• F’s i th query to H is (x, m, α);
• For every � ∈ [qSign]: If m� is the �th query of F to Sign(sk, ·), then F does not

query H on (x, m�, α
′
�) before its �th query to Sign(sk, ·).
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Then, it holds that

Pr [(x, A(x)) ∈ R] ≥
qH∑

i=1

∑

x,r,{(α′
�
,β′

�
,γ ′

�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛

⎜
⎜
⎝Pr

[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

× Pr

⎡

⎢⎢⎢
⎢
⎣

V(x, m0, α0, β0, γ0) = 1
∧ I0 = i ∧ Bad0

∧
⎛

⎝∨B
j=1

⎧
⎨

⎩

V(x, m j , α j , β j , γ j ) = 1
∧ I j = i ∧ Bad j

∧ ∀� ∈ {i, . . . , qH} y j,� 
= y∗
� (i, x, r, �τ , �y[i − 1])

⎫
⎬

⎭

⎞

⎠

⎤

⎥⎥⎥
⎥
⎦

⎞

⎟⎟
⎠

For every fixing of i , x , r , {(α′
�, β

′
�, γ

′
�)}�∈[qSign] and y0,1, . . . , y0,i−1, the event V(x, m0,

α0, β0, γ0)) = 1 ∧ I0 = i ∧ Bad0 and the events

{
V(x, m j , α j , β j , γ j ) = 1 ∧ I j = i ∧ Bad j

∧ ∀� ∈ {i, . . . , qH} y j,i 
= y∗
i (i, x, r, �τ , �y[i − 1])

}

j∈[B]

are independent. Therefore,

Pr [(x, A(x)) ∈ R]

≥
qH∑

i=1

∑

x,r,{(α′
�
,β′

�
,γ ′

�
)}�∈[qSign]

y0,1,...,y0,i−1

(

Pr

[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

· Pr

[
V(x, m0, α0, β0, γ0) = 1

∧ I0 = i ∧ Bad0

]

×
⎛

⎝1 −
B∏

j=1

Pr

[
V(x, m j , α j , β j , γ j ) = 0 ∨ I j 
= i ∨ Bad j

∨ ∃� ∈ {i, . . . , qH} y j,i = y∗
i (i, x, r, �τ , �y[i − 1])

])
⎞

⎠ ,

and for every j ∈ [B] the union bound implies that

Pr

[
V(x, m j , α j , β j , γ j ) = 0 ∨ I j 
= i ∨ Bad j

∨ ∃� ∈ {i, . . . , qH} y j,i = y∗
i (i, x, r, �τ , �y[i − 1])

]

≤ min
{
1, Pr

[
V(x, m j , α j , β j , γ j ) = 0 ∨ I j 
= i

]

+ Pr
[∃� ∈ {i, . . . , qH} y j,i = y∗

i (i, x, r, �τ , �y[i − 1])] + Pr
[
Bad j

]}

≤ min

{
1, 1 − Pr

[
V(x, m j , α j , β j , γ j ) = 1 ∧ I j = i

] + qH
|Cλ| + qSign · qH · δ

}
.

For every i , x , r , {(α′
�, β

′
�, γ

′
�)}�∈[qSign] and y0,1, . . . , y0,i−1 denote

ε̃i (x, r, �τ , �y[i − 1])
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= max

{
0, Pr

[
V(x, m0, α0, β0, γ0) = 1 ∧ I0 = i

] − qH
|Cλ| − qSign · qH · δ

}
.

Then, we obtain that

Pr [(x, A(x)) ∈ R]

≥
qH∑

i=1

∑

x,r,{(α′
�
,β′

�
,γ ′

�
)}�∈[qSign]

y0,1,...,y0,i−1

(

Pr

[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]
· ε̃i (x, r, �τ , �y[i − 1])

×
(

1 − (1 − ε̃i (x, r, �τ , �y[i − 1]))B
))

=
qH∑

i=1

E

[
ε̃i (x, r, �τ , �y[i − 1]) ·

(
1 − (1 − ε̃i (x, r, �τ , �y[i − 1]))B

)]
,

where the expectation is taken over the choice of x, r , y0,1, . . . , y0,i−1 and of {(α′
�, β

′
�,

γ ′
�)}�∈[qSign].
For each i ∈ [qH], denote εi = Pr

[
V(x, m0, α0, β0, γ0) = 1 ∧ I0 = i

]
and ε̃i =

E
[
ε̃i (x, r, �τ , �y[i − 1])]. The following claim (which is proved in Appendix A.2) pro-

vides a lower bound on each of the terms in the above sum. (Note that each term is the
expectation of a non-convex function, and therefore, such a lower bound is not directly
implied by Jensen’s inequality.) �

Claim 5.3. For every i ∈ [qH], it holds that

E

[
ε̃i (x, r, �τ , �y[i − 1]) ·

(
1 − (1 − ε̃i (x, r, �τ , �y[i − 1]))B

)]
≥ 1

2
· B · ε̃2

i .

Claim 5.3 together with Jensen’s inequality imply that

Pr [(x, A(x)) ∈ R] ≥ 1

2
· B ·

qH∑

i=1

ε̃2
i .

≥ 1

2 · qH
· B ·

( qH∑

i=1

ε̃i

)2

≥ 1

2 · qH
· B ·

( qH∑

i=1

(
εi − qH

|Cλ| − qSign · qH · δ

))2

= 1

2 · qH
· B ·

(

Pr
[
V(x, m0, α0, β0, γ0) = 1 ∧ I0 > 0

] − q2
H

|Cλ|
−qSign · q2

H · δ
)2

.
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Observe that when F outputs a pair (m, σ = (α, β, γ ))without queryingHon (vk, m, α),
the view of F at termination is independent of the value H(vk, m, α). Hence, the proba-
bility that it outputs a value β such that H(vk, m, α) = β (which is a necessary condition
for F to win the experiment) is at most 1/|Cλ|. Therefore,

Pr
[
V(x, m0, α0, β0, γ0) = 1 ∧ I0 > 0

] ≥ ε − 1

|Cλ| ,

which implies that

Pr [(x, A(x)) ∈ R] ≥ 1

2 · qH
· B ·

(

ε − q2
H + 1

|Cλ| − qSign · q2
H · δ

)2

.

Then, either ε < 2 ·
(

q2
H+1
|Cλ| + qSign · q2

H · δ

)
, or

Pr [(x, A(x)) ∈ R] ≥ 1

8 · qH
· B · ε2.

The following lemma establishes an upper bound on the dth moment of the running
time of the algorithm A (recall thatTA,KG(1λ) denotes the random variable corresponding
to the running time of A on input x where (x, w) ← KG(1λ)):

Lemma 5.4. For any λ ∈ N, it holds that

E

[
(TA,KG(1λ))

d
]

≤ 2(1 + B)d · (qSign · tSim + tF + tV + tW
)d · ε.

Proof of Lemma 5.4. The description of A yields that with probability 1 − ε it runs
in time at most qSign · tSim + tF + tV, and with probability ε it runs in time at most
qSign · tSim + (1 + B) · (tF + tV)+ tW. (For simplicity, we assume that the time required
for sampling a uniform β ∈ Cx is subsumed by tF + tV.) Therefore,

E

[
(TA,KG(1λ))

d
]

≤ (
qSign · tSim + tF + tV

)d · (1 − ε) + (
qSign · tSim + (1 + B) · (tF + tV) + tW

)d · ε

≤ (
qSign · tSim + tF + tV

)d + (
(1 + B) · (qSign · tSim + tF + tV + tW

))d · ε

≤ 2(1 + B)d · (qSign · tSim + tF + tV + tW
)d · ε. (5.1)

where Eq. (5.1) follows from the fact that B ≥ 1/ε1/d − 1 (and thus 1 ≤ (1 + B)d · ε).
�
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Lemma 5.2 and Lemma 5.4 together with the assumption that R is a d-moment
(�,ω)-hard relation imply that either ε < 2 · ((q2

H + 1)/|Cλ| + qSign · q2
H · δ

)
or

B · ε2

8 · qH
≤ Pr

[
(x,A(x)) ∈ R]

≤ � · E [
(TA,KG(1λ))

d
]

|Wλ|ω

≤ � · 2(1 + B)d · (qSign · tSim + tF + tV + tW
)d · ε

|Wλ|ω

≤ � · 2d+1 Bd · (qSign · tSim + tF + tV + tW
)d · ε

|Wλ|ω

≤ � · Bd · (4(qSign · tSim + tF + tV + tW)
)d · ε

|Wλ|ω

Our choice of B = �1/ε1/d − 1� guarantees that Bd−1 ≤ ε−(1−1/d), and therefore,

ε2− 1
d ≤ ε

Bd−1 ≤ 8 · qH · � · (4(qSign · tSim + tF + tV + tW)
)d

|Wλ|ω

which yields

ε ≤
(

8 · qH · � · (4(qSign · tSim + tF + tV + tW)
)d

|Wλ|ω
) d

2d−1

.

Therefore, overall we obtain

ε ≤ max

⎧
⎨

⎩

(
8 · qH · � · (4(qSign · tSim + tF + tV + tW)

)d

|Wλ|ω
) d

2d−1

, 2 ·
(

q2
H + 1

|Cλ| + qSign · q2
H · δ

)⎫⎬

⎭

≤
(

qH · � · (32(qSign · tSim + tF + tV + tW)
)d

|Wλ|ω
) d

2d−1

+ 2 ·
(

q2
H + 1

|Cλ| + qSign · q2
H · δ

)

.

(5.2)

6. Implications to the Schnorr and Okamoto Schemes

In this section, we derive concrete security bounds for the Schnorr identification and
signature schemes and for the Okamoto identification and signature schemes based
on Corollary 4.2 and Theorem 5.1, assuming the 2-moment hardness of the discrete
logarithm problem. In the description of the schemes, we rely on the existence of a
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group generation algorithm GroupGen, which takes as input the security parameter 1λ

and outputs a description (G, p, g) of a cyclic group G of prime order p, where g is
a generator of the group. We focus on the typical case where the security parameter
λ ∈ N determines a lower bound on the size of the group and thus p ≥ 2λ, and we
denote by texp = texp(λ) the time required for a single exponentiation in the group
G, where (G, p, g) ← GroupGen(1λ). Moreover, we assume for simplicity that the
time required for multiplication in G, for sampling elements in Zp, and for arithmetic
computations in Zp is subsumed by texp.

6.1. The Schnorr Identification and Signature Schemes

We start by recalling the definition of the Schnorr identification scheme IDSchnorr =
(Gen,P1,P2,V, C) which is defined as follows:

Gen(1λ): P1(x, w):
1. (G, p, g) ← GroupGen(1λ) 1. Parse x as ((G, p, g), h)

2. w ← Zp 2. r ← Zp
3. x = ((G, p, g), gw) 3. α = gr

4. Output (x, w) 4. st = (w, r)

5. Output (α, st)
V(x, α, β, γ ): P2(st, β):
1. Parse x as ((G, p, g), h) 1. Parse st as (w, r)

2. If α = gγ · h−β then output 1 and otherwise output 0 2. Output γ = w · β + r mod p

Note that the scheme’s challenge space C = Cx is Zp for any x = ((G, p, g), gw)

produced by Gen, and that IDSchnorr has a challenge space of size |Cλ| ≥ 2λ and
δ-first-message unpredictability for δ = δ(λ) = 2−λ. Additionally, the verifier V
preforms two exponentiations in the group G which yields a total running time of
tV = tV(λ) = 2texp(λ). The following well-known claim establishes the special sound-
ness and simulatability of IDSchnorr.

Claim 6.1. IDSchnorr is simulatable and has special soundness.

For completeness, in Appendix A.3 we present the simulator Sim establishing the
simulatability of the scheme, and the extractor WitnessExt which establishes its special
soundness. The simulator Sim runs in time tSim = 2texp, and the extractor WitnessExt
performs only arithmetic operations in the ring Zp, and hence, for our purposes its run-
ning time is dominated by that of the other algorithms under consideration. Given Claim
6.1 and the above observations, we obtain the following theorem, establishing concrete
security bounds for the Schnorr identification scheme, as an immediate implication of
Corollary 4.2.

Theorem 6.2. Let tP̄ = tP̄(λ) and qP̄ = qP̄(λ) be functions of the security parameter
λ ∈ N. If the discrete logarithm problem is 2-moment hard with respect to Gen, then for
any malicious prover P̄ that runs in time tP̄ and issues qP̄ transcript generation queries
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it holds that

AdvPA-IMP
IDSchnorr,P̄

(λ) ≤
((

32(tP̄ + 2(qP̄ + 1) · texp
)2

2λ

) 2
3

+ 2

2λ
,

for all sufficiently large λ ∈ N.

Recall that Schnorr signatures are obtained from IDSchnorr via the Fiat–Shamir trans-
form relative to hash function H, as described in Sect. 5. Hence, we obtain the following
theorem, establishing concrete security bounds for the Schnorr signature scheme, as a
corollary of Theorem 5.1.

Theorem 6.3. Let tF = tF (λ), qH = qH(λ) and qSign = qSign(λ) be functions of the
security parameter λ ∈ N. If the discrete logarithm problem is 2-moment hard with
respect to Gen, and the hash function H is modeled as a random oracle, then for every
tF -time algorithm F that issues qH oracle queries and qSign signing queries it holds that

AdvForgeSIGIDSchnorr ,H
,F (λ) ≤

(
qH · (32(tF + 2(qSign + 1) · texp)

)2

2λ

) 2
3

+2 ·
(

(qSign + 1) · q2
H + 1

2λ

)

for all sufficiently large λ ∈ N.

6.2. The Okamoto Identification and Signature Schemes

The Okamoto identification scheme IDOkamoto is defined as follows:

Gen(1λ): P1(x, w):
1. (G, p, g) ← GroupGen(1λ) 1. Parse x as ((G, p, g), g2, h)

2. g2 ← G 2. r1, r2 ← Zp
3. w1, w2 ← Zp 3. α = gr · g

r2
2

4. w = (w1, w2) 4. st = (w, r1, r2)

5. x = ((G, p, g), g2, gw1 · g
w2
2 ) 5. Output (α, st)

6. Output (x, w) P2(st, β):
V(x, α, β, γ ): 1. Parse st as (w1, w2, r1, r2)

1. Parse x as ((G, p, g), g2, h) and γ as (γ1, γ2) 2. γi = wi · β + ri mod p for i ∈ {1, 2}
2. If α = gγ1 · g

γ2
2 · h−β then output 1 and otherwise output 0 3. Output γ = (γ1, γ2)

Observe that the scheme’s challenge space C = Cx is Zp for any x = ((G, p, g), gw)

produced by Gen, and that IDOkamoto has a challenge space of size |Cλ| ≥ 2λ and
δ-first-message unpredictability for δ = δ(λ) = 2−λ. Moreover, the verifier V preforms
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three exponentiations in the group G which yields a total running time of tV = tV(λ) =
3texp(λ).

Note that the instance–witness relation induced by Gen consists of all pairs of the
form ((G, p, g1, g2, h), (w1, w2)) for which h = gw1

1 · gw2
2 . We denote this relation

by R2DLog. The following claim establishes the special soundness (with respect to the
relation R2Dlog) and simulatability of IDOkamoto.

Claim 6.4. IDOkamoto is simulatable and has special soundness.

For completeness, in Appendix A.4 we present the simulator Sim establishing the
simulatability of the scheme, and the extractor WitnessExt which establishes its special
soundness. The simulator Sim runs in time tSim = 3texp, and the extractor WitnessExt
performs only arithmetic operations in the ring Zp, and hence, for our purposes its
running time is dominated by that of the other algorithms under consideration.

LetD = {Dλ}λ∈N be the distribution which outputs pairs of the form ((G, p, g, h), w)

where (G, p, g) ← GroupGen(1λ), w ← Zp and h = gw. It is well known that the
hardness of the relation R2DLog with respect to Gen is tightly implied by the hardness
of the discrete logarithm relation with respect to D. That is, for any algorithm A there
exists an algorithm B such that TA,Gen and TB,D are identically distributed8 and

Pr

⎡

⎣gw = h

∣∣
∣∣

(G, p, g) ← GroupGen(1λ)

h ← G

w ← B(G, p, g, h)

⎤

⎦

= Pr

⎡

⎣gw1 · gw2
2 = h

∣∣
∣∣

(G, p, g) ← GroupGen(1λ)

g2, h ← G

(w1, w2) ← A(G, p, g, g2, h)

⎤

⎦ .

It immediately follows that if the discrete logarithm relation is 2-moment hard, then the
R2DLog relation is 2-moment (� = 1, ω = 1/2)-hard, where the parameter ω = 1/2
comes from the fact that the witness space Wλ of R2DLog is of size p2 where p is the
order of the group. Hence, the following theorem which establishes concrete security
bounds for the Okamoto identification scheme follows immediately from Corollary 4.2.

Theorem 6.5. Let tP̄ = tP̄(λ) and qP̄ = qP̄(λ) be functions of the security parameter
λ ∈ N. If the discrete logarithm problem is 2-moment hard with respect to Gen, then for
any malicious prover P̄ that runs in time tP̄ and issues qP̄ transcript generation queries
it holds that

AdvPA-IMP
IDOkamoto,P̄

(λ) ≤
((

32(tP̄ + 3(qP̄ + 1) · texp
)2

2λ

) 2
3

+ 2

2λ
,

for all sufficiently large λ ∈ N.

8To be precise, the running time TB,D of B is distributed as TA,Gen + 2texp, since B performs two
exponentiations and invokes A once. For simplicity of presentation, we assume that the term 2texp is subsumed
by TA,Gen.
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The Okamoto signature scheme is obtained from IDOkamoto via the Fiat–Shamir
transform relative to hash function H, as described in Sect. 5. Therefore, the following
theorem which establishes concrete security bounds for the Okamoto signature scheme,
is an immediate corollary of Theorem 5.1.

Theorem 6.6. Let tF = tF (λ), qH = qH(λ) and qSign = qSign(λ) be functions of the
security parameter λ ∈ N. If the discrete logarithm problem is 2-moment hard with
respect to Gen, and the hash function H is modeled as a random oracle, then for every
tF -time algorithm F that issues qH oracle queries and qSign signing queries it holds
that

AdvForgeSIGIDOkamoto,H,F (λ) ≤
(

qH · (32(tF + 3(qSign + 1) · texp)
)2

2λ

) 2
3

+2 ·
(

(qSign + 1) · q2
H + 1

2λ

)

for all sufficiently large λ ∈ N.

A. Additional Proofs

A.1. Proof of Claim 4.4

Consider the functions f, g : [0, 1] → R defined as follows:

f (z) = z · (1 − (1 − z)B)

g(z) =
{ 1

2 · B · z2 0 ≤ z < 1
B

z − 1
2·B otherwise

Note that our goal is to lower bound Est [ f (̃ε(st))]. We will do so in two steps: First we
will show that it is sufficient to lower bound Est [g(̃ε(st))], and then we will prove such
a bound.

Claim A.1. g(z) ≤ f (z) for all z ∈ [0, 1].

Proof. Using Taylor approximation, we obtain

(1 − z)B ≤ 1 − B · z + 1

2
· B2 · z2.

Therefore,

f (z) ≥ z ·
(

B · z − 1

2
· B2 · z2

)
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= B · z2
(

1 − 1

2
· B · z

)
.

Hence, for all z < 1/B it holds that

f (z) ≥ B · z2
(

1 − 1

2
· B · 1

B

)

= 1

2
· B · z2

= g(z).

We differentiate f and observe that for all 1 ≥ z ≥ 1/B it holds that

f ′(z) = 1 − (1 − z)B + B · z · (1 − z)B−1

= 1 + (1 − z)B−1 · ((B + 1) · z − 1)

≥ 1 + (1 − z)B−1 ·
(

B + 1

B
− 1

)

≥ 1

= g′(z).

Since f (1/B) ≥ g(1/B), this implies that g(z) ≤ f (z) for all z ∈ [1/B, 1] and the
claim follows. �

Claim A.1 implies that

Est

[
ε̃(st) ·

(
1 − (1 − ε̃(st))B

)]
= Est [ f (̃ε(st))] ≥ Est [g(̃ε(st))] .

The derivative of g is

g′(z) =
{

B · z 0 ≤ z < 1
B

1 otherwise

which is a non-decreasing function on [0, 1], and hence, g is convex in this interval.
Therefore, Jensen’s inequality implies that

Est [g(̃ε(st))] ≥ g (Est [̃ε(st)]) ≥ g

(
max

{
0, ε − 1

|Cλ|
})

.

Now, since ε − 1/|Cλ| < ε ≤ 1/B, we obtain

Est

[
ε̃(st) ·

(
1 − (1 − ε̃(st))B

)]
≥ 1

2
· B ·

(
ε − 1

|Cλ|
)2

.

�



26 Page 30 of 32 L. Rotem, G. Segev

A.2. Proof of Claim 5.3

Consider the functions f, g : [0, 1] → R defined as follows:

f (z) = z · (1 − (1 − z)B)

g(z) =
{ 1

2 · B · z2 0 ≤ z < 1
B

z − 1
2·B otherwise

As in the proof of Claim 4.4, it holds that

E

[
ε̃i (x, r, �τ , �y[i − 1]) ·

(
1 − (1 − ε̃i (x, r, �τ , �y[i − 1]))B

)]

= E
[

f (̃εi (x, r, �τ , �y[i − 1]))]
≥ E

[
g(̃εi (x, r, �τ , �y[i − 1]))]

≥ g
(
E
[
ε̃i (x, r, �τ , �y[i − 1])]) .

Recall that for each i ∈ [qH], we use the notation εi = Pr[V(x, m0, α0, β0, γ0) = 1 ∧
I0 = i] and ε̃i = E

[
ε̃i (x, r, �τ , �y[i − 1])]. By definition of ε̃i (x, r, �τ , �y[i − 1]), it holds

that

ε̃i ≥ max

{
0, Pr

[
V(vk, m0, α0, β0, γ0) = 1 ∧ I0 = i

] − qH
|Cλ| − qSign · qH · δ

}

= max

{
0, εi − qH

|Cλ| − qSign · qH · δ

}
.

Since for every i ∈ [qH] it holds that εi ≤ ε ≤ 1/B, we obtain ε̃i ≤ εi ≤ 1/B. Hence,
by the definition of g we obtain

E

[
ε̃i (x, r, �τ , �y[i − 1]) ·

(
1 − (1 − ε̃i (x, r, �τ , �y[i − 1]))B

)]

≥ g
(
E
[
ε̃i (x, r, �τ , �y[i − 1])]) = 1

2
· B · ε̃2

i .

�

A.3. Proof of Claim 6.1

We start by proving that IDSchnorr is simulatable. Consider the algorithm Sim which
takes as input a pair (1λ, x) and is defined as follows:

1. Parse x as ((G, g, p), h).
2. Sample β, γ ← Zp.
3. Compute α = gγ · h−β .
4. Output (α, β, γ ).

Observe that distribution {(x,Sim(1λ, x))}λ∈N is identical to the distribution {(x, (α′, β ′,
γ ′))}λ∈N where (x = ((G, g, p), h), w) ← Gen(1λ), (α′, st) ← P1(x, w), β ′ ← Zp

and γ ′ ← P2(st, β).
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Per the special soundness property, consider the algorithm WitnessExt which takes as
input an instance x = ((G, g, p), h) and a pair (α, β, γ ) and (α, β ′, γ ′) of accepting
transcripts such that β ′ 
= β and is defined as follows:

1. Parse x as ((G, g, p), h).
2. Output w∗ = (γ − γ ′)/(β − β ′).

Since the two transcripts are accepting, we have gγ ·h−β = α = gγ ′ ·h−β ′
. This implies

that h = g(γ−γ ′)/(β−β ′) = gw∗
, implying that w∗ is the discrete logarithm of h with

respect to g. �

A.4. Proof of Claim 6.4

We start by proving that IDOkamoto is simulatable. Consider the algorithm Sim which
takes as input a pair (1λ, x) and is defined as follows:

1. Parse x as ((G, g, p), g2, h).
2. Sample β, γ1, γ2 ← Zp.
3. Compute α = gγ1 · gγ2

2 · h−β .
4. Output (α, β, γ ), where γ = (γ1, γ2).

Observe that distribution {(x,Sim(1λ, x))}λ∈N is identical to the distribution {(x, (α′, β ′,
γ ′))}λ∈N where (x = ((G, g, p), g2, h), w) ← Gen(1λ), (α′, st) ← P1(x, w), β ′ ←
Zp and γ ′ ← P2(st, β).
Per the special soundness property, consider the algorithm WitnessExt which takes as
input an instance x = ((G, g, p), g2h) and a pair (α, β, γ ) and (α, β ′, γ ′) of accepting
transcripts such that β ′ 
= β and is defined as follows:

1. Parse x as ((G, g, p), g2, h), γ as (γ1, γ2) and γ ′ as (γ ′
1, γ

′
2).

2. Compute w∗
i = (γi − γ ′

i )/(β − β ′) for i ∈ {1, 2}.
3. Output w∗ = (w∗

1, w∗
2).

Since the two transcripts are accepting, we have gγ1 · gγ2
2 · h−β = α = gγ ′

1 · g
γ ′

2
2 · h−β ′

.

This implies that h = g(γ1−γ ′
1)/(β−β ′) ·g

(γ2−γ ′
2)/(β−β ′)

2 = gw∗
1 ·g

w∗
2

2 , implying that indeed
(x, w∗) ∈ R2DLOG. �
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