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Abstract. We present new protocols for Asynchronous Verifiable Secret Sharing for
Shamir (i.e., threshold t < n) sharing of secrets. Our protocols:

– Use only “lightweight” cryptographic primitives, such as hash functions;
– Can share secrets over rings such as Z/(pk ) as well as finite fields Fq ;
– Provide optimal resilience, in the sense that they tolerate up to t < n/3 corruptions, where

n is the total number of parties;
– Are complete, in the sense that they guarantee that if any honest party receives their share

then all honest parties receive their shares;
– Employ batching techniques, whereby a dealer shares many secrets in parallel and achieves

an amortized communication complexity that is linear in n, at least on the “happy path”,
where no party provably misbehaves.

Keywords. Asynchronous, Verifiable-Secret-Sharing, Galois rings.

1. Introduction

We present new protocols for asynchronous verifiable secret sharing (AVSS). An
AVSS protocol allows one party, the dealer, to distribute shares of a secret to parties
P1, . . . , Pn . Important properties of such a protocol are correctness, which means that
even if the dealer is corrupt, the shares received by the honest parties are valid (i.e., they
correspond to points that interpolate a polynomial of correct degree), and privacy, which
means that if the dealer is honest, an adversary should only learn the shares held by the
corrupt parties. A third property that is important in many applications is completeness,
which means that if the dealer is honest, or if any honest party obtains a share, then
eventually all honest parties obtain a share. In this paper, we will only be interested
© The Author(s) 2024
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in AVSS protocols that satisfy the completeness property: some authors also call this
asynchronous complete secret sharing (ACSS). Our protocols allow the dealer to share
secrets that lie in a finite field Fq , or more generally a finite ring, such as Z/(pk).

In the asynchronous setting, we assume secure (authenticated and private) point-
to-point channels between parties, but we do not assume any bound on how quickly
messages are transmitted between parties. In defining completeness, “eventually” means
“if and when all messages sent between honest parties are delivered”. While there is a
vast literature on secret sharing in the synchronous communication model, there has been
considerably less research in the asynchronous model. We feel that this is unfortunate,
as the asynchronous model is the only one that corresponds to the practical setting of a
wide area network. For this reason, we focus exclusively on the asynchronous model.

It is well known that any AVSS protocol can withstand at most t < n/3 corrupt
parties. If an AVSS protocol can withstand this many corruptions, we say it provides
optimal resilience. In this paper, we will focus exclusively on AVSS protocols that
provide optimal resilience.

We are mainly focused here in designing AVSS protocols with good communica-
tion complexity. We define the communication complexity to be the sum of the length
of all messages sent by honest parties (to either honest or corrupt parties) over the
point-to-point channels. That said, we are interested protocols with good computational
complexity as well.

In many applications, it is possible to run many AVSS protocols together as a “batch”.
That is, a dealer has many secrets that he wants to share, and can share them all in parallel.
Please note that such “batched” secret sharing operations are not to be confused with
“packed” secret sharing operations: in a “batched” secret operation (a technique used,
for example, in [22]), many secrets are shared in parallel, resulting in many ordinary
sharings, while in a “packed” secret sharing (a technique introduced in [29]), many
secrets are packed in a single sharing. With “packed” secret sharing, one must sacrifice
optimal resilience, which we are not interested in here. Our focus will be exclusively
on “batched” secret sharing. With “batching”, it is still possible to achieve optimal
resilience, while obtaining very good communication and computational complexity in
an amortized sense (i.e., per sharing).

We also make a distinction between the “happy path” and the “unhappy path”. To enter
the “unhappy path”, a corrupt party must provably misbehave. If this happens, all honest
parties will learn of this and can take action: in the short term, the honest parties can
safely ignore this party, and in the longer term, the corrupt party can be removed from the
network. Also, such provable misbehavior could lead to legal or financial jeopardy for
the corrupt party, and this in itself may be enough to discourage such behavior. Note that
the “happy path” includes corrupt behavior that cannot be used as reliable evidence to
convince other honest parties or an external authority of corrupt behavior—this includes
collusion among the corrupt parties, as well as behavior that may clearly be seen as
corrupt by an individual honest party. For these reasons, we believe it makes sense to
make a distinction between the complexity of the protocol on the “happy path” versus
the “unhappy path”.
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1.1. Information Theoretic Versus Computational Security

Up until now, most research in this area has been focused in two different settings:
information theoretic and computational.

In the information-theoretic setting, security is unconditional, while in the computa-
tional setting, the protocol may use various cryptographic primitives and the security of
the protocol is conditioned on specific cryptographic assumptions. In the information-
theoretic setting, one can further make a distinction between statistically secure pro-
tocols, which may be broken with some negligible probability, and perfectly secure
protocols, which cannot be broken at all. We shall not be particularly interested in the
distinction between statistical and perfectly secure information-theoretic protocols in
this paper.

In the cryptographic setting, the cryptography needed is often quite “heavyweight”,
being based, for example, on the discrete logarithm problem or even pairings.

– The state of the art in batched, complete AVSS protocols over finite fields with
optimal resilience in the information-theoretic setting (with statistical security) is
the protocol from [20], which achieves amortized communication complexity that
is cubic in n.

– In contrast, the state of the art in batched, complete AVSS protocols over finite fields
with optimal resilience in the computational setting is the protocol from [3], which
achieves amortized communication complexity that is linear in n. This protocol
relies on discrete logarithms and pairings (although as noted in [30], pairings are
not needed to achieve the same result if we amortize over larger batches).

For both of these protocols, the complexity bounds are worst-case bounds (making no
distinction between a “happy path” and a “unhappy path”).

1.2. The Space in Between: “Lightweight” Cryptography

In this paper, we explore the space between the information theoretic and computational
settings. Specifically, we consider the computational setting, but where we only allow
“lightweight” cryptographic primitives, such as collision-resistant hash functions and
pseudorandom functions. In one of our protocols, we need to make a somewhat non-
standard (but entirely reasonable) assumption about hash functions: a kind of related-key
indistinguishability assumption for hash functions, which certainly holds in the random
oracle model [10]. In another protocol, we fully embrace the random oracle model, which
yields an even simpler and more efficient protocol. Both protocols are batched, complete
AVSS protocols with optimal resilience that achieve communication complexity that is
linear in n on the “happy path” and quadratic in n on the “unhappy path”.

We believe there are several reasons to explore this space of protocols that rely only
on “lightweight” cryptography:

– Such protocols are potentially harder to break than protocols that rely on such
things as discrete logarithms and pairings. In particular, they provide post-quantum
security.

– Such protocols will typically exhibit much better computational complexity than
those that rely on “heavyweight” cryptography. For example, the protocol in [3]
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requires that each receiving party perform a constant number of exponentiations
and pairings per sharing (in an amortized sense). In contrast, in our protocol, each
receiving party only performs a constant number of field operations and hashes per
sharing (again, in an amortized sense, at least on the “happy path”).

Moreover, using any form of cryptography can allow improvements in both communi-
cation and computational complexity over protocols using only information-theoretic
tools.

Our protocols do not require any public-key cryptography. However, as we shall point
out, in a practical implementation, it might be advantageous to sparingly use some
public-key cryptographic techniques in certain places.

1.3. Fields Versus Rings

To our knowledge there has been no work in the asynchronous setting for VSS protocols
sharing secrets over rings such as Z/(pk), with all prior work in the setting focused
on sharing elements in finite fields Fq . In the synchronous setting there has recently
been an interest in MPC over rings such as Z/(pk), see, for example, [15,16,27,36] in
the dishonest majority (and computational) setting; [1,2] in the honest majority setting
(and information-theoretic) setting; and [34] in the honest majority setting (and computa-
tional) setting.1 The heart of the protocol [1] is a synchronous VSS protocol for elements
in Z/(pk), which itself is a natural generalization of the method for fields from [12,13].
The methods from these last two papers are perfectly information theoretically secure.

Another approach, related to [12,13], is that of [22]. This is a statistically secure
information-theoretic MPC protocol that works in the synchronous setting with honest
majority, which at its heart performs a highly efficient batched VSS protocol over the
finite field Fq . The batch is proved to be correct using a probabilistic checking proce-
dure, which has a negligible probability of being bypassed by an adversary (a similar
probabilistic check was used in a different context in [6]). While [22] provides only
statistical security, its advantage over other techniques is the fact that the batch sizes are
larger, resulting in a greater practical efficiency.

In the synchronous setting, generalizing these results from fields to Galois rings ap-
pears at first sight to be tricky. The field results are almost all defined for Shamir sharing,
which in its standard presentation for n players over Fq , requires n > q. When working
with rings such as Z/(2k) it is not clear, a priori, that the theory for fields will pass over
to the ring case. However, by using so-called Galois rings and carefully defining the
Shamir evaluation points and other data structures, the entire theory for fields can be
carried over to the ring setting with very little change. The original work in this space
for rings can be traced back, at least, to [28], with a more complete treatment being
provided in [1]. The latter paper generalizes the synchronous protocol from [13] to the
case of Z/(pk) completely.

In this work we initiate the study of asynchronous VSS protocols for rings. As ex-
plained above we focus on a middle ground which utilizes lightweight cryptography. Our

1 For specific access structures, secret sharing over Z/(pk ) for practical protocols is much older, going
back to at least the original Sharemind protocol [8].
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motivating starting point is the underlying batched synchronous VSS protocol contained
in [22]. At a high level, this protocol works in the following steps:

1. The sharing party shares a large number of values.
2. After the shares are distributed a random beacon is called in order to generate a

random value. In [22] this is instantiated with a “standard” traditional VSS protocol.
3. Using the value from the random beacon random linear equations on the originally

produced shares are computed and opened. The checking of these random linear
combination for correctness implies the original shares are correct, with a negligible
probability of success.

We follow the same strategy, but we need to modify this slightly, not only to deal with
our asynchronous network situation, but also to deal with the potential uses of rings such
as Z/(pk). In [22], a single linear equation is checked over a field extension, in the case
of small q, in order to obtain an appropriate soundness level. In our case we will check
multiple such equations in parallel, relying on a generalization of the Schwarz–Zippel
lemma to rings.

Another technique we employ, to move from the synchronous setting of [22] to our
asynchronous setting, is the “encrypt then disperse” technique from [39]. However,
as developed in [39], this technique relies on “heavyweight” cryptography, including
discrete logarithms and pairings. We show how to replace all of this “heavyweight”
cryptography by “lightweight” cryptography.

In [22] the shared secret is guaranteed to be an element in Fq if q is large enough to
support Shamir secret sharing over Fq , i.e., n < q. When sharing secrets in Z/(pk) (or
a small finite fields Fq with n ≥ q), the shares themselves lie in a Galois ring (or field)
extension. In fact, a corrupt dealer might share a secret that lies in the extension, rather
than in the base ring (or field). In most applications of our AVSS protocol, this will
not be an issue (for example, in producing multiplication triples for MPC protocols);
however, in some applications, we really need to ensure that the shared elements are
indeed in the base ring (or field) and not some extension. In this situation, we require
further machinery which we introduce.

1.4. Application to AMPC

Of course, as has already been alluded to, one of the main applications of AVSS over
fields is to asynchronous secure multiparty computation (AMPC), especially in the
information theoretic setting. The state of the art for AMPC with optimal resilience for
arithmetic circuits over finite fields in the information theoretic setting is the protocol
from [20], whose communication complexity grows as n4 · cM , where cM is the number
of multiplication gates in the circuit to be evaluated.

We can use our new “lightweight” cryptographic AVSS protocols as a drop-in re-
placement for the information-theoretic AVSS protocol in [20], which yields an AMPC
protocol whose communication complexity grows as n2 · cM on the “happy path” and
n3 ·cM on the “unhappy path”. One can easily improve the communication on the “happy
path” to n · cM by assuming that t < (1/3 − ε) · n for some constant ε. Alternatively,
one can achieve the same communication bound with t < n/3 at least on a “very happy
path” where at least (2/3+ε) ·n parties are actually online and cooperative and network
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delay is bounded (which in practice is often reasonable to assume). Indeed, the tech-
nique in [20], which derives from [19], involves a step where we have to wait for n − t
parties to each contribute sharings of validated Beaver triples. From this collection of
sharings, some number of truly random shared triples may be extracted. Unfortunately,
when n = 3t+1, and we only collect n−t = 2t+1 triples, this extraction process yields
only one truly random triple. However, in practice, it may make sense to just wait a little
while to try to collect more triples. Indeed, if we can collect (2/3 + ε) · n triples, we can
extract Ω(n) truly random triples. Hence, on this “very happy path”, the communication
complexity grows as n · cM . Note that this pragmatic approach to reducing the commu-
nication complexity on this “very happy path” is still secure assuming t < n/3—so we
still obtain optimal resilience, but we also obtain linear communication complexity per
multiplication gate on this “very happy path”.

As is well known, one can realize AMPC in the computational setting without using
AVSS. Indeed, the state of art for AMPC with optimal resilience in the computational
setting is the protocol from [18], which has a communication complexity that is inde-
pendent of the circuit size. This protocol relies on very “heavyweight” cryptography:
threshold fully homomorphic encryption and threshold signatures. Using somewhat less
“heavyweight” cryptography, namely, additively homomorphic threshold encryption,
the protocol in [32] has communication complexity that grows as n2 · cM .

So we see that with our new AVSS protocols, one can achieve secure AMPC in the com-
putational setting with very good communication complexity using only “lightweight”
cryptography.

As has already been mentioned, our lightweight AVSS protocol works not only over
fields but over rings such as Z/(pk). These rings offer many advantages for various forms
of MPC computation, especially when the ring is chosen to be Z/(2k). It remains an
open question as to how the above techniques for AMPC can be extended from fields to
rings, given our AVSS protocol as a building block. In future work, we aim to investigate
this in our context of utilizing lightweight cryptography.

1.5. The Rest of the Paper

In Sect. 2, we review basic concepts such as polynomial interpolation, Reed-Solomon
codes, and secret sharing. In particular, in Sect. 2.3, we give the formal definition of
AVSS that we will use throughout the paper. In Sect. 3, we review the subprotocols we
will need to build our new AVSS protocols. Some of these subprotocols are standard,
some are slight variations of standard protocols, and some are new. In particular, in
Sect. 3.3, we define a new type of protocol, which we call a secure message distribution
protocol. In this section, we just state the properties such a protocol should satisfy,
and then in Sect. 4 we show how to build one. In Sect. 5, we present and analyze our
new AVSS protocol. In Sect. 6, we extend our AVSS protocol to ensure that the secrets
shared by a corrupt dealer lie in a restricted domain. The AVSS protocols in Sects. 5
and Sect. 6 rely in a random beacon. In Sect. 7, we show how to modify both of these
protocols so that they do not rely on a random beacon, but instead rely on modeling a
hash function as a random oracle. The resulting protocols also have the advantage of
requiring fewer rounds of communication (and we speculate that they are resistant to
adaptive corruptions, rather than just static corruptions).
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2. Polynomial Interpolation, Reed–Solomon Codes, and Secret Sharing

We recall some basic facts about polynomial interpolation, Reed-Solomon codes, and
secret sharing. As we want to work over both finite fields and Galois rings, we state these
facts more generally, working over an arbitrary, finite, commutative ring with identity.
For more details see [1,28] or [37].

If A is a commutative ring with identity, we let A
∗ denote its group of units. Let A[x]

denote the ring of univariate polynomials over A in the variable x . For positive integer
d, let A[x]<d denote the A-subalgebra of A[x] consisting of all polynomials of degree
less than d.

2.1. Polynomial Interpolation

The key to making polynomial interpolation work over an arbitrary ring A is to restrict
the choice of points at which we evaluate polynomials over A. To this end, we work with
the notion of an exceptional sequence, which is a sequence (s1, . . . , sn) such that each
si ∈ A, and for all i, j ∈ [n] with i �= j , we have si − s j ∈ A

∗. 2 When ordering does
not matter, we use the (somewhat nonstandard but more natural) term exceptional set
to denote a set E ⊆ A such that s − t ∈ A

∗ for all s, t ∈ E with s �= t . Clearly, if E is
an exceptional set, then so is any subset of E . The size of the largest exceptional set in
a ring A is called the Lenstra constant of the ring.

For example, if A is a field, then A is itself an exceptional set. As another example,
suppose A is a Galois ring Z[y]/(pk, F(y)), where F(y) is a monic polynomial of degree
δ whose image in Z/(p)[y] is irreducible. Then A contains an exceptional set of size
pδ . Such a set E may be formed by taking any set of polynomials in Z[y] whose images
in Z[y]/(p, F(y)) are distinct, and setting E to be the images of these polynomials in
Z[y]/(pk, F(y)).

So now consider an exceptional sequence of evaluation coordinates e = (e1, . . . , en) ∈
A
n . Because e is an exceptional sequence, polynomial interpolation with respect to these

evaluation coordinates works just as expected. That is, for every a = (a1, . . . , an) ∈ A
n ,

there exists a unique polynomial f ∈ A[x]<n such that f (e j ) = a j for all j ∈ [n]. In-
deed, the coefficient vector of f is given by a·V−1, where V ∈ A

n×n is the Vandermonde
matrix determined by the vector of evaluation coordinates e. Because e is an exception
sequence, the determinant of V is a unit, and hence V is invertible.

2.2. Reed–Solomon Codes

Let A be a ring and e ∈ A
n be an exceptional sequence. For a positive integer d, we

define the (n, d)-Reed-Solomon code over A (with respect to e) to be the A-subalgebra
of A

n consisting of the vectors

{( f (e1), . . . , f (en)) : f ∈ A[x]<d}.

2[n] denotes the set {1, . . . , n}, and [0..n] denotes the set {0, . . . , n}.
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Elements of this subalgebra are called codewords. Let C ∈ A
n×(n−d) be the matrix

consisting of the rightmost n − t columns of V−1. Then for each a ∈ A
n , we see that a

is a codeword if and only if a · C = 0 (this just expresses the condition that the unique
polynomial obtained by interpolation has degree less than d). The matrix C is called as
a check matrix for the code.

2.3. Asynchronous Verifiable Secret Sharing

We now turn to secret sharing, specifically, asynchronous verifiable secret sharing
(AVSS). We have n parties P1, . . . , Pn , of which at most t < n/3 may be corrupt.
We assume static corruptions (although we claim, without a full proof, that one of our
AVSS protocols is secure against adaptive corruptions in the random oracle model). Let
H denote the indices of the honest parties, and let C denote the indices of the corrupt
parties.

We assume the parties are connected by secure point-to-point channels, which pro-
vide both privacy and authentication. As we are working exclusively in the asynchronous
communication model, there is no bound on the time required to deliver messages be-
tween honest parties.

Let A be a ring and e ∈ A
n be an exceptional sequence. An (n, d, L)-AVSS protocol

over A (with respect to e) should allow a dealer D ∈ {P1, . . . , Pn} to input polynomials
f1, . . . , fL ∈ A[x]<d so that these polynomials are disseminated among P1, . . . , Pn in
such a way that each party Pj outputs the corresponding the shares f1(e j ), . . . , fL(e j ).
Such a protocol should satisfy the following security properties (informally stated):

Correctness If any honest parties produce an output, then there must exist
polynomials f1, . . . , fL ∈ A[x]<d such that each honest Pj outputs
{ f�(e j )}L�=1, if it outputs anything at all. Moreover, if the dealer D is
honest, these must be the same polynomials input by D.

Privacy If D is honest, the protocol should reveal no more to the adversary
than the values

{
f�(e j )

}
�∈[L]
j∈C

,

that is, the shares of the corrupt parties.

Note that in the correctness condition, it is essential that the protocol constrains a corrupt
dealer D so ensure that the polynomials f1, . . . , fL have degree less than d.

These security properties can be better captured by working in the universal compos-
ability (UC) framework [14] and defining an ideal functionality Favss, see Fig. 1.
Favss captures the correctnessproperty by the fact that a corrupt dealer D is constrained

in the ideal world to input polynomials of the right degree. In a more detailed definition of
Favss, one might have the dealer D input a bit string to Favss, and then Favss would parse
this bit string (according to some standard convention) as a list of L polynomials over A

of degree less than d. If this failed for any reason, Favss would not accept this input from
D. For the sake of clarity, we omit such details, and throughout this paper assume that
ideal functionalities and other protocol machines make such “syntax checks” by default.
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Fig. 1. The AVSS ideal functionality (parameterized by n, d, L , A, e, and D).

Favss in fact captures a stronger form of correctness, namely, input extractability.
This property intuitively means that a corrupt dealer D must explicitly commit to all
of it polynomials before any honest party outputs its own shares. This follows from the
fact that in the UC framework, the ideal-world adversary (or simulator) must somehow
extract, from the protocol messages it sees, the polynomials it needs to submit toFavss as
an input on behalf of D before it can request that outputs are sent to any honest parties.
This property is essential in some applications (including a protocol we present later in
Sect. 6).
Favss captures the privacy property by the fact that when the dealer D is honest, the

only information obtained by an adversary in the ideal world are the outputs sent from
Favss to the corrupt parties, and these outputs consist of just the shares of these parties,
as required.

2.3.1. Completeness

A protocol that securely realizes the ideal functionality Favss does not necessarily sat-
isfy the completeness property mentioned in Sect. 1. Indeed, as stated, the ideal-world
adversary may choose to haveFavss deliver outputs to some honest parties but not others.

Intuitively speaking, the completeness property for an AVSS protocol says that if an
honest dealer D inputs a value or if any honest party output a value, then eventually, all
honest parties output a value. Here, “eventually” means if and when all messages sent
between honest parties have been delivered. Thus, completeness is not an unconditional
guarantee: in the asynchronous communication setting, we formally leave the scheduling
of message delivery entirely to the adversary, who may decide to deliver messages sent
between honest parties in an arbitrary order, or may choose not to deliver some of them
at all.

Turning the above intuitive definition of completeness into a formal one is fairly
straightforward. One simply defines an attack game in which the adversary (who controls
the corrupt parties and the scheduling of message delivery) wins the game if he can drive
the protocol to a state which violates the stated completeness condition, that is, a state
such that:

(i) an honest dealer D has input a value or some honest party has output a value,
(ii) all messages sent between honest parties have been delivered, and

(iii) some honest party has not output a value.

Completeness means that any efficient adversary wins this game with negligible prob-
ability.
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This simple notion of completeness will be sufficient for our purposes. Note that
one technical limitation of this definition is that it is only meaningful if the message
complexity (that is, the total number of messages sent by any honest party to any other
party) is uniformly bounded (that is, bounded by a polynomial that is independent of the
adversary, at least with overwhelming probability). Indeed, the completeness property
is vacuously satisfied by any protocol in which there are always more messages that
need to be delivered (so condition (ii) in the previous paragraph can never be attained).
Fortunately, all of the protocols we shall consider here have a uniformly bounded message
complexity.

Our approach to modeling completeness closely adheres to the approach introduced
in [17]. We note that the related work [20] studies AVSS and AMPC protocols in the
UC framework, but makes use of a formal notion of time introduced in [35] to model
completeness. Our view is that this extra (and somewhat complicated) machinery is
unnecessary and, moreover (echoing the view of [33]), that notions such as liveness and
related notions such as completeness are more simply and quite adequately modeled
as properties of concrete protocols (as we have done so here) rather than as security
properties captured by ideal functionalities.

2.4. Higher-Level Secret Sharing Interfaces

Our ideal functionality Favss essentially matches that in [20], and models a rather mini-
malistic, low-level interface. As given, the dealer inputs polynomials over A and parties
receives shares. However, there are no interfaces for encoding a secret value as a polyno-
mial, or for performing various operations on shares, such as opening shares, combining
shares to reconstruct a secret, or performing linear operations on sharings.

Our choice of this minimalistic interface is intentional, as it is simple and sufficient
for our immediate needs. However, higher-level interfaces can easily be implemented
on top of it using standard techniques. For example, the standard way to encode a secret
s ∈ A as a polynomial is to make s the constant term of the polynomial and choose
the other coefficients at random. Doing this, the secret is essentially encoded as the
value of the polynomial at the evaluation coordinate 0. For this to work, we require that
(0, e1, . . . , en) is an exceptional sequence. If this requirement is satisfied, and if d > t ,
then we know that the shares leaked to the adversary reveal no information about the
secret s. Moreover, if n ≥ d + 2t , we know we can reconstruct the polynomial, and
hence the secret, using a protocol based on “online error correction” (originating in [5],
but see [19] for a nice exposition of this and many other related protocols in the asyn-
chronous setting). However, this is not the only mechanism that may be used to encode
a secret. For example, one may in fact encode the secret as the leading coefficient, rather
than the constant term—while this alleviates the requirement of extending the vector of
evaluation coordinates to n+1 elements, it may not be convenient in some applications.
As another example, with “packed” secret sharing, several secrets may be encoded in a
polynomial, by encoding these secrets at different evaluation coordinates [29]—while
this can improve the performance of some higher-level protocols, it also reduces the
resiliency of such protocols.

Also observe that our minimalistic interface also requires that the ring A already has
appropriate evaluation coordinates. In some applications, the secret may lie in some ring
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S that does not contain a large enough exceptional sequence. For example, S may be a
finite field Fq where q is very small, or a ring such as Z/(pk), where p is very small. In
this case, the standard technique is to secret share over a larger ring A ⊇ S—for example,
a field extension in the case S = Fq or a Galois ring extension in the case S = Z/(pk).
Note that a direct application of this technique allows a corrupt dealer to share a secret
that lies in A \ S. In some applications, this may be acceptable, while in others, it may
not. In Sect. 6, we show how our basic AVSS protocol for secret sharing over A can be
extended to enforce the requirement that secrets do in fact lie in the subring S.

2.5. The Number of Roots of a Polynomial

The following result is standard. Since it is typically proved with respect to fields, for
completeness, we give a proof here with respect to rings.

Lemma 2.1. (Schwartz–Zippel over rings) LetA denote a commutative ring with iden-
tity and let P ∈ A[x1, x2, . . . , xn] be a nonzero polynomial of total degree d ≥ 0. Let
E ⊆ A be an exceptional set, and let r1, . . . , rn be selected uniformly, and independently,
from E . Then

Pr[ P(r1, . . . , rn) = 0 ] ≤ d

|E | .

Proof. We first consider the case of univariate polynomials. Let f ∈ A[x] be of degree
d. We show that it can only have at most d roots in E . This is done by induction, with the
base case of d = 0 being trivial. Now suppose f (x) is of degree d+1, and the result is true
for polynomials of degree d. We work by contradiction and assume that f (x) has d+ 2
distinct roots in E , which we label r1, . . . , rd+2. We can write f (x) = (x − rd+2) · g(x)
for some polynomial g(x) of degree d. Since the roots come from an exceptional set we
know that ri − rd+2 is invertible for every i = 1, . . . , d + 1. Hence r1, . . . , rd+1 must
be roots of g(x), and so g(x) has d + 1 distinct roots. This contradicts the inductive
hypothesis.

We now prove the main result for multivariate polynomials by induction on n, where
the base case of n = 1 is the univariate case we just considered. So we assume the
statement holds for n ≥ 1, and consider the case of multivariate polynomial with n + 1
variables f (x1, . . . , xn+1). We can write

f (x1, . . . , xn) =
∑
i≤d

xin+1 · fi (x1, . . . , xn)

where fi is a multivariate polynomial in n variables. Since f (x1, . . . , xn+1) is not identi-
cally zero there is at least one fi (x1, . . . , xn) which is not identically zero. Let d′ denote
the largest such index i . We have deg( fd′) ≤ d − d′ since f has degree at most d.

We know, by the inductive hypothesis, that for randomly chosen r1, . . . , rn ∈ E .

Pr[ fd′(r1, . . . , rn) = 0 ] ≤ d − d′

|E | ,
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Now if fd′(r1, . . . , rn) �= 0 then f (r1, . . . , rn, xn+1) is a nonzero univariate polyno-
mial of degree d′. So by the base case we have, for randomly chosen rn+1 ∈ E ,

Pr[ f (r1, . . . , rn, rn+1) = 0 | fd′(r1, . . . , rn) �= 0 ] ≤ d′

|E | .

By Bayes’ Theorem, and some manipulation, we therefore have

Pr[ f (r1, . . . , rn, rn+1) = 0 ] ≤ d − d′

|E | + d′

|E | = d

|E | .

�

3. Subprotocols

In this section, we review the subprotocols that our new AVSS protocol will need. Here
and throughout the rest of this paper, we assume a network of n parties P1, . . . , Pn , of
which at most t < n/3 of them may be statically corrupted, and which are connected
by secure point-to-point channels (providing both privacy and authentication). We also
assume network communication is asynchronous.

3.1. Random Beacon

A random bacon is a protocol in which each party initiates the protocol and outputs a
common value ω that is effectively chosen at random from an output space Ω . Such a
protocol should satisfy the following security properties (informally stated):

Correctness All honest parties that output a value output the same value ω.
Privacy The adversary learns nothing about ω until at least one honest party

initiates the protocol.

These security properties are best defined in terms of the ideal functionality FBeacon,
which is given in Fig. 2. Note that inFBeacon, a party Pj initiates the protocol by explicitly
supplying the input init.

We also want such a protocol to satisfy the following completeness property: if all
honest parties initiate the protocol, then eventually, all honest parties output a value.

Fig. 2. The random beacon functionality FBeacon (parameterized by output space Ω).
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Just as in Sect. 2.3.1, “eventually” means if and when all messages sent between honest
parties have been delivered.

While our main AVSS protocol relies on a random beacon, we will also give a simpler
AVSS protocol (in Sect. 7) that does not need a random beacon at all, but instead is
analyzed in the random oracle model. But even in our main AVSS protocol, we only
need to run one instance of a random beacon protocol to distribute shares of a large
batch of polynomials. As such, a random beacon can, in principle, be securely realized
with any (not very efficient) protocol without impacting the overall amortized cost of
the AVSS protocol (at least for a sufficiently large batch size).

3.1.1. Implementing a Random Beacon

One could implement a random beacon using a (t+1)-out-of-n threshold BLS signature
scheme [7,9,38]. Despite being based on “heavyweight” cryptography, this beacon may
be efficient enough for use in our AVSS protocol as well as other applications. However,
this beacon requires a hardness assumption that is not post-quantum secure, as well
additional setup assumptions (including some kind of distributed key distribution step).

Very recently, [4] showed how to implement a random beacon using just “lightweight”
cryptography and no setup assumptions (other than secure channels). Although the com-
munication complexity of their HashRand protocol is super-linear, it is likely good
enough for use in our AVSS protocol as well as other applications.

Consider a long-running system in which we will need an unlimited supply of random
beacons. Suppose we prepare a sufficiently large initial batch I of beacons, using a
protocol such asHashRand. Then we can in fact prepare an unlimited supply of beacons,
with a linear amortized communication cost per beacon, as follows. We use the standard
technique of having each party generate a batch of sharings of a random secret, agreeing
on a set of such batches using a consensus protocol, and then adding up the batches in
the set to obtain a batch of sharings of random secrets that are unknown to any party.
In fact, we can obtain a linear number of such batches in one go by using well-known
“batch randomness extraction” techniques (see [31]). The result of this step is one very
large batch J of sharings of secrets that are unknown to any party. Each sharing in the
batch J can now be used as a random beacon, by just opening the sharing when it is time
to reveal the beacon. The construction of J requires an AVSS protocol and a consensus
protocol. We could use our new AVSS protocol, which may or may not require a beacon
(depending on the version used), and an efficient consensus protocol such as FIN [24],
which definitely requires a beacon. With these protocols, so long as I is sufficiently
large to run them, we can make J arbitrarily large in relation to I . So we can arrange
that |J | 
 |I |, and then partition J into two batches I ′ and J ′, where |I ′| = |I |.
Then we can use the batch J ′ for applications and the batch I ′ to repeat the process
again. The amortized communication complexity per sharing of our AVSS protocol is
linear. Although we have to run it a linear number of times per beacon, by using the
batch randomness extraction technique, the amortized communication complexity per
beacon is still linear. Thus, except for an initial “bootstrapping phase”, we can prepare
an unlimited supply of beacons with a linear amortized communication cost per beacon.

Note that while the technique in the previous paragraph allows to prepare batches of
random beacons with a linear amortized communication cost per beacon, the communi-
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cation cost to reveal one beacon is quadratic. There are batching techniques that allow
one to reveal many such beacons at once at lower cost (see, for example, Section III
of [19]), but it is not clear if this type of batching has many useful applications.

3.1.2. Extending the Output Space of a Random Beacon

Suppose we have a protocol Π that securely realizes a random beacon with output space
Ω . We can use Π to securely realize a random beacon with a larger output space. One
way to do this is to run N instances of Π concurrently and concatenate the outputs. This
immediately yields a protocol that securely realizes a random beacon with output space
ΩN .

Of course, the approach in the previous paragraph comes at a significant cost. A more
practical approach is to use a cryptographic pseudorandom generator G : Ω → Ω ′.
If Ω is sufficiently large (so that 1/|Ω| is negligible), and if we model G as a random
oracle, then the protocol Π ′ that runs Π to obtain the output ω ∈ Ω and then outputs
ω′:=G(ω) ∈ Ω ′ securely realizes a random beacon with output space Ω ′. Indeed, in
the random oracle model, a simulator that is given an output ω′ ∈ Ω ′ of the ideal
functionality for the Ω ′-beacon can generate ω ∈ Ω at random and program the random
oracle representing G so that G(ω) = ω′.

The above security proof relied heavily on the ability to program the random oracle
representing G. If instead of modeling G as a random oracle, we just assume that G is
a secure pseudorandom generator, then the above security proof falls apart, and in fact,
protocol Π ′ will not securely realize a random beacon. However, the output of Π ′ will
still have properties (such as unpredictability) that may be useful in certain applications.
The typical setting where this works is one where the security analysis requires a certain
failure event E to occur with negligible probability for randomly chosen ω′ ∈ Ω ′, and
the occurrence of E can be detected efficiently as a function of ω′ and data that are
available to the adversary prior to invoking protocol Π .

3.2. Reliable Broadcast

A reliable broadcast protocol allows a sender S to broadcast a single message m to
P1, . . . , Pn . Such a protocol should satisfy the following security property (informally
stated):

Correctness All honest parties that output a message must output the same
message. Moreover, if the sender S is honest, that message is the one
input by S.

This security property is best defined in terms of the ideal functionality FReliableBroadcast,
which is given in Fig. 3.

We also want such a protocol to satisfy the following completeness property: if an
honest sender S inputs a message or if any honest party outputs a message, then eventu-
ally, all honest parties output a message. As usual, “eventually” means if and when all
messages sent between honest parties have been delivered.
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Fig. 3. The reliable broadcast ideal functionality (parameterized by S).

3.2.1. Bracha Broadcast

A simple reliable broadcast protocol is called Bracha Broadcast [11] and is given in
Fig. 4. We express the logic for the sender as a separate process, even though the sending
party is also one of the receiving parties. First note, that the communication complexity
of Bracha broadcast is clearly O(n2 · |m|).

Since we will be using variants of Bracha broadcast later, we highlight some important
properties of the echo/vote logic of this protocol. Suppose that there are t ′ ≤ t corrupt
parties.

Bracha Property B0 If an honest party receives n− t votes for the same message, then
all honest parties will eventually vote for some message.

Suppose an honest party receives n−t votes for the same message. Then at least n−2t ≥
t + 1 honest parties must have voted for this message. Upon receipt of these t + 1 votes,
each honest party will vote if they have not done so already.

Fig. 4. Bracha’s protocol for reliable broadcast.
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Bracha Property B1 If an honest sender S inputs a message, then all honest parties
will eventually vote for some message.

Eventually, all honest parties will echo the sender’s message, unless some honest party
enters the output stage without doing so. In the former case, upon receipt of these echoes,
each honest party will vote if they have not already done so. In the latter case, some honest
party must have received n − t votes on the same message, and the property follows
from Bracha Property B0.

Bracha Property B2 If an honest party votes for a message, then at least n − t − t ′
honest parties must have echoed the same message.

This is because the very first time any honest party votes for a given message it must be
the case that this party received n − t echoes on that message from distinct parties, of
which n − t − t ′ must be honest.

Bracha Property B3 If two honest parties vote for a message, they must vote for the
same message.

This is because if two honest parties vote different messages, then by Bracha Property B2
we have one set of n−t−t ′ honest parties echoing one message, and a second, disjoint set
of n−t−t ′ honest parties echoing a different message, which means 2(n−t−t ′) ≤ n−t ′,
which implies n ≤ 2t + t ′ ≤ 3t .

The correctness property of Bracha broadcast easily follows from Bracha Proper-
ties B2 and B3 (B3 implies all honest parties must output the same message, and B2
implies that if the sender is honest, this message must be the one input by the sender).
The completeness properties easily follows from Bracha Properties B0, B1, and B3.
Since, B0 and B1 imply that if an honest sender inputs a message or an honest party
outputs a message, then all honest parties eventually vote for a message, and B3 says
they all vote for the same message, which implies all honest parties eventually output a
message.

3.2.2. Compact Broadcast

The communication complexity of Bracha broadcast can be improved by the use of
erasure codes. To this end, we need an (n, n−2t) erasure code, which has the following
properties: a messagem can be efficiently encoded as a vector ofn fragments ( f1, . . . , fn)
in such a way that m can be efficiently reconstructed (decoded) from any subset of n−2t
fragments. An (n, n − 2t)-Reed-Solomon code can be used for this purpose, but other
constructions are possible as well. In any reasonable construction, the size of each
fragment will be about |m|/(n − 2t).

We can use such an erasure code to build a reliable broadcast protocol with better
communication complexity as follows. Given a long messagem, the sender S encodes the
message using an (n, n−2t) erasure code, to obtain a vector of n fragments ( f1, . . . , fn).
Each fragment has size roughly |m|/(n − 2t) — so assuming n > 3t , the size of each
fragment is at most roughly 3|m|/n. The sender S then sends each fragment f j to party
Pj , who then echoes that fragment to all other parties. Each party can then collect
enough fragments to reconstruct m. To deal with dishonest parties, some extra steps
must be taken.
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This approach was initially considered in [21], who give a protocol with communica-
tion complexity O(n·|m|+λ·n2·log n). Here, λ is the output length of a collision-resistant
hash function. The factor log n arises from the use of Merkle trees. If |m| 
 λ ·n · log n,
this is essentially optimal—indeed, any reliable broadcast protocol must have commu-
nication complexity Ω(n · |m|), since every party must receive m.

Recall that that a Merkle tree allows one party, say Charlie, to commit to a vector of
values (v1, . . . , vk) using a collision resistant hash function by building a binary tree
whose leaves are the hashes of v1, . . . , vk , and where each internal node of the tree is the
hash of its (at most two) children. The root r of the tree is the commitment. Charlie may
“open” the commitment at an index i ∈ [k] by revealing vi along with a “validation path”
πi , which consists of the siblings of all nodes along the path in the tree from the hash of
vi to the root r . We call πi a validation path for vi under r at i . Such a validation path is
checked by recomputing the nodes along the corresponding path in the tree, and testing
that the recomputed root is equal to the given commitment r . The collision resistance
of the hash function ensures that Charlie cannot open the commitment to two different
values at a given index.

We give here the details of a reliable broadcast protocol that is based on erasure codes
and Merkle trees, and which achieves the same communication complexity as that in [21].
This protocol is similar to that presented in [21], but is a bit simpler and also bears some
resemblance to a related protocol in the DispersedLedger system [40]. Our reasons
for presenting this protocol are threefold: first, to make this paper more self contained;
second, because this protocol has somewhat better communication complexity than the
one in [21]; and third, because later in this paper, we will modify this protocol to achieve
other goals. We call this reliable broadcast protocol ΠCompactBroadcast and it is given in
Fig. 5.

The reader may observe that ΠCompactBroadcast has essentially the same structure as
Bracha’s reliable broadcast protocol, where the message being broadcast is the root
of a Merkle tree. The correctness property of ΠCompactBroadcast follows from Bracha
Properties B2 and B3, and the collision resistance of the hash function used for building
the Merkle trees. The completeness property of ΠCompactBroadcast follows from Bracha
Properties B0, B1, B2 and B3. Specifically, Bracha Property B2 in this context ensures
that in ΠCompactBroadcast, if any honest party votes for a root r , then at least n− 2t honest
parties must have echoed r along with a corresponding validation path and fragment, so
that all honest parties will eventually be able to reconstruct a message from these n− 2t
fragments in the output stage.

3.2.3. Other Reliable Broadcast Protocols

For somewhat shorter messages, a protocol such as that in [25] may be used, which
achieves a communication complexity of O(n·|m|+λ·n2). The protocolΠCompactBroadcast
above uses only an erasure code, while the protocol in [25] requires an “online” error
correcting code, which may be more computationally expensive than erasure codes.
Another potential advantage of ΠCompactBroadcast over the protocol in [25] is that the
former has a very balanced communication pattern, which can be important to prevent a
communication bandwidth bottlenecks. The paper [26] improves on [25], obtaining the
same communication complexity, but with a balanced communication pattern.
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Fig. 5. A reliable broadcast protocol based on erasure codes and Merkle trees.

3.2.4. Relation to AVID

The design of ΠCompactBroadcast is based on the notion of Asynchronous Verifiable Infor-
mation Dispersal, or AVID. In an AVID protocol, a sender S wants to send a message m
to some or possibly all of the parties P1, . . . , Pn . There are two phases to such a protocol:
the dispersal phase, where S disperses m (or fragments of m) among P1, . . . , Pn , and
the retrieval phase, where individual Pj ’s may retrieve m. The correctness property for
such a protocol is essentially the same as that of a reliable broadcast protocol:

All honest parties that output a message in the retrieval phase output the same
message. Moreover, if S is honest, that message is m.

The completeness property has two parts. First, in the dispersal phase:

If an honest sender S inputs a message or if one honest party completes the
dispersal phase, then every honest party eventually completes the dispersal
phase.

Second, in the retrieval phase:
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If the dispersal phase has completed (for some honest parties), and the re-
trieval phase for an honest party Pj is initiated, then Pj eventually outputs a
message.

Note that one can use any AVID protocol to implement reliable broadcast, by first
dispersing the message and then having every party retrieve the message.

The point of using an AVID protocol is that in situations where only a small number of
parties need to retrieve the message, communication complexity can be much lower than
in a reliable broadcast protocol. For example, the dispersal phase of the AVID protocol
in the DispersedLedger system [40] is very similar to our protocol ΠCompactBroadcast,
except that the echo messages in the former do not include the validation paths and
fragments—rather, these data are only disseminated to those parties that actually need to
retrieve the message. The resulting AVID protocol thus has a communication complexity
of O(|m| + λ · n2) in the dispersal phase and O(|m| + λ · n · log n) per retrieval.

3.2.5. One-Sided Voting

A degenerate version of Bracha broadcast can be used as a simple one-sided voting
protocol, see Fig. 6. In this protocol, each party may initiate the protocol and may output
the value done. The key security property of this protocol (informally stated) is as
follows:

Correctness If any honest party outputs done, then at least n− t − t ′ honest
parties initiated the protocol, where t ′ ≤ t is the number of corrupt parties.

This security property is best defined in terms of the ideal functionality FOneSidedVote,
which is given in Fig. 7. Note that in FOneSidedVote, a party Pj initiates the protocol by
explicitly supplying the input init.

This protocol also satisfies the following completeness property: if all honest parties
initiate the protocol or some honest party outputsdone, then eventually, all honest parties
output done. As usual, “eventually” means if and when all messages sent between honest
parties have been delivered.

The correctness property follows from the analog of Bracha Property B2. The com-
pleteness property follows from the analogs of Bracha Properties B0 and B1.

3.3. Secure Message Distribution

We require a new type of protocol, which we call a securemessagedistribution protocol.
Such a protocol enables a sender S to securely distribute a vector m = (m1, . . . ,mn) of
messages, so that during an initial distribution phase, each party Pj outputs m j . After
receiving its own message m j , party Pj may optionally forward this message to another
party. Moreover, after receiving any message mu (either its own or one forwarded to it),
party Pj may optionally forward mu to another party. This forwarding functionality will
be needed to deal with the “unhappy” path of our AVSS protocol.

Such a protocol should satisfy the following security properties (informally stated):

Correctness If any honest parties produce an output in the distribution or
forwarding phases, those messages must be consistent with a message
vector m = (m1, . . . ,mn)—that is, the message output by honest Pj
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Fig. 6. Degenerate version of Bracha’s protocol for one-sided voting.

Fig. 7. The one-sided voting ideal functionality FOneSidedVote.

during the distribution phase must be m j , and any message output by
some honest party during the forwarding phase as ostensibly belonging
to to some party Pu must be mu . Moreover, if the sender S is honest, m
must be the same message vector input by S.

Privacy If the sender S and party Pu are honest, and no honest party forwards
mu to a corrupt party, then the adversary learns nothing about mu .

Note that whenever a party outputs a message (in either the distribution or forwarding
phase), that message may be ⊥, which can only happen if the sender is corrupt.

It will also be convenient for us to allow a party to include an identifying tag along
with the forwarded message.

We may more precisely formulate the security properties for secure message dis-
tribution as the ideal functionality FSecMsgDst, which is given in Fig. 8. We note that
FSecMsgDst also captures an input extractability property that intuitively means that a
corrupt sender S must explicitly commit to a vector of all input messages before any
honest party outputs its own message in the distribution phase (or any forwarded mes-
sage for that matter). This is a property that will be essential in the security analysis of
our AVSS protocol.
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Fig. 8. The ideal functionality for secure message delivery FSecMsgDst (parameterized by S).

We bring to the reader’s attention the logic in the ideal functionality FSecMsgDst for
processing a request by a party Pj to forward a message mu to another party. The logic
enforces a precondition that requires that either (i) the message to be forwarded is one
that Pj has already received (either its own or one forwarded to it), or (ii) Pj and S
are both corrupt. In any implementation, an honest party will always simply ignore an
input that requests it to forward a message it does not have. If we did not have such a
precondition, an ideal-world adversary could trivially circumvent the privacy property
by having a corrupt Pj simply ask the ideal functionality to forward a message mu

belonging to an honest party Pu to itself or to some other corrupt party.
In fact, FSecMsgDst is a bit stronger than we need, in the sense that we may assume

that when the sender S is honest, no honest Pj will forward its message m j to any other
party. As we will see, this constraint will be satisfied by our AVSS protocol. In the UC
framework, this can be captured by only considering restricted environments that satisfy
this constraint. We will give an efficient protocol that securely realizes FSecMsgDst with
respect to such constrained environments. As we will also see, in the random oracle
model, essentially the same protocol is secure even without this constraint.

We also want a secure message distribution protocol to satisfy the following com-
pleteness property, which has two parts. First, in the distribution phase:

If an honest sender S inputs a vector of messages, or if one honest party
outputs a message in the distribution phase, then eventually, all honest parties
output a message in the distribution phase.

Second, in the forwarding phase:

If an honest party Pj forwards a message mu to an honest party Pi , then
eventually, Pi receives mu .

As usual, “eventually” means if and when all messages sent between honest parties have
been delivered.

In Sect. 4 we give a secure message distribution protocol that is built from “lightweight”
cryptographic primitives, specifically, semantically secure symmetric key encryption and
a hash function. The hash function needs to be collision resistant and to also satisfy a kind
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of related-key indistinguishability assumption (see Sect. 4.2 for more details). The com-
munication complexity of the distribution phase of our protocol is O(|m|+λ ·n2 · log n).
If an honest party forwards a messagemu to another party, this adds O(|mu |+λ·n ·log n)

to the communication complexity.
In our application to AVSS, we will only use the forwarding mechanism on the “un-

happy path”, in which a corrupt sender provably misbehaves. In particular, unless we
are on the “unhappy path”, the forwarding mechanism will not contribute to the com-
munication complexity at all.

4. Building Secure Message Distribution

In this section we show how to implement the secure message distribution functionality
from Sect. 3.3. Note that [39] and [30] show how to implement this type of functionality
using “heavyweight” cryptographic primitives based on discrete logarithms. In particu-
lar, [30] rigorously defines a particular multi-encryption primitive with an appropriate
notion of chosen ciphertext security and a verifiable decryption protocol and presents
practical constructions that are provably secure in the random oracle model.

While such constructions may well yield acceptable performance in practice, we show
here that one can implement this functionality using only “lightweight” cryptographic
primitives. The resulting protocols are certainly more efficient than those based on dis-
crete logarithms and also have the advantage of providing post-quantum security.

4.1. Reliable Message Distribution

We start out by considering the simpler notion of a reliable message distribution pro-
tocol, which satisfies all the properties of a secure message secure message distribution
protocol except privacy.

We implement this using a variant of the reliable broadcast protocol ΠCompactBroadcast
in Sect. 3.2. In the distribution phase, the sender S starts with a vector of messages
m = (m1, . . . ,mn); it encodes each mi as a vector of fragments ( fi1, . . . , fin) and then
builds a Merkle tree for ( fi1, . . . , fin) with root ri ; it then sends each Pj the collection
of values {(ri , πi j , fi j )}ni=1, where each πi j is the validation path for fi j under ri at j .
Thus, each Pj receives the j th fragment of all n messages. An echo message from Pj

to Pi now includes r, πi , ri , πi j , fi j , where r is the root of the Merkle tree built from
(r1, . . . , rn) and πi is the validation path for ri under r at i . The vote messages include
just the root r . Once party Pj collects sufficiently many vote messages for a root r ,
it enters the output stage, and waits to collects sufficiently many echo messages that
contain valid fragments of the j th message from which it can reconstruct that message.
Details of the complete distribution phase are in Fig. 9.

When Pj completes the distribution phase of the protocol, it can optionally forward
m j to another party Q by sending to Q the values it obtained in the last step of the
distribution phase, specifically, the values π j , r j along with the collection of n − 2t
values {π j i , f j i }i . Party Q, who we assume has also completed the distribution phase,
can validate this information and compute the message using the same logic used by Pj .
This validation consists of two parts:



Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience Page 23 of 58 27

Fig. 9. The distribution phase of a reliable message distribution protocol.

– In the first part, Q checks that the validation paths are correct with respect to the
root r acquired when entering the output stage; if this check fails, the forwarding
subprotocol fails and no output is delivered.

– In the second part, Q reconstructs the fragments and their Merkle tree, and compares
the Merkle tree roots. If this check fails, the forwarding subprotocol outputs ⊥;
otherwise, it outputs the message.

The first part detects if the party forwarding the message is misbehaving, while the
second detects if the sender S was misbehaving.

The same logic above can obviously be adapted to allow a party to forward any
message that it has received, either its own or one that was forwarded to it.

4.1.1. Correctness and Completeness

The correctness and completeness properties for protocol ΠRelMsgDst follow from essen-
tially the same argument used in Sect. 3.2.2 for the corresponding properties for proto-
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col ΠCompactBroadcast. Protocol ΠRelMsgDst also satisfies the input extractability property,
which follows from the same argument used in Sect. 3.2.2 for the completeness property
for protocol ΠCompactBroadcast. Specifically, Bracha Property B2 ensures that when one
honest party reaches the output stage in ΠRelMsgDst, at least n − 2t honest parties have
echoed validation paths and fragments for all input messages m1, . . . ,mn . Therefore,
assuming collision resistance for the hash function used for building Merkle trees, all
these messages are fully determined at this time.

4.1.2. Communication Complexity

The communication complexity of the distribution phase is O(|m|+λ · n2 · log n). If an
honest party forwards a message mu to another party, this adds O(|mu | + λ · n · log n)

to the communication complexity.
Note that when a corrupt party forwards a message to an honest party, this does not

contribute anything to the communication complexity. This property will be important
when we analyze the communication complexity of our AVSS protocol on the “happy
path”. The reason this type of forwarding does not contribute anything is that in defining
communication complexity, we count the number of bits sent by all honest parties to all
parties. One might argue that this is a theoretical distinction, and that in practice, one
should count all bits sent and received by honest parties. However, such a definition of
communication complexity is unworkable, as it cannot be upper bounded at all—corrupt
parties may “spam” their honest peers with an unbounded amount of data. In practice,
honest parties would likely attempt to distribute their download bandwidth equitably
among all of its peers and employ some kind of “spam prevention” strategy to protect
itself against peers who try to monopolize its download bandwidth.

4.1.3. Relation to AVID

In Sect. 3.2.4 we briefly recalled the notion of an AVID protocol. In fact, the design
of our protocol ΠRelMsgDst is inspired by the AVID protocol in the DispersedLedger
system [40]. In principle, one could build a reliable message distribution protocol simply
by running n instances of an AVID protocol concurrently, one for each input message
m j : the retrieval mechanism of the AVID protocol could be used both to deliver m j to
Pj and to optionally forward m j to other parties. So we could have simply implemented
this generic strategy using the AVID protocol in [40]. There are several reasons we did
not do this:

• This generic strategy, instantiated with DispersedLedger’s AVID protocol, would
result in a reliable message distribution protocol whose communication complexity
in the distribution phase is O(|m|+λ · n3) rather than O(|m|+λ · n2 · log n). Note
that the same communication complexity would result if we instantiated with the
AVID protocol in [26].

• This generic strategy, instantiated with DispersedLedger’s AVID protocol, would
result in a reliable message distribution protocol where the number of rounds of
communication in the distribution phase was 4 rather than 3.

• In this generic strategy, where we use the retrieval mechanism of AVID to imple-
ment the forwarding mechanism of reliable message distribution, we run into a



Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience Page 25 of 58 27

subtle problem regarding communication complexity. As noted above, in our reli-
able message distribution protocol, when a corrupt party forwards its message to an
honest party, this does not contribute anything to the communication complexity.
However, if we use the retrieval mechanism of AVID for message forwarding, when
a corrupt party attempts to forward its message to an honest party, all honest parties
must participate in the protocol, which contributes to the communication complex-
ity. So in this case, some additional mechanism would be required to prevent or at
least detect misusing the forwarding mechanism.

In addition to the above, we wanted to present a concrete reliable message distribution
protocol which we could then easily modify to add data privacy and so obtain a secure
message distribution protocol.

4.2. Secure Key Distribution

The above reliable message distribution protocol does not provide any data privacy. This
can be remedied by augmenting it with a protocol for secure key distribution and then
using these secret keys to encrypt the messages and using ΠRelMsgDst to distribute the
resulting ciphertexts.

We sketch briefly here the properties that a secure key distribution protocol should
satisfy and how to build one, and then below in Sect. 4.3, we show in how to integrate this
protocol into our protocol ΠSecMsgDst to obtain a secure message distribution protocol.

In a secure message distribution protocol, the goal is to have the sender S distribute
a vector of keys k = (k1, . . . , kn), so that each party Pj obtains k j . Here, if the sender
S is honest, the keys k1, . . . , kn are not input by the sender, but rather are generated
by the protocol itself, and the sender obtains the vector k as an output of the protocol;
however, a corrupt sender S may effectively choose and input an arbitrary vector k. In
addition, just like for reliable message distribution, the protocol should allow a party
to forward a key that it has received to another party. Such a protocol should satisfy
analogous correctness and completeness (as well as input extractability) properties. In
addition, the following property should hold:

Privacy If the sender S and party Pu are honest, and no honest party forwards
ku to a corrupt party, then the adversary learns nothing about ku .

To implement such a scheme, which we call ΠSecKeyDst, we modify the reliable mes-
sage distribution protocol ΠRelMsgDst so that instead of encoding a key using an erasure
code, we share it using Shamir secret sharing. In more detail, let H : [0..n] × F → K
be a cryptographic hash function, where F is a large finite field and K is the key space.
Let (η0, η1, . . . , ηn) be fixed sequence of distinct elements in F .3

The sender proceeds as follows. For each i ∈ [n], the sender chooses a random
polynomial θi ∈ F<n−2t . Let si j :=θi (η j ) for j ∈ [0..n]. The key ki is defined as
ki :=H(0, si0). The sender builds a Merkle tree from ( (H(1, si1), . . . , H(n, sin) ) with
root ri . and sends to each Pj the collection of values {(ri , πi j , si j )}ni=1, where πi is a
validation path for H( j, si j ) under ri at j .

3 Note that the choice of the field F is an implementation detail and need not have any relationship to the
ring A used in the context of AVSS.
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Upon receiving such a message from S, and validating it is of the correct form, each
party Pj then builds a Merkle tree for (r1, . . . , rn) with root r and echoes to each Pi the tu-
ple (r, πi , ri , πi j , si j ), where πi is a validation path for ri under r . The voting logic works
just as before. In the output stage, Pj waits for valid echomessages from a set ofn−2t dis-
tinct parties Pi , and then reconstructs a polynomial θ ′

j ∈ F[x]<n−2t via polynomial inter-
polation from {si j }i . It then builds a Merkle tree from ( H(1, θ ′

j (η1)), . . . , H(n, θ j (ηn)) )

with root r ′
j . If r j = r , it outputs the key H(0, θ ′

j (0)), and otherwise outputs ⊥.
When Pj completes the distribution phase of the protocol, it can optionally forward

k j to another party Q by sending to Q the values it obtained in the last step of the
distribution phase, specifically, the values π j , r j along with the collection of n − 2t
values {π j i , s ji }i . Party Q who can validate this information and compute k j using the
same logic used by Pj . This strategy can obviously be adapted to allow a party to forward
any key that it has received, either its own or one that was forwarded to it.

We note that ΠSecKeyDst has some rough similarities to the asynchronous weak VSS
protocol in [23], but the goals and a number of details are quite different.

4.2.1. Correctness and Completeness

One can easily adapt the analysis of ΠRelMsgDst to show that ΠSecKeyDst satisfies the
correctness and completeness (as well as input extractability) properties, assuming the
hash function used to implement the Merkle trees, as well as H , are collision resistant.

4.2.2. Proving Privacy Under the Linear Hiding Assumption

To prove the privacy property for ΠSecKeyDst, we make the following assumption on the
hash function H : [0..n] × F → K, which we call the linear hiding assumption. This
is a kind of indistinguishability assumption under a “related key attack”.

This assumption is defined by a game in which the adversary first chooses a collection
of pairs {(ai , bi )}i∈I , where I ⊆ [0..n] and each ai is nonzero. The task of the adversary
is to distinguish the distribution

{
H(i, ai · s + bi )

}
i∈I ,

where s ∈ F is randomly chosen, from the uniform distribution on KI . The assumption
states that no computationally bounded adversary can effectively distinguish these two
distributions.

This assumption is certainly true in the random oracle model, assuming 1/|F | is
negligible. Indeed, if we model H as a random oracle, the best the adversary can do is
evaluate H at many points (i, s∗) for i ∈ I and s∗ ∈ F , and hope that s∗ = ai · s + bi .
So it seems a reasonable assumption.

We can use this assumption to prove the privacy of ΠSecKeyDst as follows. Assume the
sender S is honest and consider any one honest party. For this party, the sender chooses
a random polynomial θ ∈ F[x]<n−2t and computes s j :=θ(η j ) for j ∈ [0..n]. Let C
be the set of corrupt parties, which we are assuming is of cardinality ≤ t < n − 2t ,
and let H:=[n]\C be the set of honest parties. During the execution of the protocol, the
adversary learns s j for j ∈ C. The only other information about the polynomial θ that
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the adversary learns is derived as a function of H(i, si ) for i ∈ H. We want to argue that
given this information, the adversary cannot distinguish the actual key H(0, s0) from a
random key, under the linear hiding assumption.

Without loss of generality, we may give the adversary even more information, namely
let C′ ⊆ [n] be an arbitrary set of size exactly n− 2t − 1 containing C, and let us assume
that the adversary is given s j for j ∈ C′ and H(i, si ) for i ∈ H′:=[n]\C′. By Lagrange
interpolation, for each i ∈ H′, there exist nonzero constants {λi j } j∈C′∪{0} in the field F
such that

si =
∑

j∈C′∪{0}
λi j · s j .

The indistinguishability of H(0, s0) from random follows directly from the linear hiding
assumption, where in the attack game for that assumption, we use the adversarially
chosen pairs

{(ai , bi )}i∈H′∪{0},

where

(ai , bi ) =
{(

λi0,
∑

j∈C′ λi j · s j
)

, if i ∈ H′;
(1, 0), if i = 0.

That proves the privacy property of a single honest party’s key. The proof can easily
be extended to cover all honest parties’ keys by a standard “hybrid” argument.

We note that the indistinguishability property for keys, and the fact that the key space
itself must be large (as we are assuming the key space is the output space of a collision-
resistant hash), implies that keys are unpredictable.

4.2.3. Domain Separation Strategies for H

Our construction uses the simple “domain separation” strategy for H , where we include
both j and si j in the input to H . The inclusion of j is not strictly necessary, but it yields a
simpler and quantitatively better security analysis in the random oracle model. In fact, if
we include i as well in the input, we would obtain an even better concrete security bound
(avoiding the “hybrid” argument mentioned above). Moreover, as a practical matter, one
should include even more contextual information as an input to H that identifies the
individual instance of the protocol, including the identity of the sender. This is not only
good security practice, but will also yield better concrete security bounds for a system
in which many instances of the protocol are run.

4.2.4. Communication Complexity

Assuming individual keys are of size O(λ), the communication complexity of the dis-
tribution phase is O(λ · n2 · log n). If an honest party forwards a key to another party,
this adds O(λ · n · log n) to the communication complexity. Just as in Sect. 4.1.2, then
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a corrupt party forwards its key to an honest party, this does not contribute anything to
the communication complexity.

4.3. A Secure Message Distribution Protocol

We can build a protocol that securely realizes FSecMsgDst by using ΠSecKeyDst to se-
curely distribute secret keys that are used to encrypt messages using any semantically
secure symmetric key encryption scheme, and then distributing the resulting cipher-
texts using ΠRelMsgDst. In fact, we can integrate the logic of ΠSecKeyDst directly into
ΠRelMsgDst, so that there is just a single root r that controls both keys and ciphertexts.
The distribution phase of the resulting protocol ΠSecMsgDst is given in Fig. 10. Here,
c ← Encrypt(k,m) encrypts the message m under the key k, producing the ciphertext
c, and m ← Decrypt(k, c) performs the corresponding decryption.

When Pj completes the distribution phase of the protocol, it can optionally forward
m j to another party Q by sending to Q the values it obtained in the last step of the
distribution phase, specifically, the values π j , r j along with the collection of n − 2t
values {π j i , s ji , f j i }i . Party Q who can validate this information and compute m j using
the same logic used by Pj . This strategy can obviously be adapted to allow a party to
forward any message that it has received, either its own or one that was forwarded to it.

The same comments on domain separation for H in Sect. 4.2.3 apply here as well.
We note that it may seem that the two-step approach of dispersing secret keys, and

then dispersing encrypted messages is superfluous. However, this is essential to get good
communication complexity by taking advantage of the fact that secret keys are much
shorter than messages.

4.3.1. Security and Completeness

If ΠSecMsgDst securely realizes the FSecMsgDst functionality, then it will surely satisfy
the corresponding correctness and privacy (as well as input extractability) properties.
In the security analysis of our AVSS protocol, we will want to work directly with the
FSecMsgDst functionality, rather than with these specific security properties (which are
anyway too informal).

Recall from Sect. 3.3 the notion of a restricted environment, which is an environment
in the UC framework that never instructs an honest party to forward its own message
when S is honest. Such restricted environments are actually sufficient for our AVSS
application.

It is straightforward to show that if

– H and the hash function used for building Merkle trees are collision resistant,
– H satisfies the linear hiding assumption, and
– the encryption scheme used to encrypt messages is semantically secure

then protocol ΠSecMsgDst securely realizes FSecMsgDst with respect to restricted environ-
ments.

It is also straightforward to show that if H and the hash function used for building
Merkle trees are collision resistant, then ΠSecMsgDst satisfies the completeness property
for secure message distribution.
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Fig. 10. The distribution phase of a secure message distribution protocol.

One can in fact prove that ΠSecMsgDst securely realizes FSecMsgDst without restriction
under the same assumptions on the hash functions, but where the encryption scheme
is built using a random oracle to make it “equivocable”—namely, where we define
Encrypt(k,m):=hash(k) ⊕ m, and model hash as a random oracle. We also speculate
that under these assumptions, ΠSecMsgDst securely realizes FSecMsgDst under adaptive
corruptions (although we have not worked out the details of this).

4.3.2. Communication Complexity

The communication complexity of the distribution phase is O(|m|+λ · n2 · log n). If an
honest party forwards a message mu to another party, this adds O(|mu | + λ · n · log n)

to the communication complexity. Just as in Sect. 4.1.2, when a corrupt party forwards
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a message to an honest party, this does not contribute anything to the communication
complexity.

5. Our AVSS Protocol

We now present and analyze our new AVSS protocol. This is a generic protocol which
works over an arbitrary ring. We will show how to instantiate it over finite fields and
Galois rings. As will see, different instantiations lead to different failure bounds in the
analysis.

5.1. Description of the Protocol

Notation is as in Sect. 2; specifically, we have a finite commutative ring A and a vector
of evaluation coordinates e = (e1, . . . , en) ∈ A

n that forms an exceptional sequence,
that is, we have ei − e j ∈ A

∗ for all i �= j .
As usual, we assume a network of n parties P1, . . . , Pn , of which at most t < n/3

of them may be statically corrupted, and which are connected by secure point-to-point
channels (providing both privacy and authentication). We also assume network commu-
nication is asynchronous.

Our AVSS protocol Πavss1 is presented in Fig. 11. It is an (n, d, L)-AVSS protocol
over A (with respect to e). The protocol requires t < d ≤ n − 2t . In addition, it makes
use of a variation of the probabilistic degree check from [22] (a similar probabilistic
check was used in a different context in [6]). This probabilistic check involves several
parameters:

– A ring extension B of A.
– A repetition parameter R, which is a positive integer.
– A challenge space Θ , which is a subset of B

L .
For example, for a given subset of E , we might use the challenge space

ΘE
pow:={(θ, θ2, . . . , θ L) : θ ∈ E}

or the challenge space

ΘE
lin:=E L .

In choosing the above parameters, there are various trade-offs between security, effi-
ciency, and underlying cryptographic assumptions. These will be discussed below.

Our AVSS protocol makes use of several subprotocols. We describe our AVSS protocol
as a hybrid protocol that makes use of the following ideal functionalities:

– FBeacon for a random beacon, as described in Sect. 3.1, whose output space is defined
to be

Ω:=
{ {

θ
(r)
�

}
r∈[R],�∈[L] : (θ

(r)
1 , . . . , θ

(r)
L ) ∈ Θ for r = 1, . . . , R

}
,
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Fig. 11. An AVSS protocol over A.

where R and Θ are the parameters discussed above;
– FReliableBroadcast for reliable broadcast, as described in Sect. 3.2;
– FOneSidedVote for one-sided voting, as described in Sect. 3.2.5;
– FSecMsgDst for secure message distribution, as described in Sect. 3.3.

5.1.1. Additional Commentary

Analogously to what we did in the description of various broadcast and broadcast-like
protocols in Sects. 3 and 4, we express the logic for the dealer as a separate process,
even though the dealer is also one of the receiving parties. In particular, the dealer will
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receive an output from the random beacon, just like the receiving parties. We also define
a subroutine Happy, which returns a Boolean value and may be called by any party.

The protocol starts when the dealer D is initiated with inputs f1, . . . , fL ∈ A[x]<d .
The dealer generates random “blinding” polynomials g(r) ∈ B[x]<d for r ∈ [R]. The
dealer then computes shares of its input and “blinding” polynomials, that is,v�, j := f�(e j ) ∈
A for � ∈ [L], j ∈ [n] and w

(r)
j :=g(r)(e j ) ∈ B for r ∈ [R], j ∈ [n]. Next, the dealer

sends each party Pj its share of all of these polynomials as a message m j via the se-

cure message distribution subprotocol. That is, m j = ( {v�, j }�∈[L], {w(r)
j }r∈[R]

) ∈
A

[L] × B
[R]—but if the dealer is corrupt, it may be that m j = ⊥.

Upon receiving m j via the secure message distribution subprotocol, party Pj will

initiate the random beacon subprotocol, and then wait for the output {θ(r)
� }r∈[R],�∈[L] of

the random beacon. The random beacon output serves as a random “challenge”.
Given the random “challenge” from the beacon, the dealer D computes “response”

polynomials h(r):=g(r) + ∑
�∈[L] θ

(r)
� · f� ∈ B[x]<d for r ∈ [R], and then broadcasts

these polynomials to all parties using the reliable broadcast subprotocol.
Upon receiving these “response” polynomials via the reliable broadcast subprotocol,

each party Pj checks the validity of the data it has received so far (this is done using
the Happy subroutine in the figure). Essentially, Pj checks the identities h(r)(e j ) =
w

(r)
j + ∑

�∈[L] θ
(r)
� · v�, j for r ∈ [R]. If the dealer is honest, this check will certainly

pass; however, if the dealer is corrupt, it may fail (and will certainly fail if m j = ⊥). If
this check passes, Pj sets happy j to true, and we say Pj is “happy”; otherwise, Pj sets
happy j to false, and we say Pj is “unhappy”.

Next, each party Pj initiates the one-sided voting subprotocol if happy j is true. If
this subprotocol returns done, the parties enter the output stage.

In the output stage, a “happy” party Pj may immediately output its shares {v�, j }�∈[L],
but waits around in case it receives a valid “complaint” from any “unhappy” party, to
which it will respond by broadcasting an “assist” to all parties. Conversely, an “unhappy”
party Pj broadcasts a “complaint” against the dealer and then waits for sufficiently many
valid “assists”, which will allow it to construct its correct shares.

A “complaint” is a message that is forwarded from a party via the secure message
distribution subprotocol (with a complaint tag) that serves as a proof that it is indeed
“unhappy”—and that the dealer must be corrupt. An “assist” is also a message that is
forwarded from a party via the secure message distribution subprotocol (with an assist
tag). These “complaints” and “assists” contain the original message received by a party
in the secure message distribution subprotocol, and any other party may validate these
messages (from the point of view of the “complaining” and “assisting” party). Of course,
if the dealer is honest, there cannot be any “unhappy” parties —honest or corrupt. When
an “unhappy” party receives d valid “assists”, this will allow it to compute its correct
shares by polynomial interpolation. In the figure, for a subsetI ⊆ [n] of size d, we denote
by {λIi, j }i∈I, j∈[n] the “Lagrange coefficients”, which are elements of A that satisfy

f ( j) =
∑
i∈I

λIi, j · f (i)
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for any polynomial f ∈ A[x]<d , and which are efficiently computable. An “unhappy”
party may use these Lagrange coefficients to compute its shares from the shares of its
“happy” peers that provided valid “assists”.

Note that in the protocol, when a party broadcasts an “assist” it also broadcasts a
“report” —this is a copy of the original “complaint” that triggered the “assist” broadcast,
and it is sent using the forwarding mechanism (with a report tag). The purpose of this
is to ensure that if any honest party broadcasts a “complaint” or an “assist”, then all
honest parties will eventually receive evidence that implicates the corrupt dealer. We
do not specify here how parties process this evidence. For example, in the short term,
once an honest party has identified a corrupt party, the honest party can safely ignore all
messages from the corrupt party in future (or at least until some “proactive refresh” of
the system occurs). When sufficiently many honest parties start ignoring a corrupt dealer,
that dealer will no longer be able to trigger any more “complaints” or “assists”—at least,
assuming we use protocol ΠSecMsgDst for secure message distribution (or something
similar), which guarantees that if sufficiently many honest parties ignore the dealer, no
honest party will even receive any shares. In the longer term, the honest parties can vote
to remove the corrupt party from the network. Also, such evidence of corrupt behavior
could lead to legal or financial jeopardy for the corrupt party, and this in itself may be
enough to discourage such behavior.

Without this extra step of broadcasting a “report”, an adversary could force the protocol
off the “happy path”, causing the communication complexity to blow up, but without
ever leading to a situation where all honest parties have obtained evidence that implicates
the corrupt dealer. For example, a corrupt dealer could give bad shares to a corrupt party
Pj , and then Pj could “complain” to just a subset S of the honest parties. The members
of S would all see the “complaints” and broadcast “assists”, but honest parties outside
of S would never see any “complaints”, and the “assists” by themselves do not implicate
the corrupt dealer.

If the dealer is honest, it is fairly easy to see that all honest parties will eventually output
their shares of the dealer’s polynomials. Moreover, the “blinding” polynomials, together
with the fact that no corrupt party can lodge a valid complaint against an honest dealer,
will ensure that the adversary obtains no information about the dealer’s polynomials
other than the shares belonging to corrupt parties.

Now suppose the dealer is corrupt. In this case, if any party enters the output stage,
the one-sided voting protocol ensures that at least n−2t ≥ d honest parties are “happy”
and that all honest parties eventually enter the output stage. In addition, these d “happy”
honest parties will ensure that any “unhappy” honest parties eventually receive the “as-
sists” that they need to obtain their shares. In the security proof, we will argue that with
overwhelming probability, the shares of all the “happy” parties (honest or corrupt) must
lie on polynomials of degree less than d, as required. For this argument to work, it is
crucial that honest parties do not initiate the random beacon subprotocol before they
receive their message from the secure message distribution subprotocol—this ensures
that the “challenge” is not revealed before the dealer has committed to the entire message
vector (m1, . . . ,mn).

Although our protocol is a secure AVSS protocol, is has an interesting property.
Namely, a corrupt dealer does not really commit to its input polynomials until after it
obtains the “challenge” from the beacon and reveals its “response” polynomials. For
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example, let n = 3t + 1 and d = t + 1. A corrupt dealer can give the honest parties
completely uncorrelated random shares, and after receiving the “challenge”, it can choose
a random set of t + 1 honest parties, interpolate through just these parties’ shares to
obtain corresponding input polynomials f1, . . . , fL , and then compute corresponding
“response” polynomials. These t + 1 honest parties together with the t corrupt parties
can force all honest parties to output shares of f1, . . . , fL . Of course, in this example,
the remaining t honest parties will “complain” against the dealer, proving that the dealer
is corrupt.

5.2. Security Analysis

In order to analyze the failure probability of this generic protocol, we need the following
definition.

Definition 5.1. (Inner product bound). With A, B, and Θ ⊆ B
L as above, we define

χ(A, B,Θ)

to be the maximum, over all b ∈ B and nonzero a ∈ A
L , of the probability that

b + 〈a, θ〉 = 0,

where θ is chosen uniformly at random from Θ .

In a typical instantiation, one would choose E to be a maximum sized exceptional set
in B so that we can apply Schwarz–Zippel (Lemma 2.1). In this setting, we have: if Θ =
ΘE

pow, then χ(A, B,Θ) ≤ L/|E |, and if Θ = Θlin = E L , then χ(A, B,Θ) = 1/|E |.
Choosing a larger ring B will allow one to increase the size of E , however this comes at
the expense of increasing the size of the elements which need to be transmitted.

Theorem 5.1. (Security of Πavss1) Assume 2n · χ(A, B,Θ)R is negligible. Then we
have:

(i) Πavss1 securely realizesFavss in the (FSecMsgDst,FBeacon,FReliableBroadcast,FOneSidedVote)-
hybrid model.

(ii) IfΠavss1 is instantiatedwith concrete protocols forFSecMsgDst ,FBeacon,FReliableBroadcast,
andFOneSidedVote that are secure (i.e., securely realize the corresponding function-
ality) and complete (i.e., satisfy the corresponding completeness property), then
the resulting concrete protocol

(a) securely realizes Favss, and
(b) satisfies the AVSS completeness property.

Proof. We start with statement (i) of the theorem. To that end, we need to show that
there is a simulator that interacts with Favss in the ideal world such that no environment
can effectively distinguish the ideal world from the hybrid world.

Without loss of generality, we may assume that in the hybrid world, the adversary is
a “dummy” adversary that essentially acts as a “router” between the environment and
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the hybrid functionalities. In addition, in the ideal world, our simulator is actually in
charge of implementing the hybrid functionalities. In particular, in the ideal world, any
messages sent from (resp., to) the adversary to (resp., from) these hybrid functionalities
are actually sent directly to (resp., from) our simulator—this including the inputs (resp.,
outputs) of corrupt parties.

If the dealer is honest, the proof reduces to showing that the values {h(r)}r∈[R] and
{w(r)

j }r∈[R] for j ∈ C do not leak any extra information. This is a standard argument,

based on the randomness supplied by the “blinding” polynomials {g(r)}r∈[R]. In more
detail, the ideal functionality Favss gives the simulator the values v�, j for � ∈ [L] and
j ∈ C. For r ∈ [R], the simulator then chooses h(r) ∈ B[x]<d at random, and then
computes

w
(r)
j ← h(r)(e j ) −

∑
�∈[L]

θ
(r)
� · v�, j (for j ∈ C).

Note that the simulator can also generate the random beacon values θ
(r)
� in advance of

this computation.
The more interesting case is that when the dealer is corrupt. The crux of the proof in this

case is showing that by the first point in time at which any honest party outputs its shares,
the simulator can effectively extract corresponding polynomials f1, . . . , fL ∈ F[x]<d .
The proof is similar to the analysis in [22]. The main difference is that our protocol may
terminate successfully if any subset of n − 2t honest parties is happy, and this subset
may be determined after the random beacon is revealed. A simple way to deal with this
is to apply the union bound to the collection of all subsets of parties, which is where the
factor 2n in the theorem statement comes from.

In more detail, consider the inputs (m1, . . . ,mn) to FSecMesDst, where each m j is
either ⊥ or of the form

m j = ( {v�, j }�∈[L], {w(r)
j }r∈[R]

)
, (1)

and which must be submitted toFSecMsgDst and hence to our simulator, before the random
beacon is revealed. (Here, we are essentially using the input extractability property of
the secure message distribution protocol.) We will generally ignore indices j such that
m j = ⊥.

Consider the later point in time at which some any party first enters the output stage.
At this point in time, we can define P∗ to be the set of indices j ∈ [n] for which Pj

is happy, as determined by the input m j , the random beacon value, and the “response”
polynomials h(r). This set includes all parties, including honest parties Pj that have not
computed happy j , as well as corrupt parties. By the correctness property of the one-sided
voting protocol, we have |P∗ ∩ H| ≥ n − 2t ≥ d.

For each � ∈ [L], the simulator extracts D’s input polynomial f� as the unique
polynomial of degree less than |P∗| that interpolates through the points {(e j , v�, j )} j∈P∗ .
The simulation fails iff any of these polynomials has degree ≥ d. Indeed, if any of these
polynomials has degree ≥ d, then the simulation obviously fails. Conversely, if all of
these polynomials have degree < d, then one sees that the complaint mechanism works
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correctly: the honest parties hold enough good shares to reconstruct the polynomials by
themselves (since |P∗ ∩ H| ≥ d); moreover, the corrupt parties cannot contribute bad
shares during this process (which is why we include corrupt parties in the definition of
P∗).

We want to bound the probability that the simulation fails. To this end, let us first
make some definitions. Consider any fixed inputs (m1, . . . ,mn) to FSecMsgDst, where
each m j = ⊥ or is of the form (1). Consider any set P ⊆ [n] with n′:=|P| ≥ d and
m j �= ⊥ for all j ∈ P . We say P is d-consistent if for each � ∈ [L], the points
{(e j , v�, j )} j∈P lie on a polynomial over A of degree less than d. Consider any fixed

element {θ(r)
� }r∈[R],�∈[L] of the output space Ω of the random beacon. We say P is

d-consistent modulo {θ(r)
� }r∈[R],�∈[L] if for each r ∈ [R], the points

⎧
⎨
⎩

⎛
⎝ e j , w

(r)
j +

∑
�∈[L]

θ
(r)
� · v�, j

⎞
⎠

⎫
⎬
⎭

j∈P

lie on a polynomial over B of degree less than d.
Claim If P is not d-consistent, then the probability that it is d-consistent modulo a

randomly chosen element of Ω is at most χ(A, B,Θ)R .
To prove the claim, we consider the (n′, d)-Reed-Solomon code over A with respect to

the evaluation coordinates {e j } j∈P , and the corresponding check matrixC ∈ A
n′×(n′−d).

We also consider the corresponding “extended” (n′, d)-Reed-Solomon code over the
extension ring B, which has the same check matrix C as our original code (since the
evaluation coordinates lie in A).

Now suppose P is not d-consistent. For � ∈ [L], define the vector

v�:={v�, j } j∈P ∈ A
n′

.

The assumption that P is not d-consistent means that for some �∗ ∈ [L], the vector v�∗
is not a codeword, which means v�∗ · C �= 0. So if we define the matrix Q ∈ A

L×n′

whose �-th row is v� for � ∈ [L], then Q · C ∈ A
L×(n′−d) is nonzero matrix.

Now suppose P is d-consistent modulo {θ(r)
� }r∈[R],�∈[L]. For each r ∈ [R], define

w(r):={w(r)
j } j∈P ∈ B

n′
and θ (r):=(θ

(r)
1 , . . . , θ

(r)
L ) ∈ Θ

so that

w(r) + θ (r) · Q

lies in the extended Reed-Solomon code, which implies

w(r) · C + θ (r) · Q · C = 0. (2)
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Since Q · C is a nonzero matrix, we can choose one nonzero column of Q · C , and (2)
implies that for some fixed b ∈ B and fixed, nonzero a ∈ A

L , we have

b + 〈a, θ (r)〉 = 0. (3)

So for each r ∈ [R], if we choose θ (r) ∈ Θ at random, equation (3) holds with
probability at most χ(A, B,Θ), and repeating this R times gives the desired probability
and proves the claim.

We now return to the task of bounding the probability that the simulation fails. If the
simulation fails, this implies that P∗ is not d-consistent yet is d-consistent modulo the
output of the random beacon. Now, even though the inputs to FSecMsgDst are chosen
before the random beacon is revealed, the subset P∗ is chosen by the adversary after
the random beacon is revealed. Nevertheless, for the simulation to fail, the following
event must occur: the adversary submits inputs to FSecMsgDst such that there exists a
subset P ⊆ [n] of the required form that is not d-consistent but ends up being d-
consistent modulo the output of the random beacon. As there are at most 2n choices
for P , by the union bound, the probability that the simulation fails is therefore at most
2n · χ(A, B,Θ)R .

That proves statement (i) of the theorem. Statement (ii)(a) is a direct consequence
of statement (i) and the UC composition theorem. Statement (ii)(b) easily follows from
the security and completeness properties of the concrete subprotocols, and the logic of
Πavss1, along the lines discussed in Sect. 5.1.1. �

Note that we obtain a somewhat better failure bound when we use Θ = ΘE
lin.

However, in this instantiation, our random beacon has to output very long vectors
(θ1, . . . , θL) ∈ E L . As discussed in Sect. 3.1.2, this could be avoided by using a random
beacon that outputs a short seed that is then stretched using a cryptographic pseudo-
random generator G. This implementation will indeed be secure if we model G as a
random oracle. However, we cannot justify the security of this implementation if we
simply assume that G is a pseudorandom generator. As discussed in Sect. 3.1.2, to do
this, it would suffice that the failure event in Theorem 5.1 can be efficiently detected as a
function of the output of G and data that are available to the adversary prior to revealing
the beacon. Unfortunately, this event is a union over an exponentially large set of events,
and so is not efficiently detectable.

Note that the factor 2n in the failure bound in Theorem 5.1 does not arise in the analysis
of the corresponding protocol in [22]. For modest sized n, this should be acceptable,
using a larger extension B, or larger value of R, as necessary. Of course, using a larger
B or R can impact communication complexity. This is discussed in detail below in
Sect. 5.3. However, in some important applications, A is a field of size ≈ 2256, and so
for n ≤ 128, we already get nearly 128-bit security with B = A and R = 1.
An example.Here is a simple example that shows why an exponential factor in the failure
probability in Theorem 5.1 seems hard to avoid. This example gives a specific, efficient
adversary and specific protocol parameters such that the adversary breaks the security
of the protocol with probability 2Ω(n) · χ(A, B,Θ)R .

Let n = 3t + 1, d = t + 1, L = 1, R = 1, B = A, and Θ = Θpow. The corrupt dealer
starts the protocol by distributing shares of g:=xt+2 + xt+1 and f :=xt+2 (which play
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the roles of g(1) and f1, respectively, in the protocol). Now consider any set P ⊆ [n] of
size t + 2, and define

g(P):=g mod
∏
j∈P

(x − e j )

and

f (P):= f mod
∏
j∈P

(x − e j ).

Then we have

g(P) = (1 + T (P)) · xt+1 + lower order terms

and

f (P) = T (P) · xt+1 + lower order terms,

where

T (P):= −
∑
j∈P

ei .

For a given challenge θ , the adversary will break the protocol if it can find a subset
P ⊆ H of size t + 2 such that

(1 + T (P)) + θ · T (P) = 0,

or in other words

T (P) = −1/(1 + θ).

Indeed, in this case, the adversary can compute a response polynomial that makes the
parties in P happy, even though their shares do not lie on a polynomial of degree at most
t . Moreover, the t corrupt parties, together with the parties in P , can force the one-sided
voting protocol to succeed, so all honest parties enter the output stage. To obtain an
efficient attack that succeeds with probability at least 2Ω(n)/|B|, it suffices that the map
P �→ T (P) is (nearly) one-to-one and easy to invert. For example, if |A| > 2n and the
evaluation coordinates are 1, 2, . . . , 2n−1, then this is the case.

5.3. Communication Complexity

We now consider the communication complexity of Πavss1. Here, the communication
complexity of a protocol is defined to be the sum of the length of all messages sent by
honest parties (to either honest or corrupt parties) over the point-to-point channels.
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We make a distinction between the “happy path” and the “unhappy path”. To enter
the “unhappy path”, a corrupt party must provably misbehave. In our protocol, this
corresponds to the situation where a party complains against a corrupt dealer. If this
happens, all honest parties will learn of this and can take action: in the short term, the
honest parties can safely ignore this party, and in the longer term, the corrupt party can
be removed from the network. Also, such provable misbehavior could lead to legal or
financial jeopardy for the corrupt party, and this in itself may be enough to discourage
such behavior. Note that the “happy path” includes corrupt behavior, including collusion
among the corrupt parties, as well as behavior that is clearly corrupt as observed by an
individual honest party, but that cannot be used as reliable evidence to convince other
honest parties or an external authority of corrupt behavior.

For these reasons, we believe it makes sense to make a distinction between the com-
plexity of the protocol on the “happy path” versus the “unhappy path”.

We also make a couple of simplifying assumptions. Namely, we assume that B = A

and that Θ = ΘE
lin, where E is an exceptional set of maximal size. In this case, the failure

bound in Theorem 5.1 becomes 2n/|E |R . We will want to set R so that this bound is
negligible. This is discussed below.

5.3.1. The Happy Path

Each message m j input into the FSecMsgDst has size

O ((L + R) · log|A|) .

Our protocol ΠSecMsgDst for secure message distribution from Sect. 4 has communication
complexity O(|m| + λ · n2 · log n), and so its contribution to the total communication
complexity is

O
(
n · (L + R) · log|A| + λ · n2 · log n

)
.

The message input to FReliableBroadcast is of size O(n · R · log|A|). Using protocol
ΠCompactBroadcast from Sect. 3.2.2, this contributes

O
(
n2 · R · log|A| + λ · n2 · log n

)

to the overall communication complexity. We may implement FOneSidedVote as in
Sect. 3.2.5, which contributes O(n2) to the communication complexity. We shall ig-
nore for now the communication complexity of the random beacon. Thus, the total
communication complexity, ignoring the random beacon, is

O
(
n · (L + nR) · log|A| + λ · n2 · log n

)
. (4)

If we want σ bits of security, we should select R as

R =
⌈ σ + n

log2|E |
⌉
. (5)
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With this setting of R, our communication complexity bound (4) becomes

O

(
n · L · log|A| + n2 · (σ + n) · log|A|

log|E | + λ · n2 · log n

)
. (6)

5.3.2. Finite Field Case

Suppose A is a field extension of degree δ over the finite field S = Fq . In this case,
E = A and |A| = |S|δ; therefore, (6) simplifies to

O
(
n · L · δ · log|S| + n3 + n2 · σ + λ · n2 · log n

)
,

and if max{n, σ } ≤ λ, this simplifies even further to

O
(
n · L · δ · log|S| + λ · n2 · log n

)
.

While we have ignored the communication complexity of the random beacon, we may
assume it is bounded by a polynomial in n and λ (which, in practice, is typically O(n2λ)).
Therefore, for sufficiently large L (polynomial in n, σ , and λ) the amortized communi-
cation complexity per sharing is

O(n · δ · log|S|).

Suppose that our AVSS protocol is used in an application where the secrets lie in the
field S = Fq , where q ≤ n. In this case, as discussed in Sect. 2.4, we will have to run
our protocol over a field A of degree δ over S, where δ = �logq(n + 1)�. In this case,
the amortized communication complexity per sharing is

O(n · logq n · log|S|),

which is

O(n · log n).

5.3.3. Galois Ring Case

Suppose A is a Galois ring of degree δ over the ring S = Z/(pk). In this case, |A| =
|S|δ = pk·δ but |E | = pδ , and (6) simplifies to

O
(
n · L · δ · log|S| + n2 · (σ + n) · k + λ · n2 · log n

)
.

Therefore, for sufficiently large L (polynomial in n, σ , λ, and k) the amortized commu-
nication complexity per sharing is

O(n · δ · log|S|).
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Suppose that our AVSS protocol is used in an application where the secrets lie in the
ring S = Z/(pk), where p ≤ n. In this case, as discussed in Sect. 2.4, we will have to
run our protocol over a Galois ring A of degree δ over S, where δ = �logp(n + 1)�. In
this case, the amortized communication complexity per sharing is

O(n · logp n · log|S|),

which is

O(n · log n · k).

5.3.4. The Unhappy Path

For the “unhappy path”, the communication complexity of the secure message distribu-
tion protocol may blow up by a factor of n. So in this case, the bound (4) becomes

O
(
n2 · (L + R) · log|A| + λ · n3 · log n

)
,

and choosing R as in (5), the bound (6) becomes

O

(
n2 · L · log|A| + n2 · (σ + n) · log|A|

log|E | + λ · n3 · log n

)
.

Thus, all of our estimates above for amortized communication complexity per sharing
get blown up by a factor of n.

5.3.5. Message Complexity

The message complexity of Πavss1 on both the “happy path” and the “unhappy path”,
not including the random beacon, is O(n2). Here, the message complexity of a protocol
is defined to be the total number of messages sent by honest parties (to either honest or
corrupt parties) over the point-to-point channels. In practice, the message complexity of
the random beacon is typically also O(n2).

6. Restricting the Secrets to a Subring

We assume here that a secret is encoded, as usual, as the constant term of a polynomial.
As discussed in Sect. 2.4, our AVSS protocol may be used in an application where the
secrets lie in a ring S that does not contain the appropriate evaluation coordinates, and
we are forced to run our AVSS protocol in an extension ring A that does contain such
coordinates. In this section, we give an AVSS protocol that enforces the restriction that
the shared secret in fact lies in S. Our protocol works when S and A are Galois rings,
and does secret sharing over a related ring A

′. Our AVSS protocol that enforces this
restriction makes use of a subprotocol for secret sharing over A

′. Our technique for
ensuring inputs lie in S makes use of the checking technique of extending the p-adic
precision one works with, which was first introduced in [15].
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6.1. Auxiliary Rings

We begin by describing the relationship between the various rings involved. Let G(z) ∈
Z[z] be a monic polynomial of degree ε ≥ 1. Let F(y, z) ∈ Z[y, z] be a bivariate
polynomial of the form

F(y, z) = F0(z) + F1(z) · y + · · · + Fδ−1(z) · yδ−1 + yδ,

where δ ≥ 1. For each m ≥ 1, define the rings

S
(m):=Z[z]/(pm,G(z)) and A

(m):=Z[y, z]/(pm,G(z), F(y, z)).

We naturally view Z/(pm) ⊆ S
(m) ⊆ A

(m) as a tower of ring extensions, where S
(m)

has degree ε over Z/(pm) and A
(m) has degree δ over S

(m). Indeed, every element
of A

(m) can be expressed uniquely as the image of a polynomial in Z[y, z] of the form
A0(z)+A1(z)· y+· · ·+Aδ−1(z)· yδ−1, where for i = 0, . . . , δ−1, we have deg Ai < ε,
and each coefficient of Ai lies in the interval [0, pm). The ring S

(m) corresponds to the
subset of such polynomials of degree at most 0 in y. The ring Z/(pm) corresponds to
the subset of such polynomials of degree at most 0 in y and z.

We shall require that S
(1) and A

(1) are fields. This requirement ensures that S
(m) and

A
(m) are Galois rings. Note that for m′ ≥ m, there is a natural map from A

(m′) to A
(m),

and the restriction of this map to S
(m′) is the natural map from S

(m′) to S
(m). The units

in A
(m) are the elements whose images in A

(1) are nonzero (this follows from Hensel
lifting).

We fix a sequence polynomials E1, . . . , En ∈ Z[y, z] whose images in A
(1) form an

exceptional sequence. Note that for every m ≥ 1, the images of these polynomials in
A

(m) also form an exceptional sequence in A
(m).

Now fix an integer k ≥ 1 and define

S:=S
(k) and A:=A

(k).

Let e1, . . . , en ∈ A be the images of E1, . . . , En in A. Our ring of secrets will be S.
Our goal is to design a secret sharing protocol that can be used to share of a secret in S,
where the evaluation coordinates are e1, . . . , en , and so the shares lie in A even though
the secret lies in S. Such a protocol should provide all the usual guarantees of any secret
sharing protocol, but should also enforce the restriction that the shared secret is in S,
even if the dealer is corrupt.

To do this, we will actually perform a secret sharing over another ring. Fix an integer
k′ ≥ k and define

S
′:=S

(k′) and A
′:=A

(k′).

Let e′
1, . . . , e

′
n ∈ A

′ be the images of E1, . . . , En in A
′. Let φ be the natural map from

A
′ to A. Observe that S

′ is a subring of φ−1(S). The idea is that we will do the following
steps:
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1. Perform a sharing of a secret in S
′ with shares in A

′, with respect to the evaluation
coordinates e′

1, . . . , e
′
n .

2. Perform a probabilistic check that ensures that the secret lies in φ−1(S) with high
probability.

After this, each party can locally apply φ to its share to obtain a sharing of a secret in S

with shares in A, with respect to the evaluation coordinates e1, . . . , en .
On the one hand, if the dealer is honest, in order to protect the privacy of the dealer’s

secret, it is essential that their secret s′ lies in S
′. Of course, an honest dealer should

really be starting out with a secret in s ∈ S and then choose s′ ∈ S
′ as some (arbitrary)

preimage of s under φ. On the other hand, if the dealer is corrupt, the protocol does not
enforce the constraint that the dealer’s secret lies in S

′, but only that it lies in φ−1(S). In
either case, after each party locally applies φ to its share, we end up with a sharing of a
secret in S.

6.2. Two Special Cases

We briefly sketch how the above general setting includes two important special cases.

S is a non-prime finite field This corresponds to the setting where k = 1 and ε > 1.
In this case, S = Z[z]/(p,G(z)) is a finite field of cardinality q = pε , and A =
Z[y, z]/(p,G(z), F(y, z)) is an extension field of degree over δ over Fq (and so
has qδ = pε·δ elements). We also have corresponding rings S

′ = Z[z]/(pk′
,G(z))

and A
′ = Z [y, z]/(pk′

,G(z), F(y, z)). Note that even though S and A are fields,
S

′ and A
′ will not be (assuming k′ > 1).

S is of the form Z/(pk): This corresponds to setting G(z):=z, and using a polyno-
mial of the form F(y) ∈ Z[y] in the role of F(y, z). Then S = Z/(pk) and
A = Z[y]/(pk, F(y)). We also have corresponding rings S

′ = Z/(pk
′
) and

A
′ = Z[y]/(pk′

, F(y)).

6.3. The Protocol

The basic idea is this. The dealer has polynomials f1, . . . , fL ∈ A
′[x]<d , where for each

� ∈ [L], the corresponding secret is the constant term f�(0), which lies in S
′. The dealer

chooses a random “blinding” polynomial g ∈ A
′[x]<d also with g(0) ∈ S

′, and then
runs an AVSS protocol on the polynomials f1, . . . , fL , g. After this, a random beacon
is used to generate a random “challenge”

γ :=(γ1, . . . , γL) ∈ (Z/(pk
′
))L .

The dealer then computes the “response” polynomial

h ← g +
∑
�∈[L]

γ� · f�, (7)

which is also a polynomial in A
′[x]<d with h(0) ∈ S

′, and reliably broadcasts h. After
receiving the polynomial h and verifying that it is of the correct form (i.e., of the right
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Fig. 12. AVSS protocol for a dealer to provably enter values in φ−1(S).

degree and with constant term in S
′), each party Pj verifies that h is locally correct based

on its shares by checking that (7) holds at the evaluation coordinate e′
j . The parties then

run a trivial voting protocol that will ensure that they only output their shares if at least
n − 2t ≥ d parties have successfully performed this local check. This ensures that (7)
holds. We then argue that if f�∗(0) /∈ φ−1(S) for some �∗ ∈ [L], then the probability
that h(0) ∈ S

′ for randomly chosen γ is at most pk−k′−1. This implies that except with
probability pk−k′−1, we can be sure that the secret f�(0) lies in φ−1(S) all � ∈ [L].

Our protocol, which we call Πravss1, is presented in Fig. 12. It makes use of a repetition
parameter R, so that the above probabilistic check is actually performed R times. It makes
use of an (n, d, L + R)-AVSS subprotocol over A

′ with respect to (e′
1, . . . , e

′
n). In the

description of Πravss1, we invoke this as an ideal functionality Favss. Protocol Πravss1
also makes use of

– A random beacon whose output space is defined to be

{ {
γ

(r)
�

}
�∈[L],r∈[R] γ

(r)
� ∈ Z/(pk

′
)
}
,

which is invoked as an ideal functionality FBeacon;
– A reliable broadcast subprotocol, which is invoked as an ideal functionality
FReliableBroadcast.

As we shall argue below, when the protocol produces an output, the shared secrets must
lie in φ−1(S) (with high probability). As mentioned above, each party can then locally
apply φ to its shares to obtain sharings of secrets in S.

6.4. Security Analysis

To analyze the security of Πravss1 (Fig. 13), we begin with the following simple lemma.
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Fig. 13. The restricted AVSS ideal functionality (parameterized by n, d, L , R, D, p, k, k′, F , G, (E1, . . . , En),
which define S, A, S

′, A
′, φ, and e′1, . . . , e′n ).

Lemma 6.1. Let p be a prime and let s be a positive integer. Let a1, . . . , aL be integers,
not all zero mod ps. Let r be the largest positive integer such that pr divides a� for
� ∈ [L], so that r < s. Let b be an arbitrary integer. Let N be the number of integers
x1, . . . , xL in the range [0, ps) that satisfy

a1 · x1 + · · · aL · xL + b ≡ 0 (mod ps). (8)

Then N/pL·s ≤ pr−s .

Proof. Without loss of generality, assume that pr | a1 but pr+1
� a1. We may assume

pr | b, as otherwise (8) has no solutions. In this case, (8) holds iff

(a1/p
r ) · x1 + · · · (aL/pr ) · xL + (b/pr ) ≡ 0 (mod ps−r ).

Moreover, since a1/pr is not divisible by p, for every choice of x2, . . . , xL , there is
a unique choice of x1 mod ps−r , and so pr choices for x1 in the interval [0, ps). The
lemma follows. �

This lemma says that if x1, . . . , xL are randomly chosen from the interval [0, ps),
then the probability that (8) holds is at most pr−s .

Theorem 6.1. (Security of Πravss1) Assume p(k−k′−1)·R is negligible. Then we have:

(i) Πravss1 securely realizes Fravss in the (Favss,FBeacon,FReliableBroadcast)-hybrid
model.

(ii) If Πravss1 is instantiated with concrete protocols for Favss, FBeacon, and
FReliableBroadcast that are secure (i.e., securely realize the corresponding function-
ality) and complete (i.e., satisfy the corresponding completeness property), then
the resulting concrete protocol

(a) securely realizes Fravss, and
(b) satisfies the AVSS completeness property.
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Proof. We start with statement (i) of the theorem. To that end, we need to show that
there is a simulator that interacts with Fravss in the ideal world such that no environment
can effectively distinguish the ideal world from the hybrid world.

If the dealer is honest, the proof reduces to showing that the values h(r) and w
(r)
j for

j ∈ C and r ∈ [R] do not leak any extra information. This is a standard argument, based
on the “random padding” supplied by the polynomials g(r). In more detail, the ideal
functionality Fravss gives the simulator the values v�, j for � ∈ [L] and j ∈ C. For each
r ∈ [r ], the simulator then chooses h(r) ∈ A

′[x]<d with constant term in S
′ at random

and then computes

w
(r)
j ← h(r)(e′

j ) −
∑
�∈[L]

γ
(r)
� · v�, j (for j ∈ C).

Note that the simulator can also generate the random beacon values γ
(r)
� in advance of

this computation.
Now consider case is that when the dealer is corrupt. The dealer must submit polyno-

mials { f�}�∈[L] and {g(r)}r∈[R] of degree less than d to Favss before the random beacon
values γ

(r)
� are revealed. Let s� denote the constant term of f� for � ∈ [L] and let s(r)

denote the constant term of g(r) for r ∈ [R]. If and when an honest party produces an
output, the simulator needs to submit { f�}�∈[L] to the ideal functionality Fravss, and so
the simulation will fail if some s� is not in φ−1(S). To bound the probability that this
simulation fails, suppose that s�∗ /∈ φ−1(S) for some particular �∗ ∈ [L]. To finish the
proof of the theorem, it will suffice to show that for randomly chosen {γ (r)

� }�∈[L],r∈[R]
the probability that any honest party ever produces an output is at most p(k−k′−1)·R .

Suppose that some honest party produces an output. The honest party that produced
an output received n − t “vote” messages, which means that at least n − 2t ≥ d honest
parties performed their local checks and these checks passed. This implies that each h(r)

has the correct form (is of degree less than d with constant term in S
′), and that

h(r) = g(r) +
∑
�∈[L]

γ
(r)
� · f� (for all r ∈ [R]). (9)

This implies that
s(r) +

∑
�∈[L]

γ
(r)
� · s� ∈ S

′ (for all r ∈ [R]). (10)

So it suffices to show that (10) holds with probability at most p(k−k′−1)·R .
For � ∈ [L], we can express s� uniquely as the image in A

′ of a polynomial in Z[y, z]
of the form

δ−1∑
i=0

ε−1∑
j=0

ai, j,� · yi · z j ,

where each ai, j,� is an integer in the range [0, pk
′
). The assumption that s�∗ /∈ φ−1(S)

means that for some i∗ ≥ 1 and j∗ ≥ 0, we have ai∗, j∗,�∗ �≡ 0 (mod pk). For r ∈ [R],
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we can similar express s(r) uniquely as the image in A
′ of a polynomial in Z[y, z] of the

form

δ−1∑
i=0

ε−1∑
j=0

bi, j · yi · z j ,

For � ∈ [L] and r ∈ [R], we can view each γ
(r)
� as the image in Z/(pk

′
) of a randomly

chosen integer x (r)
� in the range [0, pk

′
). But then by (10), we must have

bi∗, j∗ +
∑
�∈[L]

ai∗, j∗,� · x (r)
� ≡ 0 (mod pk

′
) (for all r ∈ [R]). (11)

But by Lemma 6.1, the congruence (11) holds with probability at most p(k−k′−1)·R .
That proves statement (i) of the theorem. Statement (ii)(a) is a direct consequence of

statement (i) and the UC composition theorem. Statement (ii)(b) follows fairly easily
from the security and completeness properties of the concrete subprotocols, and the logic
of Πravss1. The argument in the case where the dealer is honest is entirely straightforward.
The argument in the case where the dealer is corrupt hinges on the following observation.
In the hybrid version of Πravvs1, as we argued above, if one honest party produces an
output, then at least n − 2t ≥ d honest parties must have performed their local checks
and these checks passed, and this implies that each h(r) has the correct form and (9)
must hold. This means that when any honest party performs its local check, that check
will pass and it will broadcast a “vote” message. Since this property always holds in the
hybrid version of Πravvs1, it must hold with overwhelming probability in the concrete
version of Πravvs1 as well. Therefore, in the concrete version of Πravvs1, if one honest
party produces an output, then with overwhelming probability, all parties will eventually
do so. �

After the proof of Theorem 5.1, we remarked that in some instantiations, we cannot
justify the use of a random beacon that generates a short seed that is then stretched using
a pseudorandom generator (as discussed in Sect. 3.1.2). That limitation does not apply
here. Indeed, as discussed in Sect. 3.1.2, to do this, it suffices that the failure event in
Theorem 6.1 can be efficiently detected as a function of the output of G and data that
are available to the adversary prior to revealing the beacon. The reader can verify that
this is the case.

Note that the completeness argument at the end of the above proof would have been
simpler if instead of the trivial one-round voting protocol, we used the one-sided voting
protocol ΠOneSidedVote, which has two rounds. Note also that if we instantiate Favss with
our protocol Πavss1, which already performs a one-sided vote, the resulting protocol
could be optimized by combining these two voting steps into just a single one-sided
vote.
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6.5. Communication Complexity

We calculate the communication complexity of this protocol. We assume the AVSS
protocol in Sect. 5 protocol is used for sharing over A

′ and we consider the amortized
complexity on the “happy path”—but we could use any AVSS protocol that achieves
linear amortized communication complexity of the “happy path”. In this setting, the
communication complexity (amortized, “happy path”) is

O(n · log|A′|).

The settings of the parameters R and k′ affect both the communication complexity and
the failure bound.

6.5.1. Setting k′:=k

At one extreme, we could set k′:=k. In this case, to achieve σ bits of security, we need
to set the repetition parameter R:=�σ · logp 2�. The main advantage of this parameter
setting is that A

′ = A, and the amortized communication complexity remains the same
as in Sect. 5.3. The main disadvantage of this setting is that the amortized computational
complexity blows up by a factor of R.

6.5.2. Setting R:=1

At another extreme, we could set R:=1. In this case, to achieve σ bits of security, we
need to set k′:=k − 1 + �σ · logp 2�. Assuming S has degree ε over Z/(pk) and A has
degree δ over S the complexity (amortized, “happy path”) is

O(n · δ · (log|S| + ε · σ)).

Finite Field Case. Suppose A is a field extension of degree δ over the finite field
S = Fq , where q = pε , δ = O(logq n), and k = 1. Then the communication complexity
(amortized, “happy path”) is

O(n · logq n · (log|S| + ε · σ)),

which is

O(n · log n · (1 + σ/ log p)).

Galois Ring Case. Suppose S = Z/(pk) and A is of degree δ = O(logp n) over S, so
ε = 1. Then the communication complexity (amortized, “happy path”) is

O(n · logp n · (log|S| + σ)),

which is

O(n · log n · (k + σ/ log p)).
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As a special case, suppose p = 2 and k is large enough so that 2−k is negligible.
Then by setting k′:=2k, we obtain k + 1 bits of security, while both the amortized
communication and computational complexity increase by just a small constant factor
over the basic AVSS protocol.

7. Random Oracle Implementations

In this section, we present a variant of our new AVSS protocol Πavss1 (from Sect. 5), as
well a variant of the AVSS protocol Πravss1 (from Sect. 6, which restricts the dealer’s
secrets). These variants do not need a random beacon; rather, they require that we model
a hash function as a random oracle in the security analysis. Besides eliminating the need
for a random beacon subprotocol, these variants require significantly fewer rounds of
communication.

7.1. A Random Oracle Version of Πavss1

At a very high level, protocol Πavss1 in Sect. 5 is based on the classical commit–
challenge–response paradigm, which we can view as an interactive game between the
dealer and a challenger:

1. The dealer sends a vector of messages m = (m1, . . . ,mn) to the challenger.
2. The challenger generates a random challenge ω ∈ Ω and sends this to the dealer.
3. The dealer responds with a message m′.

In Πavss1:

– the messages m1, . . . ,mn encode the shares of the dealer’s input polynomials,
which are distributed using a secure message distribution subprotocol,

– the challenge is generated using a distributed random beacon subprotocol, and
– the response m′ encodes the dealer’s “response” polynomials, which are broadcast

using a reliable broadcast subprotocol.

The main idea is to replace the distributed random beacon subprotocol by a hash
function that is modeled as a random oracle. This way, the dealer can interact exclusively
with the random oracle to generate a 3-move “conversation”, consisting of (m, ω,m′),
and then disseminate this conversation to all parties in a way that satisfies the privacy,
correctness, and completeness properties of secure message distribution and reliable
broadcast, and that includes support for the “forwarding mechanism” of secure message
distribution.

7.1.1. A Subprotocol for Disseminating 3-Move Conversations

We show how to carry out this idea by sketching a protocol we call ΠDst3move.
The dealer will first build a Merkle tree as shown in Fig. 14. It uses the same Merkle

tree structure, rooted at r , used in our secure message distribution protocol ΠSecMsgDst
in Sect. 4.3 to encrypt and encode m = (m1, . . . ,mn), and the same Merkle tree struc-
ture, rooted at r ′, used in the compact reliable broadcast protocol ΠCompactBroadcast in
Sect. 3.2.2 to encode m′. In addition, the dealer creates a new Merkle tree with root r̂ ′
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Fig. 14. Merkle tree structure for a 3-move conversation.

whose children are r and r ′. We assume that the hash that outputs the root r also outputs
the challenge ω.

We assume that all hash functions queries are properly domain separated, meaning
that we always include an input to the hash that identifies the individual instance of the
protocol, including the identity of the dealer. We also assume that for a given protocol
instance, different uses of the hash function are further domain separated. In particular,
we assume that the hashes used to

– derive (r, ω),
– derive r̂ ′,
– compute H in ΠSecMsgDst, and
– create all other nodes of Merkle trees,

are domain separated from each other. This domain separation greatly simplifies the
analysis in the random oracle model.

Next, the dealer initiates a subprotocol to distribute eachm j to each Pj as in ΠSecMsgDst
and broadcast m′ to all parties as in ΠCompactBroadcast. This subprotocol has the same
send-echo-vote structure as in each of these protocols. However, in this subprotocol, all
echoing/voting is done on the “global” root r̂ ′ of the entire structure, so that just one
round of send-echo-vote suffices to distribute the m j ’s and to broadcast m′. In particular,
the message sent by the dealer to a party Pj will include r̂ ′, r , and r ′, as well as

– ri and the j th validated path in the Merkle tree rooted at ri for all i ∈ [n], and
– the j th validated path in the Merkle tree rooted at r ′.

In response, each party sends echo messages, where each echo message contains the
root r̂ ′, along with

– the validated path starting at r it would normally send in ΠSecMsgDst, and
– the validated path starting at r ′ it would normally send in ΠCompactBroadcast.

The forwarding mechanism is implemented in precisely the same way as in ΠSecMsgDst.
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Note that in this construction, the dealer explicitly includes the hash values r and r̂ ′
in the send messages, and the receiver verifies that these are consistent with r1, . . . , rn
and r ′, rather than just computing r and r̂ ′. This simplifies the analysis in the random
oracle model, as we can assume that when the dealer is corrupt, it must have already
invoked the random oracle to obtain r and r̂ ′ explicitly before sending to an honest party
(as otherwise that party will almost surely ignore the message).

In order to analyze the security of ΠDst3move, we rely on the fact that for a corrupt
dealer, we have the following extractability property: by observing the random oracle
queries of the adversary, a simulator can effectively determine the committed input
m = (m1, . . . ,mn) before the random challenge ω is generated—note that some of
the m j ’s may be ⊥ if the adversary has not made the necessary random oracle queries.
We also rely on the fact that for an honest dealer, we have the following equivocability
property: a simulator is free to program the random oracle (the one that outputs the
random challenge) so that it outputs a given random challenge ω. To justify this, we
have to ensure that the input to this hash has high entropy and so that adversary is
unlikely to have queried the random oracle previously at this point; however, this will be
the case, since in the protocol, the input to this hash query (the one that outputs (r, ω))
is ultimately derived from the outputs of the H hash function in ΠSecMsgDst, and these
outputs are essentially random.

We also observe that an adversary can carry out a “grinding” attack. Indeed, an ad-
versary can effectively:

– try many different message vectors, where for each such message vector m, it
builds a Merkle tree and derives the corresponding challenge ω, creating a partial
conversation (m, ω),

– pick one such partial conversation (m, ω) that it likes,
– extend (m, ω)with a messagem′ of its choice to obtain a full conversation (m, ω,m′),

and finally
– disseminate the full conversation (m, ω,m′) to all parties.

We can characterize the security of protocol ΠDst3move in terms of an ideal func-
tionality FDst3move. To this functionality, the dealer submits a message vector m =
(m1, . . . ,mn) and obtains a random challengeω, creating the partial conversation (m, ω).
After this, the dealer submits a message m′, creating the full conversation (m, ω,m′).
This full conversation is then disseminated to all parties following the semantics of
FSecMsgDst and FReliableBroadcast—in particular, for an honest dealer, the only informa-
tion leaked to the ideal-world adversary is the challenge ω, the final message m′, and
(implicitly) the messages m j belonging to corrupt parties Pj .

To model the above “grinding” attack, the functionality also allows a corrupt dealer
to repeatedly submit a message vector m, obtaining a challenge ω and creating the
partial conversation (m, ω). We call one such operation a grind on FDst5move. At some
point, the corrupt dealer may choose a partial extended conversation (m, ω) and submit
a message m′, creating the full conversation (m, ω,m′), which is then disseminated to
all parties following the semantics of FSecMsgDst and FReliableBroadcast.

We leave it to the reader to verify thatΠDst3move securely realizes the ideal functionality
FDst3move. Moreover, in the security reduction, the number of grinds on FDst3move made
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by the simulator is bounded by the number of random oracle queries made by the real-
world adversary.

We also leave it to the reader to verify that ΠDst3move enjoys completeness properties
analogous to those of ΠSecMsgDst and ΠReliableBroadcast.

7.1.2. An AVSS Protocol

To build an AVSS protocol using ΠDst3move, we use ΠDst3move as a drop-in replacement
in Πavss1 for FSecMsgDst, FBeacon, and FReliableBroadcast. The only remaining steps of
Πavss1 are local computations and FOneSidedVote. The result is a protocol we denote by
Πavss2.

We leave it to the reader to verify the following. Notation is as in Theorem 5.1.

Theorem 7.1. (Security of Πavss2) Assume Q · 2n · χ(A, B,Θ)R is negligible, where
Q is the number of grinds on FDst3move. Then we have:

(i) Πavss2 securely realizes Favss in the (FDst3move,FOneSidedVote)-hybrid model.
(ii) If Πavss2 is instantiated with concrete protocols for FDst3move and FOneSidedVote,

that are secure (i.e., securely realize the corresponding functionality) and complete
(i.e., satisfy the corresponding completeness property), then the resulting concrete
protocol

(a) securely realizes Favss, and
(b) satisfies the AVSS completeness property.

The communication complexity of Πavss2 is essentially the same as that of Πavss1.
However, in terms of rounds of communication, Πavss2 is significantly better. Indeed (on
the happy path), if we instantiate Πavss2 with ΠDst3Move and ΠOneSidedVote, we see that it
needs 3 rounds for ΠDst3move and 2 rounds for ΠOneSidedVote, for a total of just 5 rounds.
In contrast, if we instantiate Πavss1 with ΠSecMsgDst, ΠCompactBroadcast, ΠOneSidedVote,
and any 1-round protocol that realizes FBeacon, we that it needs 3 rounds for ΠSecMsgDst,
1 round for the beacon, 3 rounds for ΠCompactBroadcast, and 2 rounds for ΠOneSidedVote,
for a total of 9 rounds.

We speculate that Πavss2 can be further optimized by folding the one-sided voting
subprotocol into ΠDst3Move in such a way that the total number of rounds is 4 rather than
5; however, we have not carried out the associated full design and analysis.

We also speculate that Πavss2 can be implemented in such a way that it is secure
against adaptive corruptions in the random oracle model. To achieve this, it should be
sufficient to use an equivocable symmetric encryption scheme as discussed in Sect. 4.3.
However, we have not carried out the associated full design and analysis.

7.2. A Random Oracle Version of Πravss1

Let us assume that we instantiate Favss in protocol Πravss1 with Πavss1. The resulting
protocol then has the following structure of a 5-move interactive game between the
dealer and a challenger:

1. The dealer sends a vector of messages m = (m1, . . . ,mn) to the challenger.
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Fig. 15. Merkle tree structure for 5-move conversation.

2. The challenger generates a random challenge ω ∈ Ω and sends this to the dealer.
3. The dealer sends a message m′ to the challenger.
4. The challenger generates a random challenge ω′ ∈ Ω ′ and sends this to the dealer.
5. The dealer responds with a message m′′.

Here, moves 1–3 are as in Πavss1, while moves 4 and 5 correspond to the challenge–
response phase of Πravss1. One might hope to reduce these 5 moves to just 3 moves, but
we do not see a way to do that. Indeed, as remarked in Sect. 5.1.1, a corrupt dealer only
commits to its input polynomials after move 3, and in order for the security proof of
Theorem 6.1 to go through, we cannot afford to reveal the challenge ω′ until that occurs.

As above in Sect. 7.1, the main idea is to replace the distributed random beacon sub-
protocols by hash functions that are modeled as random oracles—the dealer can interact
exclusively with the random oracle to generate a 5-move “conversation”, consisting of
(m, ω,m′, ω′′,m′′), and then disseminate this conversation to all parties. We sketch here
a protocol ΠDst5move that does exactly this.

The dealer will first build a Merkle tree as shown in Fig. 15. The structure is the same
as in Fig. 14, except that we have added a Merkle subtree, rooted at r ′′, with the same
structure as the compact reliable broadcast protocol ΠCompactBroadcast in Sect. 3.2.2 to
encode m′′, and a “global” root r̂ ′′ with r̂ ′ and r ′′ as children. We assume that the hash
that outputs the root r̂ ′ also outputs the challenge ω′. We also assume all hashes are
properly domain separated as discussed above Sect. 7.1, and in particular, the hashes
used to derive (r, ω), (r̂ ′, ω′), and r̂ ′′ are all domain separated from each other as well
as from other use cases.

Next, the dealer initiates a subprotocol to distribute eachm j to each Pj as inΠSecMsgDst,
broadcast m′ to all parties as in ΠCompactBroadcast, and broadcast m′′ to all parties as in
ΠCompactBroadcast. As above in Sect. 7.1, this subprotocol has a send-echo-vote structure,
and all echoing/voting is done on the “global” root r̂ ′′, so that just one round of send-
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echo-vote suffices to distribute the m j ’s and to broadcast m′,m′′. Analogously to what
we did in Sect. 7.1, the dealer explicitly includes the hash values r , r̂ ′, and r̂ ′′ in the send
messages

We can characterize the security of protocol ΠDst5move in terms of an ideal func-
tionality FDst5move. To this functionality, the dealer submits a message vector m =
(m1, . . . ,mn) and obtains a random challengeω, creating the partial conversation (m, ω).
After this, the dealer submits a message m′ and obtains a random challenge ω′, creating
the extended conversation (m, ω,m′, ω′). Finally, the dealer submits m′′, creating the
full conversation (m, ω,m′, ω′,m′′), which is then disseminated to all parties following
the semantics of FSecMsgDst and FReliableBroadcast.

To model a “grinding” attack, the functionality also allows a corrupt dealer to re-
peatedly submit a message vector m, obtaining a challenge ω and creating the par-
tial conversation (m, ω). The corrupt dealer may also repeatedly choose any such par-
tial (m, ω) conversation, submit a message m′, obtaining a challenge ω′ and creating
the extended conversation (m, ω,m′, ω′). We call either one of the above operations
a grind on FDst5move. At some point, the corrupt dealer may choose an extended
conversation (m, ω,m′, ω′) and submit a message m′′, creating the full conversation
(m, ω,m′, ω′,m′′), which is then disseminated to all parties following the semantics of
FSecMsgDst and FReliableBroadcast.

We leave it to the reader to verify thatΠDst5move securely realizes the ideal functionality
FDst5move. Moreover, in the security reduction, the number of grinds on FDst5move made
by the simulator is bounded by the number of random oracle queries made by the real-
world adversary.

We also leave it to the reader to verify that ΠDst5move enjoys completeness properties
analogous to those of ΠSecMsgDst and ΠReliableBroadcast.

We now sketch how to build a variant of Πravss1 protocol using ΠDst5move. First, recall
that we are assuming here that we instantiate Favss in Πravss1 with Πavss1. Next, observe
that both Πravss1 and the subprotocol Πavss1 use a voting step to express whether they
are happy with the information they have received. As noted after Theorem 6.1, we can
safely combine these two voting steps into a single one-sided vote. That is, each party
Pj receives (m j , ω,m′, ω′,m′′), and checks if (m j , ω,m′) is valid according to Πavss1,
and checks if (m̄ j , ω

′,m′′) is valid according to Πravss1 (here, m̄ j is the same as m j , but
with shares of blinding polynomials specific to Πavss1 filtered out). A single one-sided
vote (i.e., ΠOneSidedVote) can be used to attest that both of these checks pass. We then use
ΠDst5move to replace all steps other than local computations and this one-sided voting
step. The result is a protocol we denote by Πravss2.

We leave it to the reader to verify the following. Notation is as in Theorems 5.1 and
7.1, but where R is the repetition parameter for Πavss1 and R′ is the repetition parameter
for Πravss1:

Theorem 7.2. (Security of Πravss2) Assume Q · (
2n · χ(A, B,Θ)R + p(k−k′−1)·R′)

is
negligible, where Q is the number of grinds on FDst5move Then we have:

(i) Πravss2 securely realizes Fravss in the (FDst5move,FOneSidedVote)-hybrid model.
(ii) If Πravss2 is instantiated with concrete protocols for FDst5move and FOneSidedVote,

that are secure (i.e., securely realize the corresponding functionality) and complete



Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience Page 55 of 58 27

(i.e., satisfy the corresponding completeness property), then the resulting concrete
protocol

(a) securely realizes Fravss, and
(b) satisfies the AVSS completeness property.

The communication complexity of Πravss2 is essentially the same as that of Πravss1.
However, in terms of rounds of communication, Πravss2 is significantly better. Indeed
(on the happy path), it needs just 5 rounds of communication (the same as Πavss1). In
contrast, if we instantiate Πravss1 with ΠSecMsgDst, ΠCompactBroadcast, ΠOneSidedVote, and
any 1-round protocol that realizes FBeacon, we that it needs 3 rounds for ΠSecMsgDst in
Πavss1, 1 round for the beacon in Πavss1, 3 rounds for the ΠCompactBroadcast in Πavss1, 2
rounds for ΠOneSidedVote in Πavss1, 1 round for the beacon in Πravss1, 3 rounds for the
ΠCompactBroadcast in Πravss1, 1 round for the simplified one-sided vote in Πravss1, for a
total of 14 rounds.

Just as for Πavss2, we speculate that Πravss2 can be further optimized so that the total
number of rounds is 4 rather than 5. In addition, we also speculate that Πravss2 can be
implemented in such a way that it is secure against adaptive corruptions in the random
oracle model.
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