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Abstract. Fine-grained cryptography is constructing cryptosystems in a setting where
an adversary’s resource is a-prior bounded and an honest party has less resource than
an adversary. Currently, only simple form of encryption schemes, such as secret-key
and public-key encryption, are constructed in this setting. In this paper, we enrich the
available tools in fine-grained cryptography by proposing the first fine-grained secure
attribute-based encryption (ABE) scheme. Our construction is adaptively secure under
the widely accepted worst-case assumption, NC1 � ⊕L/poly, and it is presented in a
generic manner using the notion of predicate encodings (Wee, TCC’14). By properly
instantiating the underlying encoding, we can obtain different types of ABE schemes,
including identity-based encryption. Previously, all of these schemes were unknown
in fine-grained cryptography. Our main technical contribution is constructing ABE
schemes without using pairing or the Diffie-Hellman assumption. Hence, our results
show that, even if one-way functions do not exist, we still have ABE schemes with
meaningful security. For more application of our techniques, we construct an efficient
(quasi-adaptive) non-interactive zero-knowledge proof system.
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1. Introduction

1.1. Motivation

Modern cryptography bases the security of schemes on assumptions, including the basic
ones (such as the existence of one-way functions (OWFs)), the more advanced ones
(such as the hardness of factoring, discrete logarithms, and some lattice problems), and
the much more exotic ones (such as the existence of generic groups [25,30] or algebraic
groups [16]). Although there is some analysis on these assumptions, it is less desirable.
We are interested in how to construct cryptography based on much mild assumptions or
which form of security cryptography can be achieved if all classical assumptions (such
as the existence of OWFs) do not hold.

Fine-grained cryptography is a direction in approaching the aforementioned prob-
lems. It aims at cryptography with weaker security in a setting where adversaries have
only bounded resources and honest users have less resources than the adversaries. Un-
der this setting it is possible to make the underlying assumption extremely mild, for
instance, assuming NC1 � ⊕L/poly. This is a widely accepted worst-case assumption.
As ⊕L/poly is the class of languages with polynomial-sized branching programs and all
languages in NC1 have polynomial-sized branching programs of constant width [3], this
assumption holds if there exists one language having only polynomial-sized branching
programs of non-constant width. This is different from assuming the existence of OWFs
which is an average-case assumption. It requires that the OWF be hard to invert on a
random input. Hence, NC1 � ⊕L/poly is more likely to be true.

The study on fine-grained cryptography was initialized by Merkle [26]. In the re-
cent years, we are interested in which kind of cryptosystems can be constructed in this
setting. We highlight the recent constructions of OWFs [8], symmetric-key and (lev-
eled fully homomorphic) public-key encryption [9,13], verifiable computation [9], hash
proof systems (HPS) [14], and non-interactive zero-knowledge (NIZK) proof systems
[2]. However, due to the restriction on running resources, many important primitives re-
main unknown. Surprisingly, digital signature schemes are among them, although they
are implied by OWFs in the classical setting.
OurGoal: Fine-Grained Secure ABEs.We focus on constructing attribute-based encryp-
tion (ABE) schemes [18] with fine-grained security, since it has many applications and
implies important primitives, including digital signatures. In an ABE scheme, messages
are encrypted under descriptive values x, secret keys are associated with values y, and a
secret key decrypts the ciphertext if and only ifp(x, y) = 1 for some boolean predicatep.
Here the predicate p may express arbitrary access policy. This is in contrast to traditional
public-key encryption (PKE) schemes without access control on data. Identity-based en-
cryption [6,12,29] is a simplified version of ABE, where p is the equality predicate, and
it implies signatures in a natural manner (even in the fine-grained setting).

In general, it is challenging to construct ABEs. For instance, in the classical set-
ting, it is shown that IBEs cannot be constructed using trapdoor permutations (TDP) or
CCA-secure PKE schemes in a black-box manner [7]. Moreover, many pairing-based
constructions of ABE and IBE (for instance, [5,10]) heavily rely on the algebraic struc-
tures of pairing groups. These necessary structures are not available in fine-grained
cryptography. Thus, in this paper, we develop new techniques to improve on the state of
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the art of fine-grained cryptography, which only provides primitives related to TDP and
CCA-secure PKE.

1.2. Our Contributions

We construct the first fine-grained secure ABE scheme. In particular, our scheme is
computable in AC0[2] and secure against adversaries in NC1. Note that AC0[2] �

NC1 [28,31]. Similar to several existing NC1 fine-grained primitives [9,13,14], the
security of our scheme is based on the same worst-case assumption NC1 � ⊕L/poly.
This is a widely accepted, weak assumption. For simplicity, we consider fine-grained
cryptography as schemes with NC1 honest users and adversaries and security based on
NC1 � ⊕L/poly in the rest of this paper.

Previously, fine-grained cryptography can only achieve symmetric-key and public-
key encryption and HPS. Our work enriches its available tools and brings fine-grained
cryptography closer to classical cryptography in terms of functionality.

In particular, our construction is presented in a generic manner using predicate encod-
ings [10,36]. Hence, by suitably instantiating the underlying encoding, we directly obtain
a fine-grained IBE scheme (which in turn implies a fine-grained signature scheme), fine-
grained ABEs for inner-product encryption, non-zero inner-product encryption, spatial
encryption, doubly spatial encryption, boolean span programs, and arithmetic span pro-
grams, and also fine-grained broadcast encryption and fuzzy IBE schemes. Prior to this
work, it was unknown whether these primitives can be constructed in NC1 based on a
worst-case complexity assumption.

Finally, we use our technique to construct an efficient quasi-adaptive NIZK [22]
with fine-grained security. Here “quasi-adaptive” means that common reference strings
(CRSs) may depend on the language of the NIZK system.
Applications of Security Against NC1. Other than only relying on weak assumptions
and running with low complexity, our results have the following applications.

Since security against NC1 captures adversaries with limited parallel running-time,
our constructions are well-suited for systems where attacks make sense only if they
succeed in a short period of time. For example, our ABEs (and other fine-grained en-
cryption primitives) can be used to protect messages that are only valuable in a short
period of time, and that can be published or deleted later. As another example, the fine-
grained signature (implied by our fine-grained IBE) and fine-grained QA-NIZK prevent
adversaries from forging signatures and proofs with the running-time of an honest user,
thereby ensuring security by letting the system reject users who have timed out when
attempting to generate signatures or proofs. Moreover, as noted in [13], combining fine-
grained primitives with standard ones immediately yield hybrids that are secure against
NC1 adversaries underNC1 � ⊕L/poly and secure against polynomial time adversaries
under stronger assumptions.

1.3. Technique Overview

We borrow the frameworks of the pairing-based constructions of IBEs in [5] and ABEs in
[10] to upgrade the available fine-grained techniques [1,14,21] in achieving our goal. In a
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nutshell, we transform a suitable symmetric-key primitive to an ABE in the fine-grained
setting.

Previous frameworks in [5,10] use pairings and the Diffie-Hellman assumptions. In
contrast to them, our work develops new techniques to build ABEs without pairings or the
Diffie-Hellman assumptions, but only under the mild assumption that NC1 � ⊕L/poly.
For simplicity, we mostly focus on our techniques in the context of IBE here, and
give some ideas about how they can be extended to construct ABEs. In this paper, we
consider adaptive security where adversaries can adaptively request user secret keys and
a challenge ciphertext.
The Approach of Blazy, Kiltz, and Pan, and Its Limitations in NC1. The “MAC→IBE”
transformation of BKP [5] is an abstraction of the Chen-Wee (CW) IBE scheme [11],
and it also implements the “PRF→Signature” framework by Bellare and Goldwasser
(BG) [4] in the IBE context. The BKP transformation requires an “affine MAC”, namely,
a MAC whose verification is done by checking a particular system of affine equations.
Variables in these affine equations are included in the MAC secret key, and the (public)
coefficients are derived from the message (which will be the identity of the resulting
IBE scheme) to be signed. Such a MAC scheme can be constructed based on the Diffie-
Hellman assumption which is generalized as the MDDH assumption.

We give some ideas about how an affine MAC can be turned into an IBE scheme. The
master public key of an IBE scheme, pk = Com(skMAC), is a commitment of the MAC
secret key, skMAC. A user secret key usk[id] of an identity id consists of a BG signature,
namely, a MAC tag τid on the message id and a NIZK proof of the validity of τid w.r.t.
the secret key committed in pk.

Since the MAC verification consists of only affine equations, after implementing
the aforementioned commitments and NIZK proofs with a (tuned) Groth-Sahai (GS)
proof system [19],1 the BKP IBE ciphertext ctid can be viewed as a randomized linear
combination of pk w.r.t. id. This is the key observation of BKP. The BKP framework
can be further improved and extended to construct ABEs using predicate encodings [36]
as in the CGW framework [10] by Chen, Gay, and Wee.

The MDDH assumption and the pairing-based GS proofs are two key ingredients for
the BKP framework which are not available in fine-grained cryptography. One direction
to resolve this is to develop a fine-grained GS proof system, but it is not clear what the
counterpart of “pairing-product equations” will be. Instead, we achieve our goal with a
simpler and more direct approach.
AHard Subset Membership Problem forNC1 circuits. We first need to find a counterpart
of the MDDH assumption in NC1, since the separation assumption NC1 � ⊕L/poly
does not directly give us tools in constructing cryptographic schemes. In the work of
[1,21], it is shown that, if NC1 � ⊕L/poly holds, then the following two distributions
are indistinguishable for NC1 circuits:

{M0 ∈ {0, 1}n×n : M0
$← ZeroSamp(n)}

︸ ︷︷ ︸

=D0

and {M1 ∈ {0, 1}n×n : M1
$← OneSamp(n)}

︸ ︷︷ ︸

=D1

1Essentially, the BKP framework used the GS proof for linear equations and replaced the GS commitment
with the Pedersen commitment.
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where n = n(λ) is some polynomial in security parameter λ, and the randomized sam-
pling algorithms ZeroSamp and OneSamp output matrices with rank n − 1 and full
rank, respectively. Concrete definitions of these algorithms are given in Sect. 2.2, and
they are not relevant in this section.

This indistinguishability implies a hard subset membership problem inNC1 implicitly
given by Egashira, Wang, and Tanaka [15] for their HPS: Given a matrix M� from D0
and a random vector t in two specific distributions represented by M, the task of the
problem is to tell whether t is in the span of M.
Our IBE in NC1. Our main technical contribution is a new approach of using the subset
membership problem to transform an affine MAC to IBEs in the fine-grained setting. Our
starting point is constructing a secure affine MAC in NC1. We prove that, if the subset
membership problem is hard in NC1, then our MAC is secure for NC1 adversaries.

Next, we propose a generic construction of IBE based on affine MACs, following
the BKP framework. In stark contrast to the BKP, our construction does not require
pairings. Essentially, we develop a Groth-Sahai-like proof system in NC1 to prove the
validity of our affine MAC. This proof system allows us to show that if our affine MAC is
secure then our resulting IBE is secure in NC1. At the core of our proof system is a new
commitment scheme in NC1, for which we achieve the hiding property by exploiting
the concrete structure of matrices in D0.

We give more details about the security proof. Firstly, the zero-knowledge property
allows us to generate user secret keys for adversaries without knowing the MAC secret
key. Secondly, we show that if an adversary can break the adaptive security of our IBE,
then we can construct a reduction to break the security of our affine MAC. This is a crucial
step, and we require some extractability of the proof system to extract the MAC forgery
from the IBE adversary. In the BKP framework, this extractability can be achieved by
computing the inversion of some matrix A ∈ Zk×k

q for some positive integer k. However,
in our setting, inverting a matrix in {0, 1}n×n is impossible, otherwise, this will lead to
a distinguisher for the subset membership problem in NC1. Also, there is no known
way to sample a matrix with its inverse efficiently [14]. To solve it, our proof system
develop a new method in achieving this extractability without inverting any matrix. Our
core idea is to prove that with a fresh random string r $← {0} × {0, 1}n−1, it is possible
to extract the forgery from our NC1-commitments by switching the distribution of the
public parameter A ∈ D0 twice (from D0 to D1 and then back to D0) and changing the
distribution of r during the switching procedure.
Dual System Methodology inNC1 and ABE. Our techniques for IBE can also be viewed
as the dual system encryption methodology [35] inNC1, which is an alternative interpre-
tation of our approach. In our proof, there are two important technical steps, switching
ciphertexts to invalid and randomizing MAC tags in the user secret keys. These corre-
spond to switching ciphertexts and user secret keys from functional to semi-functional in
the dual system encryption methodology [5,10,24,35]. Dual system methodology is very
useful in constructing predicate encryption and it was only known with pairings. Our
work is for the first time implementing the dual system methodology without pairings.

Similar to the extension from BKP-IBE [5] to CGW-ABE [10], we further extend
our techniques in constructing ABEs. We first use (part of) a predicate encoding scheme
[10,36] to generalize the notion of affine MAC and make it useful for constructing ABEs.
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After that, we upgrade our IBE techniques, and transform the generalized affine MAC
to an adaptively secure ABE in NC1 via the rest part of the predicate encoding scheme.
Here, the predicate encoding scheme is to construct ABEs in a modular and generic way,
in particular, it can generalize the encoding of different ABEs (such as identity-based
encryption and inner-product encryption).
More Extension and Open Problem. We are optimistic that our approach can yield
many more new public-key schemes in fine-grained cryptography. In particular, we
show that our techniques can also be used to construct an efficient QA-NIZK in NC1

with adaptive soundness in “Appendix B”. Roughly, we use the technique for proving
the hiding property of the underlying commitment scheme in our IBE scheme to achieve
adaptive soundness.

Also, we are optimistic that our approach can be used to construct hierarchical IBE
[17,20]. We leave a detailed treatment of it as an open problem.

1.4. Comparison with the Proceedings Version

This is the full version of the paper appeared at Crypto 2021 [34]. In this full version,
we give the full proof for the security of the fine-grained IBE scheme in Sect. 4.2.
Additionally, we give the proof of Theorem 2.13, the definition, constructions, and
security proofs of the fine-grained QA-NIZKs (with the comparison to previous and
subsequent fine-grained NIZKs [2,32,33]), and the instantiations of predicate encodings,
in Appendices A to C.

2. Preliminaries

Notations.We note that all arithmetic computations are overGF(2) in this work. Namely,
all arithmetic computations are performed with a modulus of 2. We write a $← A(b)
(respectively, a = A(b)) to denote the random variable outputted by a probabilistic
(respectively, deterministic) algorithm A on input b. By x $← S we denote the process
of sampling an element x from a set or distributionS uniformly at random. By x ∈ {0, 1}n
we denote a column vector with size n and by, say, x ∈ {1}× {0, 1}n−1 we mean that the
first element of x is 1. By [n] we denote the set {1, · · · , n}. By xi (respectively, xi ) we
denote the i th element of a vector x (respectively, x). By negl we denote an unspecified
negligible function.

For a matrix A ∈ {0, 1}n×t with rank t ′ < n, we denote the sets {y | ∃x s.t. y = Ax}
and {x | Ax = 0} by Im(A) (i.e., the span of A) and Ker(A) respectively. By A⊥ ∈
{0, 1}n×(n−t ′) we denote a matrix consisting of n− t ′ linear independent column vectors
in the kernel of A�. Note that for any y /∈ Im(A), we have y�A⊥ �= 0. By (ai j )i∈[l], j∈[m]

we denote the matrix

⎛

⎜

⎝

a11 · · · a1m
...
. . .

...

al1 · · · alm

⎞

⎟

⎠. Let A = (ai j )i∈[l], j∈[m] be an l × m matrix and

B = (Bi j )i∈[m], j∈[n] be a large matrix consisting of m × n matrices Bi j for all i ∈ [m]
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and j ∈ [n]. By h � A we denote (h · ai j )i∈[l], j∈[m] and by A � B we denote

(

m
∑

k=1

aik � Bk j

)

i∈[l], j∈[n]
.

By Mn
0, Mn

1, and Nn , we denote the following n × n matrices:

Mn
0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Mn
1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 · · · 0 1
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Nn =

⎛

⎜

⎜

⎜

⎜

⎝

0 · · · 0
... 0 · · · 0

0
. . .

...

1 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

,

and by 0 we denote a zero vector (0, · · · , 0)�.
Games.We follow [5] to use code-based games for defining and proving security. A game
G contains procedures Init and Finalize, and some additional procedures P1, . . . ,Pn ,
which are defined in pseudo-code. All variables in a game are initialized as 0, and all
sets are empty (denote by ∅). An adversary A = {aλ}λ∈N is executed in game G w.r.t.
the security parameter λ (denote by Gaλ ) if aλ first calls Init, obtaining its output. Next,
it may make arbitrary queries to Pi (according to their specification) and obtain their
output. Finally, it makes one single call to Finalize(·) and stops. We use Gaλ ⇒ d to
denote that G outputs d after interacting with aλ, and d is the output of Finalize.

2.1. Function Families

In this section, we recall the definitions of function families, NC1 circuits, AC0[2]
circuits, and ⊕L/poly. Note that AC0[2] � NC1 [28,31].

Definition 2.1. (Function Family) A function family is a family of (possibly random-
ized) functions F = { fλ}λ∈N, where for each λ, fλ has a domain D f

λ and a range

R f
λ .

Definition 2.2. (NC1) The class of (non-uniform) NC1 function families is the set of
all function families F = { fλ}λ∈N for which there is a polynomial p(·) and constant c
such that for each λ, fλ can be computed by a (randomized) circuit of size p(λ), depth
c log(λ), and fan-in 2 using AND, OR, and NOT gates.
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Fig. 1. Definitions of LSamp,RSamp, ZeroSamp, andOneSamp. n = n(λ) is a polynomial in the security
parameter λ.

Definition 2.3. (AC0[2]) The class of (non-uniform) AC0[2] function families is the
set of all function families F = { fλ}λ∈N for which there is a polynomial p(·) and
constant c such that for each λ, fλ can be computed by a (randomized) circuit of size
p(λ), depth c, and unbounded fan-in using AND, OR, NOT, and PARITY gates.

One can see that multiplication of a constant number of matrices can be performed in
AC0[2], since it can be done in constant depth with PARITY gates.

Definition 2.4. (⊕L/poly) ⊕L/poly is the set of all boolean function families F =
{ fλ}λ∈N for which there is a constant c such that for each λ, there is a non-deterministic
Turing machine Mλ such that for each input x with length λ, Mλ(x) uses at most
c log(λ) space, and fλ(x) is equal to the parity of the number of accepting paths of
Mλ(x).

2.2. Sampling Procedure

We now recall the definitions of four sampling proceduresLSamp,RSamp,ZeroSamp,
and OneSamp in Fig. 1. Note that the output of ZeroSamp(n) is always a matrix of
rank n − 1 and the output of OneSamp(n) is always a matrix of full rank [13].

We now recall several assumptions and lemmata on ZeroSamp andOneSamp given
in [13].

Definition 2.5. (Fine-grained matrix linear assumption [13]) There exists a polyno-
mial n = n(λ) in the security parameter λ such that for any family A = {aλ}λ∈N in
NC1, we have

∣

∣Pr
[

aλ(M) = 1 | M $← ZeroSamp(n)
]

− Pr
[

aλ(M′) = 1 | M′ $← OneSamp(n)
]∣

∣ ≤ negl(λ).

Lemma 2.6. (Lemma 4.3 in [13]) If NC1 � ⊕L/poly, then the fine-grained matrix
linear assumption holds.

Remark. Notice that for any polynomial n = n(λ), we have { fn}λ∈N ∈ NC1 iff
{ fλ}λ∈N ∈ NC1 since O(log(n(λ))) = O(log(λ)). Hence, in the above lemma, we
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can also set n(·) as an identity function, i.e., n = λ. For simplicity, in the rest of the
paper, we always let ZeroSamp(·) and OneSamp(·) take as input λ.

The following lemma implies that for a matrix M� sampled by ZeroSamp(λ), there
is a unique non-zero vector with the first (respectively, last) element being 1 in the kernel
of M (respectively, M�).

Lemma 2.7. (Lemma 3 in [15]) For all λ ∈ N and all M� ∈ ZeroSamp(λ), it holds
that Ker(M�) = {0,k} where k is a vector such that k ∈ {0, 1}λ−1 × {1}.

Lemma 2.8. (Lemma 4 in [15]) For all λ ∈ N and all M� ∈ ZeroSamp(λ), it holds
that Ker(M) = {0,k} where k is a vector such that k ∈ {1} × {0, 1}λ−1.

The following lemma indicates a simple relation between the distributions of the
outputs of ZeroSamp(λ) and OneSamp(λ).

Lemma 2.9. (Lemma 7 in [15]) For all λ ∈ N, the distributions of M + Nλ and M′
are identical, where M� $← ZeroSamp(λ) and M′� $← OneSamp(λ).

We now give two lemmata showing that when sampling a random vector w from
{0, 1}λ, the first element ofw does not affect the distribution ofMw forM� ∈ ZeroSamp(λ).

Lemma 2.10. (Lemma 5 in [15]) For all λ ∈ N and allM� ∈ ZeroSamp(λ), it holds
that

Im(M) =
{

x|w ∈ {0} × {0, 1}λ−1, x = Mw
}

=
{

x|w ∈ {1} × {0, 1}λ−1, x = Mw
}

.

Lemma 2.11. For all λ ∈ N and all M� ∈ ZeroSamp(λ), the distributions of x and
x′ are identical, where w $← {0} × {0, 1}λ−1, w′ $← {1} × {0, 1}λ−1, x = Mw, and
x′ = Mw′.

Proof. According to Lemma 2.8, for any M� ∈ ZeroSamp(λ), there exists k ∈
Ker(M) such that k ∈ {1} × {0, 1}λ−1. Therefore, the distributions of (w + k), where
w $← {0} × {0, 1}λ−1, and w′ $← {1} × {0, 1}λ−1 are identical. Moreover, we have
Mw = M(w + k). Hence, the distributions of Mw and Mw′ are identical, completing
the proof of Lemma 2.11. �

Below we recall the a theorem implicitly given in [15] as the subset membership
problem for an HPS. Roughly, it shows that forM� $← ZeroSamp(λ), a vector sampled
from the span of M is indistinguishable from one sampled outside the span of M for any
adversary in NC1. The proof of this theorem is given in “Appendix A” for completeness.

Definition 2.12. (Fine-grained subsetmembershipproblem [15]) LetSY = {SampYesλ}λ∈N
and SN = {SampNoλ}λ∈N be function families described in Fig. 2. For all λ ∈ N, all
M� ∈ ZeroSamp(λ), and all x ∈ SampNoλ(M), we have x ∈ {0, 1}λ \ Im(M), then
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Fig. 2. Definitions of SY and SN. Note that SY,SN ∈ AC0[2], since they only involve operations including
sampling random bits and multiplication of a matrix and a vector.

for M� $← ZeroSamp(λ) and any adversary A = {aλ}λ∈N ∈ NC1, we have

∣

∣Pr
[

aλ(x,M) = 1 | x $← SampYesλ(M)
]

− Pr
[

aλ(x,M) = 1 | x $← SampNoλ(M)
]∣

∣ ≤ negl(λ).

Theorem 2.13. ([15]) If NC1 � ⊕L/poly, then the fine-grained subset membership
problem (see Definition 2.12) holds.

Remark. Note that the subset membership problem in [15] gives a stronger result addi-
tionally showing that the output distributions of SampYesλ(M) and SampNoλ(M) are
identical to the uniform distributions over Im(M) and {0, 1}λ \ Im(M) respectively. We
only need a weak form of it in this work.

2.3. Predicate Encodings

We now recall the definition of predicate encodings. As in [10], our resulting construction
of ABE is generally based on a predicate encoding. By exploiting various types of
encodings, we can achieve a broad class of ABEs.

Our definitions are slightly different from the original definition in [10], in that our
definition is over GF(2) rather than GF(p), and we require that the encodings are
performed in a circuit class C1.

Definition 2.14. (Predicate Encoding [10]) Let P = {pλ}λ∈N with pλ : X × Y →
{0, 1} be a predicate, where X and Y are polynomial-sized spaces associated with λ. An
C1-predicate encoding forP is a function familyPE = {rEλ, kEλ, sEλ, sDλ, rDλ}λ∈N ∈
C1 with

• rEλ : Y × {0, 1}� → {0, 1}η,
• kEλ : Y × {0, 1} → {0, 1}η,
• sEλ : X × {0, 1}� → {0, 1}ζ ,
• sDλ : X × Y × {0, 1}ζ → {0, 1},
• rDλ : X × Y × {0, 1}η → {0, 1},

where � = �(λ), η = η(λ), and ζ = ζ(λ) are polynomials in λ.
Linearity is satisfied is for all λ ∈ N and all (x, y) ∈ X × Y , rEλ(y, ·), kEλ(y, ·),

sEλ(x, ·), sDλ(x, y, ·), and rDλ(x, y, ·) are {0, 1}-linear. Namely, for any y ∈ Y , any
w0,w1 ∈ {0, 1}�, and any c ∈ {0, 1}, we have rEλ(y,w0 + w1 · c) = rEλ(y,w0) +
rEλ(w1) · c, and the same argument can be made for kEλ, sEλ, sDλ, and rDλ.
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Fig. 3. Definitions of Peq = {pλ}λ∈N and PEeq = {rEλ, kEλ, sEλ, sDλ, rDλ}.

Restricted α-reconstruction is satisfied if for all λ ∈ N, all (x, y) ∈ X ×Y such that
pλ(x, y) = 1, all w ∈ {0, 1}�, and all α ∈ {0, 1}, we have

rDλ(x, y, rEλ(y,w)) = sDλ(x, y, sEλ(x,w)) and rDλ(x, y, kEλ(y, α)) = α.

α-privacy is satisfied if for all λ ∈ N, all (x, y) ∈ X × Y such that pλ(x, y) = 0, and
all α ∈ {0, 1}, the following distributions are identical:

(x, y, α, sEλ(x,w), rEλ(y,w) + kEλ(y, α)) and (x, y, α, sEλ(x,w), rEλ(y,w)),

where w $← {0, 1}�.

Intuitively, in a modularly designed attribute-based encryption (ABE) scheme, the
attribute value in the user’s key is encoded by rEλ and kEλ, while that in the ciphertext
is encoded by sEλ. The decryption algorithm uses the associated decoding algorithms
rDλ and sDλ to decode (rEλ, kEλ) and sEλ respectively. The difference between the
decoding results of rDλ and sDλ for (rEλ, kEλ) and sEλ is the decoding result of rDλ

for kEλ only, which is used to yield the session key. These encoding algorithms can be
instantiated according to the predicates of different types of ABEs, thus allowing for a
modular and generic approach to ABE construction. Namely, different ABE schemes
can be constructed by plugging in different encoding algorithms, based on the desired
access structure for the scheme.
Remark on Notions for Predicate Encodings. Similar to [10], we abuse the notion

rEλ(x,W) where W = (wi j )i∈[l], j∈[m] and wi j ∈ {0, 1}�

for all i, j to denote the matrix

(rEλ(x,wi j ))i∈[l], j∈[m].

The same argument is made for (kEλ, sEλ, sDλ, rDλ).
Encoding for Equality. We now give an example of predicate encoding PEeq for equal-
ity Peq in Fig. 3. By instantiating our ABKEM given later in Sect. 5 with this encod-
ing, we immediately achieve an IBKEM. Linearity is straightforward. Restricted α-
reconstruction follows from the fact that u + x�w = u + y�w when x = y, and
α-privacy follows from the fact that u + x�w and u + y�w are pairwise independent if
x �= y.
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Fig. 4. Security Games PR-AT-CPAreal and PR-AT-CPArand for defining PR-AT-CPA security for

ABKEM. The boxed statement redefining K∗ is only executed in game PR-AT-CPArand.

2.4. Attribute-Based Key Encapsulation

We now give the definition of fine-grained ABKEM, the instantiation of which can be
easily converted into ABEs by using a one-time symmetric cipher.

Definition 2.15. (Attribute-based key encapsulation) A C1-attribute-based key encap-
sulation (ABKEM) scheme for a predicate P = {pλ}λ is a function family ABKEM =
{Genλ,USKGenλ,Encλ,Decλ}λ∈N ∈ C1 with the following properties.

• Genλ returns the (master) public/secret key (pk, sk). We assume that pk implicitly
defines value spaces X and Y , a key space K, and a ciphertext space C.

• USKGenλ(sk, y) returns a user secret-key usk[y] for a value y ∈ Y .
• Encλ(pk, x) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C w.r.t.
x ∈ X .

• Decλ(usk[y], y, x, ct) deterministically returns a decapsulated key K ∈ K or the
reject symbol ⊥.

Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all y ∈ Y , all
x ∈ X , all usk[y] ∈ USKGenλ(sk, y), and all (K, ct) ∈ Encλ(pk, x), if pλ(x, y) = 1,
we have

Pr[Decλ(usk[y], y, x, ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plaintext
and attribute attacks (PR-AT-CPA) defined as follows.

Definition 2.16. (PR-AT-CPA Security for ABKEM) Let k(·) and l(·) be functions in
λ. ABKEM is C2-(k, l)-PR-AT-CPA secure if for any A = {aλ}λ∈N ∈ C2, where aλ is
allowed to make k rounds of adaptive queries to USKGen(·) and each round it queries
l inputs, we have

∣

∣Pr
[

PR-AT-CPAaλ

real ⇒ 1
] − Pr

[

PR-AT-CPAaλ

rand ⇒ 1
]∣

∣ ≤ negl(λ),

where the experiments are defined in Fig. 4.
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3. Generalized Affine MAC

In this section, we give the definition of generalized affine MAC, which generalizes
the notion of standard affine MAC [5] by using predicate encodings, and show how to
construct it in the fine-grained setting under the assumption NC1 � ⊕L/poly.

3.1. Definitions

The definition of generalized affine MAC is as follows.

Definition 3.1. (Generalized AffineMAC) Let PE = {sEλ, rEλ, kEλ, sDλ, rDλ}λ∈N ∈
C1 be a predicate encoding for P = {pλ}λ∈N, where rEλ : Y × {0, 1}� → {0, 1}η,
kEλ : Y × {0, 1} → {0, 1}η, and sEλ : X × {0, 1}� → {0, 1}ζ .

A C1-generalized affine message authentication code for PE is a function family
MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ C1.

1. GenMACλ returns skMAC containing (B,X, x ′), where B� ∈ ZeroSamp(λ), X ∈
{0, 1}λ×�, and x ′ ∈ {0, 1}.

2. Tagλ(skMAC,m ∈ Y) returns a tag τ = (t,u) ∈ {0, 1}λ × {0, 1}η, computed as

t $← SampYesλ(B) (1)

u = rEλ(m,X�t) + kEλ(m, x ′) ∈ {0, 1}η. (2)

3. VerMACλ(skMAC,m, τ = (t,u)) verifies if Eq. (2) holds.

Correctness is satisfied if for anyskMAC ∈ GenMACλ,m ∈ Y , and τ ∈ Tagλ(skMAC,m),
we have 1 = VerMACλ(skMAC,m, τ ).

The security requirement we consider is psedorandomness against chosen message
attacks (PR-CMA) defined as follows.

Definition 3.2. (PR-CMA Security) Let k = k(λ) and l = l(λ) be polynomials in λ.
MACGA is C2-(k, l)-PR-CMA secure if for any A = {aλ}λ∈N ∈ C2, where aλ is allowed
to make k rounds of adaptive queries to Eval(·) and each round it queries l inputs, we
have

Pr
[

PR-CMAaλ

real ⇒ 1
] − Pr

[

PR-CMAaλ

rand ⇒ 1
] ≤ negl(λ),

where the experiments are defined in Fig. 5.

Roughly, the PR-CMA security says that in the presence of many tags and a chal-
lenge token (h0, h1), an adversary cannot tell whether the h1 is honestly generated or
randomness.
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Fig. 5. Games PR-CMAreal and PR-CMArand for defining PR-CMA security. The boxed statement re-

defining h1 is only executed in game PR-CMArand.

Fig. 6. Definition of MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N.

Standard Affine MAC. Let X = (x0, x1, · · · , xn)
$← {0, 1}λ×(n+1). When pλ(·) is an

identity function, u is computed as

u = x�
0 t +

n
∑

i=1

mix�
i t + x ′ ∈ {0, 1} (3)

in Eq. (2), and h0 is computed as

h0 = h ·
(

x�
0 +

n
∑

i=1

m∗
i x

�
i

)

∈ {0, 1}1×λ (4)

in Fig. 5, i.e., the predicate encoding is the one for equality (see Fig. 3), the above
definition becomes exactly the same as that of affine MAC given in [5] for the HPS
based IBKEM, except that we only consider computations over GF(2) and t is sampled
by SampYesλ. We give the definition as below.

Definition 3.3. (Affine MAC [5]) A Generalized affine MAC for the predicate Peq and
encoding PEeq defined as in Fig. 3 is said to be an affine MAC.

3.2. Construction

In this section, we give our construction of AC0[2]-generalized affine MAC based on
NC1 � ⊕L/poly. It is a natural extension of the standard affine MAC from an HPS in
[5].
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Fig. 7. Games G0, (G1,i ,G′
1,i )1≤i≤k·l ,G1,k·l+1,G2 for the proof of Theorem 3.4.

Theorem 3.4. IfNC1 � ⊕L/poly andPE = {sEλ, rEλ, kEλ, sDλ, rDλ}λ∈N ∈ AC0[2]
is a predicate encoding, where rEλ : Y×{0, 1}� → {0, 1}η, kEλ : Y×{0, 1} → {0, 1}η,
and sEλ : X × {0, 1}� → {0, 1}ζ , then MACGA is an AC0[2]-generalized affine MAC
that is NC1-(k, l)-PR-CMA secure, where k is any constant and l = l(λ) is any poly-
nomial in λ.

Proof. First, we note that ({GenMACλ}λ∈N, {Tagλ}λ∈N, {VerMACλ}λ∈N) are computable
in AC0[2], since they only involve operations including sampling random bits and mul-
tiplication of a constant number of matrices, which can be done in constant depth with
PARITY gates. Also, it is straightforward that MACGA satisfies correctness.

We now prove that MACGA is NC1-(k, l)-PR-CMA secure by defining a sequence of
intermediate games as in Fig. 7.

Let A = {aλ}λ∈N ∈ NC1 be any adversary against the PR-CMA-security of MACGA.
Game G0 is the real attack game. In games G1,i , the first i −1 queries to the Eval oracle
are answered with (t,u), where t $← SampNoλ(B) and u contains no information
on kEλ(m, x ′), and the remaining are answered as in the real scheme. To interpolate
between G1,i and G1,i+1, we also define G′

1,i , which answers the i-th query to Eval by

picking t $← SampNoλ(B). By definition, we have G0 = G1,1. �

Lemma 3.5. Pr[PR-CMAaλ

real ⇒ 1] = Pr[Gaλ

0 ⇒ 1] = Pr[Gaλ

1,1 ⇒ 1].

Lemma 3.6. There exists an adversary B1,i = {b1,i
λ }λ∈N ∈ NC1 such that b1,i

λ breaks
the fine-grained subset membership problem (see Definition 2.12), which holds under
NC1 � ⊕L/poly according to Theorem 2.13, with probability

∣

∣

∣Pr
[

G′aλ

1,i ⇒ 1
]

− Pr
[

Gaλ

1,i ⇒ 1
]∣

∣

∣ .
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Proof. Games G1,i and G′
1,i only differ in the distribution of t returned by the Eval

oracle for its i-th query. We build b1,i
λ as follows.

The distinguisher b1,i
λ runs in exactly the same way as the challenger in G1,i except

that for its i-th query, it obtains t which is sampled as t $← SampYesλ(B) or t $←
SampNoλ(B). When aλ outputs β ∈ {0, 1}, bλ outputs β if nom such that pλ(m∗,m) =
1 was queried to Eval. Otherwise, bλ outputs 0.

Since aλ only makes constant rounds of queries, all the operations in bλ are performed
in NC1. Hence, we have B1,i ∈ NC1.

When t is sampled as t $← SampYesλ(B) (respectively, t $← SampNoλ(B)), the
view of aλ is exactly the same as its view in G1,i (respectively, G′

1,i ). Thus the advantage

of b1,i
λ in breaking the subset membership problem is | Pr[G′aλ

1,i ⇒ 1] − Pr[Gaλ

1,i ⇒ 1]|,
completing this part of proof. �

Lemma 3.7. Pr[Gaλ

1,i+1 ⇒ 1] = Pr[G′aλ

1,i ⇒ 1].

Proof. Let m be the i-th query to Eval such that pλ(m∗,m) �= 1 and let (t,u) be its
tag. We have t /∈ Im(B) due to Theorem 2.13. We use an information-theoretic argument
to show that in G′

1,i , u does not reveal any information on x ′. Information-theoretically,

aλ may learn B�X from each c-th query with c > i . Thus, for X $← {0, 1}λ×� and
w $← {0, 1}�×1, aλ information-theoretically obtains the distribution of

⎛

⎝

X�B
h0 = h � sEλ(m∗,X�)

u = rEλ(m,X�t) + kEλ(m, x ′)

⎞

⎠

=
⎛

⎜

⎝

(X� + wB⊥�
)B

h0 = sEλ(m∗,X� + wB⊥�
)

u = rEλ(m, (X� + wB⊥�
)t) + kEλ(m, x ′)

⎞

⎟

⎠

=
⎛

⎝

X�B
h0 = sEλ(m∗,X�) + sEλ(m∗,wB⊥�

)

u = rEλ(m,X�t) + rEλ(m,w) + kEλ(m, x ′)

⎞

⎠ (∵ t /∈ Im(B)).

This distribution is identical to the distribution of

⎛

⎝

X�B
h0 = sEλ(m∗,X�) + sEλ(m∗,wB⊥�

)

u = rEλ(m,X�t) + rEλ(m,w)

⎞

⎠ ,

since the distribution of

(m∗,m, x ′, sEλ(m∗,w), rEλ(m,w) + kEλ(m, x ′)

and

(m∗,m, x ′, sEλ(m∗,w), rEλ(m,w)),
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Fig. 8. Games H0, (H1,i ,H′
1,i )1≤i≤k·l ,H1,k·l+1,H2 for the proof of Lemma 3.9.

are identical due to the α-privacy of PE, completing this part of proof. �

Lemma 3.8. Pr[Gaλ

2 ⇒ 1] = Pr[Gaλ

1,k·l+1 ⇒ 1].

Proof. Note that aλ can ask at most k · l-many Eval queries. In both G1,k·l+1 and G2,
all the answers of Eval are independent of x ′. Hence, h1 from G1,k·l+1 is uniform in
the view of aλ. �

We now do all the previous steps in the reverse order as in Fig. 8. Then, by using the
above arguments in a reverse order, we have the following lemma.

Lemma 3.9. There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks the
fine-grained subset membership problem with probability at least

(∣

∣Pr
[

PR-CMAaλ

rand ⇒ 1
] − Pr

[

Gaλ

2 ⇒ 1
]∣

∣

)

/(k · l).

Putting all above together, Theorem 3.4 immediately follows. �
An Affine MAC. By instantiating the underlying predicate encoding in Fig. 6 with the
encoding for equality (see Fig. 3), we immediately obtain an affine MAC MAC =
{GenMACλ,Tagλ,VerMACλ}λ∈N as in Fig. 9 for message space {0, 1}�, which will be
used to construct an IBE scheme in NC1 later. Formally, we have the following corollary
derived from Theorem 3.4.

Corollary 3.10. If NC1 � ⊕L/poly, then MAC is an AC0[2]-affine MAC that is
NC1-(k, l)-PR-CMA secure, where k is any constant and l = l(λ) is any polynomial in
λ.
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Fig. 9. Definition of MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N.

4. Fine-Grained Secure Identity-Based Encryption

In this section, we present our fine-grained IBE scheme, which captures the core tech-
niques of our ABE scheme given later in Sect. 5.

4.1. Definition

We now give the definition of fine-grained IBKEM, which is a special case of fine-
grained ABKEM (see Definition 2.15) where the boolean predicate is restricted to be
the equality predicate.

Definition 4.1. (Identity-based key encapsulation) A C1-identity key encapsulation
(IBKEM) scheme is a function family IBKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N ∈
C1 with the following properties.

• Genλ returns the (master) public/secret key (pk, sk). We assume that pk implicitly
defines an identity space ID, a key space K, and a ciphertext space C.

• USKGenλ(sk, id) returns a user secret-key usk[id] for an identity id ∈ ID.
• Encλ(pk, id) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C

w.r.t. id ∈ ID.
• Decλ(usk[id], id, ct) deterministically returns a decapsulated key K ∈ K or the

reject symbol ⊥.

Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all id ∈ ID, all
usk[id] ∈ USKGenλ(sk, id), and all (K, ct) ∈ Encλ(pk, id), we have

Pr[Decλ(usk[id], id, ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plaintext
and identity attacks (PR-ID-CPA) defined as follows.

Definition 4.2. (PR-ID-CPA Security for IBKEM) Let k(·) and l(·) be functions in
λ. IBKEM is C2-(k, l)-PR-ID-CPA secure if for any A = {aλ}λ∈N ∈ C2, where aλ is
allowed to make k rounds of adaptive queries to USKGen(·) and each round it queries
l inputs, we have

∣

∣Pr
[

PR-ID-CPAaλ

real ⇒ 1
] − Pr

[

PR-ID-CPAaλ

rand ⇒ 1
]∣

∣ ≤ negl(λ),
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Fig. 10. Security Games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-security for

IBKEM. The boxed statement redefining K∗ is only executed in game PR-ID-CPArand.

Fig. 11. Definition of our IBKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N with identity space {0, 1}� and
key space {0, 1}. idi denotes the i th bit of id for all i ∈ [�].

where the experiments are defined in Fig. 10.

4.2. Construction

Let MAC = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ NC1 be an affine MAC over {0, 1}λ
with message spaceID in Fig. 9. Our IBKEM IBKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N
for key-space K = {0, 1} and identity space {0, 1}� is defined as in Fig. 11.2

Theorem 4.3. Under the assumption NC1 � ⊕L/poly and the NC1-(k, l)-PR-CMA
security of MAC, where k is any constant and l = l(λ) is any polynomial in λ, IBKEM
is an AC0[2]-IBKEM that is NC1-(k, l)-PR-ID-CPA secure against NC1.

Proof. First, we note that {Genλ}λ∈N, {USKGenλ}λ∈N, {Encλ}λ∈N, and {Decλ}λ∈N
are computable in AC0[2], since they only involve operations including multiplication
of a constant number of matrices, sampling random bits, and running MAC ∈ AC0[2].

2The IBKEM can be straightforwardly extended to one with large key space as we will discuss later in
this section.
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Correctness follows from the fact that by Eq. (3) in Sect. 3.1, we have

(v||u)c0 =
(

t�
(

Y�
0 +

�
∑

i=1

idi � Y�
i

)

+ y′�||t�
(

x0 +
�

∑

i=1

idi � xi

)

+ x ′
)

Ar

t�c1 = t�
(

Y�
0 ||x0 +

�
∑

i=1

idi � (Y�
i ||xi )

)

Ar

and the difference of the two elements yields K = (y′�||x ′)Ar = z′ · r.
Let A = {aλ}λ∈N be any adversary against the NC1-(k, l)-PR-ID-CPA security of

IBKEM. We now prove the NC1-(k, l)-PR-ID-CPA security by defining a sequence of
games G0-G6 as in Fig. 12. Roughly, in the first four games, we show how to extract a
challenge token for MAC from the challenge session key and ciphertext by switching
the distribution of A twice and changing the distribution of the randomness r during
the switching procedure. In the last two games, we show that the commitments Zi and
z′ perfectly hide the secrets, and the answers of queries made by aλ reveal no useful
information other than the tags and token for MAC. �

Lemma 4.4. Pr[PR-ID-CPAaλ

real ⇒ 1] = Pr[Gaλ

1 ⇒ 1] = Pr[Gaλ

0 ⇒ 1].

Proof. G0 is the real attack game. In game G1, we change the simulation of c∗
0, c∗

1 and
K∗ inEnc(id∗) by substitutingZi and z′ with their respective definitions and substituting
A with A + Nλ. Since we have

Nλr=

⎛

⎜

⎜

⎜

⎜

⎝

0 · · · 0
... 0 · · · 0

0
. . .

...

1 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

0
r2
...

rλ

⎞

⎟

⎟

⎟

⎠

= 0,

the view of aλ in G1 is identical to its view in G0, completing this part of proof. �

Lemma 4.5. There exists an adversary B1 = {b1
λ}λ∈N such that b1

λ breaks the fine-
grained matrix linear assumption (see Definition 2.5), which holds under NC1 �

⊕L/poly according to Lemma 2.6, with advantage

∣

∣Pr
[

Gaλ

2 ⇒ 1
] − Pr

[

Gaλ

1 ⇒ 1
]∣

∣ .

Proof. G1 and G2 only differ in the distribution of A, namely, A� $← ZeroSamp(λ)

or A� $← OneSamp(λ), and we build the distinguisher b1
λ as follows.

b1
λ runs in exactly the same way as the challenger of G1 except that in Init, instead

of generating A by itself, it takes as input A� generated as A� $← ZeroSamp(λ) or
A� $← OneSamp(λ) from its own challenger. When aλ outputs β, b1

λ outputs β as well
if id∗ was not queried to USKGen. Otherwise, b1

λ outputs 0.
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Fig. 12. Games G0-G6 for the proof of Theorem 4.3.

If A is generated as A� $← ZeroSamp(λ) (respectively, A� $← OneSamp(λ)), the
view of aλ is the same as its view in G1 (respectively, G2). Hence, the probability that
b1
λ breaks the fine-grained matrix linear assumption is

∣

∣Pr
[

Gaλ

2 ⇒ 1
] − Pr

[

Gaλ

1 ⇒ 1
]∣

∣ .

Moreover, since aλ only makes constant rounds of queries, all operations in b1
λ are

performed inNC1. Hence, we have B1 = {b1
λ}λ∈N ∈ NC1, completing this part of proof.

�
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Lemma 4.6. Pr[Gaλ

3 ⇒ 1] = Pr[Gaλ

2 ⇒ 1].

Proof. In this game, we sample r in Enc(id∗) as r $← {1} × {0, 1}λ−1 instead of
r $← {0} × {0, 1}λ−1. According to Lemma 2.9, the distribution of A + Nλ in G2 and
G3 is identical to that of a matrix sampled from ZeroSamp. Then this lemma follows
from Lemma 2.11 immediately. �

Lemma 4.7. There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks the
fine-grained matrix linear assumption with advantage

∣

∣Pr
[

Gaλ

4 ⇒ 1
] − Pr

[

Gaλ

3 ⇒ 1
]∣

∣ .

Proof. G3 and G4 only differ in the distribution of A, namely, A� $← OneSamp(λ)

or A� $← ZeroSamp(λ), and we build the distinguisher b2
λ as follows.

b2
λ runs in exactly the same way as the challenger of G3 except that in Init, instead

of generating A by itself, it takes as input A� generated as A� $← ZeroSamp(λ) or
A� $← OneSamp(λ) from its own challenger. When aλ outputs β, b2

λ outputs β as well
if id∗ was not queried to USKGen. Otherwise, b2

λ outputs 0.
If A is generated as A� $← OneSamp(λ) (respectively, A� $← ZeroSamp(λ)), the

view of aλ is the same as its view in G3 (respectively, G4). Hence, the probability that
b2
λ breaks the fine-grained matrix linear assumption is

∣

∣Pr
[

Gaλ

4 ⇒ 1
] − Pr

[

Gaλ

3 ⇒ 1
]∣

∣ .

Moreover, since aλ only makes constant rounds of queries, all operations in b2
λ are

performed in NC1. Hence we have B2 = {b2
λ}λ∈N ∈ NC1, completing this part of proof.

�

Lemma 4.8. Pr[Gaλ

5 ⇒ 1] = Pr[Gaλ

4 ⇒ 1].

Proof. In G5, we do not use (Yi )
�
i=0 and y′ in USKGen(id) or Enc(id∗) any more. We

give the sampling procedure for A in an explicit way and change the simulation of Zi ,
z′, v, c∗

1, and K∗ as in Fig. 12. We now show that all the changes are purely conceptual.

In G5, we generate A by sampling R1 =
(

Iλ−1 0
r̃� 1

)�
$← RSamp(λ) and R0

$←
LSamp(λ), and setting A� = R0Mλ

0R1. This is exactly the “zero-sampling” procedure,
in which case, we have
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Zi = (Y�
i ||xi )A = (Y�

i ||xi )R�
1 M

λ
0
�
R�

0

= (Y�
i ||xi )

(

Iλ−1 0
r̃� 1

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .

0 · · · 0 1
0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R�
0

= (Y�
i + xi · r̃�||xi )

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .

0 · · · 0 1
0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R�
0

= (0||Y�
i + xi · r̃�)R�

0 = (0||Di )R�
0

and

c∗
1 =

�
∑

i=1

id∗
i � (Y�

i | xi )(A + Nλ)r =
�

∑

i=1

id∗
i � (Zir + xi ).

Hence, the distributions of Zi and c∗
1 in G5 remain the same, and the distributions of z′

and K∗ can be analyzed in the same way. The distribution of v does not change as well
since

v = t�
(

Y�
0 +

�
∑

i=1

idi � Y�
i

)

+ y′�

= t�
(

Y�
0 + x0 · r̃� +

�
∑

i=1

idi �
(

Y�
i + xi · r̃�)

)

+
(

y′� + x ′ · r̃�)

−
(

t�
(

x0 +
�

∑

i=1

idi � xi

)

+ x ′
)

· r̃�

= t�
(

D0 +
�

∑

i=1

idi � Di

)

+ d′ − u · r̃�.

Putting all above together, Lemma 4.8 immediately follows. �

Lemma 4.9. There exists an adversary B3 = {b3
λ}λ∈N ∈ NC1 such that b3

λ breaks the
NC1-(k, l)-PR-CMA-security of MAC with advantage

∣

∣Pr
[

Gaλ

6 ⇒ 1
] − Pr

[

Gaλ

5 ⇒ 1
]∣

∣ .
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Fig. 13. Description of B3 = {b3
λ}λ∈N (having access to the oracles InitMAC,Eval,Chal,FinalizeMAC

of the PR-CMAreal/PR-CMArand games of Fig. 5 (instantiated with the encoding for equality predicate)) for
the proof of Lemma 4.9.

Proof. The challenger of G6 answers the Enc(id∗) query by choosing random K∗. We
build b3

λ as in Fig. 13 to show that the differences between G6 and G5 can be bounded
by the advantage of breaking the PR-CMA security of MAC.

b3
λ runs in the same way as the challenger of G5 except that it samples Di and d′

uniformly at random from {0, 1}λ×(λ−1) and {0, 1}1×(λ−1) respectively. This does not
change the view of aλ since Yi and y′ were uniformly sampled in G5. Moreover, every
time on receiving a query id to USKGen, b3

λ forwards id to its evaluation oracle Eval
to obtain the answer (t, u), and on receiving the query id∗ to Enc, b3

λ forwards id∗ to
its challenge oracle Chal and uses the answer (h0, h1) to simulate r, c∗

1, and K∗ as in
Fig. 13. When aλ outputs β, b3

λ outputs β as well if id∗ was not queried to USKGen.
Otherwise, b3

λ outputs 0.
If h1 is uniform (i.e., b3

λ is in Game PR-CMArand) then the view of aλ is identical
to its view in G6. If h1 is real (i.e., b3

λ is in Game PR-CMAreal), then the view of aλ is
identical to its view in G5. Thus the advantage of b3

λ is exactly

∣

∣Pr
[

Gaλ

6 ⇒ 1
] − Pr

[

Gaλ

5 ⇒ 1
]∣

∣ .

Moreover, since all operations in b3
λ are performed in NC1, we have B3 = {b3

λ}λ∈N ∈
NC1, completing this part of proof. �

We now do all the previous steps in the reverse order as in Fig. 14. Note that the
view of the adversary in H0 (respectively, H4) is identical to its view in G6 (respectively,
PR-ID-CPArand). By using the above arguments in a reverse order, we have the following
lemma.

Lemma 4.10. There exists an adversary B4 = {b4
λ}λ∈N ∈ NC1 such that b4

λ breaks
the fine-grained matrix linear assumption with advantage

(∣

∣Pr
[

Haλ

4 ⇒ 1
] − Pr

[

Haλ

0 ⇒ 1
]∣

∣

)

/2.
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Fig. 14. Games H0-H4 for the proof of Theorem 4.3.

Putting all above together, Theorem 4.3 immediately follows. �
Extension to IBKEMwith Large Key Space. The key space of the above IBKEM is {0, 1},
while by running it in parallel, we can easily extend it to an IBKEM with large key space.
The resulting scheme can still be performed in AC0[2] since running in parallel does
not increase the circuit depth. The same extension can be also made for our fine-grained
secure ABKEM given later in Sect. 5.
Extension to QA-NIZK.Our techniques for proving the hiding property of the underlying
commitment scheme in our IBKEM can also be used to construct an efficient fine-grained
QA-NIZK in NC1 with adaptive soundness. We refer the reader to “Appendix C” for
details.

5. Fine-Grained Secure Attribute-Based Encryption

In this section, we generalize our IBE scheme as a fine-grained ABE scheme by using
predicate encodings [10,36]. By instantiating the underlying encodings in different ways,
we can achieve ABEs for inner product, non-zero inner product, spatial encryption,
doubly spatial encryption, boolean span programs, and arithmetic span programs, and
also broadcast encryption and fuzzy IBE schemes, which are computable in AC0[2] and
secure against NC1 under NC1 � ⊕L/poly. We refer the reader to “Appendix C” for
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Fig. 15. Construction of ABKEM = {Genλ,USKGenλ,Encλ,Decλ}λ∈N.

several instances of the encodings and also to [10] for more instances. We note that the
encodings in [10] are defined over GF(p), while the ours are over GF(2). However,
the proofs for encodings in [10] can be adopted in our case, since the linearity and
α-reconstruction properties hold in GF(p) also hold in GF(2) and by the standard
linear-independence arguments in GF(2), the α-privacy also holds in our case.

Let PE = {rEλ, kEλ, sEλ, sDλ, rDλ}λ∈N ∈ AC0[2] be a predicate encoding for
P = {pλ}λ∈N with rEλ : Y × {0, 1}� → {0, 1}η, kEλ : Y × {0, 1} → {0, 1}η, sEλ :
X × {0, 1}� → {0, 1}ζ , sDλ : X × Y × {0, 1}ζ → {0, 1}, and rDλ : X × Y ×
{0, 1}η → {0, 1}. Let MACGA = {GenMACλ,Tagλ,VerMACλ}λ∈N ∈ AC0[2] be a PE-
generalized affine MAC over {0, 1}λ with message space Y . Our ABKEM ABKEM =
{Genλ,USKGenλ,Encλ,Decλ}λ∈N is defined as in Fig. 15.

Theorem 5.1. Under theassumptionNC1 � ⊕L/poly and theNC1-(k, l)-sEλ-PR-CMA-
security ofMACGA, where k is any constant and l = l(λ) is any polynomial inλ,ABKEM
is an AC0[2]-ABKEM that is NC1-(k, l)-PR-AT-CPA secure against NC1.

Proof. First, we note that {Genλ}λ∈N, {USKGenλ}λ∈N, {Encλ}λ∈N, and {Decλ}λ∈N
are computable inAC0[2], since they only involve operations including multiplication of
a constant number of matrices, sampling random bits, and running MACGA ∈ AC0[2].

By Eq. (2) in Sect. 3.1, we have

rDλ(x, y, v||u)c0

= rDλ(x, y, rEλ

⎛

⎜

⎝y,

⎛

⎜

⎝

t�Y�
1

...

t�Y�
�

⎞

⎟

⎠ + kEλ(y, y′�)||
⎛

⎜

⎝

t�x1
...

t�x�

⎞

⎟

⎠ + kEλ(y, x ′)

⎞

⎟

⎠Ar
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and

sDλ(x, y,C1t) = sDλ(x, y, sEλ

⎛

⎜

⎝x,

⎛

⎜

⎝

t�(Y�
1 ||x1)
...

t�(Y�
� ||x�)

⎞

⎟

⎠

⎞

⎟

⎠)Ar.

Then, due to restricted α-reconstruction (see Definition 2.14), the difference of the above
equations yields K = (y′�||x ′)Ar = z′ · r, i.e., correctness is satisfied.

Let A = {aλ}λ∈N be any adversary against the NC1-(k, l)-PR-AT-CPA security of
ABKEM. We now prove the NC1-(k, l)-PR-AT-CPA security by defining a sequence of
games G0-G6 as in Fig. 16. Roughly, in the first four games, we show how to extract a
challenge token for MACGA from the challenge session key and ciphertext by switching
the distribution of A twice and changing the distribution of the randomness r during
the switching procedure. In the last two games, we show that the commitments Zi and
z′ perfectly hide the secrets, and the answers of queries made by aλ reveal no useful
information other than the tags and token for MAC. �

Lemma 5.2. Pr[PR-AT-CPAaλ

real ⇒ 1] = Pr[Gaλ

1 ⇒ 1] = Pr[Gaλ

0 ⇒ 1].

Proof. G0 is the real attack game. In game G1, we change the simulation of c∗
0, C∗

1 and
K∗ in Enc(x) by substituting Zi and z′ with their respective definitions and substituting
A with A + Nλ. Since we have

Nλr=

⎛

⎜

⎜

⎜

⎜

⎝

0 · · · 0
... 0 · · · 0

0
. . .

...

1 0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

0
r2
...

rλ

⎞

⎟

⎟

⎟

⎠

= 0,

the view of aλ in G1 is identical to its view in G0, completing this part of proof. �

Lemma 5.3. There exists an adversary B1 = {b1
λ}λ∈N ∈ NC1 such that b1

λ breaks the
fine-grained matrix linear assumption (see Definition 2.5), which holds under NC1 �

⊕L/poly according to Theorem 2.13, with advantage

∣

∣Pr
[

Gaλ

2 ⇒ 1
] − Pr

[

Gaλ

1 ⇒ 1
]∣

∣ .

Proof. G1 and G2 only differ in the distribution of A, namely, A� $← ZeroSamp(λ)

or A� $← OneSamp(λ), and we build the distinguisher b1
λ as follows.

b1
λ runs in exactly the same way as the challenger of G1 except that in Init, instead

of generating A by itself, it takes as input A� generated as A� $← ZeroSamp(λ) or
A� $← OneSamp(λ) from its own challenger. When aλ outputs β, b1

λ outputs β as well
if no y such that pλ(x, y) = 1 was queried to USKGen. Otherwise, b1

λ outputs 0.
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Fig. 16. Games G0-G6 for the proof of Theorem 5.1.

If A is generated as A� $← ZeroSamp(λ) (respectively, A� $← OneSamp(λ)), the
view of aλ is the same as its view in G1 (respectively, G2). Hence, the probability that
b1
λ breaks the fine-grained matrix linear assumption is

∣

∣Pr
[

Gaλ

2 ⇒ 1
] − Pr

[

Gaλ

1 ⇒ 1
]∣

∣ .
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Moreover, since aλ only makes constant rounds of queries, all operations in b1
λ are

performed inNC1. Hence, we have B1 = {b1
λ}λ∈N ∈ NC1, completing this part of proof.

�

Lemma 5.4. Pr[Gaλ

3 ⇒ 1] = Pr[Gaλ

2 ⇒ 1].

Proof. In this game, we sample r in Enc(x) as r $← {0, 1}λ instead of r $← {0} ×
{0, 1}λ−1. According to Lemma 2.9, the distributions of A + Nλ in both G2 and G3
are identical to that of a matrix sampled from ZeroSamp. Then this lemma follows
from Lemma 2.11 immediately. �

Lemma 5.5. There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks the
fine-grained matrix linear assumption with advantage

∣

∣Pr
[

Gaλ

4 ⇒ 1
] − Pr

[

Gaλ

3 ⇒ 1
]∣

∣ .

Proof. G1 and G2 only differ in the distribution of A, namely, A� $← OneSamp(λ) or
A� $← ZeroSamp(λ), and we build the distinguisher b2

λ against Lemma 2.6 as follows.
b2
λ runs in exactly the same way as the challenger of G3 except that in Init, instead

of generating A by itself, it takes as input A� generated as A� $← ZeroSamp(λ) or
A� $← OneSamp(λ) from its own challenger. When aλ outputs β, b2

λ outputs β as well
if no y such that pλ(x, y) = 1 was queried to USKGen. Otherwise, b2

λ outputs 0.
If A is generated as A� $← OneSamp(λ) (respectively, A� $← ZeroSamp(λ)), the

view of aλ is the same as its view in G3 (respectively, G4). Hence, the probability that
b2
λ breaks the fine-grained matrix linear assumption is

| Pr[Gaλ

4 ⇒ 1] − Pr[Gaλ

3 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in b2
λ are

performed inNC1. Hence, we have B2 = {b2
λ}λ∈N ∈ NC1, completing this part of proof.

�

Lemma 5.6. Pr[Gaλ

5 ⇒ 1] = Pr[Gaλ

4 ⇒ 1].

Proof. In G5, we do not use (Yi )
�
i=1 and y′ in USKGen(y) or Enc(x) any more. We

give the sampling procedure for A in an explicit way and change the simulation of Zi ,
z′, v, C∗

1, and K∗ as in Fig. 16. We now show that all the changes are purely conceptual.
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In G5, we generate A by sampling R1 =
(

Iλ−1 0
r̃� 1

)�
$← RSamp(λ) and R0

$←
LSamp(λ), and setting A� = R0Mλ

0R1. This is exactly the “zero-sampling” procedure,
in which case, we have

Zi = (Y�
i ||xi )A = (Y�

i ||xi )R�
1 M

λ
0
�
R�

0

= (Y�
i ||xi )

(

Iλ−1 0
r̃� 1

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .

0 · · · 0 1
0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R�
0

= (Y�
i + xi · r̃�||xi )

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .

0 · · · 0 1
0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R�
0

= (0||Y�
i + xi · r̃�)R�

0 = (0||Di )R�
0

and

C∗
1 = sEλ(x, ((Y�

1 | x1)(A + Nλ)r, · · · , (Y�
� | x�)(A + Nλ)r)�)

= sEλ(x, (Z1r + x1, · · · ,Z�r + x�)
�)

= sEλ(x, (Z1r, · · · ,Z�r)�) + sEλ(x, (x1, · · · , x�)
�).

Hence, the distributions of Zi in G5 remain the same, and the distributions of z′ and K∗
can be analyzed in the same way. The distribution of v does not change as well since

v = rEλ

(

y, (Y1t, · · · ,Y�t)�
)

+ kEλ

(

y, y′�)

= rEλ

(

y,
((

Y1 + r̃ · x�
1

)

t, · · · ,
(

Y� + r̃ · x�
�

)

t
)�)

+ kEλ

(

y, y′� + x ′ · r̃�)

−
(

rEλ

(

y,
(

r̃ · x�
1 · t, · · · , r̃ · x�

1 · t
)�)

+ kEλ

(

y, x ′ · r̃�)
)

= rEλ

(

y,
(

D�
1 t, · · · ,D�

� t
)�)

+ kEλ

(

y,d′) − u · r̃�.

Putting all above together, Lemma 5.6 immediately follows. �
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Fig. 17. Description of B3 = {b3
λ}λ∈N (having access to the oracles InitMAC,Eval,Chal,FinalizeMAC

of the PR-CMAreal/PR-CMArand games of Fig. 5) for the proof of Lemma 5.7.

Lemma 5.7. There exists an adversary B3 = {b3
λ}λ∈N ∈ NC1 such that b3

λ breaks the
NC1-(k, l)-PR-CMA security of MACGA with advantage

∣

∣Pr
[

Gaλ

6 ⇒ 1
] − Pr

[

Gaλ

5 ⇒ 1
]∣

∣ .

Proof. The challenger of G6 answers the Enc(x) query by choosing random K∗. We
build b3

λ as in Fig. 17 to show that the differences between G6 and G5 can be bounded
by its advantage of breaking the PR-CMA security of MACGA.
b3
λ runs in the same way as the challenger of G5 except that it samples Di and d′

uniformly at random from {0, 1}λ×(λ−1) and {0, 1}1×(λ−1) respectively. This does not
change the view of aλ since Yi and y′ were uniformly sampled in G5. Moreover, every
time on receiving a query y to USKGen, b3

λ forwards y to its evaluation oracle Eval
to obtain the answer (t,u), and on receiving the query x to Enc, b3

λ forwards x to its
challenge oracle Chal and uses the answer (h,h0, h1) to simulate r, C∗

1, and K∗ as in
Fig. 17. When aλ outputs β, b3

λ outputs β as well if no y such that pλ(x, y) = 1 was
queried to USKGen. Otherwise, b3

λ outputs 0.
If h1 is uniform (i.e., b3

λ is in Game PR-CMArand) then the view of aλ is identical
to its view in G6. If h1 is real (i.e., b3

λ is in Game PR-CMAreal) then the view of A is
identical to its view in G5. Hence, the advantage of b3

λ in breaking the PR-CMA security
is

∣

∣Pr
[

Gaλ

6 ⇒ 1
] − Pr

[

Gaλ

5 ⇒ 1
]∣

∣ .

Moreover, since aλ only makes constant rounds of queries, all operations in b3
λ are

performed inNC1. Hence, we have B3 = {b3
λ}λ∈N ∈ NC1, completing this part of proof.

We now do all the previous steps in the reverse order as in Fig. 18. Note that the
view of the adversary in H0 (respectively, H4) is identical to its view in G6 (respec-
tively, PR-AT-CPArand). By using the above arguments in a reverse order, we have the
following lemma. �
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Fig. 18. Games H0-H4 for the proof of Theorem 5.1.

Fig. 19. Games G0-G5 for the proof of Proposition A.2.
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Lemma 5.8. There exists an adversary B4 = {b4
λ}λ∈N ∈ NC1 such that b4

λ breaks the
fine-grained matrix linear assumption with advantage

(∣

∣Pr
[

Haλ

4 ⇒ 1
] − Pr

[

Haλ

0 ⇒ 1
]∣

∣

)

/2.

Putting all above together, Theorem 5.1 immediately follows. �
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Appendices

A. The Proof of Theorem 2.13

Proof. We prove Theorem 2.13 by the following two propositions.

Proposition A.1. For all M� ∈ ZeroSamp(λ) and x ∈ SampNoλ(M), we have
x ∈ {0, 1}λ\ Im(M).

Proof of Proposition A.1. According to Lemma 2.10, we have Im(M) = {x | w ∈
{0} × {0, 1}λ−1, x = Mw}. Since Nλw = 0 for any w ∈ {0} × {0, 1}λ−1, we have
Im(M) = {x | w ∈ {0} × {0, 1}λ−1, x = (M + Nλ)w}.3 Moreover, (M + Nλ) is
of full rank according to Lemma 2.9. Hence, for any w ∈ {1} × {0, 1}λ−1 and any
x ∈ Im(M), we have (M + Nλ)w �= x. Namely, for any w ∈ {1} × {0, 1}λ−1, we have
(M + Nλ)w ∈ {0, 1}λ\ Im(M�), completing the proof of Proposition A.1. �

Proposition A.2. For any A = {aλ} ∈ NC1,

|Pr [aλ(M, x0) = 1] − Pr [aλ(M, x1) = 1]| ≤ negl(λ)

where M� $← ZeroSamp(λ), x0
$← SampYesλ(M), and x1

$← SampNoλ(M).

3See Sect. 2 for the notion of Nλ.
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Proof of Proposition A.2. LetA = {aλ} be any adversary inNC1. We give intermediate
games in Fig. 19 to show that the advantage ofA in breaking Proposition A.2 is negligible.

Lemma A.3. Pr[Gaλ

1 ⇒ 1] = Pr[Gaλ

0 ⇒ 1].

Proof. In G1 we sample w $← {0} × {0, 1}λ−1 instead of w $← {1} × {0, 1}λ−1. Then
Lemma A.3 follows from the fact that the distributions of x = Mw and x′ = Mw′ are
identical whereM� $← ZeroSamp(λ),w $← {1}×{0, 1}λ−1, andw′ $← {0}×{0, 1}λ−1,
according to Lemma 2.11. �

Lemma A.4. Pr[Gaλ

2 ⇒ 1] = Pr[Gaλ

1 ⇒ 1].
Proof. In G2, we compute x as x = (M + Nλ)w instead. Then Lemma A.4 follows
from the fact that for any w ∈ {0} × {0, 1}λ−1, we have Nλw = 0. �

Lemma A.5. There exists an adversary B1 = {b1
λ} ∈ NC1 such that b1

λ breaks Defini-
tion 2.5, which holds under NC1 � ⊕L/poly according to Lemma 2.6, with advantage

∣

∣Pr
[

Gaλ

3 ⇒ 1
] − Pr

[

Gaλ

2 ⇒ 1
]∣

∣ .

Proof. G2 and G3 only differ in the distribution of M, namely, M� $← ZeroSamp(λ)

or M� $← OneSamp(λ), and we build the distinguisher b1
λ as follows.

b1
λ runs in exactly the same way as the challenger of G2 except that in Init, instead

of generating M by itself, it takes as input M� generated as M� $← ZeroSamp(λ) or
M� $← OneSamp(λ) from its own challenger. When aλ outputs β, b1

λ outputs β as
well. If M is generated as M� $← ZeroSamp(λ) (respectively, M� $← OneSamp(λ)),
the view of aλ is the same as its view in G2 (respectively, G3). Hence, the probability
that b1

λ breaks the fine-grained matrix linear assumption is

∣

∣Pr
[

Gaλ

3 ⇒ 1
] − Pr

[

Gaλ

2 ⇒ 1
]∣

∣ .

Moreover, since all operations in b1
λ are performed in NC1, we have B1 = {b1

λ}λ∈N ∈
NC1, completing this part of proof. �

Lemma A.6. Pr[Gaλ

4 ⇒ 1] = Pr[Gaλ

3 ⇒ 1].

Proof. In G4 we sample w $← {1} × {0, 1}λ−1 instead of w $← {0} × {0, 1}λ−1.
LetM� $← OneSamp(λ). The distribution ofM+Nλ is identical to the output distribu-
tion of ZeroSamp(λ) according to Lemma 2.9. Therefore, according to Lemma 2.11,
the distributions of x = (M + Nλ)w and x′ = (M + Nλ)w′ are identical for w $←
{1} × {0, 1}λ−1 and w′ $← {0} × {0, 1}λ−1, completing this part of proof. �

Lemma A.7. There exists an adversary B2 = {b2
λ}λ∈N such that b2

λ breaks the fine-
grained matrix linear assumption with advantage

∣

∣Pr
[

Gaλ

5 ⇒ 1
] − Pr

[

Gaλ

4 ⇒ 1
]∣

∣ .
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Proof. G5 and G4 only differ in the distribution of M, namely, M� $← OneSamp(λ)

or M� $← ZeroSamp(λ), and we build the distinguisher b2
λ as follows.

b2
λ runs in exactly the same way as the challenger of G2 except that in Init, instead

of generating M by itself, it takes as input M� generated as M� $← OneSamp(λ) or
M� $← ZeroSamp(λ) from its own challenger. When aλ outputs β, b2

λ outputs β as
well. If M is generated as M� $← OneSamp(λ) (respectively, M� $← ZeroSamp(λ)),
the view of aλ is the same as its view in G4 (respectively, G5). Hence, the probability
that b2

λ breaks the fine-grained matrix linear assumption is

| Pr[Gaλ

5 ⇒ 1] − Pr[Gaλ

4 ⇒ 1]|.

Moreover, since all operations in b2
λ are performed in NC1, we have B2 = {b2

λ}λ∈N ∈
NC1, completing this part of proof. �

Then Proposition A.2 follows from the fact thatG0 andG5 are the real games of Proposi-
tion A.2, where the values x are sampled from SampYesλ and SampNoλ respectively.

�
Putting all above together, Theorem 2.13 immediately follows. �

B. Fine-Grained Secure Quasi-Adaptive NIZK

In this section, we construct fine-grained QA-NIZK with adaptive soundness. We first
give the definition of NC1-QA-NIZK with adaptive soundness. Then we prove an NC1

version of the Kernel Matrix Diffie-Hellman assumption [27], based on which we give
a warm-up QA-NIZK in NC1 with relatively low efficiency. Finally, we show how to
achieve a more efficient construction.

B.1. Definitions

We now recall the definition of fine-grained QA-NIZK. Let Dλ be a probability dis-
tribution over a collection of relations R = {RM}M∈Dλ

parametrized by a matrix
M ∈ {0, 1}n×t of rank t ′ < n generated as (M�,M⊥)

$← Dλ with the associated
language

LM = {

t : ∃w ∈ {0, 1}t , s.t. t = Mw
}

.

Witness Sampleability. Notice that similar to witness sampleable distribution in the clas-
sical world [22], we require that Dλ additionally outputs a non-zero matrix M⊥ ∈
{0, 1}n×(n−t ′) in the kernel ofM�. An example of sampleable distribution isZeroSamp(n),
which can additionally sample a non-zero vector in the kernel of its output.4

4In fact, the rightmost vector (r1, · · · , rn−1, 1)� of the intermediate matrix generated by RSamp(n) (see
Fig. 1) forms a vector in the kernel of M�. See the proof of Lemma 3 in [15] for more details.
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Fig. 20. The AS security game for QANIZK.

Definition B.1. (Quasi-adaptive non-interactive zero-knowledge proof) A C1-quasi-
adaptive non-interactive zero-knowledge proof (QA-NIZK) for a set of language distribu-
tions {Dλ}λ∈N is a function family QANIZK = {Genλ,Proveλ,Verλ,Simλ}λ∈N ∈ C1
with the following properties.

• Genλ(M) returns a CRS crs and a simulation trapdoor td.
• Proveλ(crs, y,w) returns a proof π .
• Verλ(crs, y, π) deterministically returns 1 (accept) or 0 (reject).
• Simλ(crs, td, y) returns a simulated proof π .

Perfect completeness is satisfied if for all (M�,M⊥) ∈ Dλ, all vectors (y,w) such that
y = Mw, all (crs, td) ∈ Genλ(M), and all π ∈ Proveλ(crs, y,w), we have

Verλ(crs, y, π) = 1.

Perfect zero knowledge is satisfied if for all λ, all (M�,M⊥) ∈ Dλ, all (y,w) with
y = Mw, and all (crs, td) ∈ Genλ(M), the following two distributions are identical:

Proveλ(crs, y,w) and Simλ(crs, td, y).

Definition B.2. (Adaptive soundness for QANIZK) QANIZK is said to satisfy C2-
adaptive soundness if for any adversary A = {aλ}λ∈N ∈ C2,

Pr[ASaλ ⇒ 1] ≤ negl(λ),

where Game AS is defined in Fig. 20.

We note that in the above definition, the term “quasi-adaptive” means that the construc-
tion of the CRS depends on the statementM. On the other hand, “adaptive” in the context
of adaptive soundness means that in the soundness experiment, the adversary can choose
the statement adaptively after seeing the CRS.

B.2. A Warm-Up Construction

A New Lemma. We now prove the following lemma under the assumption NC1 �

⊕L/poly, based on which we can achieve adaptively sound QA-NIZKs in NC1. It can
be thought of as the counterpart of the Kernel Matrix Diffie-Hellman assumption [27]
in NC1.
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Definition B.3. (Fine-grained kernel matrix assumption) If NC1 � ⊕L/poly, then
for all λ ∈ N and any adversary A = {aλ}λ∈N ∈ NC1, we have

Pr[c�M = 0 ∧ c �= 0|c $← aλ(M)] ≤ negl(λ),

where M� $← ZeroSamp(λ).

Lemma B.4. IfNC1 � ⊕L/poly, then the fine-grained kernel matrix assumption (see
Definition B.3) holds.

Proof. Let A = {aλ}λ∈N ∈ NC1 be an adversary such that aλ breaks the fine-
grained kernel matrix assumption with probability ε, we construct another adversary
B = {bλ}λ∈N ∈ NC1 such that bλ breaks the fine-grained subset membership problem
(see Definition 2.12), which holds under NC1 � ⊕L/poly according to Theorem 2.13,
with the same probability as follows.
On input (M,u) where M� $← ZeroSamp(λ) and u $← SampYesλ(M) or u $←
SampNoλ(M), bλ forwards M to aλ. When aλ outputs c, bλ outputs 1 iff the last
element in c is 1, c�M = 0, and c�u = 0.
Whenu $← SampYesλ(M), the probability thatbλ outputs 1 is ε. The reason is that when
aλ succeeds, we must have c�u = 0 when c�M = 0, and the last element of c must be 1
according to Lemma 2.7. Moreover, whenu $← SampNoλ(M), we haveu = (M+Nλ)w
for somew ∈ {1}×{0, 1}λ−1. If c�M = 0, we have c�u = c�Nλw = c�(0, · · · , 0, 1)�,
i.e., either c�u = 1 or the last element of c is 0. Hence, bλ outputs 0 anyway when
u $← SampNoλ(M). Therefore, we have

∣

∣Pr
[

bλ(x) = 1 | x $← SampYesλ(λ)
] − Pr

[

bλ(x) = 1 | x $← SampNoλ(λ)
]∣

∣ = ε.

Moreover, since all operations inbλ are performed inNC1, we haveB = {bλ}λ∈N ∈ NC1,
completing the proof of Lemma B.4. �

Constructing QA-NIZK Based on Lemma B.4. Based on the above lemma, we can easily
achieve NC1-QA-NIZKs with adaptive soundness, one-time simulation soundness, and
unbounded simulation soundness against NC1 by adopting the techniques in [23].5

Specifically, we only have to move the algorithms in [23] from GF(p) for a large prime
p to GF(2), change the matrix Diffie-Hellman distributions to SampYesλ(λ), and
generate a large number of proofs in parallel to bound the advantage of the adversary.
We now give an adaptively sound QA-NIZK QANIZK0 w.r.t. a set of (sampleable)
distributions {Dλ}λ∈N in Fig. 21 as an instance.6

Theorem B.5. If NC1 � ⊕L/poly, then QANIZK0 is an AC0[2]-QA-NIZK that is
NC1-adaptively sound for allM in the distributions {Dλ}λ∈N (see Appendix B.1 for the
definition of {Dλ}λ∈N).

5One-time (respectively, unbounded) simulation soundness prevents the adversary from proving a false
statement after seeing a single simulated proof for a statement (respectively, multiple simulated proofs for
statements) of its choice. We refer the reader to [23] for the formal definitions.

6We do not exploit the sampleability of the distribution for this construction.
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Fig. 21. Definition of QANIZK0 = {Genλ,Proveλ,Verλ,Simλ}λ∈N. We require that 2�(·) is some super-
polynomial in λ.

Proof. First, we note that {Genλ}λ∈N, {Proveλ}λ∈N, {Simλ}λ∈N, and {Verλ}λ∈N are
computable in AC0[2], since they only involve operations including multiplication of a
constant number of matrices and sampling random bits.
Perfect correctness and perfect zero-knowledge follow from the fact that for all y = Mx
and Pi = M�Ki , we have

x�Pi = x�M�Ki = y�Ki .

Let A = {aλ}λ∈N be an adversary breaking the adaptive soundness of QANIZK0 with
advantage ε, we have the following lemma. �

Lemma B.6. There exists an adversary B = {bλ}λ∈N ∈ NC1 such that bλ breaks the
fine-grained kernel matrix assumption (see Definition B.3), which holds under NC1 �

⊕L/poly according to Lemma B.4, with probability ε − 1/2�.

Proof. We construct bλ as follows.
bλ on input A samples (M�,M⊥)

$← Dλ and Ki
$← {0, 1}n×λ, and sets Pi = M�Ki

and Ci = KiA for all i ∈ [�]. Then it sends crs = (A, (Pi ,Ci )
�
i=1) to aλ. When aλ

outputs (π = (πi )
�
i=1, y), bλ searches j such that

π jA = y�C j = y�K jA

and

π j − y�K j �= 0.

If the searching procedure fails, bλ aborts. bλ then outputs π j − y�K j .
When aλ succeeds, we have π jA = y�C j for all j and y /∈ Im(M). Let â be a fixed
non-zero vector such that â /∈ Im(A). For each i , since aλ learns no information on Ki

other than M�Ki and KiA, y�Ki â is information-theoretically hidden in the view of
aλ, i.e., the probability that there exists j such that π j â − y�K j â �= 0 is at least 1/2�.
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Fig. 22. Definition of QANIZK1 = {Genλ,Proveλ,Verλ,Simλ}λ∈N.

Since π j â − y�K j â �= 0 implies π j − y�K j �= 0, the probability that bλ breaks the
fine-grained kernel matrix assumption is at least ε −1/2�, completing this part of proof.

�

Since the fine-grained kernel matrix assumption holds if NC1 � ⊕L/poly according to
Lemma B.4, putting all above together, Theorem B.5 immediately follows. �

B.3. A More Efficient Construction

A disadvantage of the scheme in Appendix B.2 is that we have to generate a large number
of proofs in parallel. In this section, we give a more efficient NC1-adaptively sound
QA-NIZK QANIZK1 = {Genλ,Proveλ,Verλ,Simλ}λ∈N w.r.t. a set of distributions
{Dλ}λ∈N in Fig. 22. As in Definition B.1, we require that Dλ be witness sampleable, i.e.,
it outputs a matrix M ∈ {0, 1}n×t of rank t ′ < n additionally with a matrix (or vector)
M⊥ ∈ {0, 1}n×(n−t ′) with rank n − t ′ in its kernel.
The proof size of this construction is (λ − 1) · (n − t ′). Since M (or M�) is usually
a combination of matrices sampled from ZeroSamp(λ) in NC1, n − t ′ is typically a
constant number. For instance, when proving that two ciphertexts of the PKE scheme in
[13] correspond to the same message or proving the validity of a public key of the PKE
scheme in [15], the proof size is only λ − 1 in contrast to λ · � for a large number � in
the warm-up construction.

Theorem B.7. If NC1 � ⊕L/poly, then QANIZK1 is an AC0[2]-QA-NIZK that is
NC1-adaptively sound for allM in the distributions {Dλ}λ∈N (see Appendix B.1 for the
definition of {Dλ}λ∈N).

Proof. First, we note that {Genλ}λ∈N, {Proveλ}λ∈N, {Simλ}λ∈N, and {Verλ}λ∈N are
computable in AC0[2], since they only involve operations including multiplications of
a constant number of matrices and sampling random bits.
Perfect correctness and perfect zero-knowledge follow from the fact that for all y = Mx
and Pi = M�Ki , we have

x�Pi = x�M�Ki = y�Ki .
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Fig. 23. Games G0,G1,G2 for the proof of Theorem B.7. ei ∈ {0, 1}n−t ′ denotes the vector with the i th
element being 1 and the others being 0.

Let A = {aλ}λ∈N ∈ NC1 be any adversary against the NC1-adaptive soundness of
QANIZK1. We now show thatQANIZK1 is adaptively sound againstNC1 via a sequence
of hybrid games as in Fig. 23. The crucial step is to use the technique exploited by our
IBKEM to switch (Ki ||0)A to (0||Ki )R�

0 , and then switch it back to (K′
i ||M⊥ei )A for

Ki = K′
i + M⊥ei · r̃�, where R0 and r̃ are intermediate values generated during the

sampling procedure for A. �

Lemma B.8. Pr[ASaλ ⇒ 1] = Pr[Gaλ

1 ⇒ 1] = Pr[Gaλ

0 ⇒ 1].

Proof. In G1, we generate A by sampling R1 =
(

Iλ−1 0
r̃� 1

)�
$← RSamp(λ) and

R0
$← LSamp(λ), and setting A� = R0Mλ

0R1. Moreover, for all i , we replace Ci =
(Ki ||0)A by Ci = (0||Ki )R�

0 .
The view of A in this game is identical to its view in G0 since the way we generate A
is exactly the “zero-sampling” procedure, and we have

Ci = (Ki ||0)A = (Ki ||0)R�
1 M

λ
0
�
R�

0

= (Ki ||0)
(

Iλ−1 0
r̃� 1

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .

0 · · · 0 1
0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R�
0
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= (Ki ||0)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .

0 · · · 0 1
0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R�
0

= (0||Ki )R�
0 .

�

Lemma B.9. Pr[Gaλ

2 ⇒ 1] = Pr[Gaλ

1 ⇒ 1].

Proof. In G2, for all i , instead of generating Ki as a uniformly random matrix, we
generateKi by randomly samplingK′

i
$← {0, 1}n×(λ−1) and settingKi = K′

i+M⊥ei ·̃r�,

where ei ∈ {0, 1}n−t ′ denotes the vector with the i th element being 1 and the other bits
being 0. Since the distribution of Ki is still uniform, the view of A remains the same. �

Lemma B.10. Pr[Gaλ

3 ⇒ 1] = Pr[Gaλ

2 ⇒ 1].

Proof. This lemma follows from the fact that for all i , we have

MKi = M(K′
i + M⊥ei · r̃�) = MK′

i

and

Ci = (0||K′
i + M⊥ei · r̃�)R�

0

= (K′
i + M⊥ei · r̃�||M⊥ei )

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .

0 · · · 0 1
0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

R�
0

= (K′
i ||M⊥ei )

(

Iλ−1 0
r̃� 1

)

Mλ
0
�
R�

0

= (K′
i ||M⊥ei )A

�

Lemma B.11. There exists an adversary B = {bλ}λ∈N ∈ NC1 such that bλ breaks the
fine-grained kernel matrix assumption (see Definition B.3), which holds under NC1 �

⊕L/poly according to Lemma B.4, with probability Pr[Gaλ

3 ⇒ 1].

Proof. We construct bλ as follows.
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bλ on input A samples (M�,M⊥)
$← Dλ and K′

i
$← {0, 1}n×(λ−1), and sets Pi =

M�(K′
i ||0) and Ci = (K′

i ||M⊥ei )A for all i . Then it sends crs = (A, (Pi ,Ci )
n−t ′
i=1 ) to

aλ. When aλ outputs (π = (πi )
n−t ′
i=1 , y), bλ searches j such that

(π j ||0)A = y�C j = y�(K′
j ||M⊥e j )A

and

π j ||0 − y�(K′
j ||M⊥e j ) �= 0.

If the searching procedure fails, bλ aborts. b then outputs π j ||0 − y�(K′
j ||M⊥e j ).

Since all the operations performed by bλ are in NC1, we have B ∈ NC1.
When aλ succeeds, we have (π j ||0)A = y�C j for all j and y /∈ Span(M). In this case,
y�M⊥ �= 0, i.e.,
there must exists j such that y�M⊥ei = 1. Hence the probability that bλ breaks the
fine-grained kernel matrix assumption is exactly Pr[Gaλ

3 ⇒ 1], completing this part of
proof. �

Putting all above together, Theorem B.7 immediately follows. �
Concurrent Fine-Grained NIZKs. Assuming NC1 � ⊕L/poly, our work presents an
efficient QA-NIZK that achieves perfect zero-knowledge and can handle languages
expressible as linear subspaces. Below we compare our QA-NIZK to other existing
fine-grained NIZKs [2,32,33].
Ball, Dachman-Soled, and Kulkarni [2] previously constructed a NIZK for circuit satis-
fiability against NC1 adversaries in the uniform random string (URS) model, where the
setup only samples public coins. Their scheme achieves offline zero-knowledge, mean-
ing that the distribution of honest URSs and proofs is computationally indistinguishable
from that of the output of a simulator drawn from a specific distribution. However, their
construction is not in the fully fine-grained setting, since their prover requires more com-
putational resources than NC1 (even for statements represented as NC1 circuits). This
requirement is inherent in their construction, since the underlying NIZK for ⊕L/poly
in their construction requires computing the determinant of a matrix, which cannot be
done in NC1.

Fig. 24. Definitions of the predicate and encoding of an ABE scheme for inner product (with short secret
keys).
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Fig. 25. Definitions of the predicate and encoding of an ABE scheme for non-zero inner product (with short
secret ciphertexts).

Fig. 26. Definitions of the predicate and encoding of an ABE scheme for boolean span programs. x satisfies
M w.r.t. some ω iff

∑

i :xi=1 ωiMi = (1, 0, · · · , 0)�, where Mi denotes the i th row of M. Notice that in the
original definition in [10], ω is not part of the attribute and is computed from M and x in decryption. We put
ω into the attribute since computing it from M and x involves Gaussian elimination which cannot be executed
in NC1. This does not affect the security of the resulting ABE since ω can be efficiently computed publicly
in the original encoding scheme anyway.

More recently, Wang and Pan [32] proposed a fully fine-grained NIZK protocol for cir-
cuit satisfiability in NC1, where all algorithms (including the CRS generator, prover,
verifier, and simulator) are in NC1. Their scheme can achieve either perfect soundness
or perfect zero-knowledge and can be converted into a NIZK in the URS model and a
non-interactive zap. Notably, their underlying NIZK for linear languages supports the
same class of languages as our QA-NIZK. However, their construction has larger prov-
ing/verification cost and proof size than ours. Especially, their proof size is dependent
of the statement size, while ours is not.
Another fine-grained NIZK is recently proposed by Wang and Pan [33] in a different
fine-grained setting under no assumption. Specifically, it treats adversaries in AC0 and
requires that all algorithms run in AC0.

C. Instantiations of Encodings

In this section, other than the one in Fig. 3, we give several examples of predicate en-
codings in Figs. 24, 25, and 26. By instantiating our resulting ABE in Sect. 5 with these
encodings, we immediately achieve ABEs for inner product, non-zero inner product,
and boolean span programs. All the encodings can be performed in AC0[2] since they
only involve multiplication of a constant number of matrices.
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