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Abstract. A hinting pseudorandom generator (PRG) is a potentially stronger variant
of PRG with a “deterministic” form of circular security with respect to the seed of the
PRG (Koppula and Waters, in: Boldyreva and Micciancio (eds) CRYPTO 2019, Part II,
volume 11693 of LNCS, pp 671-700, Springer, Heidelberg, 2019). Hinting PRGs enable
many cryptographic applications, most notably CCA-secure public-key encryption and
trapdoor functions. In this paper, we study cryptographic primitives with the hinting
property, yielding the following results:

• We present a novel and conceptually simpler approach for designing hinting PRGs from
certain decisional assumptions over cyclic groups or isogeny-based group actions, which
enables simpler security proofs as compared to the existing approaches for designing such
primitives. We also show that the same design approach yields a generic construction of
hinting PRGs from a simple cryptographic primitive with algebraic structure, namely a
key-homomorphic weak PRF.

• We introduce hinting pseudorandom functions (PRFs) and hinting weak PRFs, which are
natural extensions of the hinting property to PRFs and weak PRFs. We show how to realize
circular/KDM-secure symmetric-key encryption from any hinting weak PRF. We demon-
strate that our simple approach for building hinting PRGs can be extended to realize hinting
weak PRFs from the same set of decisional assumptions. We also show a generic construction
of hinting (weak) PRF from any hinting PRG with certain structural properties, thus yielding
the first constructions of symmetric-key encryption with full-fledged circular/KDM-security
from such hinting PRGs.

• We propose a stronger version of the hinting property, which we call the functional hinting
property, that guarantees security even in the presence of hints about functions of the se-
cret seed/key. We show how to instantiate functional hinting PRGs/weak PRFs for certain
(families of) functions by building upon our simple techniques for realizing plain hinting
PRGs/weak PRFs. We also demonstrate the applicability of a functional hinting weak PRF
with certain algebraic properties in realizing KDM-secure public-key encryption in a black-
box manner.

• We show the first black-box separation between hinting PRFs (and hence, hinting PRGs)
from public-key encryption using simple realizations of these primitives given only a random
oracle.
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1. Introduction

A pseudorandom generator (PRG) is one of the fundamental and widely studied cryp-
tographic primitives. Informally speaking, a PRG is an expanding function with the
security guarantee that the output of the PRG on a randomly chosen input (also called
the “seed”) is computationally indistinguishable from random. However, a plain PRG
does not provide any security guarantees if the adversary has some additional “hint”
with respect to the each bit of the seed.

A hinting PRG, introduced recently by Koppula and Waters in [28], is a (potentially)
stronger variant of PRG that provides security even given some hinting information about
each bit of the seed. This hinting property can be viewed as a “deterministic” form of
circular security with respect to the seed of the PRG. We informally recall the definition
of a hinting PRG to provide a more concrete view of what this hinting property actually
entails, and how it encapsulates circular security with respect to the seed.

A hinting PRG is a PRG of the form G : {0, 1}n → Yn that expands n-bit seed
s ∈ {0, 1}n into a vector y = (y1, . . . , yn) of n elements from the set Y , such that an
n × 2 matrix Z = {zi,b}i∈[n],b∈{0,1} distributed as follows:

zi,b =
{
yi if b = si ,

ui ← Y otherwise,

is computationally indistinguishable from a truly random matrix U ← Yn×2, where
each element is sampled uniformly from the set Y .1 Note that the matrix Z not only
contains the output of the PRG, but also has some hinting information about each bit si
of the seed s encoded into the arrangement of the elements in each row.

Hinting PRGs have been used as a key ingredient to construct several cryptographic
primitives, such as realizing CCA-secure public-key encryption (PKE) and attribute-
based encryption from their CPA-secure counterparts [28], trapdoor functions [16,26],
black-box non-interactive non-malleable commitments [17], and CCA-compatible public-
key infrastructure [29]. This wide range of applications motivates: (i) building hinting
PRGs from a variety of mathematical assumptions, (ii) investigating some natural ex-
tensions of the hinting property to other cryptographic primitives, and (iii) studying the
complexity of cryptographic primitives with hinting property.

Instantiations of hintingPRGs. Koppula and Waters [28] showed how to realize hinting
PRGs from the computational Diffie–Hellman (CDH) and the learning with errors (LWE)
assumptions. Their constructions are based on the “missing block” framework that was
introduced by Cho et al. [11]. Later, Goyal et al. [19] introduced a new accumulation-
style framework to build hinting PRGs, and they showed (efficient) constructions of
hinting PRGs from the decisional Diffie–Hellman Inversion (DDHI) and Phi-hiding
assumptions. However, despite such considerable progress, it is not known how to realize
hinting PRGs from a notable class of plausibly post-quantum secure assumptions, namely

1The original definition of hinting PRG in [28] uses an additional output element z0 ∈ Y which has no
hint about the seed of the PRG. We omit this element from the definition of hinting PRG here for simplicity
of exposition.
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isogeny-based assumptions. Note that current techniques to construct hinting PRGs
either use groups with infeasible inversion or the missing-block framework, both of
which seem to be out of reach based on our understanding of structural properties of
isogeny-based assumptions [1]. This leads to the following question: can we realize
hinting PRGs from isogeny-based assumptions?

On a related note, a hinting PRG is an ostensibly symmetric-key primitive, and one
would expect to achieve it from decisional assumptions (such as the DDH assumption) in
a considerably simpler manner than allowed by current constructions and their security
proofs. In particular, the closely related notion of symmetric-key circular secure encryp-
tion [10] has significantly simpler realizations and security proofs based on decisional
assumptions such as the DDH assumption [7]. This leads to the question: is there a
simple construction of hinting PRGs from decisional assumptions such as DDH? More
concretely, our aim is to achieve constructions and security proofs for hinting PRGs
that are simpler than those based on the missing block framework [28] or the accumu-
lation framework [19]. Our hope is that a simpler construction of hinting PRGs would
be amenable to instantiations from decisional isogeny-based assumptions, while also
naturally enabling extensions of the hinting property to other cryptographic primitives.

Hinting property for other primitives. The authors of [26] showed that a hinting PRG
can be used to build a one-time key-dependent message (KDM) secure symmetric-key
encryption (SKE) scheme. This motivates us to ask if there exists a natural extension of
hinting PRGs that implies circular/KDM security with respect to many encryptions of
the secret key, and if so, can such an extension also be realized in a simple manner from
decisional assumptions such as DDH or isogeny-based decisional assumptions.

Functional hinting property. The original definition of hinting PRG, as introduced
in [28], only considers security in the presence of hints about each bit of the PRG seed
itself. A natural extension of this security property would be to guarantee PRG security
in the presence of hints about each bit of some function of the seed. For example, for a
PRG seed s = (s1, . . . , sn) ∈ {0, 1}n , what if the PRG output provides hints about each
bit of f (s) = (

si · s j
)
i, j∈[n], which is an n2-length vector? This might be particularly

challenging to achieve because the adversary now not only gets hints about each bit of
s (via si · si = si ), but also about the pairwise product of each bit of s. We note here
that this strengthening of the hinting property to its functional counterpart is analogous
to the strengthening of circular security to KDM security; in fact, one can view the
functional hinting property with respect to a class of functions F as a “deterministic”
form of KDM security with respect to F . Additionally, this property also generalizes to
other cryptographic primitives with the hinting property, if such primitives exist.

Complexity of primitives with hinting property. Another natural direction is to investi-
gate the complexity of a hinting PRG, and its extensions to other cryptographic primi-
tives. Based on the current constructions of hinting PRGs, it is unclear if we necessarily
need structured mathematical assumptions to realize hinting PRGs. It is seemingly hard
to build a hinting PRG in a generic way from any PRG (or equivalently, any one-way
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function). On the other hand, a hinting PRG does not immediately entail any “public-
key”-style functionalities, and we do not know if it implies PKE.

Observe that the closely related notion of symmetric-key circular/KDM-secure en-
cryption, in fact, does not imply PKE in a black-box way because it can be realized
from a random oracle [10]. However, this does not answer the above question because,
as the authors of [26] point out, it is not known if a hinting PRG can be realized from
any symmetric-key circular secure encryption scheme in a black-box way.

1.1. Our Contributions

In this paper, we address all of the above questions by showing the following results.

Simpler constructions of hintingPRG. We propose a new approach for realizing hinting
PRGs from decisional assumptions. Our approach yields significantly simpler construc-
tions and security proofs for hinting PRGs as compared to the existing constructions
and proofs based on the missing block framework [28] or the accumulation-style frame-
work [19]. We show how to instantiate our approach based on the DDH assumption, as
well as from a recent plausibly post-quantum secure isogeny-based assumption called the
linear hidden shift (LHS) assumption [1] over certain isogeny-based group actions (e.g.,
variants of CSIDH [1,8,12]). To the best of our knowledge, prior to our work, it was
not known how to securely realize a hinting PRG from any isogeny-based assumption,
including the LHS assumption [1].

We also show a new approach of constructing hinting PRGs from a simple and generic
cryptographic primitive with algebraic structure, namely a key-homomorphic weak
PRF (KHwPRF) [2,9]. Our technique is a natural generalization of our construction
of hinting PRG from the DDH assumption and again yields significantly simpler secu-
rity proofs for hinting PRGs as compared to existing approaches [19,28]. To the best of
our knowledge, prior to our work, a direct and simple realization of hinting PRG was
not known from any generic cryptographic primitive with algebraic structure.

Building upon our technique to realize hinting PRGs from the LHS assumption, we
also show a direct construction of trapdoor (one-way) functions (TDFs) from any weak
pseudorandom group action (which is a plausibly post-quantum secure analogue of the
DDH assumption over isogeny-based group actions, introduced in [1]) for which the LHS
assumption holds. Our construction of TDFs and the corresponding proof of security are
significantly simpler as compared to the previously known constructions of TDFs from
such isogeny-based assumptions proposed in [1], which relied on the framework of [26].
We note that the authors of [16] proposed a construction of TDFs given any hinting PRG
and a PKE scheme with pseudorandom ciphertexts; however, their construction needs
the ciphertext space to be a group, which does not hold for any isogeny-based PKE
scheme.

Hinting (weak) PRF. We introduce natural extensions of the hinting property to other
symmetric-key primitives, namely pseudorandom functions (PRFs) and weak
PRFs (wPRFs). We call the resulting primitives hinting PRFs and hinting wPRFs. A
hinting (weak) PRF is a strengthening of a hinting PRG in the sense that it guarantees
(weak) pseudorandomness even in the presence of multiple hints with respect to the key of
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a wPRF. We show that a hinting wPRF can be used to construct a symmetric-key circular-
secure encryption scheme (where the circular security guarantee holds with respect to
multiple encryptions of the secret key) in a black-box manner (this can be amplified to
achieve KDM security, albeit in a non-black-box way using known techniques [4]). We
also show that our approach for constructing hinting PRGs can be leveraged to construct
hinting wPRFs. This yields simple constructions of hinting wPRFs based on either DDH
or the LHS assumption (as well as a generic construction from any KHwPRF).

We additionally show a generic construction of hinting (weak) PRF from any hinting
PRG with sufficiently large block length. Our construction establishes (somewhat sur-
prisingly) the feasibility of generically strengthening the hinting property of PRGs (where
the adversary only gets a single hint with respect to the seed of the PRG) to the hinting
property of PRFs (where the adversary gets multiple hints with respect to the secret key
of the PRF). This transformation can be viewed as a deterministic analogue of a transfor-
mation from one-time to full-fledged symmetric-key circular/KDM-secure SKE, which
was not known prior to our work. As a corollary, we also get an alternative route for
achieving full-fledged symmetric-key circular/KDM-secure SKE from any hinting PRG
satisfying the aforementioned structural property.

Functional hinting PRG/wPRF and implications. We introduce functional hinting
PRG—a strengthening of hinting PRG that guarantees PRG security in the presence
of hints about each bit of some function of the seed. We also introduce a natural exten-
sion, namely a functional hinting wPRF, that guarantees wPRF security in the presence
of hints about each bit of some (adversarially chosen) function of the secret key. We
show that a functional hinting wPRF with respect to a family of functions F can be
used to realize a symmetric-key KDM-secure encryption scheme with respect to the
same function family F in a black-box manner. We then build upon our approach of
realizing hinting PRGs and hinting wPRFs to realize simple constructions of functional
hinting PRGs and functional hinting wPRFs for a family of quadratic functions (and
functions of higher degree) based on the DDH assumption. We note that our techniques
enable achieving a deterministic form of KDM-security in a black-box manner, which
is a different approach as compared to prior works on KDM security [24,25,27].

Complexity of hinting PRG/(weak) PRF. We make progress on understanding the com-
plexity of cryptographic primitives with the hinting property. We show the first black-box
separation between hinting PRG and PKE by realizing a hinting PRG given only a ran-
dom oracle. We then build upon our construction of hinting PRG to also show how
to construct a hinting PRF given only a random oracle. This additionally rules out the
possibility of constructing PKE in a black-box manner from any hinting (weak) PRF.

We leave it as an interesting open question to explore the (im)possibility of construct-
ing hinting PRG from CPA-secure PKE in a black-box manner. We note that existing
black-box separations between CPA-secure and CCA-secure PKE are only partial [18]
and do not imply a black-box separation of hinting PRGs from CPA-secure PKE. We also
observe that there, in fact, are no known constructions of hinting PRG from primitives
obtained by naturally strengthening CPA-secure PKE (such as CCA-secure PKE or even
trapdoor functions) that do not inherently possess some flavor of circular security [26].
On a related note, an interesting starting point toward closing the gap between hinting
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PRG and (strong forms of) PKE could be to try and construct hinting PRG (or primitives
with circular security) from trapdoor functions.

1.2. Technical Overview

In this section, we provide an overview of our techniques. For simplicity of exposition,
we focus primarily on two of our basic results—our construction of hinting PRG from
DDH, and our construction of functional hinting PRG from DDH for the quadratic
function f (s ∈ {0, 1}n) = s⊗ s ∈ {0, 1}n2

. For all of our other results, we provide some
high-level intuition while referring to the relevant sections in the body of the paper for
details.

Hinting PRG from DDH. Let (G, g, q) be a DDH-hard group of prime order q with
generator g. Throughout this paper, we use the notation [M] to denote gM (exponentiation
being applied componentwise) for any matrix M ∈ Z

m×n
q . It was shown in [2,14,30]

that for a uniformly sampled matrix M ← Z
n×n
q and a uniformly sampled binary vector

s ← {0, 1}n where n is sufficiently large (concretely, n > log |G|+ω(log λ)2); we have

([M], [Ms]) c≈ ([M], [u]) , (∗)

where u ← Z
n
q . Observe that this naturally yields a PRG with public parameter [M]

and seed s defined as

G[M](s) = [Ms].

We now argue that this PRG already satisfies the hinting property. At a high level, our
approach is as follows: we reduce the hinting property of G to the pseudorandomness of
G, which in turn relies on the DDH assumption. We explain this in more details below.

Suppose we are given a PRG challenge of the form ([M], [y]), where the vector
[y] is either the “real” output of the PRG G, i.e., we have [y] = [Ms] for some s ←
{0, 1}n , or [y] is uniformly random, i.e., we have [y] ← G

n . We construct a probabilistic
polynomial-time (PPT) algorithm B as follows: B takes as input a PRG challenge of the
form ([M], [y]) and outputs

([M′], [Z]) where the matrix [M′] is a uniformly distributed
matrix in G

n×n , and [Z] is an n × 2 matrix of group elements of the form [Z] =([
zi,b

])
i∈[n],b∈{0,1} such that:

• When [y] is distributed as the “real” output of the PRG G, [Z] is distributed as in
the “real” hinting PRG game with respect to the public parameter [M′].

• On the other hand, when [y] is uniformly random inGn , [Z] is distributed uniformly
randomly over Gn×2.

The main challenge here is that B needs to produce this output without any knowledge
of the seed s of the PRG G. To do this, given a PRG challenge of the form ([M], [y]), B
“shifts” each diagonal entry mi,i of the matrix [M] by a random value di ← Zq in the

2As we will see later in the paper, this bound comes from the leftover hash lemma [20,22]. The general
case of non-binary and uniform s has already been considered in [13].
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exponent of g, i.e., it computes the shifted diagonal element in the exponent as

[m′
i,i ] = [mi,i ] + [di ].

Let [M′] be the corresponding matrix inGn×n with the shifted diagonal elements ([M′] is
identical to [M] in all non-diagonal entries), and define the matrix [Z] = ([

zi,b
])

i∈[n],b∈{0,1}
as follows: for each i ∈ [n] and b ∈ {0, 1}, set

[zi,b] :=
{

[yi ] if b = 0,

[yi + di ] if b = 1.

Suppose that [y] = [Ms], and let [y′] = [M′s]. If si = 0, we have

[zi,0] = [yi ] = [y′
i ], [zi,1] = [y′

i + di ],

where the latter is uniformly random. Likewise, if si = 1, we have

[zi,1] = [yi + di ] = [y′
i ], [zi,0] = [y′

i − di ],

where the latter is again uniformly random. Hence, [Z] is distributed as in the real hinting
PRG game with respect to the public parameter [M′], as desired. On the other hand, when
[y] is uniformly random, so is [Z]. We refer to Sect. 3.1 for a more formal description
of our construction and proof.

Generalization to key-homomorphic weak PRF. The above construction of hinting
PRG from any DDH-hard group can, in fact, be generalized to achieve a construction
of hinting PRG from any key-homomorphic weak PRF (KHwPRF). Before presenting
an overview of the construction, we briefly recall the definition of KHwPRF from [9].
Let F : K × X → Y be a weak PRF (i.e., a PRF that only provides pseudorandomness
guarantees for uniformly random inputs). We say that F is a KHwPRF if it additionally
satisfies the following properties:

• (K ,⊕) and (Y,⊗) are efficiently samplable groups with efficiently computable
group operations.

• For any k1, k2 ∈ K and any x ∈ X , we have

F(k1 ⊕ k2, x) = F(k1, x) ⊗ F(k2, x).

An example instantiation of a KHwPRF based on a DDH-hard cyclic group (G, q, g) of
prime order q with generator g is the following: let FDDH : Zq ×G → G be a function
defined as

FDDH
(
k ∈ Zq , h ∈ G

) = hk .
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Assuming that (G, q, g) is a DDH-hard group, FDDH is a KHwPRF, where the wPRF
property follows from DDH, and key-homomorphism follows from the fact that we have

FDDH(k1 + k2, h) = hk1 · hk2 ,

for any k1, k2 ∈ Zq and any h ∈ G.
We now show how our construction of hinting PRG from any DDH-hard group can

be generalized to achieve a construction of hinting PRG from any KHwPRF. We present
an overview of our approach here. We refer to Sect. 3.1 for the detailed construction and
proof. The starting point of our construction of hinting PRG from any KHwPRF is a
generalization of the relation (∗) above from any DDH-hard group to the output space
Y of any KHwPRF, which was shown in [2]. Let F : K × X → Y be a KHwPRF,
let M ← Yn×n be a matrix consisting of uniformly sampled elements in Y , and let
s ← {0, 1}n be a uniformly sampled binary vector. It was shown in [2] that, assuming n
to be sufficiently large (concretely, n > log |Y | + ω(log λ)), we have3

(M,Ms)
c≈ (M,u) , (♦)

where u ← Yn , and where for M = (
mi, j

)
i, j∈[n] ∈ Yn×n and s = (s1, . . . , sn) ∈

{0, 1}n , we denote by Ms ∈ Yn the vector of group elements

⎛
⎝⊗

j∈[n]
s j · m1, j , . . . ,

⊗
j∈[n]

s j · mn, j

⎞
⎠ .

Observe that this naturally yields a PRG with public parameter M ∈ Yn×n and seed
s ∈ {0, 1}n , defined as

G ′
M(s) = Ms.

We can now use an argument very similar to that for our DDH-based hinting PRG
above to argue that the PRG G ′ already satisfies the hinting property. At a high level,
we again reduce the hinting property of G ′ to the pseudorandomness of G ′, which
in turn (implicitly) relies on F being a KHwPRF via the relation (♦) from [2]. In fact,
instantiating the KHwPRF using the DDH-based KHwPRF FDDH outlined earlier yields
our DDH-based construction of hinting PRG. See Sect. 3.1 for the detailed proof.

Translation to isogeny-based group actions. In the security proof of our DDH-based
construction of hinting PRG, the crux of the argument is in introducing a “shift” both in
the public parameter [M] and in the challenge vector [y] when constructing ([M′], [Z]),
without having to solve discrete logs in the group G. It turns out that for certain isogeny-
based effective group actions (e.g., variants of CSIDH [1,8,12]), we can introduce such a
“shift” using the algebraic properties of group actions without having to solve a compu-
tationally hard problem analogous to discrete log over group actions. This observation

3The indistinguishability argument relies on the security of the underlying KHwPRF.
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allows us to translate our technique for hinting PRGs outlined above from DDH-hard
groups to group actions satisfying the LHS assumption introduced in [1]. We refer to
Sect. 3.2 for a more formal description.

In addition, we can extend this technique of publicly computable shifts in the outputs
of group action computations to achieve a direct construction of TDFs from any LHS-
hard weak pseudorandom effective group action. We refer to Sect. 3.3 for the detailed
construction and proof. We point out that our construction avoids the many layers of
generic transformation required by the prior construction of TDFs from such isogeny-
based assumption, proposed in [1] based on the framework of [26].

Comparison with prior works. Our approach for realizing hinting PRGs from DDH-
hard groups or LHS-hard effective group actions yields the interesting observation that
natural constructions of PRG from these assumptions already have the hinting property.
For example, we show that a DDH-based PRG that was implicit in several prior works [2,
14,30] is, in fact, a hinting PRG. Similarly, we show that a PRG based on LHS-hard
effective group actions that was implicit in [1] is also a hinting PRG. In contrast, prior
constructions and proofs for hinting PRGs based on the missing block framework [28] or
the accumulation framework [19] actually rely on new constructions of PRGs designed
specifically to prove the hinting property.

Specifically, the authors of [19] needed to prove a new hashing lemma, which is crucial
to their proof of security, besides relying on the DDHI assumption, which is a seemingly
stronger assumption as compared to DDH. Similarly, the authors of [28] introduce a new
PRG construction and prove its hinting property while

relying on a statistical hashing lemma. On the other hand, in our construction, we
directly reduce the hinting property of the PRG to its own pseudorandomness.

We also note that neither the missing block framework of [28] nor the accumulation
framework of [19] seems amenable to realizations from isogeny-based assumptions; in
particular, their techniques seem incompatible with the algebraic properties of isogeny-
based group actions, especially given the long history of failed attempts to integrate
standard hashing techniques into the framework of isogeny-based cryptography [5].
However, our proposed technique readily extends to the setting of isogeny-based group
actions and enables the first realizations of hinting PRGs from (plausibly post-quantum
secure) isogeny-based assumptions.

Hinting (weak) PRF and applications. We formally define a hinting PRF and a hinting
wPRF in Sect. 4.1. At a high level, a hinting (weak) PRF is a strengthening of a hinting
PRG in the sense that it guarantees (weak) pseudorandomness even in the presence of
multiple hints with respect to the key of the (weak) PRF. The definition of a hinting PRF
has some additional nuances in the sense that the adversary cannot be allowed to get
multiple hints on the same input, since otherwise an attacker can immediately break the
hinting PRF security game. We refer to Sect. 4.1 for the detailed security definitions.

We also show a simple construction of circular/KDM-secure SKE from any hinting
wPRF. Note that a hinting PRG is only known to imply a weak notion of one-time
circular/KDM-secure SKE [26]. We note that Kitagawa et al. [26] demonstrated a con-
struction of one-time symmetric-key KDM-secure encryption scheme from any hinting
PRG. In our construction, we do not have one-time restriction and an adversary can
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see polynomially many encryptions of (functions of) the secret key. This is a natural
consequence of our definition of hinting wPRF, where the adversary is allowed to see
multiple hints with respect to the secret key of the wPRF. In other words, extending the
hinting property from PRGs to wPRFs seemingly allows us to “upgrade” the security
of the resulting SKE scheme from one-time to full-fledged circular/KDM security. We
refer to Sect. 4.2 for the detailed construction and security proof.

Hinting (weak)PRF fromhintingPRG. We show how to construct a hinting (weak) PRF
in a generic manner from any hinting PRG with sufficiently large block length (namely,
that is stretches an n-bit seed into an n(n + 1)-bit output, which can be viewed as an
(n+1)-length sequence of n-bit strings).4 We note that this property is satisfied by many
existing constructions of hinting PRGs, including the missing-block framework-based
constructions in [28], the accumulation-style framework-based constructions in [19],
as well as our DDH and LHS-based our construction of hinting PRG. We present an
overview of the construction here. The detailed description and security proof appear in
Sect. 4.3.

Let G : {0, 1}n → {0, 1}n2
be a hinting PRG, and let

G(k ∈ {0, 1}n) := (G1(k), . . . ,Gn(k)) .

Also, let F : {0, 1}n×X → {0, 1}n be a PRF (not necessarily hinting). We note that such
a PRF can be built in a generic manner assuming that G is a PRG (e.g., via the classic
PRG-to-PRF transformation in [15]). We construct a PRF F∗ : {0, 1}n × X → {0, 1}n2

as follows:

F∗(k ∈ {0, 1}n, x ∈ X) = (F(G1(k), x), . . . , F(Gn(k), x)) .

It is easy to see that F∗ is a (weak) PRF assuming that G is a PRG and F is a (weak)
PRF. In Sect. 4.3, we show that F∗ is, in fact, a hinting (weak) PRF assuming that G is
a hinting PRG and F is a (weak) PRF.

Functional hinting PRG from DDH. Our simple technique for realizing hinting PRGs
from DDH is actually powerful enough to allow constructing functional hinting PRGs,
which are strengthenings of hinting PRG that guarantee PRG security in the presence
of hints about each bit of some function of the seed. For this overview, we show how to
construct a functional hinting PRG from DDH, where the function f that we consider is
defined as follows: given a seed s ∈ {0, 1}n , f (s) = (

si · s j
)
i, j∈[n], which is an n2-length

vector.
The starting point of our functional hinting PRG from DDH is a stronger version of

the indistinguishability (∗) from [2,14,30] that we prove in this paper based on the DDH

assumption: for n2 uniformly sampled matrices
{
Mi ← Z

n×n
q

}
i∈[n2] and a uniformly

4We choose the block length of the hinting PRG output to be n for simplicity of exposition. The construction
works analogously for the more general setting where each block has at least n bits of (pseudo-)entropy.
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sampled vector s ← {0, 1}n (where n is sufficiently large), we have

([Mi ], [stMi s]
)
i∈[n2]

c≈ ([Mi ], [ui ])i∈[n2] ,

where each ui ← Zq . Observe that this naturally yields a PRG with public parameter([M1], . . . , [Mn2 ]) and seed s defined as

G([M1],...,[Mn2 ])(s) = ([stM1s], . . . , [stMn2s]) .

Similar to our technique for proving the security of hinting PRG, even in this case, we
can reduce the functional hinting PRG security of the above construction to its own
pseudorandomness (which in turn relies on DDH) by introducing shifts on a suitable
entry of each matrix [Mi ] in the public parameter. We refer to Sect. 5.1 for the detailed
construction and proof of security and also for extensions of the above construction to
achieve functional hinting PRGs with respect to functions of higher degree.

Functional hinting wPRF and applications. For our functional hinting PRG construc-
tion, we use a reduction where we rely on the fact that the adversary only sees a single
evaluation of the hinting PRG with respect to a uniformly sampled seed, while only get-
ting hints about each bit of a single function of the seed. Achieving a functional hinting
wPRF is significantly more complicated, since not only can the adversary see multiple
evaluations of the wPRF on uniformly random inputs, but also get hints about multiple
functions of the secret key, where the function may be chosen adversarially from a fixed
function family. In this paper, we show a construction of functional hinting wPRF from
DDH with respect to the function family F consisting of (projective) quadratic func-
tions (and functions of higher degree) over the bits of the key. We refer to Sect. 5.2 for
the detailed construction and proof of functional hinting wPRFs from DDH.

In Sect. 5.3, we describe a simple construction of KDM-secure SKE with respect to a
function family F from any functional hinting wPRF with respect to the same function
family F in a black-box manner. We also show a strengthening of this result to obtain a
construction of F-KDM-secure PKE scheme from any F-functional hinting wPRF that
additionally satisfies homomorphism between the input and output space—a property
that is actually satisfied by our construction of functional hinting wPRF from DDH.

Note that the existing approaches for achieving KDM-secure PKE in a black-box
way [6,27] are somewhat incomparable to ours; in particular, these prior constructions
are designed specifically for arithmetic function families that inherently require some
form of algebraic structure on the secret key space, while the function family that we
consider can be viewed as a certain form of Boolean function family (e.g., in the case
of quadratic functions, an adversary is provided with hints with respect to the conjunc-
tion/AND of each pair of bits of the secret key). Additionally, the primitive underlying
our construction, namely functional hinting wPRF, provides a deterministic form of
KDM security that has not been considered in prior works to the best of our knowl-
edge. We remark that our construction of (functional) hinting wPRF from DDH/LHS
essentially subsumes our construction of hinting PRG from DDH/LHS, while building
upon our techniques for the latter construction. More generally, we chose to present our
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results in a progressive manner, where each result builds upon our techniques used to
construct simpler primitives. We do this for ease of exposition, and also for highlighting
the simplicity/modularity of our techniques.

Hinting (weak) PRF in the random oracle model. Let H : {0, 1}n → Yn+1 be a truly
random function (modeled as a random oracle), where Y is a sufficiently large set. It is
easy to see that H is a PRG in the random oracle model since for any uniformly random
input s ← {0, 1}n , no (computationally unbounded) adversary can distinguish (with
non-negligible probability) between H(s ← {0, 1}n) and u ← Yn+1 while issuing
polynomially many queries to the function H . We show in Sect. 6 that this simple PRG
in the random oracle model also satisfies the hinting property via a simple information-
theoretic argument. This implies the first black-box separation between hinting PRG
and PKE [23] to the best of our knowledge. We then build upon our construction of
hinting PRG to also show how to construct a hinting PRF given only a random oracle.
As mentioned earlier, a hinting PRF is a strengthening of a hinting wPRF that satisfies
plain/strong PRF security as opposed to weak PRF security in the presence of multiple
hints with respect to the secret key (i.e., the adversary is allowed to ask for hints with
respect to the key of PRF for arbitrarily chosen inputs instead of randomly chosen ones).
We refer to Sect. 6 for the detailed construction and proof. Our result also rules out the
possibility of constructing PKE in a black-box way from any hinting (weak) PRF [23].

1.3. Organization

The rest of the paper is organized as follows: Section 2 presents preliminary background
material. Section 3 presents our constructions of hinting PRGs from DDH or LHS, or
from any KHwPRF. This section also presents an extension of our techniques to realize
TDFs from LHS-hard weak pseudorandom effective group actions. In Sect. 4, we de-
fine the notion of hinting (weak) PRF and show a construction of circular/KDM-secure
SKE from any hinting weak PRF. In this section, we also present our constructions
of hinting weak PRFs from DDH or LHS, or from any KHwPRF. Finally, this section
presents a generic construction of hinting (weak) PRF from any hinting PRG with suf-
ficiently large block length. Section 5 presents our constructions of functional hinting
PRGs and functional hinting weak PRFs with respect to a certain family of functions. It
also presents the applications of functional hinting weak PRFs to circular/KDM security
in the symmetric-key setting, and how structured functional hinting weak PRFs can be
used to realize circular/KDM-secure PKE. Finally, Sect. 6 presents our constructions of
primitives with hinting property in the random oracle model.

2. Preliminaries

In this section, we present preliminary background material.

2.1. Notations and Background Material

Notations. For any positive integer n, we use [n] to denote the set {1, . . . , n}. We may
use [a] to denote ga where a ∈ Zq and g is a generator of a cyclic group with order q.
However, the difference between [n] and [a] will be clear from context.
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We denote the security parameter by λ. We use the notation
s≈ (respectively,

c≈) to
denote statistical (respectively, computational) indistinguishability. In the definitions
of cryptographic primitives, unless stated otherwise, all sets are parameterized by the
security parameter λ. Similarly, when we write that two distribution ensembles are
statistically (respectively, computationally) indistinguishable, we implicitly assume that
they are indexed by the security parameter λ. For a finite set S, we use s ← S to sample
uniformly from the set S.

PRF and weak PRF. We recall the definitions of pseudorandom function (PRF) and
weak PRF below.

Definition 2.1. (PRF). Let F : K × X → Y be a function family, where each set is
indexed by the security parameter λ. We say that F is a PRF if for any PPT adversary
A, we have ∣∣∣Pr[AF(k,·)(1λ) = 1] − Pr[A f (·)(1λ) = 1]

∣∣∣ ≤ negl(λ)

where k ← K and f : X → Y is a (truly) random function, and where AF(k,·) and
A f (·) denote that the adversary A has oracle access to the functions F(k, ·) and f (·),
respectively.

Definition 2.2. (weak PRF). Let F : K × X → Y be a function family, where each
set is indexed by the security parameter λ. We say that F is a weak PRF (wPRF) if for
any Q = poly(λ) it holds that

{
(xi , F(k, xi ))

}
i∈[Q]

c≈ {
(xi , yi )

}
i∈[Q],

where k ← K , xi ← X , and yi ← Y .

Key-homomorphic weak PRF. We also recall the definition of a key-homomorphic
weak PRF (KHwPRF) from [2,9] below.

Definition 2.3. (KHwPRF).Let F : K ×X → Y be a weak PRF as per Definition 2.2.
We say that F is a key-homomorphic weak PRF (KHwPRF) if it additionally satisfies
the following properties:

• (K ,⊕) and (Y,⊗) are efficiently samplable groups with efficiently computable
group operations.

• For any k1, k2 ∈ K and any x ∈ X , we have

F(k1 ⊕ k2, x) = F(k1, x) ⊗ F(k2, x).

Trapdoor functions. We recall the definition of trapdoor function (TDF) below.

Definition 2.4. (Trapdoor Function). Let (Gen,Eval, Invert) be a tuple of algo-
rithms as defined below:
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• Gen(1λ): On input the security parameter λ, outputs an evaluation key ek and a
trapdoor t.

• Eval(ek, x ∈ X): On input ek and an input x ∈ X , outputs y ∈ Y (where X is the
input space, Y is the output space, and both sets are parameterized by λ).

• Invert(t, y ∈ Y ): On input t and y ∈ Y , outputs x ′ ∈ X .

We say that (Gen,Eval, Invert) is a trapdoor function if the following conditions are
satisfied:

• Correctness: For any (ek, t) in the support of Gen, if x ← X , we have

Pr[Invert(t,Eval(ek, x))] = x > 1 − negl(λ).

• One-Wayness: Let (ek, t) ← Gen(1λ) and x ← X . Then for any PPT adversary
A, we have

Pr[A(ek,Eval(ek, x)) = x] ≤ negl(λ),

where the probability is taken over all random coins used in the experiment.

Circular and KDM-secure SKE. We recall the definition of symmetric-key circular-
secure encryption. Note that in the definition below, we assume that the key space
is a subset of message space (which is satisfied by our construction). One can also
alternatively consider a definition in which each ciphertext encrypts a bit or a part of the
secret key. The former is desirable in certain applications, where a single ciphertext can
be used to encrypt all bits of the secret key.

Definition 2.5. (Circular-secure SKE). Let � = (Gen,Enc,Dec) be a symmetric-
key encryption scheme with M = K = {0, 1}n , where M and K denote the message
space and the key space, respectively, and where n = poly(λ). We say that � is circular
secure (with respect to multiple encryptions) if for any Q = poly(λ) it holds that

(
Enc(sk, sk; ri ))i∈[Q]

c≈ (
Enc(sk, 0n; ri )

)
i∈[Q],

where sk ← {0, 1}n and each ciphertext is generated using a fresh and independent
randomness ri .

Note that one-time circular security is defined similarly where the attacker gets to see
only one encryption of the secret key, i.e., Q = 1.

Definition 2.6. (KDM-secure SKE). Let � = (Gen,Enc,Dec) be a symmetric-
key encryption (SKE) scheme with M = {0, 1}m and K = {0, 1}n , where M and K
denote the message space and the key space, respectively, and where n = poly(λ). Let
F = { f I | f I : {0, 1}n → {0, 1}m}I∈I be a family of boolean functions, and let f̄ ∈ F
where f̄ is the constant function f̄ (x) = 0m . We say that � is KDM secure with respect
toF if the advantage of any PPT adversaryA in distinguishing the experimentsExpKDM0

and ExpKDM1 (defined in Fig. 1) is negligible.
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Fig. 1. Experiment ExpKDMb .

Note that KDM security for public-key encryption with respect to a function family
F is defined similarly, except that the adversary is given public key in the beginning of
the experiment.

DDH assumption. We recall the DDH assumption below.

Definition 2.7. (DDH assumption). Let G be a group of prime order q with generator
g, where the description of G is output by an algorithm that takes as input the security
parameter λ. We say that the DDH assumption holds over G if for a ← Zq , b ← Zq ,
c ← Zq it holds that

(g, ga, gb, gab)
c≈ (g, ga, gb, gc).

Leftover hash and extractors. We will use the following special case of the leftover
hash lemma [20,22]. We refer to [31] for a proof.

Lemma 2.8. (Leftover Hash Lemma). Let G be an additively written abelian group,
and let m > log|G| +ω(log λ) be an integer. If r ← Gm and s ← {0, 1}m, it holds that

(
r,

m∑
i=1

siri

)
s≈ (r, u),

where u ← G is a uniformly chosen group element.

Definition 2.9. (Extractor).An extractorExt : S×X → Y is a deterministic function
with the seed spaceS and domain X such that if seed ← S is sampled uniformly and x is
sampled from a distribution over X with min-entropy λc (for some constant 0 < c < 1),
then it holds that

(seed,Ext(seed, x))
s≈ (seed, y),
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where y ← Y is sampled uniformly.

2.2. Hinting PRG

We recall the definition of hinting PRG [28]. We use a slightly different syntax compared
to [28] for each block of the output of hinting PRG.5

Definition 2.10. (Hinting PRG). Let n = poly(λ) be an integer. Let (Setup,Eval)
be a pair of algorithms such that

• Setup(1λ) is a randomized algorithm that outputs some public parameter pp,
• Eval(pp, s ∈ {0, 1}n, i ∈ {0} ∪ [n]) is a deterministic algorithm that outputs (a

representation of) some element y in Y , where Y is the codomain of the algorithm
and |Y | = ω(log λ).

We say that (Setup,Eval) defines a hinting PRG if for pp ← Setup(1λ) and s ←
{0, 1}n it holds that

(pp, y0,Y)
c≈ (pp, u0,U),

where these terms are distributed as

y0 = Eval(pp, s, 0), yi,si = Eval(pp, s, i), yi,1−si ← Y, u0 ← Y, U ← Yn×2.

2.3. Cryptographic Group Actions

We recall some definitions related to cryptographic group actions from [1], which pro-
vided a framework to build cryptographic primitives from certain isogeny-based as-
sumptions (e.g., variants of CSIDH [8,12]).

Notations. We use (G, X, �) to denote a group action � : G × X → X . Throughout
the paper, we will assume that group actions are abelian and regular, i.e., both free and
transitive (which is the case for CSIDH-style group actions). Note that for regular group
actions, we have |G| = |X |. Thus, if a group action is regular, then for any x ∈ X , the
map fx : g 
→ g � x defines a bijection between G and X . We always use the additive
notation + to denote the group operation in G. Since G is abelian, it can be viewed
as a Z-module and hence for any z ∈ Z and g ∈ G, the term zg is well-defined. This
property naturally extends to matrices as well, so for any matrix M ∈ G

m×n and any
vector z ∈ Z

n , the term Mz is also well-defined. The group action extends naturally to
the direct product group G

n for any positive integer n. If g ∈ G
n and x ∈ Xn , we use

g � x to denote a vector of set elements whose i th component is gi � xi .

5Specifically, the authors of [28] use the set {0, 1}� for each block (where � is fixed during the setup),
whereas we use a sufficiently large (efficiently representable) set Y . Our definition allows defining hinting
PRG in a setting where Y does not necessarily have a compact representation, i.e., when each element of Y is
represented using more than log |Y | bits (which is the case for isogeny-based group actions). One can obtain
a hinting PRG with bit-string blocks by using a suitable (statistical) extractor.
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Effective group action. We recall the definition of an effective group action (EGA)
from [1]. An EGA allows us to do certain computations over G efficiently (e.g., group
operation, inversion, and sampling uniformly), and there is an efficient procedure to
compute the action of any group element on any set element. As pointed out by [1],
the CSIDH-style assumption in [8] (called CSI-FiSh) is an instance of EGA. We refer
to [1,8,12] for more details on distributional properties of isogeny-based group actions.

Definition 2.11. (Effective group action). A group action (G, X, �) is effective if it
satisfies the following properties:

1. The group G is finite and there exist efficient algorithms for:

(a) Membership testing (deciding whether a binary string represents a group ele-
ment).

(b) Equality testing and sampling uniformly in G.
(c) Group operation and computing inverse of any element in G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing (to check if a string represents a valid set element),
(b) Unique representation (there is a canonical representation for any set element

x ∈ X ).

3. There exists a distinguished element x0 ∈ X with known representation.
4. There exists an efficient algorithm that given any g ∈ G and any x ∈ X , outputs

g � x .

Definition 2.12. (Weak Pseudorandom EGA). An effective group action (G, X, �)

is said to be a weak pseudorandom EGA (wPR-EGA) if it holds that

(x, y, t � x, t � y)
c≈ (x, y, u, u′),

where x ← X , y ← X , t ← G, u ← X , and u′ ← X .

Definition 2.13. (Linear hidden shift assumption [1]). Let (G, X, �) be an effective
group action (EGA), and let n > log |G| + ω(log λ) be an integer. We say that liner
hidden shift (LHS) assumption holds over (G, X, �) if for any � = poly(λ) the following
holds:

(x,M,Ms � x)
c≈ (x,M,u),

where x ← X�, M ← G
�×n , s ← {0, 1}n , and u ← X�.

2.4. Some Useful Lemmata

In this section, we recall a useful lemma related to the output group of key-homomorphic
weak PRF from [2]. We first state a specific version of the lemma for any DDH-hard
group, which was also implicitly introduced in certain other prior works [14,30]. We
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then present the generalized version of the lemma for any key-homomorphic weak PRF.
For both versions, we present short self-contained proofs for the sake of completeness.

Given a cyclic groupG of prime order q with generator g, we use the notation [a] = ga

and [M] = gM (exponentiation being applied componentwise) where a ∈ Zq and
M ∈ Z

m×n
q for any positive integer m and n. We use the notation 〈a,b〉 to denote the

“dot product” of a ∈ Z
n
q and b ∈ Z

n
q modulo q.

Lemma 2.14. (Imported from [2,14,30]). Let (G, g, q) be aDDH-hard group and fix
some integers � and n such that n > log |G|+ω(log λ) and � = poly(λ). If [M] ← G

�×n

and s ← {0, 1}n, then ([M], [Ms]) c≈ ([M], [u]),where [u] ← G
� is sampled uniformly.

Proof. Let [M̄] ∈ G
�×n be a matrix of group elements whose (i, j) entry is [ai · b j ]

whereai ← Zq , b j ← Zq (for i ∈ [�], j ∈ [n]). By the leftover hash lemma (Lemma 2.8),
it follows that given [M̄], the term [M̄s] is statistically indistinguishable from a fresh
DDH tuple, i.e., given [M̄] it holds that

[M̄s] =

⎛
⎜⎜⎜⎝

[a1 · 〈b, s〉]
[a2 · 〈b, s〉]

...

[a� · 〈b, s〉]

⎞
⎟⎟⎟⎠ s≈

⎛
⎜⎜⎜⎝

[a1 · b∗]
[a2 · b∗]

...

[a� · b∗]

⎞
⎟⎟⎟⎠ ,

where b∗ ← Zq is chosen randomly. By a standard hybrid argument, it follows from

the DDH assumption that ([M̄], [M̄s]) c≈ ([M̄], [u]). Moreover, by the DDH assump-

tion we have [M̄] c≈ [M]. Therefore, it follows from a simple hybrid argument that

([M], [Ms]) c≈ ([M], [u]), as desired. This completes the proof of Lemma 2.14. �

We now present the generalized version of the above lemma for the output group
of any key-homomorphic weak PRF. Before presenting the lemma, we introduce some
notations. Let (X,⊕) be any efficiently samplable group with an efficiently computable
group operation ⊕ and identity element 0X . For any positive integer n, any vector
m = [m1, . . . ,mn] ∈ Xn , and any bit-string s = (s1, . . . , sn) ∈ {0, 1}n , we define
〈m, s〉 ∈ X as the following “dot product”:

〈m, s〉 :=
⊕
i∈[n]

si · mi ,

where si · mi = 0X if si = 0, and si · mi = mi if si = 1. Additionally, for any positive
integers � and n, any matrix M ∈ X�×n , and any bit-string s = (s1, . . . , sn) ∈ {0, 1}n ,
we define Ms ∈ X� as the following “matrix–vector product”:

Ms := [〈m1, s〉, . . . , 〈m�, s〉],

where mi ∈ Xn denotes the i th row of the matrix M.
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Lemma 2.15. (Imported from [2]). Let F : K × X → Y be a KHwPRF such that
(K ,⊕) and (Y,⊗) are efficiently samplable groups with efficiently computable group
operations. Fix some integers � and n such that n > log |K |+ω(log λ) and � = poly(λ).

If M ← Y �×n and s ← {0, 1}n, then (M,Ms)
c≈ (M,u), where u ← Y � is sampled

uniformly.

Proof. Let M ← Y �×n be a matrix consisting of uniformly sampled elements in Y .
We construct a second matrix M̄ ∈ Y �×n as follows:

M̄ =

⎛
⎜⎜⎜⎝
F(k1, x1) . . . F(kn, x1)

F(k1, x2) . . . F(kn, x2)
...

. . .
...

F(k1, x�) . . . F(kn, x�)

⎞
⎟⎟⎟⎠ ,

where k1, . . . , kn ← K and x1, . . . , x� ← X . Assuming that F is a KHwPRF, we have

M
c≈ M′ (this follows from a simple hybrid argument over the columns of M and M′;

see [2] for details).
Let k = [k1, . . . , kn] ∈ Kn . By the leftover hash lemma (Lemma 2.8), it follows

that given M̄, the term M̄s is statistically indistinguishable from a fresh set of KHwPRF
evaluations w.r.t. the same inputs x1, . . . , x� and a uniformly random key k∗ ← K .
Formally, given M̄, we have

M̄s =

⎛
⎜⎜⎜⎝
F(k1, x1) . . . F(kn, x1)

F(k1, x2) . . . F(kn, x2)
...

. . .
...

F(k1, x�) . . . F(kn, x�)

⎞
⎟⎟⎟⎠ s =

⎛
⎜⎜⎜⎝
F (〈k, s〉, x1)

F (〈k, s〉, x2)
...

F (〈k, s〉, x�)

⎞
⎟⎟⎟⎠ s≈

⎛
⎜⎜⎜⎝
F (k∗, x1)

F (k∗, x2)
...

F (k∗, x�)

⎞
⎟⎟⎟⎠ ,

where k∗ ← K is chosen randomly, and where the second equality holds by the key-
homomorphism of F . Again, assuming that F is a KHwPRF, we have the following by
a standard hybrid argument

(
M̄, M̄s

) c≈ (
M̄,u

)
,

where u ← Y �. Putting everything together, we get

(M,Ms)
c≈ (M̄, M̄s)

c≈ (
M̄,u

) c≈ (M,u),

as desired. This completes the proof of Lemma 2.15. �

3. New Simple Constructions of Hinting PRG

In this section, we show how to construct a hinting PRG from either any key-homomorphic
weak PRF (KHwPRF) or any LHS-hard effective group action.
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We highlight that our constructions are significantly simpler and enable more direct
proofs of security as compared to prior approaches for constructing hinting PRGs [19,
28].

3.1. Hinting PRG from Key-Homomorphic Weak PRF

We present a construction of hinting PRG over the output group of any generic KHwPRF.
Before presenting the detailed construction, we recall some notations from Sect. 2.4 for
ease of exposition. Let (X,⊕) be any efficiently samplable group with an efficiently
computable group operation ⊕ and identity element 0X . For any positive integer n, any
vector m = [m1, . . . ,mn] ∈ Xn , and any bit-string s = (s1, . . . , sn) ∈ {0, 1}n , we
define 〈m, s〉 ∈ X as the following “dot product”:

〈m, s〉 :=
⊕
i∈[n]

si · mi ,

where si · mi = 0X if si = 0, and si · mi = mi if si = 1. Additionally, for any positive
integers � and n, any matrix M ∈ X�×n , and any bit-string s = (s1, . . . , sn) ∈ {0, 1}n ,
we define Ms ∈ X� as the following “matrix–vector product”:

Ms := [〈m1, s〉, . . . , 〈m�, s〉],

where mi ∈ Xn denotes the i th row of the matrix M. Note that one can efficiently
compute 〈m, s〉 and Ms as long as the group operation ⊕ is efficiently computable.

Construction. We now describe the construction of hinting PRG from any KHw-
PRF (this subsumes our construction of hinting PRG from any DDH-hard group outlined
in Sect. 1.2). Let F : K × X → Y be a KHwPRF as per Definition 2.3 such that (K ,⊕)

and (Y,⊗) are efficiently samplable groups with efficiently computable group opera-
tions. Fix some integer n such that n > log |K | + ω(log λ).

• Setup(1λ): Sample M ← Y (n+1)×n and publish pp = M.
• Eval(pp = M, s ∈ {0, 1}n, i ∈ {0}∪[n]): Letmi denote the i th6 row ofM]. Output

[〈mi , s〉].
Note that stacking up evaluation of the PRG on all indices i ∈ {0} ∪ [n] can simply be
viewed as Ms.

Remark 3.1. The astute reader may observe that the construction of hinting PRG above
does not use the KHwPRF itself, but only the output group Y of the KHwPRF. However,
we implicitly rely on the KHwPRF for the proof of security via Lemma 2.15, as explained
below.

Security. In order to prove security, we state and prove the following theorem.

6For any matrix with n + 1 rows, we number rows from 0 to n.
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Theorem 3.2. Let F : K × X → Y be a KHwPRF as per Definition 2.3. Then, the
construction above yields a secure hinting PRG as per Definition 2.10.

Proof. Observe that by Lemma 2.15, we have (M,Ms)
c≈ (M,u) (where u ← Yn+1),

and hence, the pseudorandomness of the output in the plain PRG game follows from
Lemma 2.15. Let m0 ∈ Yn be the 0th row of M, and let M̄ be all but the 0th row of M
(i.e., bottom square matrix). To establish the security of the construction in the hinting
PRG game, it is enough to show that

(m0, 〈m0, s〉, M̄,Y)
c≈ (m0, u, M̄,U), (∗)

where u ← Y and U ← Yn×2 are sampled uniformly, while Y ∈ Y
n×2 is distributed

as follows

y j,s j = 〈m j , s〉, y j,1−s j ← Y, j ∈ [n].

We prove (∗) via a hybrid argument. Let H0 and H1 be the hybrids that correspond to
the left-hand side and right-hand side of (∗), respectively (i.e., “real" game and “ideal"

game). We now argue that H0
c≈ H1. Let A be an adversary that distinguishes H0 from

H1. We construct an adversary A′ that distinguishes H ′
0 from H ′

1 where7

H ′
0 := (m0, 〈m0, s〉, M̄, M̄s), H ′

1 := (m0, u0, M̄,u),

and by Lemma 2.15 it follows that the advantage of A should also be negligible.
Given a tuple H ′

b = (m0, z0, M̄, z), where H ′
b is either distributed as H ′

0 or H ′
1, the

external adversary A′ samples a random d ← Yn . Let D ∈ Yn×n be a diagonal matrix
whose diagonal is d, i.e., (i, j)th entry of D is 0Y for any i �= j . In the next step, A′
runs A on the following tuple

(m0, z0,M′ := M̄ ⊗ D,Y),

where

• M̄ ⊗ D is computed by applying the group operation ⊗ component-wise, and
• Y is an n by 2 matrix whose first and second columns are z and z ⊗ d, respec-

tively (where the group operation is again applied component-wise).

We define the output of A′ to be the same as the output of A.
Observe that (in the view of A) the terms m0 and M′ are distributed uniformly.

Moreover, if z is uniform then Y will be distributed uniformly as well. Therefore, A′
perfectly simulates the “ideal" hybrid H1. On the other hand, if z = M̄s, then from the
view of A the matrix Y is distributed as:

y j,s j = 〈m′
j , s〉, y j,1−s j = (

(−1)s j · d j
) ⊗ 〈m′

j , s〉, j ∈ [n],
7This is simply a special case of Lemma 2.15 with � = n + 1 and we wrote the first row separately.
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where, for d j ∈ Y , −d j ∈ Y is the inverse of d j w.r.t. the group operation ⊗.
To see why the relations above hold, notice that 〈m′

j , s〉 = 〈m̄ j , s〉⊗ s j ·d j where m′
j

and m̄ j denote the j th row ofM′ and M̄, respectively. Because d is distributed uniformly
and independently from M′ (in the view of A), it follows that in the view of A we have

(
M′, {y j,s j } j∈n, y j,1−s j } j∈n

) s≈ (
M′, {y j,s j } j∈n,u),

where u ← Yn , and hence, A′ properly simulates the “real" hybrid H0, as required. This
completes the proof of Theorem 3.2. �

The following corollary of Theorem 3.2 follows immediately.

Corollary 3.3. Assuming any DDH-hard group, there exists a hinting PRG.

3.2. Hinting PRG from LHS-Hard Effective Group Action

We now show how to construct a hinting PRG from any LHS-hard EGA. The construction
is similar to our DDH-based construction of hinting PRG, with suitable modifications
to translate our techniques to the setting of EGA.

Construction. Let (G, X, �) be an EGA for which LHS assumption holds. Let n be the
secret dimension of the LHS assumption. We describe a construction of hinting PRG
from the LHS assumption as follows. In the construction below, note that the group G

is written additively (viewed as a Z-module).

• Setup(1λ): Sample M ← G
(n+1)×n and x = (x0, x1, . . . , xn) ← Xn+1, and

publish pp = (M, x).
• Eval(pp = M, s ∈ {0, 1}n, i ∈ {0}∪ [n]): Let mi denote the i th8 row of M. Output

〈mi , s〉 � xi .
Note that similar to the DDH-based construction, concatenating evaluation of the PRG
on all indices i ∈ {0} ∪ [n] can be viewed as a larger instance of LHS assumption, i.e.,
Ms � x.

Security. We argue the security of the construction above based on the LHS assumption
as follows.

Theorem 3.4. Let (G, X, �) be an EGA. If the LHS assumption holds over (G, X, �),
then the construction above yields a hinting PRG as per Definition 2.10.

Proof. Pseudorandomness of the output in the PRG game follows directly from the
LHS assumption. Let m0 ∈ G

n be the 0th row of M, and let M̄ be all but the 0th row of
M (i.e., bottom square matrix). It suffices to show that

H0 := (x,m0, 〈m0, s〉 � x0, M̄,Y)
c≈ (x,m0, u, M̄,U) := H1, (∗∗)

8As before, we number rows from 0 to n.
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where u ← X and U ← Xn×2 are uniform and Y ∈ Xn×2 is distributed as

y j,s j = 〈m̄ j , s〉 � x j , y j,1−s j ← X, j ∈ [n].

Let H0 and H1 be the hybrids that correspond to the left-hand side and right-hand

side of (∗∗), respectively. We now argue that H0
c≈ H1. Let A be an adversary that

distinguishes H0 from H1, we construct another adversary A′ that distinguishes between
the following tuples

H ′
0 := (x,m0, 〈m0, s〉 � x0, M̄, M̄s � x̄), H ′

1 := (x,m0, u0, M̄,u),

where u0 ← X and u ← Xn are sampled uniformly, and x̄ = (x1, . . . , xn) is the last
n components of x. Observe that the indistinguishability of H ′

0 and H ′
1 follows directly

from the LHS assumption. Given a tuple of the form H ′
b = (x,m0, z0, M̄, z), where H ′

b
is either distributed as H ′

0 or H ′
1, the external adversary A′ samples a random d ← G

n .
Let D ∈ G

n×n be a diagonal matrix whose diagonal is d, i.e., (i, j)th entry of D is the
identity element of G for any i �= j . In the next step, A′ runs A on the following tuple

(x,m0, z0,M′ := M̄ + D,Y),

where Y ∈ Xn×2 is a matrix whose first and second rows are z and d � z, respectively.
Finally, A′ outputs whatever A outputs. It follows by inspection that A′ perfectly sim-
ulates the “ideal" hybrid, i.e., it maps H ′

1 to H1. On the other hand, if z = M̄s � x̄, then
from the view of A′ the matrix Y is distributed as

y j,s j = 〈m′
j , s〉 � x j , y j,1−s j = (

(−1)s j · d j
)
�

(〈m′
j , s〉 � x j

)
, j ∈ [n].

Because d is distributed uniformly and independently from M̄ (in the view of A), it
follows that {y j,1−s j } j∈[n] is distributed uniformly in the view of A as well, and hence,
A′ properly simulates the “real" hybrid H0, as required. This completes the proof of
Theorem 3.4. �

3.3. Trapdoor Functions from LHS-Hard wPR-EGA

In this section, we extend our technique of publicly computable shifts (used in our
construction of hinting PRG from LHS-hard EGA) to achieve a direct construction of
TDFs from any LHS-hard weak pseudorandom EGA. Our construction avoids the many
layers of generic transformation required by the prior construction of TDFs from such
isogeny-based assumption proposed in [1] based on the framework of [26].
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Construction. Let (G, X, �) be a wPR-EGA such that LHS assumptions holds over
(G, X, �). We now describe a construction of TDF from such EGA. LetExt : S×X → G
be a (statistical) extractor where S denotes the seed space.9

• Gen(1λ): Sample M ← G
n×n where n = n(λ) is the secret dimension of the LHS

assumption. Sample x̄ ← Xn ,x ← Xn , t ← G
n ,seed ← S, and lety = t�xwhere

the action is applied componentwise. Output the tuple ek = (seed,M, x̄, x, y) as
evaluation key and t as trapdoor.

• Eval(ek = (seed,M, x̄, x, y), (s ∈ {0, 1}n, r ∈ Xn, r′ ∈ Xn)): To evaluate the
function on the input (s, r, r′), output (V ∈ Xn×2,Z ∈ Xn×2) where10

vi,si = Ext
(
seed, 〈mi , s〉 � x̄i

)
� xi , vi,1−si = ri ,

zi,si = Ext
(
seed, 〈mi , s〉 � x̄i

)
� yi , zi,1−si = r ′

i , i ∈ [n].

• Invert(t, (V,Z)): To invert on the input (V,Z) using the trapdoor t, first compute
s as follows:

si =
{

0 ti � vi,0 = zi,0,

1 ti � vi,1 = zi,1.

Let r and r′ be two vectors such that ri = vi,1−si and r ′
i = zi,1−si for i ∈ [n].

Output (s, r, r′).
Correctness of the inversion algorithm follows by inspection. We prove the one-

wayness of the scheme via the following theorem.

Theorem 3.5. If (G, X, �) is an LHS-hard wPR-EGA, then the construction above
satisfies one-wayness.

Proof. To prove the one-wayness, it suffices to show that

H0 := (ek,V,Z)
c≈ (ek,U,U′) := H3,

where ek, V, Z are distributed as in the construction above, and U, U′ are two random
matrices of set elements. We do the proof via a hybrid argument.

• H0: This is the “real" game and H0 corresponds to the tuple (ek,V,Z) where ek,
V, Z are distributed as in the construction.

• H1: In this hybrid, we change the way two matrices are generated. Specifically, this
hybrid corresponds to the tuple (ek,V(1),Z(1)) where V(1) and Z(1) are distributed

9Note that we cannot use the bit representation of an element of X to generate a group element G without
using extractor, because for some EGAs (and in particular for isogeny-based group actions), elements of X
do not have compact representation.

10mi denotes the i th row of M.
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as follows.

v
(1)
i,si

= Ext
(
seed, 〈mi , s〉 � x̄i

)
� xi , v

(1)
i,1−si

= ρi � xi , ρi ← G,

z(1)
i,si

= Ext
(
seed, 〈mi , s〉 � x̄i

)
� yi , z(1)

i,1−si
= ρi � yi , i ∈ [n].

• H2: In this hybrid, we use randomly chosen group elements instead of using the
vector s to generate the output matrices. This hybrid corresponds to the tuple
(ek,V(2),Z(2)) where V(2) and Z(2) are distributed as follows.

v
(2)
i,si

= σi � xi , v
(2)
i,1−si

= ρi � xi , (σi , ρi ) ← G
2,

z(2)
i,si

= σi � yi , z(2)
i,1−si

= ρi � yi , i ∈ [n].

• H3: This hybrid corresponds to the tuple (ek,U,U′) where two matrices U and U′
are generated randomly.

We argue the indistinguishability of consecutive hybrids as follows:

• H0
c≈ H1: This follows from the weak pseudorandomness of the group action. Given

a challenge tuple (x, y, x′, y′) where (x′, y′) is either uniform and independent of
(x, y) or x ′

i = ρi � xi , y′
i = ρi � yi for i ∈ [n], the reduction samples

seed ← S, M ← G
n×n, s ← {0, 1}n, x̄ ← Xn,

and outputs (ek = (seed,M, x̄, x, y), V̄, Z̄), where V̄ and Z̄ are computed as

v̄i,si = Ext
(
seed, 〈mi , s〉 � x̄i

)
� xi , v̄i,1−si = x ′

i ,

z̄i,si = Ext
(
seed, 〈mi , s〉 � x̄i

)
� yi , z̄i,1−si = y′

i , i ∈ [n].

It follows by inspection that the reduction maps a random tuple to H0 and a pseu-
dorandom tuple to H1. Thus, the hybrid H0 is computationally indistinguishable
from H1 based on the weak pseudorandomness of EGA.

• H1
c≈ H2: This follows from the security of the underlying hinting PRG. By

Theorem 3.4, we know that (M, x̄,W)
c≈ (M, x̄,U), where U ← Xn×2, wi,si =

〈mi , s〉 � x̄i , and wi,1−si ← X for i ∈ [n]. Given a challenge tuple of the form
(M, x̄, W̄) such that W̄ is either distributed as W or U, the reduction samples
seed ← S, x ← Xn and y ← Xn , and outputs

(ek = (seed,M, x̄, x, y), V̄, Z̄),

where V̄ and Z̄ are computed as

v̄i,0 = Ext
(
seed, w̄i,0

)
� xi , v̄i,1 = Ext

(
seed, w̄i,1

)
� xi ,

z̄i,0 = Ext
(
seed, w̄i,0

)
� yi , z̄i,1 = Ext

(
seed, w̄i,1

)
� yi , i ∈ [n].
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Observe that the reduction maps “hinting" samples (W) to H1, and it maps random
samples (U) to H2. Thus, H1 is computationally indistinguishable from H2 based
on the LHS assumption.

• H2
c≈ H3: This follows from the weak pseudorandomness of the group action. The

proof is similar to the proof of H0
c≈ H1, and hence, we omit the details.

�

Remark 3.6. The input space of the TDF construction above consists of an n-bit string
and 2n set elements. We note that for the isogeny-based instantiation, we do not know
how to sample set elements directly and hence part of the input for our TDF construction
should be accompanied with a sampling algorithm. As discussed by the authors of [21],
TDFs with a sampling algorithm admit a trivial construction. While our construction
departs from this paradigm by having a two-part input space where each part can be
sampled independently, it still has the drawback of requiring a sampling algorithm for
one part of the input space. We refer to [21] for more details.

4. Hinting (weak) PRF and Circular Security

In this section, we define two extensions of hinting PRG, namely hinting weak PRF and
hintingPRF. We show a construction of symmetric-key circular/KDM-secure encryption
scheme from any hinting weak PRF. We then show concrete instantiations of hinting
weak PRFs based on any KHwPRF or any LHS-hard group action.

Our constructions are natural extensions of the realizations of hinting PRGs from
the same assumptions described in Sect. 3. Finally, we show a generic construction of
hinting PRF (and hence hinting weak PRF) from any hinting PRG with some special
structural properties.

4.1. Definitions

In this section, we formally define hinting weak PRF and hinting PRF. Unless otherwise
mentioned, we implicitly assume that λ is the security parameter and n = poly(λ).

Hinting weak PRF. Informally, a hinting weak PRF can be viewed as an extended
version of hinting PRG, where polynomially many hints of the secret key can be provided
(as opposed to only one hint in the hinting PRG security game).

Definition 4.1. (Hinting weak PRF). Let F : K × X → Ȳ be a weak PRF where
K = {0, 1}n and Ȳ = Yn for some efficiently samplable set Y . We say that F is a hinting
weak PRF if for any Q = poly(λ), we have

(
xi ,S(y(i), r(i))

)
i∈[Q]

c≈ (
xi ,Ui

)
i∈[Q],

where k ← K , xi ← X , r(i) ← Yn , Ui ← Yn×2, y(i) = F(k, xi ), and S(y(i), r(i)) is
an n by 2 “selector matrix” (with respect to k) defined as follows:
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Fig. 2. Experiment ExpHPRFb .

S j,k j (y
(i), r(i)) = y(i)

j , S j,1−k j (y
(i), r(i)) = r (i)

j , j ∈ [n].

To clarify the notation, S j,b denotes the ( j, b)th entry, k j is the j th bit of k, and y(i)
j

(respectively, r (i)
j ) denotes the j th entry of the vector y(i) (respectively, r(i)).

Hinting PRF. We define a hinting PRF similarly to a hinting weak PRF, except that now
the adversary is allowed to ask for hints with respect to the key of PRF for arbitrarily
chosen inputs (instead of randomly chose ones). There is one minor subtlety that needs
to be addressed. Specifically, an adversary should not be allowed to get multiple hints on
the same input, since otherwise an attacker can immediately break the hinting security
game. Below, we provide a definition of hinting PRF. It is easy to see that any hinting
PRF is a hinting weak PRF by definition.

Definition 4.2. (Hinting PRF). Let F : K × X → Ȳ be a PRF where K = {0, 1}n
and Ȳ = Yn for some efficiently samplable set Y . We say that F is a hinting PRF if the
advantage of any PPT attacker in distinguishing between the experiments ExpHPRF0 and
ExpHPRF1 (described in Fig. 2) is negligible.

4.2. Circular/KDM Security from Hinting Weak PRF

We now show a construction of symmetric-key circular/KDM-secure encryption scheme
from any hinting weak PRF. We note that Kitagawa et al. [26] demonstrated a construc-
tion of one-time symmetric-key KDM-secure encryption scheme from any hinting PRG.
In our construction, we do not have one-time restriction and an adversary can see poly-
nomially many encryptions of (function of) the secret key.
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Construction. Let F : K = {0, 1}n × X → Ȳ = Yn be a hinting weak PRF. Below, we
demonstrate a construction of symmetric-key circular-secure encryption scheme with
M = K = {0, 1}n based on F .

• Gen(1λ): To generate a secret key sample k ← {0, 1}n .
• Enc(k,m = (m1, . . . ,mn)) ∈ {0, 1}n): Sample x ← X and u ← Yn and let
y = F(k, x). Publish ct = (x,C) ∈ X × Yn×2 as the ciphertext where

ci,mi = yi , ci,1−mi = ui .

• Dec(k, ct = (x,C) ∈ X × Yn×2): Compute y = F(k, x). For each i ∈ [n], if
yi = ci,b set mi = b. Output m = (m1, . . . ,mn). (If the equality check fails for
some i ∈ [n], output ⊥).

Security. The circular security of the scheme above (for multiple encryption of the
secret key) is proved via the following theorem.

Theorem 4.3. If F : K = {0, 1}n × X → Ȳ = Yn is a hinting weak PRF as per
Definition 4.1, then the scheme above is IND-CPA secure and it satisfies circular security.

Proof. The IND-CPA security of the scheme follows from weak pseudorandomness of
F . To prove circular security, it suffices to show that for any polynomial Q = poly(λ)

(
(xi ,Ci )

)
i∈[Q]

c≈ (
(xi ,Ui )

)
i∈[Q],

where Ui ← Yn×2 and each (xi ,Ci ) is a fresh encryption of the secret key k. Observe
that by the construction above each Ci is distributed as the output of “selector matrix"
S (with respect to the secret key k, see Definition 4.1) on two vectors y(i) = F(k, xi )
and u(i) ← Yn , i.e., Ci = S(y(i),u(i)) with respect to k. Therefore, the hinting security
property of F implies that

(
(xi ,Ci )

)
i∈[Q]

c≈ (
(xi ,Ui )

)
i∈[Q].

On the other hand, the weak pseudorandomness of F implies that if {(xi ,Zi ) ←
Enc(k, 0n; xi )} then

(
(xi ,Ui )

)
i∈[Q]

c≈ (
(xi ,Zi )

)
i∈[Q],

and hence it follows that

(
Enc(sk, sk; xi ))i∈[Q]

c≈ (
Enc(sk, 0n; xi )

)
i∈[Q].

�

Remark 4.4. We remark that one can also consider a slightly modified version of the
construction for which one element from Y is published per each bit of the message,
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i.e., the encryption algorithm only publishes the first column of C (along with x). It is
immediate to see that the modified construction also satisfies circular security. However,
we presented the version above because it naturally corresponds to the security game of
a hinting weak PRF.

Realizing KDM security. We briefly describe two approaches to realize (symmetric-
key) KDM security with respect to apriori bounded-size circuits from hinting weak
PRF. Our first approach is to simply extend the construction of one-time KDM-secure
scheme based on hinting PRG from [26] to a construction of (many-time) KDM-secure
scheme based on hinting weak PRF. This is done by relying on the security of hinting
weak PRF to (securely) provide multiple encryption of (functions of) the secret key. The
construction and proof would be quite analogous to their setting, and hence, we omit the
details. As pointed in [26], the idea is to mask labels of garbled circuits using n blocks
of output of a primitive with hinting security property (which is PRG in their work and
weak PRF in ours).11

An alternative path is to use the generic amplification technique of [4] to realize KDM
security with respect to apriori bounded-size circuits from KDM security with respect to
projection functions. It can be easily verified that the construction above also provides
security for (multiple) encryptions of kiei or (1 − ki )ei , where ki denotes the i th bit of
the secret key and ei is the i th unit vector. Thus, based on the amplification results of [4],
we get a construction of KDM-secure SKE (with respect to bounded-size circuits) from
any hinting weak PRF.

4.3. Hinting (Weak) PRF from Hinting PRG

In this section, we show how to construct a hinting (weak) PRF in a generic manner
from any hinting PRG with sufficiently large block length (namely, that is stretches
an n-bit seed into an n(n + 1)-bit output, which can be viewed as an (n + 1)-length
sequence of n-bit strings).12 We note that this property is satisfied by many existing con-
structions of hinting PRGs, including the missing-block framework-based constructions
in [28], the accumulation-style framework-based constructions in [19], as well as our
DDH/KHwPRF and LHS-based constructions of hinting PRG.

Our construction establishes (somewhat surprisingly) the feasibility of generically
strengthening the hinting property of PRGs (where the adversary only gets a single
hint with respect to the seed of the PRG) to the hinting property of PRFs (where the
adversary gets multiple hints with respect to the secret key of the PRF). As mentioned in
Sect. 1, this transformation can be viewed as a deterministic analogue of a transformation
from one-time to full-fledged symmetric-key circular/KDM-secure SKE, which was not

11Note that the construction of [26] needs n + 1 blocks whereas our definition of hinting weak PRF has n
blocks as its output. However, this issue can simply be solved by evaluating the weak PRF on a fresh random
input and treating the evaluation output as the block that corresponds to the index 0.

12We choose the block length of the hinting PRG output to be n for simplicity of exposition. The construction
works analogously for the more general setting where each block has at least n bits of (pseudo-)entropy. In
particular, we note that if each block in the hinting PRG output does not have compact representation, one
can use a suitable statistical extractor to get a pseudorandom block of (at least) n bits, which suffices for our
construction.
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known prior to our work. As a corollary, we also get an alternative route for achieving
full-fledged symmetric-key circular/KDM-secure SKE from any hinting PRG satisfying
the aforementioned structural property.

Construction. Let G : {0, 1}n → {0, 1}n(n+1) be a hinting PRG. Also, let F : {0, 1}n ×
X → {0, 1}n be a PRF (not necessarily hinting).13 We construct a function F∗ : {0, 1}n×
X → {0, 1}n2

as follows.

• Gen(1λ): To generate a key, sample k ← {0, 1}n .
• F∗(k ∈ {0, 1}n, x ∈ X): Let (y0, y1, . . . , yn) = G(k) where yi ∈ {0, 1}n . Output

(y∗
1 , . . . , y∗

n ) = (
F(y1, x), . . . , F(yn, x)

)
.

Security. The following is true by a simple hybrid argument: assuming that G is a
(plain) PRG and F is a PRF, F∗ is a (plain) PRF. Below, we formally argue that F∗
is a hinting PRF assuming that G is a hinting PRG. Concretely, we prove the following
theorems.

Theorem 4.5. If G is a hinting PRG as per Definition 2.10 and F is a weak PRF, then
F∗ is a hinting weak PRF as per Definition 4.1.

Theorem 4.6. If G is a hinting PRG as per Definition 2.10 and F is a PRF, then F∗ is
a hinting PRF as per Definition 4.2.

Proof of Theorem 4.5. We first present the proof of Theorem 4.5.

Proof. We need to prove that for any Q = poly(λ), we have

(
xi ,S(y(i), r(i))

)
i∈[Q]

c≈ (
xi ,Ui

)
i∈[Q],

where k ← {0, 1}n , xi ← X , r(i) ← {0, 1}n2
, Ui ← ({0, 1}n)n×2, y(i) = F∗(k, xi ),

and S(y(i), r(i)) is an n by 2 “selector matrix” (with respect to k) defined as follows:

S j,k j (y
(i), r(i)) = y(i)

j , S j,1−k j (y
(i), r(i)) = r (i)

j , j ∈ [n],

where S j,b denotes the ( j, b)th entry, k j is the j th bit of k, and y(i)
j (respectively, r (i)

j )

denotes the j th entry of the vector y(i) (respectively, r(i)).
Let G(k) := (y0, . . . , yn). Observe that, by definition, for each xi ∈ X , we have

y(i) = F∗(k, xi ) = (
F(y1, xi ), . . . , F(yn, xi )

)
.

13We note that such a PRF can be built in a generic manner, assuming that G is a PRG (e.g., via the classic
PRG-to-PRF transformation in [15]).
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We first note that, since G is a hinting PRG, we have that

Y =
⎛
⎜⎝
y1,0 y1,1

...

yn,0 yn,1

⎞
⎟⎠ c≈ U =

⎛
⎜⎝
u1,0 u1,1

...

un,0 un,1

⎞
⎟⎠ ,

where these terms are distributed as

y j,k j = y j , y j,1−k j ← {0, 1}n, u j,b ← {0, 1}n .

For each i ∈ [Q], let

V(i) =
⎛
⎜⎝
F(y1,0, xi ) F(y1,1, xi )

...

F(yn,0, xi ) F(yn,1, xi )

⎞
⎟⎠ , W(i) =

⎛
⎜⎝
F(u1,0, xi ) F(u1,1, xi )

...

F(un,0, xi ) F(un,1, xi )

⎞
⎟⎠ .

Then, since Y
c≈ U, we have the following:

(
xi ,V(i))

i∈[Q]
c≈ (

xi ,W(i))
i∈[Q]. (∗)

Now, for each i ∈ [Q], let Z(i) ∈ ({0, 1}n)n×2 be a matrix of the form

Z(i) =

⎛
⎜⎜⎝
z(i)1,0 z(i)1,1

...

z(i)n,0 z(i)n,1

⎞
⎟⎟⎠ ,

where these terms are distributed as

z(i)j,k j = F
(
y j,k j , xi

) = F(y j , xi ), z(i)j,1−k j
← {0, 1}n .

Since F is a weak PRF and x1, . . . , xQ are uniformly random in X , the following is true
by a simple hybrid argument

(
xi ,V(i))

i∈[Q]
c≈ (

xi ,Z(i))
i∈[Q], (♦)

for Z(i) ∈ ({0, 1}n)n×2, where these terms are distributed as

z(i)j,k j = F
(
y j,k j , xi

) = F(y j , xi ), z(i)j,1−k j
← {0, 1}n,

and where the hybrid argument is over the “non-selected” positions in the matrix w.r.t.
the bits of the key vector k (i.e., over the z(i)j,1−k j

entries), which we switch from “real”
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wPRF evaluations under uniformly random keys on uniformly random input xi in the
matrix V(i) to uniformly random entries sampled from {0, 1}n in the matrix Z(i)).

Now, observe that, letting r(i) ← {0, 1}n2
and y(i) = F∗(k, xi ), we have that the

following distributions are, in fact, identical, i.e., we have

(
xi ,Z(i))

i∈[Q] ≡ (
xi ,S(y(i), r(i))

)
i∈[Q].

To see this, recall that S(y(i), r(i)) is an n by 2 “selector matrix” (with respect to k)
defined as follows:

S j,k j (y
(i), r(i)) = y(i)

j , S j,1−k j (y
(i), r(i)) = r (i)

j , j ∈ [n],

where S j,b denotes the ( j, b)th entry, k j is the j th bit of k, and y(i)
j (respectively,

r (i)
j ) denotes the j th entry of the vector y(i) (respectively, r(i)). Now, letting G(k) :=

(y0, . . . , yn), since we have

y(i) = F∗(k, xi ) = (
F(y1, xi ), . . . , F(yn, xi )

)
,

we have

S j,k j (y
(i), r(i)) = y(i)

j = F(y j , xi ) = z(i)j,k j .

In addition, we have

S j,1−k j (y
(i), r(i)) = r (i)

j ,

which is uniformly random in {0, 1}n and is hence distributed identically to z(i)j,1−k j
. This

completes the argument that the distributions above are identical, as desired.
Additionally, since F is a weak PRF and x1, . . . , xQ are uniformly random in X , the

following is also true by a simple hybrid argument

(
xi ,W(i))

i∈[Q] =
(
xi ,

(
F(u1,0, xi ) . . . F(un,0, xi )
F(u1,1, xi ) . . . F(un,1, xi )

))
i∈[Q]

(♦♦)

c≈
(
xi ,

(
u(i)

1,0 . . . u(i)
n,0

u(i)
1,1 . . . u(i)

n,1

))
i∈[Q]

= (
xi ,U(i))

i∈[Q],

where U(i) ∈ ({0, 1}n)n×2 (i.e., each u(i)
j,b ← {0, 1}n is uniformly sampled). Finally,

putting everything together, we get

(
xi ,S(y(i), r(i))

)
i∈[Q] ≡ (

xi ,Z(i))
i∈[Q]

c≈ (
xi ,V(i))

i∈[Q]
c≈ (

xi ,W(i))
i∈[Q]

c≈ (
xi ,U(i))

i∈[Q],
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as desired. This completes the proof of Theorem 4.5. �

Proof of Theorem 4.6. We now build upon the proof of Theorem 4.5 to prove Theorem 4.6.

Proof. Recall that our aim is to prove that F∗ is a hinting PRF assuming that G is a hint-
ing PRG and F is a PRF. Concretely, we prove that, for the PRF F∗ as described above,
the view of any PPT adversary A in the experiments ExpHPRF0 and ExpHPRF1 are com-
putationally indistinguishable, where the experiments are as described in Definition 4.2.
We prove this via a sequence of hybrids.

• Hybrid H0: This hybrid is identical to the experimentExpHPRF0 . Observe that, by the
definition of the PRF F∗, letting G(k) := (y0, . . . , yn), we have for each i ∈ [Q],

y(i) = (
y(i)

1 , . . . , y(i)
n

) = F∗(k, xi ) = (
F(y1, xi ), . . . , F(yn, xi )

)
,

and hence, from the adversary’s point of view, the entries of the i th selector matrix
S(y(i), r(i)) ∈ ({0, 1}n)2×n are distributed as follows:

S j,k j (y
(i), r(i)) = y(i)

j = F(y j , xi ), S j,k j (y
(i), r(i)) = r (i)

j ,

where r (i)
j ← {0, 1}n .

• Hybrid H1: This hybrid is identical to the hybrid H0 except that, for each i ∈ [Q],
the challenger no longer samples r(i) ← {0, 1}n2

. Instead, it samples u′
1, . . . , u

′
n ←

{0, 1}n , and sets each r(i) ∈ {0, 1}n2
as:

r(i) = (
r (i)

1 , . . . , r (i)
n

) = (
F(u′

1, xi ), . . . , F(u′
n, xi )

)
.

Hence, from the adversary’s point of view, the entries of the i th selector matrix
S(y(i), r(i)) ∈ ({0, 1}n)n×2 are now distributed as follows:

S j,k j (y
(i), r(i)) = y(i)

j = F(y j , xi ), S j,k j (y
(i), r(i)) = F(u′

j , xi ),

where u′
j ← {0, 1}n .

• Hybrid H2: This hybrid is identical to the hybrid H1 except that, for each i ∈ [Q],
the challenger does the following: it no longer sets y(i) = F∗(k, xi ). Instead, it
samples u1, . . . , un , and sets each y(i) ∈ {0, 1}n2

as:

y(i) = (
y(i)

1 , . . . , y(i)
n

) = (
F(u1, xi ), . . . , F(un, xi )

)
.

Hence, from the adversary’s point of view, the entries of the i th selector matrix
S(y(i), r(i)) ∈ ({0, 1}n)n×2 are now distributed as follows:

S j,k j (y
(i), r(i)) = y(i)

j = F(u j , xi ), S j,k j (y
(i), r(i)) = F(u′

j , xi ),

where u j , u′
j ← {0, 1}n .
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• Hybrid H3: This hybrid is identical to the hybrid H3 except that, for each i ∈ [Q],
the challenger does the following: it samples y(i), r(i) ← {0, 1}n2

. Hence, from the
adversary’s point of view, all of the entries of the i th selector matrix S(y(i), r(i)) ∈
({0, 1}n)n×2 are now distributed uniformly randomly in {0, 1}n .

• Hybrid H4: This hybrid is identical to the experiment ExpHPRF1 .

We now observe the following:

• H0
c≈ H1: Assuming that F is a PRF, it follows by a simple hybrid argument that

the hybrids H0 and H1 are computationally distinguishable. The proof is a direct
extension of the proof of the relation (♦) used to prove Theorem 4.5, to the case
where F is a PRF (as opposed to a weak PRF).

• H1
c≈ H2: Assuming that H is a hinting PRG, it follows that the hybrids H1 and

H2 are computationally distinguishable. The proof is identical to the proof of the
relation (∗) used to prove Theorem 4.5.

• H2
c≈ H3: Assuming that F is a PRF, it again follows by a simple hybrid argument

that the hybrids H2 and H3 are computationally distinguishable. The proof is a
direct extension of the proof of the relation (♦♦) used to prove Theorem 4.5, to the
case where F is a PRF (as opposed to a weak PRF).

• H3 ≡ H4: Finally, hybrids H3 and H4 are identical, since in hybrid H3, the distri-
bution of each selector matrix S(y(i), r(i)) ∈ ({0, 1}n)n×2 is identical to that of a
uniformly random matrix U(i) ← ({0, 1}n)n×2, which is precisely the view of the
adversary in the experiment ExpHPRF1 , and hence, in hybrid H4.

This completes the proof of Theorem 4.6. �

Finally, we state the following corollaries.

Corollary 4.7. (Corollary of Theorems 3.2, 3.4, and 4.6).Assuming any KHwPRF or
any LHS-hard EGA, there exists a hinting PRF. In particular, assuming any DDH-hard
group, there exists a hinting PRF.

Corollary 4.8. (Corollary of Theorems 4.3 and 4.6). Assuming the existence of a
hinting PRG, there exists a construction of full-fledged circular/KDM-secure SKE.

5. Functional Hinting Property and KDM Security

In this section, we introduce functional hinting PRG, which is a strengthening of hinting
PRG that guarantees PRG security in the presence of hints about each bit of some
function of the seed. We also introduce a natural extension, namely a functional hinting
wPRF, that guarantees wPRF security in the presence of multiple hints about each bit of
some (adversarially chosen) function of the secret key. We show that a functional hinting
weak PRF with respect to a family of functionsF can be used to realize a symmetric-key
KDM-secure encryption scheme with respect to the same function family F in a black-
box manner. We then build upon our approach of realizing hinting PRGs and hinting
weak PRFs to realize simple constructions of functional hinting PRGs and functional



Cryptographic Primitives with Hinting Property Page 35 of 49 21

weak PRFs for the family of projective quadratic functions (and functions of higher
degree) based on the DDH assumption.

5.1. Functional Hinting PRG

We first define functional hinting PRG, which is a generalized version of hinting PRG
for which the security game is defined in terms of a function of the seed of PRG, rather
the seed itself. A plain hinting PRG can be simply viewed as a functional hinting PRG
with respect to the identity function.

Definition 5.1. (Functional hintingPRG).Let f : {0, 1}n → {0, 1}m be an efficiently
computable (Boolean) function. A functional hinting PRG Gpp : {0, 1}n → Ȳ = Ym+1

with respect to f is defined by two algorithms (Setup,Eval) as follows:

• Setup(1λ, 1n, 1m): A randomized algorithm that takes the seed length n and the
number of hinting blocks m, and it outputs pp as the public parameter.

• Eval(pp, i ∈ {0} ∪ [m], s ∈ {0, 1}n): A deterministic algorithm that on pp and an
index i , it outputs yi ∈ Y . By stacking the outputs for all i ∈ {0} ∪ [m], we can
view the output as an element of Ym+1, i.e., Gpp(s) ∈ Ym+1.

We say that Gpp (defined by the algorithms above) is a functional hinting PRG with
respect to the function f : {0, 1}n → {0, 1}m , if for pp ← Setup(1λ, 1n, 1m) and
randomly chosen seed s ← {0, 1}n it holds that

(
y0, (y j,b) j∈[m],b∈{0,1}

) c≈ (
u0, (u j,b) j∈[m],b∈{0,1}

)
,

where

v := f (s) ∈ {0, 1}m, (y0, y1,v1 , . . . , ym,vm ) = Gpp(s) ∈ Ym+1,

and all other elements are generated uniformly from Y , i.e.,

{y j,1−v j ← Y } j∈[m], u0 ← Y, {u j,b ← Y } j∈[m],b∈{0,1}.

In the next part, we describe a construction of functional hinting PRG for the quadratic
function of the seed (where the seed is viewed a vector of bits) from the DDH assumption,
i.e., it is possible to (securely) provide a hint with respect to f (s) where f : {0, 1}n →
{0, 1}n2

defined as f (s) = s ⊗ s, which can be viewed as a vectorized form of sst ∈
{0, 1}n×n .

Functional hinting PRG for quadratic function from DDH. Let (G, g, q) be a DDH-
hard group, and let n be an integer such that n > 2 log |G| + ω(log λ). Recall from
Sect. 2.4 that, given a cyclic group G with generator g, we use the notation [a] = ga

and [M] = gM (exponentiation being applied componentwise) where a ∈ Zq and
M ∈ Z

m×n
q for any positive integer m and n. We use the notation 〈a,b〉 to denote the

“dot product” of a ∈ Z
n
q and b ∈ Z

n
q modulo q.
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Our construction of functional hinting PRG Gpp : {0, 1}n → G
n2+1 from DDH is as

follows:

• Setup(1λ, 1n, 1n
2
): For each j ∈ {0} ∪ [n2], sample [M j ] ← G

n×n and publish
pp = ([M j ]

)
j∈{0}∪[n2].

• Eval(pp, s ∈ {0, 1}n, i ∈ {0} ∪ [n2]): Let [Mi ] denote the i th matrix from pp.
Output [stMi s].14

Security. We prove the security of the construction via the following theorem.

Theorem 5.2. If (G, g, q) is a DDH-hard group then the construction above yields a
functional hinting PRG for the quadratic function from DDH.

Proof. First, observe that by Lemma 5.3 (proved below) for Q = n2 + 1 samples we
have

([M j ], [stM j s]
)
j∈[n2+1]

c≈ ([M j ], [u j ]
)
j∈[n2+1]

(where [u j ] ← G for each j ∈ [n2 + 1]) and hence the pseudorandomness of the
output in the plain PRG game follows from Lemma 5.3. Let α : [n2] → [n] and
β : [n2] → [n] be two simple index mapping functions that map any index i ∈ [n2]
to (α(i) = �i/n�, β(i) = i mod n). Note that α and β simply provide a way to write a
vector with n2 elements as an n × n matrix.

To establish the security of the construction in the functional hinting PRG game, it is
enough to show that

([M0], [stM0s],
([Mi ]

)
i∈[n2], [Y]) c≈ ([M0], [u], ([Mi ]

)
i∈[n2], [U]), (�)

where [u] ← G and [U] ← G
n2×2 are sampled uniformly and [Y] ∈ G

n2×2 is
distributed as follows

σ(i) = sα(i) · sβ(i), [yi,σ (i)] = [stMi s], [yi,1−σ(i)] ← G, i ∈ [n2].

Note that σ(i) outputs the (α(i), β(i)) entry of sst ∈ {0, 1}n×n for any index i ∈ [n2].
We prove (�) via a hybrid argument. Let H0 and H1 be the hybrids that correspond to
the left-hand side and right-hand side of (�), respectively.

Let A be an adversary that distinguishes H0 from H1. We construct an adversary A′
that distinguishes H ′

0 from H ′
1 defined as

H ′
0 := ([M0], [stM0s],

([Mi ]
)
i∈[n2], y

)
, H ′

1 := ([M0], [u], ([Mi ]
)
i∈[n2],u

)
,

where [yi ] = [stMi s] for each i ∈ [n2], and by Lemma 5.3 it follows that the advantage
of A should also be negligible.

14Note that given any matrix of group elements [M] ∈ G
n×n and any binary vector s ∈ {0, 1}n , one can

efficiently compute [stMs].
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Given a tuple H ′
b = ([m0], [z0],

([Mi ]
)
i∈[n2], [z]

)
, where H ′

b is distributed as either

H ′
0 or H ′

1, the external adversary A′ forms n2 matrices [P jk] ∈ G
n×n (for j ∈ [n], k ∈

[n]) where [P jk] is a matrix whose all but one entry is the identity element of the
group and the remaining one entry at the position ( j, k) is sampled uniformly from G.
Concretely, A′ samples a shift vector [d] ∈ G

n2
, and it sets the (α(i), β(i)) entry of

[Pα(i),β(i)] as [di ] for each i ∈ [n2]. In the next step, A′ runs A on the following tuple

([m0], [z0], [M′
i ] := [Mi + Pα(i),β(i)], [Y]),

where [Y] is an n2 by 2 matrix whose first and second columns are [z] and [z + d],
respectively. We define the output of A′ to be the same as the output of A.

Observe that (in the view of the adversary A) [M0] and ([M′
i ])i∈[n2] are distributed

uniformly. Moreover, if [z] is uniform, then [Y] will be distributed uniformly as well.
Thus, A′ perfectly simulates the “ideal" hybrid H1. On the other hand, if [zi ] = [stMi s]
(for each i ∈ [n2]) then from the view of A′ the matrix [Y] is distributed as

σ(i) = sα(i) · sβ(i), [yi,σ (i)] = [stM′
i s], [yi,1−σ(i)] = [(−1)σ(i) · di + stM′

i s], i ∈ [n2].

Note that the relations above hold because

[stM′
i s] = [stMi s + sα(i) · sβ(i) · di ], i ∈ [n2].

Since [d] is distributed uniformly and independently from [M′] (in the view of A), it
follows that

(
([M′

i ])i∈[n2],Y
) s≈ (

([M′
i ])i∈[n2],U

)
,

where [U] ← G
n2×2, and hence, A′ properly maps the hybrid H ′

0 to (a hybrid that is
statistically indistinguishable from) H0, as required. �

Lemma 5.3. Let (G, g, q) be a DDH-hard group and fix some integer � and n such
that n > 2 log |G|+ω(log λ) and � = poly(λ). If {[Mi ] ← G

n×n}i∈[�] and s ← {0, 1}n,
then

([Mi ], [stMi s]
)
i∈[�]

c≈ ([Mi ], [ui ]
)
i∈[�],

where [ui ] ← G is sampled uniformly for each i ∈ [�].

Proof. Let [M̄] ∈ G
n×n be a matrix of group elements such that its ( j, k)-th entry is

[a j · bk] where a j ← Zq , bk ← Zq (for j ∈ [�], k ∈ [n]). In addition, let ([M̂i ])i∈[�] be
� matrices of group elements defined as

[M̂i ] = [ri · M̄], ri ← Zq , i ∈ [�].
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Next, observe that,

stM̄s = (at s) · (bt s) ∈ Zq .

In order to argue that stM̄s is statistically indistinguishable from uniformly random inZq ,
it suffices to show that (at s) and (bs) are statistically indistinguishable from uniformly
random in Zq . To see this, let

W :=
[
at

bt

]

Since |s| = n > 2 log(q) + ω(log λ), by the leftover hash lemma over Z2
q , we have

(W,Ws)
s≈ (W,w),

where w ← Z
2
q . It follows that

([M̄], [stM̄s]) s≈ ([M̄], [u′]),

where [u′] ← G, which in turn implies that

([M̂i ], [stM̂i s]
)
i∈[�]

s≈ ([M̂i ], [ri · u′])i∈[�], c≈ ([M̂i ], [ui ]
)
i∈[�],

and the computational indistinguishability follows from the DDH assumption. On the
other hand, by the DDH assumption we have

([Mi ]
)
i∈[�]

c≈ ([M̂i ]
)
i∈[�],

and hence a standard hybrid argument implies that

([Mi ], [stMi s]
)
i∈[�]

c≈ ([Mi ], [ui ]
)
i∈[�],

as required. �

Functional hinting PRG for higher degree functions. The above construction of func-
tional hinting PRG allows us to publish a hint with respect to the function g(s) = s⊗s ∈
{0, 1}n2

. Here we describe a way to obtain functional hinting PRG for functions of higher
degree. One can generalize the construction above for functions of higher degree k > 2
by using nk many k-dimensional array/tensor of uniformly chosen group elements as
the public parameter, and the evaluation will be shrinking down each array in the pub-
lic parameter to only one group element by computing a G-linear function across each
dimension using the seed s. For instance, given nk many k-dimensional array of uni-
formly chosen group elements one can construct a functional hinting PRG for degree
k functions where each of nk blocks provides a hint with respect to si1si2 · · · sik , for
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Fig. 3. Experiment ExpFHwPRFb with respect to F .

(i1, . . . , ik) ∈ [n]k . The construction and proof will be similar to the quadratic case, and
hence, we omit the details.

5.2. Functional Hinting Weak PRF

Similar to the case of hinting PRG, we define a generalized version of hinting weak PRF
for which the security game is defined in terms of function(s) of the secret key, rather
the key itself. Our notion of hinting weak PRF can be viewed as a functional hinting
weak PRF with respect to the identity function. There are two approaches to define a
functional hinting weak PRF: one approach is to guarantee security in the presence of
multiple hints of a fixed function of the secret key (corresponding to different inputs),
and another approach is to provide security in the presence of multiple hints of different
functions of the secret key. We provide a formal definition of the latter in this section,
and later we provide an instantiation based on DDH for certain family of functions.

Definition 5.4. (FunctionalHintingwPRF).LetF = { f I | f I : {0, 1}n → {0, 1}m}I∈I
be a family of Boolean functions, and let F : K × X → Ȳ be a weak PRF where
K = {0, 1}n and Ȳ = Ym for some efficiently samplable set Y . We say that F is a
functional hinting weak PRF with respect to F if the advantage of any PPT attacker
in distinguishing between the experiments ExpFHwPRF0 and ExpFHwPRF1 (described in
Fig. 3) is negligible.

For a (Boolean) function g : {0, 1}n → {0, 1}m we define the projective function
family Fg as follows:

Fg = { f : {0, 1}n → {0, 1}m | ∃b ∈ {0, 1}m : f (x) = (b1 · g1(x), . . . , bm · gm(x))},
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where gi (x) denotes the i th bit of g(x) and the condition holds for all x ∈ {0, 1}n . We
may drop the subscript g for the sake of simplicity when the function is clear from
context. Informally, F contains all of the functions whose i th bit of the output (on any
input) is either 0 or the i th output bit of g (on the same input). Note that given the
function g, each function in F can be described by a binary vector b. For instance, the
function g itself corresponds to all-one vector 1.

In the next part of this section, we show a construction of functional hinting weak PRF
for the family of projective quadratic functions based on the DDH assumption. Later, we
describe how we can generalize this construction to the family of projective functions of
higher degree. We note that a functional hinting weak PRF for the family of projective
quadratic functions can be viewed as an extended version of a functional hinting PRG
for the quadratic function g(s) = s ⊗ s, with an additional property that an adversary
can adaptively “fix" the hint for arbitrary positions. Below, we describe a construction
of functional hinting weak PRF for the family of projective quadratic functions Fg (as
defined above) based on the DDH assumption.

Functional hinting weak PRF for projective quadratic functions. Let (G, g, q) be a
DDH-hard group, and let n > 2 log |G| + ω(log λ) be an integer. We use the notation
from Sect. 5.1 to show a construction of functional hinting weak PRF. Consider the weak
PRF F : {0, 1}n × (Gn×n)n

2 → G
n2

defined as follows:

• Gen(1λ): To generate a key, sample k ← {0, 1}n .
• F(k = {0, 1}n, ([Mi ])i∈[n2] ∈ (Gn×n)n

2
): Output ([ktMik])i∈[n2].

Security. We prove the security of the construction via the following theorem.

Theorem 5.5. If (G, g, q) is a DDH-hard group, then the construction above yields a
functional hinting weak PRF for the projective quadratic function familyFg from DDH.

Proof. Weak pseudorandomness of F (in the plain weak PRF game) follows from
Lemma 5.3. To establish the functional hinting security (with respect to Fg), we need to

prove thatExpFHwPRF0
c≈ ExpFHwPRF1 . To show this, we extend the proof of DDH-based

functional hinting PRG for quadratic function to multiple instances by keeping track of
each function fi (determined by bi ). As mentioned before, a binary vector bi ∈ {0, 1}n2

can be used to describe any function fi ∈ Fg (along with g). First, by Lemma 5.3 for
any Q = poly(λ) we have

H0 :=
(([M(�)

i ])
�∈[n2],

([ktM(�)
i k])

�∈[n2]
)
i∈[Q]

c≈

H1 :=
(([M(�)

i ])
�∈[n2], [ui ]

)
i∈[Q],

where [ui ] ← G
n2

. Let A be an adversary that distinguishes ExpFHwPRF0 from
ExpFHwPRF1 , and let Q be the total of queries made by A. We construct an adversary A′
to distinguish H0 from H1. Given samples of the form
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Hb :=
(([M(�)

i ])
�∈[n2], [zi ]

)
i∈[Q]

where Hb is distributed as either H0 or H1, the adversary A′ runs A. Whenever A makes
its i th query for a function fi ∈ Fg determined by a binary vector bi ∈ {0, 1}n2

, the

adversary A′ responds the i th query as follows. A′ samples [di ] ← G
n2

. Let α and β be
the index mapping functions from the proof of Theorem 5.2. For � ∈ [n2], the adversary
A′ sets

[M̄(�)
i ] := [M(�)

i ] + [b(�)
i · d(�)

i · Eα(�),β(�)],

where Eα(�),β(�) is an n × n matrix whose (α(�), β(�)) entry is 1, and all other entries

are 0. (Note that b̄(�)
i and d(�)

i denote the �th component of bi and di , respectively.)

A′ sends
(([M̄(�)

i ])
�∈[n2], [Yi ]

)
to A as the response for the i th query, where [Yi ] ∈

G
n2×2 is the matrix whose first and columns are [z(i)] and [d(i)+z(i)]. We now argue that

A′ properly maps Hb to ExpFHwPRFb for b ∈ {0, 1}. First, we consider the simpler case

b = 1. Observe that the matrices
([M̄(�)

i ])
�∈[n2],i∈[Q] are uniformly distributed in the

view of A. Moreover, if ([zi ])i∈[Q] are distributed uniformly and independently (which
happens when b = 1), then ([Yi ])i∈[Q] will be uniformly distributed as well and hence
A′ properly maps H1 to ExpFHwPRF1 .

If b = 0, based on an argument similar to the proof of DDH-based hinting PRG for
the quadratic function, it can be verified that for each i ∈ [Q] we have

[Yi ] = S( fi , [y(i)], [u(i)]),

where S is the “selector mapping” (as defined in the experiment) and

v(i) := fi (k) = bi � g(k) = bi � (k ⊗ k),

[y(i)] := ([ktM̄(�)
i k])

�∈[n2], [u(i)] := [(−1)v
(i) � d(i) + y(i)],

S
j,v(i)

j

(
fi , [y(i)], [u(i)]) = y(i)

j , S
j,1−v

(i)
j

(
fi , [y(i)], [u(i)]) = u(i)

j , j ∈ [n2],

where � denotes the component-wise/Hadamard product and (−1)v(i) is the vector
obtained by component-wise exponentiation. It follows that in the view of the adversary
A

(([M̄(�)
i ])

�∈[n2], [Yi ]
)
i∈[Q]

s≈ S
(
fi , [y(i)], [r(i)])i∈[Q],

where [ri ] ← G
n2

. Therefore, A′ properly maps the hybrid H0 to (a hybrid that is
statistically indistinguishable from) ExpFHwPRF0 , as required. �

Functional hinting weak PRF for higher degree function families. The construction
above allows (securely) publishing many hints with respect to the projective function
family Fg where g(s) = s⊗ s ∈ {0, 1}n2

. Similar to the case of hinting PRG, we briefly
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describe how to construct functional hinting weak PRF for the projective function family
Fh (where h is degree k function for some k > 2), which enables publishing a hint in
each block with respect to a projective function of si1si2 · · · sik , for (i1, . . . , ik) ∈ [n]k .
Similar to the case of functional hinting PRG, a generalized version of the construction
above can be obtained using nk many k-dimensional array/tensor of uniformly chosen
group elements for each input, and the output of F is obtained by computing a G-linear
function across each dimension using the weak PRF key k.

5.3. F-KDM Security from Functional Hinting Weak PRF

In this section, we show that any functional hinting weak PRF with respect to a function
family F immediately implies a symmetric-key F-KDM secure encryption scheme in
a black-box way.

Construction. Let F : K × X → Ȳ be a functional hinting weak PRF with respect to
the function family F = { f I : {0, 1}n → {0, 1}m}I∈I where K = {0, 1}n and Ȳ = Ym .
Our construction of F-KDM secure SKE is identical to that of circular-secure SKE from
(plain) hinting weak PRF with a minor difference that the message space is determined
by the codomain of functions in F , rather than the length of secret key. Below, we recall
the encryption algorithm, the key generation and decryption algorithms are identical to
those of Sect. 4.2.

• Enc(k ∈ {0, 1}n,µ = (μ1, . . . , μm) ∈ {0, 1}m): Sample x ← X and u ← Ym

and let y = F(k, x). Publish ct = (x,C) ∈ X × Ym×2 as the ciphertext where

ci,μi =
{
yi μi = 0,

ui μi = 1,
ci,1−μi =

{
ui μi = 0,

yi μi = 1.

Theorem 5.6. If F : K × X → Ȳ is a functional hinting weak PRF with respect to
F = { f I : {0, 1}n → {0, 1}m}I∈I where K = {0, 1}n and Ȳ = Ym, then the scheme
described above satisfies F-KDM security.

Proof. The proof is similar to the proof of Theorem 4.3, and here we sketch an argument.
First, observe that CPA security of the scheme follows immediately from the weak
pseudorandomness of F . To argue KDM security (with respect to F), observe that for
any adversary making Q = poly(λ) adaptive queries ( fi )i∈[Q], the query-response pairs
have the form (xi ,Ci ) where xi ← X and Ci = S( fi , y(i), r(i)), and the latter is the
selector matrix (see Definition 5.4) with respect to fi (k), which is distributed as:

v(i) = fi (k), S
j,v(i)

j
( fi , y(i), r(i)) = y(i)

j , S
j,1−v

(i)
j

( fi , y(i), r(i)) = r (i)
j , j ∈ [m].

By the functional hinting property of F , it follows that

(
(xi ,Ci )

)
i∈[Q]

c≈ (
(xi ,Ui )

)
i∈[Q],
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where each Ui ← Ym×2 is sampled uniformly. On the other hand, the weak pseudoran-
domness of F implies if {(xi ,Zi ) ← Enc(k, 0m; xi )} then

(
(xi ,Ui )

)
i∈[Q]

c≈ (
(xi ,Zi )

)
i∈[Q],

and hence, it follows that

(
(xi ,Ci )

)
i∈[Q]

c≈ (
(xi ,Zi )

)
i∈[Q].

�

F-KDM Security for PKE. While a functional hinting weak PRF (with respect to
some function family F) implies a symmetric-key F-KDM secure encryption scheme
in a black-box manner, it is natural to also ask for a (black-box) construction of F-KDM
secure PKE based on a more “structured" functional weak PRF. Indeed, it can be easily
verified that the DDH-based construction of functional hinting weak PRF with respect to
projective quadratic functions (or higher degree functions) is homomorphic with respect
to the input space, and we can exploit this property (by relying on techniques from [3]) to
get a construction of F-KDM secure public-key encryption from any functional hinting
weak PRF that additionally satisfies input homomorphism. As a concrete example, below
we describe a black-box construction of DDH-based KDM-secure PKE (with respect to
projective quadratic function family), but we sketch a short proof since the analysis is
quite similar to the symmetric-key case. A construction for functions of higher degree
can be obtained similar to the construction of functional weak PRF for functions of
higher degree from DDH.

Construction. Let (G, g, q) be a DDH-hard group, and fix some integer m and n such
that n > 2 log |G| + ω(log λ) and m = n2.

• Gen(1λ): To generate a secret key sample k ← {0, 1}n . Sample m matrices
([Mi ] ← G

n×n)i∈[m], and set [yi ] = [ktMik] for i ∈ [m]. Output (sk,pk) as

sk = k, pk = (
([Mi ])i∈[m], [y]

)
.

• Enc(pk,µ = (μ1, . . . , μm) ∈ {0, 1}m): Sample (ri ← {0, 1}m)i∈[m] and also
[u] ← G

m . For each i ∈ [m] compute

[M∗
i ] :=

[ m∑
j=1

r ( j)
i · M j

]
, [y∗

i ] :=
[ m∑

j=1

r ( j)
i · y j

]
,

where r ( j)
i denotes the j th bit of the vector ri . Output ct = (

([M∗
i ])i∈[m],C

) ∈
(Gn×n)m × G

m×2 where

ci,μi = [y∗
i ], ci,1−μi = [ui ].
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• Dec(sk, ct = (
([M∗

i ])i∈[m],C
)
): For each i ∈ [m], compute [y′

i ] = [ktM∗
i k]. If

y′
i = ci,b set μi = b. Output µ = (μ1, . . . , μm). (If the equality check fails for

some i ∈ [m], output ⊥).

Proof sketch.. Let g(k) = k ⊗ k ∈ {0, 1}m , and let Fg be the family of projective
quadratic functions. For any adversary with Q adaptive queries ( fq ∈ Fg)q∈[Q], let the

tuple ([M̄(q)
i ], [C̄(q)])q∈[Q] be Q ciphertexts such that

([M̄(q)
i ], [C̄(q)]) ← Enc(pk, fq(k)),

where Q = poly(λ). Observe that by Lemma 5.3 we have

(pk, [M̄(q)
i ], [C̄(q)])q∈[Q]

c≈ (pk, [M(q)
i ], [C(q)])q∈[Q],

where [M(q)
i ] ← G

n×n and each [C(q)] is distributed as

v(q) := fq(k), c(q)

i,v(q)
i

= [ktM(q)
i k], c(q)

i,1−v
(q)
i

= [ui ] ← G.

Therefore, it is enough to show that

([Mi ], [ktMik])i∈[m], ([M(q)
i ], [C(q)])q∈[Q]

c≈ (∗)

([Mi ], [ui ])i∈[m], ([M(q)
i ], [U(q)])q∈[Q],

where [ui ] ← G for i ∈ [m], and U(q) ← G
m×2 for q ∈ [Q]. Finally, it follows by

Theorem 5.5 that the indistinguishability above (∗) holds, as required. �

6. Realizing Hinting Property from Random Oracles

In this section, we investigate the complexity of cryptographic primitives with hinting
property, and we show that a hinting (weak) PRF can be realized in the random oracle
model (ROM). In fact, we show that the existing construction(s) of PRG and (weak) PRF
in the random oracle model (with sufficiently large output length) already satisfies the
hinting property. By a simple information-theoretic argument, we first show that why the
(folklore) construction of PRG in the random oracle model satisfies the hinting property.
We extend this solution to other primitives with hinting properties, namely weak and
plain/strong PRFs.

Hinting PRG in the random oracle model. Let H : {0, 1}n → Yn+1 be a truly random
function (modeled as a random oracle), where Y is a sufficiently large set. As a concrete
choice, the reader may assume that Y = {0, 1}n , but the argument is applicable for
any set Y with superpolynomially large size, i.e., |Y | = λω(1). We use Hi (s) to the
i th component of H(s) for i ∈ [n]. It is well known that one can treat H as a PRG
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in the random oracle model since any (computationally unbounded) attacker cannot
distinguish between H(s ← {0, 1}n) and u ← Yn+1 with polynomially many queries
to the function H . Let’s consider H in the hinting PRG security game. Informally, an
adversary should distinguish between two matrices Y ∈ Yn×2 and U ← Yn×2 where
yi,si = Hi (s) and yi,1−si ← Y .15 First, observe that for any query s′ �= s to the oracle H
by the adversary, we know that H(s′) is distributed uniformly and independently from
H(s). Thus, the only information that the adversary can gain about any bit of s is via
H(s). On the other hand (assuming that the adversary does not query s), for all rows of Y
we can argue that the joint distribution of yi,si and yi,1−si is statistically indistinguishable
from uniform distribution over Y 2, allowing us to argue the indistinguishability of Y
and U. We formalize this brief argument via the following lemma.

Lemma 6.1. If H : {0, 1}n → Yn+1 is a function such that n = poly(λ) and Y is
a superpolynomially large set (i.e., |Y | = λω(1)), then H(·) is a hinting PRG if H is
modeled as a random oracle.

Proof. Let A be any (computationally unbounded) adversary, and let Q be the set of
all queries made by A. Since Q = poly(λ), it follows that Pr[s ∈ Q] ≤ negl(λ) (where
s denotes the seed). Thus, we simply focus on the event that s /∈ Q. Let (y0,Y) ∈ Yn×2

be an element-matrix pair where y0 = H0(s) and Y is distributed as defined above, i.e.,
yi,si = Hi (s) and yi,1−si ← Y . Let (ȳ0, Ȳ) ∈ Y × Yn×2 be an arbitrary element-matrix
pair. We will argue that in the view of A, any element-matrix pair is equally likely to be
equal to (y0,Y), conditioned on s /∈ Q. Specifically, conditioned on s /∈ Q, for any A
we have

Pr[(y0,Y) = (ȳ0, Ȳ)] = Pr[y0 = ȳ0] ·
n∏

i=1

(
Pr[yi,si = ȳi,si ] · Pr[yi,si = ȳi,1−si ]

)

= Pr[H0(s) = y0] ·
(

n∏
i=1

Pr[yi,1−si = ȳi,1−si ]
)

·
(

n∏
i=1

Pr[Hi (s) = ȳi,si ]
)

= |Y |−n−1 · ( n∏
i=1

Pr[Hi (s) = ȳi,si ]
)

= |Y |−2n−1,

where the third line follows from the fact that yi,1−si is sampled uniformly in the game,
and the last line follows from the fact that H is a random oracle. It follows that for any

adversary A making at most |Q| = Q = poly(λ) queries we have (y0,Y)
s≈ (u0,U),

where u0 ← Y and U ← Yn×2, as required. �

15For this brief argument, we ignore H0(s) for simplicity.
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Hinting PRF in the random oracle model. Expanding on the proof of Lemma 6.1, we
show that even the stronger notion of hinting PRF can also be realized in the random
oracle model. Let H : {0, 1}2n → Yn be a truly random function (modeled as a random
oracle), where Y is a sufficiently large set. For any two binary vectors k ∈ {0, 1}n and
x ∈ {0, 1}n , we use Hi (k, x) to denote the i th component of H(k, x).

Similar to the case of PRG, it is known that H (defined above) is a PRF if H is modeled
as a random oracle. In the next lemma, we show that this construction also satisfies the
hinting property, i.e., H is a hinting PRF if H is modeled as a random oracle. The proof
is similar to the case of hinting PRG, with a difference that now two kinds of queries
should be analyzed: (1) queries by the adversary to the random oracle, and (2) queries to
the challenger in the hinting PRF game. In the hinting PRF security game, an adversary
(making at most Q queries) should distinguish between H0 and H1, where H0 are H1
are defined as follows:

H0 := (Y(�))�∈[Q], H1 = (U(�))�∈[Q],

y(�)
i,si

= Hi (k, x�), yi,1−si ← Y, U(�) ← Yn×2, � ∈ [Q], i ∈ [n].

Observe that for any query (k′, x) to the oracle H by the adversary, if k �= k′ then we
know that H(k′, ·) does not provide any information on k. By an argument similar to the
case of hinting PRG, we show that queries of the second kind do not leak information
about k, and hence, the hinting property follows. We formalize this argument via the
following lemma.

Lemma 6.2. Let H : {0, 1}2n → Yn be a function such that n = poly(λ) and Y is
a superpolynomially large set (i.e., |Y | = λω(1)), then H(·, ·) is a hinting PRF if H is
modeled as a random oracle, where the first and second n bits denote the key space K
and input space X, respectively.

Proof. Let A be any (computationally unbounded) adversary, and let QO be the set
of all random oracle queries made by A. Let QHP = {xi }i∈[Q] be the set of all distinct
queries by A in the hinting PRF security game. By a simple union bound, because
|QO | + Q ≤ poly(λ) it follows that

Pr[(k, x′) ∈ QO for some x ′ ∈ X ] ≤ negl .

Thus, we focus our analysis conditioned on the event that none of oracle queries by A
starts with k. Conditioned on this event, it suffices to prove that H0

s≈ H1 where

H0 := (Y(�))�∈[Q], H1 = (U(�))�∈[Q],

y(�)
i,ki

= Hi (k, x�), y(�)
i,1−ki

← Y, U(�) ← Yn×2, � ∈ [Q], i ∈ [n].

In the next step, similar to the case of hinting PRG, we argue that conditioned on
the event above, any tuple of � matrices (Ȳ(�))�∈[Q] is equally likely to be equal to
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(Y(�))�∈[Q]. Specifically, we have

Pr[(Y(�))�∈[Q] = (Ȳ(�))�∈[Q]]

=
n∏

i=1

(
Pr[∀� ∈ [Q] : y(�)

i,ki
= ȳ(�)

i,ki
] · Pr[∀� ∈ [Q] : y(�)

i,ki
= ȳ(�)

i,1−ki
]
)

=
(

n∏
i=1

Pr[∀� ∈ [Q] : y(�)
i,1−ki

= ȳ(�)
i,1−ki

]
)

·
(

n∏
i=1

Pr[∀� ∈ [Q] : Hi (k, x�) = ȳ(�)
i,ki

]
)

= |Y |−�n ·
(

n∏
i=1

Pr[∀� ∈ [Q] : Hi (k, x�) = ȳ(�)
i,ki

]
)

= |Y |−2�n,

where the third line follows from the fact that each y(�)
i,1−ki

is generated uniformly and
independently, and the last line follows from the fact that H is a random oracle. It
follows that for any adversary A (making at most polynomially many queries) we have

H0
s≈ H1, as required. �
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