
https://doi.org/10.1007/s00145-023-09478-y
J Cryptol (2023)36:36

Research Article

Fiat–Shamir Transformation of Multi-Round Interactive
Proofs (Extended Version)∗

Thomas Attema
CWI, Cryptology Group, Amsterdam, The Netherlands

Leiden University, Mathematical Institute, Leiden, The Netherlands
TNO, Cyber Security and Robustness, The Hague, The Netherlands

thomas.attema@tno.nl

Serge Fehr
CWI, Cryptology Group, Amsterdam, The Netherlands

Leiden University, Mathematical Institute, Leiden, The Netherlands
serge.fehr@cwi.nl

Michael Klooß
Karlsruhe Institute of Technology, KASTEL, Karlsruhe, Germany

michael.klooss@kit.edu

Communicated by Amit Sahai.

Received 14 October 2022 / Revised 23 June 2023 / Accepted 10 July 2023
Online publication 8 August 2023

Abstract. The celebrated Fiat–Shamir transformation turns any public-coin interac-
tive proof into a non-interactive one, which inherits the main security properties (in
the random oracle model) of the interactive version. While originally considered in the
context of 3-move public-coin interactive proofs, i.e., so-called Σ-protocols, it is now
applied to multi-round protocols as well. Unfortunately, the security loss for a (2μ+1)-
move protocol is, in general, approximately Qμ, where Q is the number of oracle queries
performed by the attacker. In general, this is the best one can hope for, as it is easy to see
that this loss applies to the μ-fold sequential repetition of Σ-protocols, but it raises the
question whether certain (natural) classes of interactive proofs feature a milder security
loss. In this work, we give positive and negative results on this question. On the positive
side, we show that for (k1, . . . , kμ)-special-sound protocols (which cover a broad class
of use cases), the knowledge error degrades linearly in Q, instead of Qμ. On the negative
side, we show that for t-fold parallel repetitions of typical (k1, . . . , kμ)-special-sound
protocols with t ≥ μ (and assuming for simplicity that t and Q are integer multiples of
μ), there is an attack that results in a security loss of approximately 1

2 Qμ/μμ+t .

∗This work is an extended version of the conference paper [6]. It includes the proofs of Lemmas 1, 5
and 6. Further, a discussion on the applicability of our results to arguments, rather than proofs, is included
(Sect. 2.4), the results are generalized to multi-round interactive proofs with challenge sets varying over the
different rounds (Sect. 6.2), and the analysis is extended from static to adaptive security (Sects. 2.5 and 6.3).
Moreover, the efficiency of sampling without replacement, a core technique used by our extractors, is argued
(Appendix A). Finally, a more detailed discussion of the attack on the Fiat–Shamir transformation of multi-
round interactive proofs is included (Appendix B).

© The Author(s) 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09478-y&domain=pdf

36 Page 2 of 45 T. Attema et al.

1. Introduction

1.1. Background and State of the Art

The celebrated and broadly used Fiat–Shamir transformation turns any public-coin in-
teractive proof into a non-interactive proof, which inherits the main security properties
(in the random oracle model) of the interactive version. The rough idea is to replace the
random challenges, which are provided by the verifier in the interactive version, by the
hash of the current message (concatenated with the messages from previous rounds). By
a small adjustment, where also the to-be-signed message is included in the hashes, the
transformation turns any public-coin interactive proof into a signature scheme. Indeed,
the latter is a commonly used design principle for constructing very efficient signature
schemes.

While originally considered in the context of 3-move public-coin interactive proofs,
i.e., so-called Σ-protocols, the Fiat–Shamir transformation also applies to multi-round
protocols. However, a major drawback in the case of multi-round protocols is that, in
general, the security loss obtained by applying the Fiat–Shamir transformation grows
exponentially with the number of rounds. Concretely, for any (2μ+1)-move interactive
proof Π (where we may assume that the prover speaks first and last, so that the number
of communication rounds is indeed odd) that admits a cheating probability of at most
ε, captured by the knowledge or soundness error, the Fiat–Shamir-transformed protocol
FS[Π] admits a cheating probability of (approximately) at most Qμ ·ε, where Q denotes
the number of random-oracle queries admitted to the dishonest prover. A tight reduction
is due to [12] with a security loss

(Q
μ

) ≈ Qμ

μμ , where the approximation holds whenever μ

is much smaller than Q, which is the typical case. More concretely, [12] introduces the
notions of state-restoration soundness (SRS) and state-restoration knowledge (SRK), and
it shows that any (knowledge) sound protocol Π satisfies these notions with the claimed
security loss,1 The security of FS[Π] (with the same loss) then follows from the fact
that these soundness notions imply the security of the Fiat–Shamir transformation.

Furthermore, there are (contrived) examples of multi-round protocols Π for which
this Qμ security loss is almost tight. For instance, the μ-fold sequential repetition Π

of a special-sound Σ-protocol with challenge space C is ε-sound with ε = 1
|C|μ , while

it is easy to see that, by attacking the sequential repetitions round by round, investing
Q/μ queries per round to try to find a “good” challenge, and assuming |C| to be much
larger than Q, its Fiat–Shamir transformation FS[Π] can be broken with probability
approximately

(Q
μ

1
|C|

)μ = Qμ

μμ · ε.2

For μ beyond 1 or 2, let alone for non-constant μ (e.g., IOP-based protocols [7,11,12]
and also Bulletproofs-like protocols [9,10]), this is a very unfortunate situation when
it comes to choosing concrete security parameters. If one wants to rely on the proven
security reduction, one needs to choose a large security parameter for Π , in order to
compensate for the order Qμ security loss, effecting its efficiency; alternatively, one has

1As a matter of fact, [12] considers arbitrary interactive oracle proofs (IOPs) but these notions are well-
defined for ordinary interactive proofs too.

2This is clearly a contrived example since the natural construction would be to apply the Fiat–Shamir
transformation to the parallel repetition of the original Σ-protocol, where no such huge security loss would
then occur.

Fiat–Shamir Transformation of Multi-Round... Page 3 of 45 36

to give up on proven security and simply assume that the security loss is much milder
than what the general bound suggests. Often, the security loss is simply ignored.

This situation gives rise to the following question: Do there exist natural classes
of multi-round public-coin interactive proofs for which the security loss behaves more
benign than what the general reduction suggests? Ideally, the general Qμ loss appears
for contrived examples only.

So far, the only positive results, establishing a security loss linear in Q, were estab-
lished in the context of straight-line/online extractors that do not require rewinding.
These extractors either rely on the algebraic group model (AGM) [27], or are restricted
to protocols using hash-based commitment schemes in the random oracle model [12].
To analyze the properties of straight-line extractors, new auxiliary soundness notions
were introduced: round-by-round (RBR) soundness [19] and RBR knowledge [20]. How-
ever, it is unclear if and how these notions can be used in scenarios where straight-line
extraction does not apply.

In this work, we address the above question (in the plain random-oracle model, and
without restricting to schemes that involve hash-based commitments), and give both
positive and negative answers, as explained in more detail below.

1.2. Our Results

1.2.1. Positive Result

We show that the Fiat–Shamir transformation of any (k1, . . . , kμ)-special-sound inter-
active proof has a security loss of at most Q + 1. More concretely, we consider the
knowledge error κ as the figure of merit, i.e., informally, the maximal probability of the
verifier accepting the proof when the prover does not have a witness for the claimed
statement, and we prove the following result, also formalized in the theorem below. For
any (k1, . . . , kμ)-special-sound (2μ + 1)-move interactive proof Π with knowledge er-
ror κ (which is a known function of (k1, . . . , kμ)), the Fiat–Shamir transformed protocol
FS[Π] has a knowledge error at most (Q+1)·κ . This result is directly applicable to a long
list of recent zero-knowledge proof systems, e.g., [1,3,9,10,13,14,25,32,38]. While all
these works consider the Fiat–Shamir transformation of special-sound protocols, most
of them ignore the associated security loss.

Main Theorem. (Theorem 2) Let Π be a (k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-
sound interactive proof with knowledge error κ . Then, the Fiat–Shamir transformation
FS[Π] of Π is knowledge sound with knowledge error

κfs(Q) = (Q + 1) · κ .

Since in the Fiat–Shamir transformation of any (2μ+1)-move protocol Π , a dishonest
prover can simulate any attack against Π and can try Q/μ times when allowed to
do Q queries in total, our new upper bound (Q + 1) · κ is close to the trivial lower
bound 1 − (1 − κ)Q/μ ≈ Qκ/μ. Another, less explicit, security measure in the context
of knowledge soundness is the runtime of the knowledge extractor. Our bound on the
knowledge error holds by means of a knowledge extractor that makes an expected number

36 Page 4 of 45 T. Attema et al.

of K +Q ·(K −1) queries, where K = k1 · · · kμ. This is a natural bound: K is the number
of necessary distinct “good” transcripts (which form a certain tree-like structure). The
loss of Q · (K − 1) captures the fact that a prover may finish different proofs, depending
on the random oracle answers, and only one out of Q proofs may be useful for extraction,
as explained below.

Our result on the knowledge soundness of FS[Π] for special-sound protocols Π

immediately carries over to ordinary soundness of FS[Π], with the same security loss
Q +1. However, proving knowledge soundness is more intricate; showing a linear-in-Q
loss for ordinary soundness can be obtained via simpler arguments (e.g., there is no need
to argue efficiency of the extractor).

The construction of our knowledge extractor is motivated by the extractor from [2]
in the interactive case, but the analysis here in the context of a non-interactive proof is
much more involved. We analyze the extractor in an inductive manner and capture the
induction step (and the base case) by means of an abstract experiment. The crucial idea
for the analysis (and extractor) is how to deal with accepting transcripts which are not
useful.

To see the core problem, consider a Σ-protocol, i.e., a 3-move k-special-sound interac-
tive proof, and a semi-honest prover that knows a witness and behaves as follows. It pre-
pares, independently, Q first messages a1, . . . , aQ and asks for all hashes ci = RO(ai),
and then decides “randomly” (e.g., using a hash over all random oracle answers) which
thread to complete, i.e., for which i∗ to compute the response z and then output the valid
proof (ai∗ , z). When the extractor then reprograms the random oracle at the point ai∗ to
try to obtain another valid response but now for a different challenge, this affects i∗, and
most likely the prover will then use a different thread j∗ and output the proof (a j∗ , z′)
with a j∗ �= ai∗ . More precisely, Pr(j∗ = i∗) = 1/Q. Hence, an overhead of Q appears
in the runtime.

In case of an arbitrary dishonest prover with an unknown strategy for computing the
ai ’s above, and with an arbitrary (unknown) success probability ε, the intuition remains:
after reprogramming, we still expect Pr(j∗ = i∗) ≥ 1/Q and thus a linear-in-Q overhead
in the runtime of the extractor. However, providing a rigorous proof is complicated by
the fact that the event j∗ = i∗ is not necessarily independent of the prover producing
a valid proof (again) after the reprogramming. Furthermore, conditioned on the prover
having been successful in the first run and conditioned on the corresponding i∗, the
success probability of the prover after the reprogramming may be skewed, i.e., may not
be ε anymore. As a warm-up for our general multi-round result, we first give a rigorous
analysis of the above case of a Σ-protocol. For that purpose, we introduce an abstract
sampling game that mimics the behavior of the extractor in finding two valid proofs
with j∗ = i∗, and we bound the success probability and the “cost” (i.e., the number of
samples needed) of the game, which directly translate to the success probability and the
runtime of the extractor.

Perhaps surprisingly, when moving to multi-round protocols, dealing with the knowl-
edge error is relatively simple by recursively composing the extractor for the Σ-protocol.
However, controlling the runtime is intricate. If the extractor is recursively composed,
i.e., it makes calls to a sub-extractor to obtain a sub-tree, then a naive construction and
analysis gives a blow-up of Qμ in the runtime. Intuitively, because only 1/Q of the
sub-extractor runs produce useful sub-trees, i.e., sub-trees which extend the current ai∗ .

Fiat–Shamir Transformation of Multi-Round... Page 5 of 45 36

The other trees belong to some a j∗ with j∗ �= i∗ and are thus useless. This overhead of
Q then accumulates per round (i.e., per sub-extractor).

The crucial observation that we exploit in order to overcome the above issue is that the
very first (accepting) transcript sampled by a sub-extractor already determines whether
a sub-tree will be (potentially) useful, or not. Thus, if this very first transcript already
shows that the sub-tree will not be useful, there is no need to run the full-fledged sub-tree
extractor, saving precious time.

To illustrate this more, we again consider the simple case of a dishonest prover that
succeeds with certainty. Then, after the first run of the sub-extractor to produce the
first sub-tree (which requires expected time linear in Q) and having reprogrammed the
random oracle with the goal to find another sub-tree that extends the current ai∗ , it is
cheaper to first do a single run of the prover to learn j∗ and only run the full-fledged
sub-extractor if j∗ = i∗, and otherwise reprogram and re-try again. With this strategy,
we expect Q tries, followed by the run of the sub-extractor, to find a second fitting
sub-tree. Altogether, this amounts to linear-in-Q runs of the prover, compared to the Q2

using the naive approach.
Again, what complicates the rigorous analysis is that the prover may succeed with

bounded probability ε only, and the event j∗ = i∗ may depend on the prover/sub-
extractor being successful (again) after the reprogramming. Furthermore, as an additional
complication, conditioned on the sub-extractor having been successful in the first run
and conditioned on the corresponding i∗, both the success probability of the prover
and the runtime of the sub-extractor after the reprogramming may be skewed now.
Again, we deal with this by considering an abstract sampling game that mimics the
behavior of the extractor, but where the cost function is now more fine-grained in order
to distinguish between a single run of the prover and a run of the sub-extractor. Because of
this more fine-grained way of defining the “cost”, the analysis of the game also becomes
substantially more intricate.

1.2.2. Negative Result

We also show that the general exponential security loss of the Fiat–Shamir transforma-
tion, when applied to a multi-round protocol, is not an artefact of contrived examples, but
there exist natural protocols that indeed have such an exponential loss. For instance, our
negative result applies to the lattice-based protocols in [2,17]. Concretely, we show that
the t-fold parallel repetition Π t of a typical (k1, . . . , kμ)-special-sound (2μ + 1)-move
interactive proof Π features this behavior when t ≥ μ. For simplicity, let us assume that t
and Q are multiples of μ. Then, in more detail, we show that for any typical (k1, . . . , kμ)-
special-sound protocol Π there exists a poly-time Q-query prover P∗ against FS[Π t]
that succeeds in making the verifier accept with probability ≈ 1

2 Qμκ t/μμ+t for any
statement x , where κ is the knowledge error (as well as the soundness error) of Π . Thus,
with the claimed probability, P∗ succeeds in making the verifier accept for statements
x that are not in the language and/or for which P∗ does not know a witness. Given that
κ t is the soundness error of Π t (i.e., the soundness error of Π t as an interactive proof),
this shows that the soundness error of Π t grows proportionally with Qμ when applying
the Fiat–Shamir transformation. Recent work on the knowledge error of the parallel
repetition of special-sound multi-round interactive proofs [5] shows that κ t is also the

36 Page 6 of 45 T. Attema et al.

knowledge error of Π t , and so the above shows that the same exponential loss holds in
the knowledge error of the Fiat–Shamir transformation of a parallel repetition.

1.3. Related Work

1.3.1. Independent Concurrent Work

In independent and to a large extent concurrent work,3 Wikström [37] achieves a sim-
ilar positive result on the Fiat–Shamir transformation, using a different approach and
different techniques: [37] reduces non-interactive extraction to a form of interactive ex-
traction and then applies a generalized version of [36], while our construction adapts the
interactive extractor from [2] and offers a direct analysis. One small difference in the
results, which is mainly of theoretical interest, is that our result holds and is meaningful
for any Q < |C|, whereas [37] requires the challenge set C to be large.

1.3.2. The Forking Lemma

Security of the Fiat–Shamir transformation of k-special-sound 3-move protocols is
widely used for construction of signatures. There, unforgeability is typically proven
via a forking lemma [18,33], which extracts, with probability roughly εk/Q, a witness
from a signature-forging adversary with success probability ε, where Q is the number of
queries to the random oracle. The loss εk is due to strict polynomial time extraction (and
can be decreased, but in general not down to ε). Such a k-th power loss in the success
probability for a constant k is fine in certain settings, e.g., for proving the security of
signature schemes; however, not for proofs of knowledge (which, on the other hand,
consider expected polynomial time extraction [16]).

A previous version of [26] generalizes the original forking lemma [18,33] to accom-
modate Fiat–Shamir transformations of a larger class of (multi-round) interactive proofs.
However, their forking lemma only targets a subclass of the (k1, . . . , kμ)-special-sound
interactive proofs considered in this work. Moreover, in terms of (expected) runtime and
success probability, our techniques significantly outperform their generalized forking
lemma. For this reason, the latest version of [26] is based on our extraction techniques
instead.

A forking lemma for interactive multi-round proofs was presented in [10], and its
analysis was improved in a line of follow-up works [8,23,28,30,36]. This forking lemma
shows that multi-round special-sound interactive proofs satisfy a notion of knowledge
soundness called witness extended emulation. Eventually, it was shown that (k1, . . . , kμ)-
special-soundness tightly implies knowledge soundness [2].

The aforementioned techniques for interactive proofs are not directly applicable to the
Fiat–Shamir mode. First, incorporating the query complexity Q of a dishonest prover
P∗ attacking the non-interactive Fiat–Shamir transformation complicates the analysis.
Second, a naive adaptation of the forking lemmas for interactive proofs gives a blow-up
of Qμ in the runtime.

3 When finalizing our write-up, we were informed by Wikström that he derived similar results a few
months earlier, subsequently made available online [37].

Fiat–Shamir Transformation of Multi-Round... Page 7 of 45 36

1.4. Structure of the Paper

Section 2 recalls essential preliminaries. In Sect. 3, the abstract sampling game is de-
fined and analyzed. It is used in Sect. 4 to handle the Fiat–Shamir transformation of
Σ-protocols. Building on the intuition, Sect. 5 introduces the refined game, and Sect. 6
uses it to handle multi-round protocols. Lastly, our negative result on parallel repetitions
is presented in Sect. 7.

2. Preliminaries

2.1. Interactive Proofs

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. Following standard conventions, we call
(x;w) ∈ R a statement-witness pair, that is, x is the statement and w is a witness for
x . The set of valid witnesses for a statement x is denoted by R(x), i.e., R(x) = {w :
(x;w) ∈ R}. A statement that admits a witness is said to be a true or valid statement; the
set of true statements is denoted by L R , i.e., L R = {x : ∃ w s.t. (x;w) ∈ R}. The relation
R is an NP relation if the validity of a witness w can be verified in time polynomial in
the size |x | of the statement x . From now on, we assume all relations to be NP relations.

In an interactive proof for a relation R, a prover P aims to convince a verifier V that
a statement x admits a witness, or even that the prover knows a witness w ∈ R(x).

Definition 1. (Interactive Proof) An interactive proof Π = (P,V) for relation R is an
interactive protocol between two probabilistic machines, a prover P and a polynomial
time verifierV . BothP andV take as public input a statement x , and additionally,P takes
as private input a witness w ∈ R(x). The verifierV either accepts or rejects and its output
is denoted as (P(w),V)(x). Accordingly, we say the corresponding transcript (i.e., the
set of all messages exchanged in the protocol execution) is accepting or rejecting.

Let us introduce some conventions and additional properties for interactive proof sys-
tems. We assume that the prover P sends the first and the last message in any interactive
proof Π = (P,V). Hence, the number of communication moves 2μ + 1 is always odd.
We also say Π is a (2μ + 1)-move protocol. We will refer to multi-round protocols as
a way of emphasizing that we are not restricting to 3-move protocols.

Informally, an interactive proof Π = (P,V) is complete if for any statement-witness
pair (x;w) ∈ R the honest execution results in the verifier accepting with high probabil-
ity. It is sound if the verifier rejects false statements, i.e., x /∈ L R , with high probability.
We do neither require (or formally define) completeness nor soundness, as our main focus
is knowledge soundness. Intuitively, a protocol is knowledge sound if any (potentially
malicious) prover P∗ which convinces the verifier must “know” a witness w such that
(x, w) ∈ R. Informally, this means that any prover P∗ with Pr((P∗,V)(x) = accept)
large enough is able to efficiently compute a witness w ∈ R(x).

Definition 2. (Knowledge Soundness) An interactive proof (P,V) for relation R is
knowledge sound with knowledge error κ : N → [0, 1] if there exists a positive polyno-
mial q and an algorithm E , called a knowledge extractor, with the following properties.

36 Page 8 of 45 T. Attema et al.

Given input x and black-box oracle access to a (potentially dishonest) prover P∗, the ex-
tractor E runs in an expected number of steps that is polynomial in |x | (counting queries
to P∗ as a single step) and outputs a witness w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
) ≥ ε(P∗, x) − κ(|x |)

q(|x |) ,

where ε(P∗, x) := Pr((P∗,V)(x) = accept).

Remark 1. From the linearity of the expectation, it follows easily that it is sufficient to
consider deterministic provers P∗ in Definition 2.

An important class of protocols have particularly simple verifiers: effectively stateless
verifiers which send uniformly random challenges to the prover, and run an efficient
verification function on the final transcript.

Definition 3. (Public-Coin) An interactive proof Π = (P,V) is public-coin if all of
V’s random choices are made public. The message ci ← Ci of V in the 2i-th move is
called the i-th challenge, and Ci is the challenge set. We assume every challenge set to
be enumerated, i.e., encoded as {1, . . . , |Ci |}.

2.2. Special-Sound Multi-Round Protocols

The class of interactive proofs we are interested in are those where knowledge soundness
follows from another property, namely special-soundness. Special-soundness is often
simpler to verify, and many protocols satisfy this notion. Note that we require special-
sound protocols to be public-coin.

Definition 4. (k-out-of-N Special-Soundness) Let k, N ∈ N. A 3-move public-coin
interactive proof Π = (P,V) for relation R, with challenge set of cardinality N ≥ k,
is k-out-of-N special-sound if there exists a polynomial time algorithm that, on input
a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk) with common first
message a and pairwise distinct challenges c1, . . . , ck , outputs a witness w ∈ R(x). We
also say Π is k-special-sound and, if k = 2, it is simply said to be special-sound.

We refer to a 3-move public-coin interactive proof as a Σ- protocol. Note that often
a Σ-protocol is required to be (perfectly) complete, special-sound and special honest-
verifier zero-knowledge (SHVZK) by definition. We do not require a Σ-protocol to have
these additional properties.

Definition 5. (Σ-Protocol) A Σ-protocol is a 3-move public-coin interactive proof.

In order to generalize k-special-soundness to multi-round protocols, we introduce the
notion of a tree of transcripts. We follow the definition of [2].

Definition 6. (Tree of Transcripts) Let k1, . . . , kμ ∈ N. A (k1, . . . , kμ)-tree of tran-
scripts for a (2μ + 1)-move public-coin interactive proof Π = (P,V) is a set of

Fiat–Shamir Transformation of Multi-Round... Page 9 of 45 36

Fig. 1. (k1, . . . , kμ)-tree of transcripts of a (2μ + 1)-move interactive proof [2].

K = ∏μ
i=1 ki transcripts arranged in the following tree structure. The nodes in this

tree correspond to the prover’s messages and the edges to the verifier’s challenges.
Every node at depth i has precisely ki children corresponding to ki pairwise distinct
challenges. Every transcript corresponds to exactly one path from the root node to a
leaf node. See Fig. 1 for a graphical illustration. We refer to the corresponding tree of
challenges as a (k1, . . . , kμ)-tree of challenges.

We will also write k = (k1, . . . , kμ) ∈ N
μ and refer to a k-tree of transcripts or a

k-tree of challenges.

Definition 7. ((k1, . . . , kμ)-out-of-(N1, . . . , Nμ) Special-Soundness) Let
k1, . . . , kμ, N1, . . . , Nμ ∈ N. A (2μ + 1)-move public-coin interactive proof
Π = (P,V) for relation R, where V samples the i-th challenge from a set of
cardinality Ni ≥ ki for 1 ≤ i ≤ μ, is (k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-
sound if there exists a polynomial time algorithm that, on input a statement x and a
(k1, . . . , kμ)-tree of accepting transcripts outputs a witness w ∈ R(x). We also say Π

is (k1, . . . , kμ)-special-sound.

It is well known that, for 3-move protocols, k-special-soundness implies knowledge
soundness, but only recently it was shown that more generally, for public-coin (2μ +
1)-move protocols, (k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-soundness tightly implies
knowledge soundness [2], with knowledge error

Er(k1, . . . , kμ; N1, . . . , Nμ) = 1 −
μ∏

i=1

Ni − ki + 1

Ni
= 1 −

μ∏

i=1

(
1 − ki − 1

Ni

)
, (1)

36 Page 10 of 45 T. Attema et al.

which matches the probability that at least one of the random challenges ci hits a certain
set �i of size ki − 1. Since typical protocols admit a trivial attack that succeeds if at
least one of the random challenges ci hits a certain set �i of size ki − 1 (we capture this
by the special- un soundness property in Sect. 7), the soundness/knowledge error Er is
tight for general special-sound protocols.

Note that Er(k; N) = (k − 1)/N and, for all 1 ≤ m ≤ μ,

Er(km, . . . , kμ; Nm, . . . , Nμ)

= 1 − Nm − km + 1

Nm

(
1 − Er(km+1, . . . , kμ; Nm+1, . . . , Nμ)

)
, (2)

where we define Er(∅; ∅) = 1. If N1 = · · · = Nμ = N , i.e., if the verifier samples all
μ challenges from a set of size N , we simply write Er(k1, . . . , kμ; N), or Er(k; N) for
k = (k1, . . . , kμ).

2.3. Non-Interactive Random Oracle Proofs (NIROP)

In practice, interactive proofs are not typically used. Instead, transformations are used
which turn them into non-interactive proofs in the random oracle model (ROM). We
define non-interactive random oracle proofs (NIROP) as in [12]. Their definition is a
straightforward adaption of (non-)interactive proof systems to the ROM. The same holds
for their properties. Every algorithm is augmented by access to a random oracle.

In the random oracle model, algorithms have black-box access to an oracle
RO : {0, 1}∗ → Y , called the random oracle, which is instantiated by a uniformly
random function with domain {0, 1}∗ and codomain Y . For convenience, we let the
codomain Y be an arbitrary finite set, while typically Y = {0, 1}η for some η ∈ N

related to the security parameter. Equivalently, RO is instantiated by lazy sampling, i.e.,
for every bitstring x ∈ {0, 1}∗, RO(x) is chosen uniformly at random in Y (and then
fixed). To avoid technical difficulties, we limit the domain from {0, 1}∗ to {0, 1}≤u , the
finite set of all bitstrings of length at most u, for a sufficiently large u ∈ N. An algorithm
ARO that is given black-box access to a random oracle is called a random-oracle algo-
rithm. We call A a Q-query random-oracle algorithm, if it makes at most Q queries to
RO (independent of RO).

A natural extension of the random oracle model is when A is given access to multiple
independent random oracles RO1, . . . ,ROμ, possibly with different codomains.4 The
definitions below apply to this extension in the obvious way.

Definition 8. (Non-Interactive Random Oracle Proof (NIROP)) A non-interactive
random oracle proof for relation R is a pair (P,V) of (probabilistic) random-oracle
algorithms, a prover P and a polynomial-time verifier V , such that: Given (x;w) ∈ R
and access to a random oracle RO, the prover PRO(x;w) outputs a proof π . Given x ∈
{0, 1}∗, a purported proof π , and access to a random oracle RO, the verifier VRO(x, π)

outputs 0 to reject or 1 to accept the proof.

4In practice, these random oracles will be instantiated by one random oracle RO : {0, 1}∗ → {0, 1}η using
standard techniques for domain separation and for sampling random elements from non-binary sets.

Fiat–Shamir Transformation of Multi-Round... Page 11 of 45 36

As for interactive definitions, a NIROP is complete if honestly generated proofs for
(x;w) ∈ R are accepted by V with high probability. It is sound if it is infeasible to
produce an accepting proof for a false statement. In the non-interactive setting, the
soundness error, i.e., the success probability of a cheating prover necessarily depends
on the number of queries it is allowed to make to the random oracle. The same holds
true for knowledge soundness of NIROPs.

Definition 9. (Knowledge Soundness—NIROP) A non-interactive random oracle
proof (P,V) for relation R is knowledge sound with knowledge error κ : N×N → [0, 1]
if there exists a positive polynomial q and an algorithm E , called a knowledge extrac-
tor, with the following properties: The extractor, given input x and oracle access to any
(potentially dishonest) Q-query random oracle prover P∗, runs in an expected number
of steps that is polynomial in |x | and Q and outputs a witness w ∈ R(x), and satisfies

Pr
(
(x;w) ∈ R : w ← EP∗

(x)
) ≥ ε(P∗, x) − κ(|x |, Q)

q(|x |)

for all x ∈ {0, 1}∗ where ε(P∗, x) = Pr
(VRO(x,P∗,RO) = 1

)
. Here, E implements RO

for P∗, in particular, E can arbitrarily program RO. Moreover, the randomness is over
the randomness of E , V , P∗ and RO.

Remark 2. As for the knowledge soundness of interactive proofs (see Remark 1), it is
sufficient to consider deterministic provers P∗ in Definition 9. Consequently, we will
assume all dishonest provers P∗ to be deterministic in order to simplify our analysis.
Black-box access to P∗ then simply means black-box access to the next-message func-
tion of P∗. This in particular means that E can “rewind” P∗ to any state. We stress
though that E cannot depend on (or “know”) certain properties of P∗, such as Q or the
success probability ε(P∗, x).

Remark 3. The knowledge soundness definition for non-interactive random oracle
proofs does not impose any (computational) restrictions on the prover P∗ attacking
the proof, i.e., the knowledge extractor may also be given oracle access to an unbounded
prover P∗. Therefore, it makes sense to refer to a NIROP admitting such a knowledge
extractor as a proof of knowledge, rather than an argument of knowledge. However, at the
same time, both the extractor’s runtime and the knowledge error are allowed to depend
on the query complexity Q. In fact, the knowledge error κ(|x |, Q) typically converges
to 1 as Q → ∞. Therefore, in practice, one must bound the query complexity Q of a
dishonest prover to derive nontrivial knowledge soundness properties. For this reason,
a NIROP is sometimes also referred to as a non-interactive random oracle argument,
even if P∗ is allowed to be inefficient.

2.4. (Non)-Interactive Arguments

Interactive and non-interactive proofs for which (knowledge) soundness only holds with
respect to computationally bounded provers P∗ attacking the protocol are referred to as
arguments (of knowledge). The computational soundness analysis of (non)-interactive

36 Page 12 of 45 T. Attema et al.

arguments can be significantly more complicated than the unconditional soundness anal-
ysis of proofs. For instance, t-fold parallel repetition is relatively easily seen to reduce
the soundness error of an interactive proof from σ down to σ t , while the same result
does not hold for arguments [15].

However, when considering knowledge soundness, arguments for a relation R can
typically be cast as proofs, with unconditional knowledge soundness, but now for a
slightly different relation; namely for the relation R′ such that (x;w) ∈ R′ if and
only if (x;w) ∈ R or w is the solution to some computational problem (depending
on the (non)-interactive argument, e.g., two different openings of a commitment, or a
collision in a hash function). In particular, computationally special-sound protocols (with
respect to relation R) are typically unconditionally special-sound with respect to R′. Our
results (and prior works) show that the unconditional special-soundness for R′ implies
unconditional knowledge soundness for R′ (i.e., the extractor outputs a witness for
the original relation R or it solves a computational problem), and thus computational
knowledge soundness with respect to the original relation R. For this reason, our focus
lies on the analysis of proofs, with the understanding that our results also apply to
arguments.

Remark 4. The reason why the above does not work when considering ordinary sound-
ness is that every statement x admits a witness with respect to relation R′; a solution to
the computational problem is a witness for any x . Hence, since there do not exist state-
ments outside the language L R′ = {0, 1}∗, any (non)-interactive proof is sound with
respect to relation R′. In other words, the above reduction, in which an argument for
relation R is cast as a proof for relation R′, is only useful when considering knowledge
soundness instead of ordinary soundness.

Example 1. (Bulletproofs) A typical computational problem, arising in the knowledge
soundness analysis of (non)-interactive arguments, is breaking the binding property
of some underlying commitment scheme. More precisely, in many (non)-interactive
arguments the knowledge extractor either extracts a witness or it finds two distinct
openings to the same commitment. For instance, Bulletproofs [9,10] use the Pedersen
vector commitment scheme, which is computationally binding assuming the hardness
of finding non-trivial discrete logarithm relations. Hence, Bulletproofs are arguments
of knowledge with respect to some relation R, but proofs of knowledge with respect to
R′, where a witness w ∈ R′(x) is either a witness w ∈ R(x) or a non-trivial discrete
logarithm relation. This observation shows that our techniques also apply to Bulletproof-
like protocols.

2.5. Adaptive Security

Thus far, knowledge soundness has been defined with respect to static or non-adaptive
proversP∗ attacking the considered (non-)interactive proof for a fixed statement x . How-
ever, in many practical scenarios the dishonest provers are free to choose the statement x
adaptively. Hence, in these cases static security is not sufficient. For interactive proofs, it
is well-known that static knowledge soundness implies adaptive knowledge soundness.
However, this does not carry over to non-interactive proofs. For instance, it is easy to see

Fiat–Shamir Transformation of Multi-Round... Page 13 of 45 36

that the static Fiat–Shamir transformation (see Definition 11) is in general not adaptively
sound.

For this reason, let us formalize adaptive knowledge soundness for non-interactive
random oracle proofs. An adaptive prover Pa attacking the considered NIROP is given
oracle access to a random oracle RO and outputs a statement x of fixed length |x | = n
together with a proof π . As in the static definition, adaptive knowledge soundness re-
quires the existence of a knowledge extractor. However, formalizing the requirements of
this extractor introduces some subtle issues. Namely, because Pa chooses the statement
x adaptively, it is not immediately clear for which statement the extractor should extract
a witness. For instance, granting the extractor the same freedom of adaptively choosing
the statement x , for which it needs to extract a witness w, renders knowledge extrac-
tion trivial; the extractor could simply output an arbitrary statement-witness pair (x;w).
For this reason, we require the extractor to output statement-witness pairs (x;w) corre-
sponding to the valid pairs (x, π) output by the adaptive prover Pa. To formalize these
requirements, we also write (x, π, v), with v ∈ {0, 1} indicating whether π is a valid
proof for statement x . Given this notation, the extractor should output a triple (x, π, v)

with the same distribution as the triples (x, π, v) produced by Pa; furthermore, if π

is a valid proof for statement x , i.e., v = 1, then the extractor should additionally aim
to output a witness w ∈ R(x). As before, the success probability of the extractor is
allowed to depend on the success probability of Pa. Finally, to ensure that the knowl-
edge extractor can be used in compositional settings, where the NIROP is deployed as
a component of a larger protocol, the prover Pa is also allowed to additionally output
arbitrary auxiliary information aux ∈ {0, 1}∗ and the extractor is then required to sim-
ulate the tuple (x, π,aux, v), rather than the triple (x, π, v). The following definition
formalizes adaptive knowledge soundness along these lines. For alternative definitions
see, e.g., [22,34].

Definition 10. (Adaptive Knowledge Soundness—NIROP) A non-interactive random
oracle proof (P,V) for relation R is adaptively knowledge sound with knowledge error
κ : N × N → [0, 1] if there exists a positive polynomial q and an algorithm E , called a
knowledge extractor, with the following properties: The extractor, given input n ∈ N and
oracle access to any adaptive Q-query random oracle prover Pa that outputs statements
x with |x | = n, runs in an expected number of steps that is polynomial in n and Q and
outputs a tuple (x, π,aux, v;w) such that {(x, π,aux, v) : (x, π,aux) ← Pa,RO ∧
v ← VRO(x, π)} and {(x, π,aux, v) : (x, π,aux, v;w) ← EPa

(n)} are identically
distributed and

Pr
(
v = accept ∧ (x;w) ∈ R : (x, π,aux, v;w) ← EPa

(n)
) ≥ ε(Pa) − κ(n, Q)

q(n)
,

where ε(Pa) = Pr
(VRO(x, π) = 1 : (x, π) ← Pa,RO

)
. Here, E implements RO for

Pa, in particular, E can arbitrarily program RO. Moreover, the randomness is over the
randomness of E , V , Pa and RO.

Remark 5. We note that, while the tuple (x, π,aux, v) is required to have the same
distribution forPa andE(n), by default the respective executions ofPa andE(n) give rise

36 Page 14 of 45 T. Attema et al.

to two different probability spaces. Looking ahead though, we remark that the extractor
that we eventually construct first does an honest run of Pa by faithfully simulating the
answers to Pa’s random oracle queries (this produces the tuple (x, π,aux, v) that E(n)

eventually outputs and which so trivially has the right distribution), and then, if π is a
valid proof, E(n) starts rewinding Pa and reprogramming the random oracle to try to
find enough valid proofs to compute a witness. Thus, in this sense, we can then say that
E(n) aims to find a witness w ∈ R(x) for the statement x output by Pa.

2.6. Fiat–Shamir Transformations

The Fiat–Shamir transformation [24] turns a public-coin interactive proof into a non-
interactive random oracle proof (NIROP). The general idea is to compute the i-th chal-
lenge ci as a hash of the i-th prover message ai and (some part of) the previous com-
munication transcript. For a Σ-protocol, the challenge c is computed as c = H(a) or as
c = H(x, a), where the former is sufficient for static security, where the statement x is
given as input to the dishonest prover, and the latter is necessary for adaptive security,
where the dishonest prover can choose the statement x for which it wants to forge a
proof.

For multi-round public-coin interactive proofs, there is some degree of freedom in
the computation of the i-th challenge. For concreteness and simplicity, we consider a
particular version where all previous prover messages are hashed along with the current
message. Our techniques also apply to some other variants of the Fiat–Shamir transfor-
mation (see below), but one has to be careful, e.g., hashing only the current message is
known to be not sufficient for multi-round protocols. As for Σ-protocols, we consider a
static and an adaptive variant of this version of the Fiat–Shamir transformation. In con-
trast to the static variant, the adaptive Fiat–Shamir transformation includes the statement
x in all hash function evaluations. If it is not made explicit which variant is used, the
considered result holds for both variants.

Let Π = (P,V) be a (2μ+1)-move public-coin interactive proof, where the challenge
from the i-th round is sampled from set Ci . For simplicity, we consider μ random oracles
ROi : {0, 1}≤u → Ci that map into the respective challenge spaces.

Definition 11. (Fiat–Shamir Transformation) The static Fiat–Shamir transformation

FS[Π] = (Pfs,Vfs) is the NIROP where PRO1,...,ROμ

fs (x;w) runs P(x;w) but instead
of asking the verifier for the challenge ci on message ai , the challenges are computed
as

ci = ROi (a1, . . . , ai−1, ai) ; (3)

the output is then the proof π = (a1, . . . , aμ+1). On input a statement x and a proof π =
(a1, . . . , aμ+1), VRO1,...,ROμ

fs (x, π) accepts if, for ci as above V accepts the transcript
(a1, c1, . . . , aμ, cμ, aμ+1) on input x .

If the challenges are computed as

ci = ROi (x, a1, . . . , ai−1, ai) ; (4)

Fiat–Shamir Transformation of Multi-Round... Page 15 of 45 36

the resulting NIROP is referred to as the adaptive Fiat–Shamir transformation.

By means of reducing the security of other variants of the Fiat–Shamir transformation
to Definition 11, appropriately adjusted versions of our results also apply to other variants
of doing the “chaining” (Eqs. 3 and 4) in the Fiat–Shamir transformation, for instance
when ci is computed as ci = ROi (i, ci−1, ai) or ci = ROi (x, i, ci−1, ai), where c0 is
the empty string.

2.7. Negative Hypergeometric Distribution

An important tool in our analysis is the negative hypergeometric distribution. Consider a
bucket containing
 green balls and N −
 red balls, i.e., a total of N balls. In the negative
hypergeometric experiment, balls are drawn uniformly at random from this bucket,
without replacement, until k green balls have been found or until the bucket is empty. The
number of red balls X drawn in this experiment is said to have a negative hypergeometric
distribution with parameters N ,
, k, which is denoted by X ∼ NHG(N ,
, k).

Lemma 1. (Negative Hypergeometric Distribution) Let N ,
, k ∈ N with
, k ≤ N,
and let X ∼ NHG(N ,
, k). Then E[X] ≤ k N−

+1 .

Proof. If
 < k, it clearly holds that Pr(X = N −
) = 1. Hence, in this case,
E[X] = N −
 ≤ k N−

+1 , which proves the claim.
So, let us now consider the case
 ≥ k. Then, for all 0 ≤ x ≤ N −
,

Pr(X = x) =
(x+k−1

x

)(N−x−k
N−
−x

)

(N
N−

) .

Hence,

E[X] =
N−
∑

x=0

Pr(X = x) · x =
N−
∑

x=1

x

(x+k−1
x

)(N−x−k
N−
−x

)

(N
N−

)

= k
N −

 + 1

N−
∑

x=1

x
k

(x+k−1
x

)(N−x−k
N−
−x

)

N−

+1

(N
N−

) = k
N −

 + 1

N−
∑

x=1

(x+k−1
x−1

)(N−x−k
N−
−x

)

(N
N−
−1

)

= k
N −

 + 1

N−
∑

x=1

Pr(Y = x − 1) = k
N −

 + 1
,

where Y ∼ NHG(N ,
 + 1, k − 1). This completes the proof of the lemma. �

Remark 6. Typically, negative hypergeometric experiments are restricted to the non-
trivial case
 ≥ k. For reasons to become clear later, we also allow parameter choices
with
 < k resulting in a trivial negative hypergeometric experiment in which all balls
are always drawn.

36 Page 16 of 45 T. Attema et al.

Remark 7. The above has a straightforward generalization to buckets with balls of more
than 2 colors: say
 green balls and mi balls of color i for 1 ≤ i ≤ M . The experiment
proceeds as before, i.e., drawing until either k green balls have been found or the bucket
is empty. Let Xi be the number of balls of color i that are drawn in this experiment.
Then Xi ∼ NHG(
+ mi ,
, k) for all i . To see this, simply run the generalized negative
hypergeometric experiment without counting the balls that are neither green nor of
color i .

3. An Abstract Sampling Game

Towards the goal of constructing and analyzing a knowledge extractor for the Fiat–
Shamir transformation FS[Π] of special-sound interactive proofs Π , we define and
analyze an abstract sampling game. Given access to a deterministic Q-query prover P∗,
attacking the non-interactive random oracle proof FS[Π], our extractor will essentially
play this abstract game in the caseΠ is aΣ-protocol, and it will play this game recursively
in the general case of a multi-round protocol. The abstraction allows us to focus on the
crucial properties of the extraction algorithm, without unnecessarily complicating the
notation.

The game considers an arbitrary but fixed U -dimensional array M , where, for all
1 ≤ j1, . . . , jU ≤ N , the entry M(j1, . . . , jU) = (v, i) contains a bit v ∈ {0, 1} and
an index i ∈ {1, . . . , U }. Think of the bit v indicating whether this entry is “good” or
“bad”, and the index i points to one of the U dimensions. The goal will be to find k
“good” entries with the same index i , and with all of them lying in the 1-dimensional
array M(j1, . . . , ji−1, · , ji+1, . . . , jU) for some 1 ≤ j1, . . . , ji−1, ji+1, . . . , jU ≤ N .

Looking ahead, considering the case of a Σ-protocol first, this game captures the task
of our extractor to find k proofs that are valid and feature the same first message but
have different hash values assigned to the first message. Thus, in our application, the
sequence j1, . . . , jU specifies the function table of the random oracle

RO : {1, . . . , U } → {1, . . . , N }, i �→ ji

while the entry M(j1, . . . , jU) = (v, i) captures the relevant properties of the proof
produced by the considered prover when interacting with that particular specification
of the random oracle. Concretely, the bit v indicates whether the proof is valid, and the
index i is the first message a of the proof. Replacing ji by j ′i then means to reprogram
the random oracle at the point i = a. Note that after the reprogramming, we want to
obtain another valid proof with the same first message, i.e., with the same index i (but
now a different challenge, due to the reprogramming).

The game is formally defined in Fig. 2, and its core properties are summarized in
Lemma 2. Looking ahead, we note that for efficiency reasons, the extractor will naturally
not sample the entire sequence j1, . . . , jU (i.e., function table), but will sample its
components on the fly using lazy sampling.

Fiat–Shamir Transformation of Multi-Round... Page 17 of 45 36

Fig. 2. Abstract sampling game .

It will be useful to define, for all 1 ≤ i ≤ U , the function

ai : {1, . . . , N }U → N≥0, (j1, . . . , jU)

�→ ∣
∣{ j : M(j1, . . . , ji−1, j, ji+1, . . . , jU) = (1, i)

}∣∣ . (5)

The value ai (j1, . . . , jU) counts the number of entries that are “good” and have index
i in the 1-dimensional array M(j1, . . . , ji−1, ·, ji+1, . . . , jU). Note that ai does not
depend on the i-th entry of the input vector (j1, . . . , jU), and so, by a slight abuse of
notation, we sometimes also write ai (j1, . . . , ji−1, ji+1, . . . , jU).

Lemma 2. (Abstract Sampling Game) Consider the game in Fig.2. Let J =
(J1, . . . , JU) be uniformly distributed in {1, . . . , N }U , indicating the first entry sam-
pled, and let (V, I) = M(J1, . . . , JU). Further, for all 1 ≤ i ≤ U, let Ai = ai (J).
Moreover, let X be the number of entries of the form (1, i) with i = I sampled (including
the first one), and let � be the total number of entries sampled in this game.

Then

E[�] ≤ 1 + (k − 1)P and

Pr(X = k) ≥ N

N − k + 1

(
Pr(V = 1) − P · k − 1

N

)
,

where P = ∑U
i=1 Pr(Ai > 0).

Remark 8. Note the abstractly defined parameter P . In our application, where the
index i of (v, i) = M(j1, . . . , jU) is determined by the output of a prover making no
more than Q queries to the random oracle with function table j1, . . . , jU , the parameter
P will be bounded by Q + 1. We show this formally (yet again somewhat abstractly)
in Lemma 3. Intuitively, the reason is that the events Ai > 0 are disjoint for all but Q
indices i (those that the considered prover does not query), and so their probabilities add
up to at most 1.

Indeed, the output of a prover P∗ attacking the protocol, while given oracle access to a
random oracle with function table j1, . . . , jU , that does not query index i is oblivious to
the value of ji . In particular, in this case, there exists a fixed i ′ such that M(j ′1, . . . , j ′U) ∈
{(0, i ′), (1, i ′)} for all j ′1, . . . , j ′U with j
 = j ′
 for all indices
 queried by P∗. Hence,

36 Page 18 of 45 T. Attema et al.

if P∗ does not query i then ai (j1, . . . , jU) > 0 implies that i = i ′. From this it follows
that P = ∑U

i=1 Pr(Ai > 0) ≤ Q + 1. For a formal argument see the proof of Lemma 3.

Proof. (Proof (of Lemma 2)) Expected Number of Samples. Let us first derive an
upper bound on the expected value of �. To this end, let X ′ denote the number of
sampled entries of the form (1, i) with i = I , but, in contrast to X , without counting the
first one. Similarly, let Y ′ denote the number of sampled entries of the form (v, i) with
v = 0 or i �= I , again without counting the first one. Then � = 1 + X ′ + Y ′ and

Pr(X ′ = 0 | V = 0) = Pr(Y ′ = 0 | V = 0) = 1.

Hence, E[X ′ | V = 0] = E[Y ′ | V = 0] = 0.
Let us now consider the expected value E[Y ′ | V = 1]. To this end, we observe that,

conditioned on the event V = 1 ∧ I = i ∧ Ai = a with a > 0, Y ′ follows a negative
hypergeometric distribution with parameters N − 1, a − 1 and k − 1. Hence, by Lemma
1,

E[Y ′ | V = 1 ∧ I = i ∧ Ai = a] ≤ (k − 1)
N − a

a
,

and thus, using that Pr(X ′ ≤ k − 1 | V = 1) = 1,

E[X ′ + Y ′ | V = 1 ∧ I = i ∧ Ai = a] ≤ (k − 1) + (k − 1)
N − a

a
= (k − 1)

N

a
.

On the other hand

Pr(V = 1 ∧ I = i | Ai = a) = a

N

and thus

Pr(V = 1 ∧ I = i ∧ Ai = a) = Pr(Ai = a)
a

N
. (6)

Therefore, and since Pr(V = 1 ∧ I = i ∧ Ai = 0) = 0,

Pr(V = 1)E[X ′ + Y ′ | V = 1] =
U∑

i=1

N∑

a=1

Pr(V = 1 ∧ I = i ∧ Ai = a)

E[X ′ + Y ′ | V = 1 ∧ I = i ∧ Ai = a]

≤
U∑

i=1

N∑

a=1

Pr(Ai = a)(k − 1)

= (k − 1)

U∑

i=1

Pr(Ai > 0) = (k − 1)P,

Fiat–Shamir Transformation of Multi-Round... Page 19 of 45 36

where P = ∑U
i=1 Pr(Ai > 0). Hence,

E[�] = E[1 + X ′ + Y ′]
= 1 + Pr(V = 0) · E[X ′ + Y ′ | V = 0] + Pr(V = 1) · E[X ′ + Y ′ | V = 1]
≤ 1 + (k − 1)P ,

which proves the claimed upper bound on E[�].
Success Probability. Let us now find a lower bound for the “success probability”

Pr(X = k) of this game. Using (6) again, we can write

Pr(X = k) =
U∑

i=1

Pr(V = 1 ∧ I = i ∧ Ai ≥ k) =
U∑

i=1

N∑

a=k

Pr(Ai = a)
a

N
.

Now, using a ≤ N , note that

a

N
= 1 −

(
1 − a

N

)
≥ 1 − N

N − k + 1

(
1 − a

N

)

= N

N − k + 1

(
N − k + 1

N
− 1 + a

N

)
= N

N − k + 1

(
a

N
− k − 1

N

)
.

Therefore, combining the two, and using that the summand becomes negative for a < k
to argue the second inequality, and using (6) once more, we obtain

Pr(X = k) ≥
U∑

i=1

N∑

a=k

Pr(Ai = a)
N

N − k + 1

(
a

N
− k − 1

N

)

≥
U∑

i=1

N∑

a=1

Pr(Ai = a)
N

N − k + 1

(
a

N
− k − 1

N

)

= N

N − k + 1

U∑

i=1

N∑

a=1

(
Pr(V = 1 ∧ I = i ∧ Ai = a) − Pr(Ai = a) · k − 1

N

)

= N

N − k + 1

⎛

⎝Pr(V = 1) − k − 1

N

U∑

i=1

Pr(Ai > 0)

⎞

⎠

= N

N − k + 1

(
Pr(V = 1) − P · k − 1

N

)
,

where, as before, we have used that Pr(V = 1 ∧ I = i ∧ Ai = 0) = 0 for all 1 ≤ i ≤ U
to conclude the second equality, and finally that P = ∑U

i=1 Pr(Ai > 0). This completes
the proof of the lemma. �

Our knowledge extractor will instantiate the abstract sampling game via a determinis-
tic Q-query prover P∗ attacking the Fiat–Shamir transformation FS[Π]. The index i of

36 Page 20 of 45 T. Attema et al.

M(v, i) = (j1, . . . , jU) is then determined by the output of P∗, with the random oracle
being given by the function table j1, . . . , jU . Since the index i is thus determined by Q
queries to the random oracle, the following shows that the parameter P will in this case
be bounded by Q + 1.

Lemma 3. Consider the game in Fig.2. Let v and be functions such that M(j) =(
v(j), idx(j)

)
for all j ∈ {1, . . . , N }U . Furthermore, let J = (J1, . . . , JU) be uniformly

distributed in {1, . . . , N }U , and set Ai = ai (J) for all 1 ≤ i ≤ U. Let us addition-
ally assume that for all j ∈ {1, . . . , N }U there exists a subset S(j) ⊆ {1, . . . , U } of
cardinality at most Q such that (j) = (j ′) for all j ′ with j ′
 = j
 for all
 ∈ S(j). Then

P =
U∑

i=1

Pr(Ai > 0) ≤ Q + 1.

Proof. By basic probability theory, it follows that5

P =
U∑

i=1

Pr(Ai > 0) =
∑

j∈{1,...,N }U

Pr(J = j)
U∑

i=1

Pr(Ai > 0 | J = j)

=
∑

j

Pr(J = j)

(∑

i∈S(j)

Pr(Ai > 0 | J = j) +
∑

i /∈S(j)

Pr(Ai > 0 | J = j)

)

Since |S(j)| ≤ Q for all j , it follows that

P ≤
∑

j

Pr(J = j)

(
Q +

∑

i /∈S(j)

Pr(Ai > 0 | J = j)

)

≤ Q +
∑

j

Pr(J = j)
∑

i /∈S(j)

Pr(Ai > 0 | J = j)

Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N }U , i /∈ S(j) and
j∗ ∈ {1, . . . , N }, it holds that

Pr
(
idx(J1, . . . , Ji−1, j∗, Ji+1, . . . , JU) = idx(j) | J = j

) = 1.

Therefore, for all i /∈ S(j) ∪ {idx(j)},

Pr(Ai > 0 | J = j) = 0.

5The probabilities Pr(Ai > 0 | J = j) are all 0 or 1; however, it’s still convenient to use probability
notation here.

Fiat–Shamir Transformation of Multi-Round... Page 21 of 45 36

Hence,

∑

i /∈S(j)

Pr(Ai > 0 | J = j) ≤ Pr(Aidx(j) > 0 | J = j) ≤ 1.

Altogether, it follows that

P ≤ Q +
∑

j

Pr(J = j) = Q + 1,

which completes the proof. �

4. Fiat–Shamir Transformation of Σ-Protocols

Let us first consider the Fiat–Shamir transformation of a k-special-sound Σ-protocol Π ,
i.e., a 3-move interactive proof, with challenge set C; subsequently, in Sect. 6, we move
to general multi-round interactive proofs.

Let P∗ be a deterministic dishonest Q-query random-oracle prover, attacking the
Fiat–Shamir transformation FS[Π] of Π on input x . Given a statement x as input,
after making Q queries to the random oracle RO : {0, 1}≤u → C, P∗ outputs a proof
π = (a, z). For reasons to become clear later, we re-format (and partly rename) the
output and consider I := a and π as P∗’s output. We refer to the output I as the index.
Furthermore, we extend P∗ to an algorithm A that additionally checks the correctness of
the proof π . Formally, A runs P∗ to obtain I and π , queries RO to obtain c := RO(I),
and then outputs

I = a, y := (a, c, z) and v := V (y),

where V (y) = 1 if y is an accepting transcript for the interactive proof Π on input x
and V (y) = 0 otherwise. Hence, A is a random-oracle algorithm making at most Q + 1
queries; indeed, it relays the oracle queries done by P∗ and makes the one needed to do
the verification. We may write ARO to make the dependency of A’s output on the choice
of the random oracle RO explicit. A has a naturally defined success probability

ε(A) := Pr
(
v = 1 : (I, y, v) ← ARO)

,

where RO : {0, 1}≤u → C is chosen uniformly at random. The probability ε(A) equals
the success probability ε(P∗, x) of the random-oracle prover P∗ on input x .

Our goal is now to construct an extraction algorithm that, when given black-box access
to A, aims to output k accepting transcripts y1, . . . , yk with common first message a and
distinct challenges. By the k-special-soundness property of Π , a witness for statement
x can be computed efficiently from these transcripts.

The extractor E is defined in Fig. 3. We note that, after a successful first run of A,
having produced a first accepting transcript (a, c, z), we rerunA from the very beginning

36 Page 22 of 45 T. Attema et al.

Fig. 3. Extractor E .

and answer all oracle queries consistently, except the query to a, i.e., we only reprogram
the oracle at the point I = a. Note that since P∗ and thus A is deterministic, and we
only reprogram the oracle at the point I = a, in each iteration of the repeat loop A is
ensured to make the query to I again.6

A crucial observation is the following. Within a run of E , all the queries that are
made by the different invocations of A are answered consistently using lazy sampling,
except for the queries to the index I , where different responses c, c′, . . . are given. This
is indistinguishable from having them answered by a full-fledged random oracle, i.e.,
by means of a pre-chosen function RO : {0, 1}≤u → C, but then replacing the output
RO(I) at I by fresh challenges c′ for the runs ofA in the repeat loop. By enumerating the
elements in the domain and codomain ofRO, it is easily seen that the extractor is actually
running the abstract game from Fig. 2. Thus, bounds on the success probability and the
expected runtime (in terms of queries to A) follow from Lemmas 2 and 3. Altogether,
we obtain the following result.

Lemma 4. (Extractor) The extractor E of Fig.3 makes an expected number of at most
k + Q · (k − 1) queries to A and succeeds in outputting k transcripts y1, . . . , yk with
common first message a and distinct challenges with probability at least

N

N − k + 1

(
ε(A) − (Q + 1) · k − 1

N

)
.

Proof. By enumerating all the elements in the domain and codomain of the random
oracle RO, we may assume that RO : {1, ..., U } → {1, ..., N }, and thus RO can be
represented by the function table (j1, ..., jU) ∈ {1, . . . , N }U for which RO(i) = ji .
Further, since P∗ is deterministic, the outputs I , y and v of the algorithm A can be
viewed as functions taking as input the function table (j1, . . . , jU) ∈ {1, . . . , N }U of
RO, and so we can consider the array M(j1, . . . , jU) = (

I (j1, . . . , jU), v(j1, . . . , jU)
)
.

6Of course, it would be sufficient to rewind A to the point where it makes the (first) query to a, but this
would make the description more clumsy.

Fiat–Shamir Transformation of Multi-Round... Page 23 of 45 36

Then, a run of the extractor perfectly matches up with the abstract sampling game
of Fig. 2 instantiated with array M . The only difference is that, in this sampling game, we
consider full-fledged random oracles encoded by vectors (j1, . . . , jU) ∈ {1, . . . , N }U ,
while the actual extractor implements these random oracles by lazy sampling. Thus,
we can apply Lemma 2 to obtain bounds on the success probability and the expected
runtime. However, in order to control the parameter P , which occurs in the bound of
Lemma 2, we make the following observation, so that we can apply Lemma 3 to bound
P ≤ Q + 1.

For every (j1, . . . , jU), let S(j1, . . . , jU) ⊆ {1, . . . , U } be the set of points that
P∗ queries to the random oracle when (j1, . . . , jU) corresponds to the entire func-
tion table of the random oracle. Then, P∗ will produce the same output when
the random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU). In particular,
I (j1, . . . , ji−1, j, ji+1, . . . , jU) = I (j1, . . . , ji−1, j ′, ji+1, . . . , jU) for all j, j ′ and
for all i /∈ S(j1, . . . , jU). Furthermore, |S(j1, . . . , jU)| ≤ Q. Hence, the conditions
of Lemma 3 are satisfied and P ≤ Q + 1. The bounds on the success probability and
the expected runtime now follow, completing the proof. �

The existence of the above extractor, combined with the k-special-soundness property,
implies the following theorem. One subtle issue is that the sampling without replacement
needs to be done efficiently, i.e., in expected polynomial time; this is not completely
trivial, because in the worst case the extractor has to try all (possibly exponentially
many) challenges. We discuss in Appendix A how this can be done.

Theorem 1. (Fiat–Shamir Transformation of a Σ-Protocol) The Fiat–Shamir trans-
formation FS[Π] of a k-out-of-N special-sound Σ-protocol Π is knowledge sound with
knowledge error

κfs(Q) = (Q + 1) · κ,

where κ := Er(k; N) = (k−1)/N is the knowledge error of the (interactive) Σ-protocol
Π .

5. Refined Analysis of the Abstract Sampling Game

Before we prove knowledge soundness of the Fiat–Shamir transformation of multi-round
interactive protocols, we reconsider the abstract game of Sect. 3 and consider a refined
analysis of the cost of playing the game. The multi-round knowledge extractor will
essentially play a recursive composition of this game; however, the analysis of Sect. 3 is
insufficient for our purposes (resulting in a super-polynomial bound on the runtime of
the knowledge extractor). Fortunately, it turns out that a refinement allows us to prove
the required (polynomial) upper bound.

In Sect. 3, the considered cost measure is the number of entries visited during the game.
For Σ-protocols, every entry corresponds to a single invocation of the dishonest prover
P∗. For multi-round protocols, every entry will correspond to a single invocation of a
sub-tree extractor. The key observation is that some invocations of the sub-tree extractor

36 Page 24 of 45 T. Attema et al.

are expensive while others are cheap. For this reason, we introduce a cost function �

and a constant cost γ to our abstract game, allowing us to differentiate between these
two cases. � and γ assign a cost to every entry of the array M ; � corresponds to the cost
of an expensive invocation of the sub-tree extractor and γ corresponds to the cost of a
cheap invocation. While this refinement presents a natural generalization of the abstract
game of Sect. 3, its analysis becomes significantly more involved.

The following lemma provides an upper bound for the total cost of playing the abstract
game in terms of these two cost functions.

Lemma 5. (Abstract Sampling Game—Weighted Version) Consider again the game
of Fig.2, as well a cost function � : {1, . . . , N }U → R≥0 and a constant cost γ ∈ R≥0.

Let J = (J1, . . . , JU) be uniformly distributed in {1, . . . , N }U , indicating the first
entry sampled, and let (V, I) = M(J1, . . . , JU). Further, for all 1 ≤ i ≤ U, let
Ai = ai (J), where the function ai is as defined in Eq.5.

We define the cost of sampling an entry M(j1, . . . , jU) = (v, i) with index i = I to
be �(j1, . . . , jU) and the cost of sampling an entry M(j1, . . . , jU) = (v, i) with index
i �= I to be γ . Let be the total cost of playing this game. Then,

E[] ≤ k · E[�(J)] + (k − 1) · T · γ

where T = ∑U
i=1 Pr(I �= i ∧ Ai > 0) ≤ P.

Remark 9. Note that the parameter T in the statement here differs slightly from its
counterpart P = ∑

i Pr(Ai > 0) in Lemma 2. Recall the informal discussion of P in
the context of our application (Remark 8), where the array M is instantiated via a Q-
query prover P∗ attacking the Fiat–Shamir transformation of an interactive proof. We
immediately see that now the defining events I �= i ∧ Ai > 0 are empty for all U − Q
indices that the prover does not query, giving the bound T ≤ Q here, compared to the
bound P ≤ Q + 1 on P . The formal (and more abstract) statement and proof is given
in Lemma 6.

Proof. Let us split up into the cost measures 1, 2 and 3, defined as follows. 1
denotes the total costs of the elements M(j1, . . . , jU) = (1, i) with i = I sampled in the
game, i.e., the elements with bit v = 1 and index i = I ; correspondingly, X denotes the
number of entries of the form (1, i) with i = I sampled (including the first one if V = 1).
Second, 2 denotes the total costs of the elements M(j1, . . . , jU) = (0, i) with i = I
sampled, i.e., the elements with bit v = 0 and index i = I ; correspondingly, Y denotes
the number of entries of the form (0, i) with i = I sampled (including the first one if
V = 0). Finally, 3 denotes the total costs of the elements M(j1, . . . , jU) = (v, i) with
i �= I sampled; correspondingly, Z denotes the number of entries of this form sampled.

Clearly = 1 + 2 + 3. Moreover, since the cost γ is constant, it follows that
E[3] = γ ·E[Z]. In a similar manner, we now aim to relate E[1] and E[2] to E[Y]
and E[Z], respectively. However, since the cost function � : {1, . . . , N }U → R≥0 is not
necessarily constant, this is more involved.

For 1 ≤ i ≤ U , let us write J ∗
i = (J1, . . . , Ji−1, Ji+1, . . . , JU), which is uni-

formly random with support {1, . . . , N }U−1. Moreover, for all 1 ≤ i ≤ U and

Fiat–Shamir Transformation of Multi-Round... Page 25 of 45 36

j∗ = (j∗1 , . . . , j∗i−1, j∗i+1, . . . , jU) ∈ {1, . . . , N }U−1, let �(i, j∗) denote the event

�(i, j∗) = [I = i ∧ J ∗
i = j∗].

We note that conditioned on the event �(i, j∗), all samples are picked from the subarray
M(j∗1 , . . . , j∗i−1, · , j∗i+1, · · · , j∗U); the first one uniformly at random subject to the index
I being i , and the remaining ones (if V = 1) uniformly at random (without replacement).

We first analyze and bound E[1 | �(i, j∗)]. We observe that, for all i and j∗ with
Pr

(
�(i, j∗)

)
> 0,

E[1 | �(i, j∗)] =
N∑

=0

Pr
(
X =
 | �(i, j∗)

) · E[1 | �(i, j∗) ∧ X =
].

Since, conditioned on �(i, j∗)∧X =
 for
 ∈ {0, . . . , N }, any size-
 subset of elements
with v = 1 and index i is equally likely to be sampled, it follows that

E[1 | �(i, j∗) ∧ X =
] = E[�(J) | V = 1 ∧ �(i, j∗)] ·
.

Hence,

E[1 | �(i, j∗)] = E[�(J) | V = 1 ∧ �(i, j∗)] ·
∑

Pr
(
X =
 | �(i, j∗)

) ·

= E[�(J) | V = 1 ∧ �(i, j∗)] · E[X | �(i, j∗)] .

Similarly,

E[2 | �(i, j∗)] = E[�(J) | V = 0 ∧ �(i, j∗)] · E[Y | �(i, j∗)].

Next, we bound the expected values of X and Y conditioned on �(i, j∗). The analysis
is a more fine-grained version of the proof of Lemma 2. Bounding E[X | �(i, j∗)] is
quite easy: since V = 0 implies X = 0 and V = 1 implies X ≤ k, it immediately
follows that

E[X | �(i, j∗)] = Pr(V = 0 | �(i, j∗)) · E[X | V = 0 ∧ �(i, j∗)]
+ Pr(V = 1 | �(i, j∗)) · E[X | V = 1 ∧ �(i, j∗)]

≤ Pr(V = 1 | �(i, j∗)) · k.

Hence,

E[1 | �(i, j∗)] ≤ k · Pr(V = 1 | �(i, j∗)) · E[�(J) | V = 1 ∧ �(i, j∗)]. (7)

Suitably bounding the expectation E[Y | �(i, j∗)], and thus E[2 | �(i, j∗)],

36 Page 26 of 45 T. Attema et al.

is more involved. For that purpose, we introduce the following parameters. For the con-
sidered fixed choice of the index 1 ≤ i ≤ U and of j∗ = (j∗1 , . . . , j∗i−1, j∗i+1, · · · , j∗U),
we let,7

a := ai (j∗) = ∣∣{ j : (v j , i j) = M(j∗1 , . . . , j∗i−1, j, j∗i+1, . . . , j∗U) = (1, i)
}∣∣ and

b := bi (j∗) := ∣∣{ j : (v j , i j) = M(j∗1 , . . . , j∗i−1, j, j∗i+1, . . . , j∗U) = (0, i)
}∣∣ .

Let us first note that

Pr
(
V = 1 | �(i, j∗)

) = a

a + b
and Pr

(
V = 0 | �(i, j∗)

) = b

a + b

for all i and j∗ with Pr
(
�(i, j∗)

)
> 0. Therefore, if we condition on the event V =

1 ∧ �(i, j∗) we implicitly assume that i and j∗ are so that a is positive. Now, towards
bounding E[Y | �(i, j∗)], we observe that conditioned on the event V = 1 ∧ �(i, j∗),
the random variable Y follows a negative hypergeometric distribution with parameters
a + b − 1, a − 1 and k − 1 (see also Remark 7). Hence, by Lemma 1,

E[Y | V = 1 ∧ �(i, j∗)] ≤ (k − 1)
b

a
,

and thus

E[Y | �(i, j∗)] = Pr(V = 0 | �(i, j∗)) · E[Y | V = 0 ∧ �(i, j∗)]
+ Pr(V = 1 | �(i, j∗)) · E[Y | V = 1 ∧ �(i, j∗)]

≤ Pr
(
V = 0 | �(i, j∗)

) + Pr
(
V = 1 | �(i, j∗)

) · (k − 1)
b

a

= b

a + b
+ a

a + b
· (k − 1)

b

a
= k

b

a + b
= k · Pr(V = 0 | �(i, j∗)),

where we use that E[Y | V = 0 ∧ �(i, j∗)] = 1. Hence,

E[2 | �(i, j∗)] ≤ k · Pr(V = 0 | �(i, j∗)) · E[�(J) | V = 0 ∧ �(i, j∗)],

and thus, combined with Eq. 7,

E[1 + 2 | �(i, j∗)] ≤ k · E[�(J) | �(i, j∗)].

Since this inequality holds for all i and j∗ with Pr
(
�(i, j∗)

)
> 0, it follows that

E[1 + 2] ≤ k · E[�(J)].
7Recall that we use ai (j1, . . . , jU) and ai (j1, . . . , ji−1 ji+1, . . . , jU) interchangeably, exploiting that

ai (j1, . . . , jU) does not depend on the i-th input ji .

Fiat–Shamir Transformation of Multi-Round... Page 27 of 45 36

What remains is to show that E[Z] ≤ (k − 1)T , and thus E[3] = γ E[Z] ≤
(k − 1)T γ . The slightly weaker bound E[Z] ≤ (k − 1)P follows immediately from
observing that Z ≤ Y ′ for Y ′ as in the proof of Lemma 2 (the number of entries counted
by Z is a subset of those counted by Y ′), and using that E[Y ′] ≤ E[X ′ +Y ′] ≤ (k −1)P
as derived in the proof of Lemma 2. In order to get the slightly better bound in terms of
T , we bound E[Z] from scratch below. We use a similar approach as above for bounding
the expectation of Y . Thus, we consider a fixed choice of i and j∗ and set a := ai (j∗)
and b := bi (j∗). Then, conditioned on V = 1 ∧ �(i, j∗), also Z follows a negative
hypergeometric distribution, but now with parameters N − b − 1, a − 1 and k − 1.
Therefore, for all i and j∗ with Pr

(
V = 1 ∧ �(i, j∗)

)
> 0,

E[Z | V = 1 ∧ �(i, j∗)] ≤ (k − 1)
N − a − b

a
.

Using that E[Z | V = 0∧�(i, j∗)] = 0, but also recalling that Pr
(
V = 1 | �(i, j∗)

) =
a/(a + b) and exploiting Pr(I = i | J ∗

i = j∗) = (a + b)/N , it follows that

E[Z | �(i, j∗)] = Pr
(
V = 1 | �(i, j∗)

) · E[Z | V = 1 ∧ �(i, j∗)]
≤ a

a + b
· (k − 1) · N − a − b

a
= (k − 1) · N − a − b

a + b

= (k − 1) ·
(1

Pr(I = i | J ∗
i = j∗)

− 1
)

= (k − 1) · Pr(J ∗
i = j∗) − Pr(I = i ∧ J ∗

i = j∗)
Pr(�(i, j∗))

= (k − 1) · Pr(I �= i ∧ J ∗
i = j∗)

Pr(�(i, j∗))
.

We recall that the above holds for all i and j∗ for which a = ai (j∗) > 0, so that
Pr(V = 1 ∧ �(i, j∗)) > 0. For i and j∗ with a = ai (j∗) = 0, it holds that �(i, j∗)
implies V = 0, and thus E[Z | �(i, j∗)] = 0. Therefore

E[Z] =
U∑

i=1

∑

j∗ s.t.
ai (j∗)>0

Pr[�(i, j∗)] · E[Z | �(i, j∗)]

≤ (k − 1) ·
U∑

i=1

∑

j∗ s.t.
ai (j∗)>0

Pr(I �= i ∧ J ∗
i = j∗)

≤ (k − 1) ·
U∑

i=1

Pr(I �= i ∧ Ai > 0) = (k − 1) · T .

Hence E[3] ≤ (k − 1) · T · γ , as intended, and altogether it follows that

E[] = E[1 + 2 + 3] ≤ k · E[�(J)] + (k − 1) · T · γ,

36 Page 28 of 45 T. Attema et al.

which completes the proof of the lemma. �

Lemma 6. Consider the game in Fig.2. Let v and idx be functions such that M(j) =(
v(j), idx(j)

)
for all j ∈ {1, . . . , N }U . Furthermore, let J = (J1, . . . , JU) be uniformly

distributed in {1, . . . , N }U and set Ai = ai (J) for all 1 ≤ i ≤ U as in Eq.5. Let us
additionally assume that for all j ∈ {1, . . . , N }U there exists a subset S(j) ⊆ {1, . . . , U }
of cardinality at most Q such that idx(j) = idx(j ′) for all j, j ′ with j
 = j ′
 for all

 ∈ S(j). Then

T =
U∑

i=1

Pr
(
idx(J) �= i ∧ Ai > 0

) ≤ Q.

Proof. The proof is analogous to the proof of Lemma 3. By basic probability theory, it
follows that

T =
U∑

i=1

Pr
(
J) �= i ∧ Ai > 0

)

=
∑

j

Pr(J = j)

(∑

i∈S(j)

Pr
(
J) �= i ∧ Ai > 0 | J = j

)

+
∑

i /∈S(j)

Pr
(
J) �= i ∧ Ai > 0 | J = j

))

≤ Q +
∑

j

Pr(J = j)
∑

i /∈S(j)

Pr
(
J) �= i ∧ Ai > 0 | J = j

)
,

where the inequality follows from the fact that |S(j)| ≤ Q for all j .
Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N }U , i /∈ S(j) and

ji ∈ {1, . . . , N }, it holds that

Pr
(
J1, . . . , Ji−1, ji , Ji+1, . . . , JU) = j) | J = j

) = 1.

Therefore, for all i /∈ S(j) ∪ { j)},

Pr(Ai > 0 | J = j) = 0.

Hence,

∑

i /∈S(j)

Pr
(
J) �= i ∧ Ai > 0 | J = j

) ≤ Pr
(
J) �= j) ∧ A j) > 0 | J = j

) = 0.

Altogether, it follows that

T ≤ Q +
∑

j

Pr(J = j)
∑

i /∈S(j)

Pr
(
J) �= i ∧ Ai > 0 | J = j

) = Q,

Fiat–Shamir Transformation of Multi-Round... Page 29 of 45 36

which completes the proof. �

6. Fiat–Shamir Transformation of Multi-Round Protocols

Let us now move to multi-round interactive proofs. More precisely, we consider the
Fiat–Shamir transformation FS[Π] of a k-special-sound (2μ + 1)-move interactive
proof Π , with k = (k1, . . . , kμ). While the multi-round extractor has a natural recursive
construction, it requires a more fine-grained analysis to show that it indeed implies
knowledge soundness.

To avoid a cumbersome notation, in Sect. 6.1 we first handle (2μ + 1)-move interac-
tive proofs in which the verifier samples all μ challenges uniformly at random from the
same set C. Subsequently, in Sect. 6.2, we argue that our techniques have a straightfor-
ward generalization to interactive proofs where the verifier samples its challenges from
different challenge sets. In Sect. 6.3, we also show that our results extend to adaptive
security in a straightforward way.

6.1. Multi-Round Protocols with a Single Challenge Set

Consider a deterministic dishonest Q-query random-oracle prover P∗, attacking the
Fiat–Shamir transformation FS[Π] of a k-special-sound interactive proof Π on input
x . We assume all challenges to be elements in the same set C. After making at most Q
queries to the random oracle, P∗ outputs a proof π = (a1, . . . , aμ+1). We re-format the
output and consider

I1 := a1, I2 := (a1, a2), . . . , Iμ := (a1, . . . , aμ) and π

asP∗’s output. Sometimes it will be convenient to also consider Iμ+1 := (a1, . . . , aμ+1).
Furthermore, we extend P∗ to a random-oracle algorithm A that additionally checks the
correctness of the proof π . Formally, relaying all the random oracle queries that P∗ is
making, A runs P∗ to obtain I = (I1, . . . , Iμ) and π , additionally queries the random
oracle to obtain c1 := RO(I1), . . . , cμ := RO(Iμ), and then outputs

I, y := (a1, c1, . . . , aμ, cμ, aμ+1) and v := V (x, y),

where V (x, y) = 1 if y is an accepting transcript for the interactive proof Π on input
x and V (x, y) = 0 otherwise. Hence, A makes at most Q + μ queries (the queries
done by P∗, and the queries to I1, . . . , Iμ). Moreover, A has a naturally defined success
probability

ε(A) := Pr
(
v = 1 : (I, y, v) ← ARO)

,

where RO : {0, 1}≤u → C is distributed uniformly. As before, ε(A) = ε(P∗, x).
Our goal is now to construct an extraction algorithm that, when given black-box access

to A, and thus to P∗, aims to output a k-tree of accepting transcripts(Definition 6). By

36 Page 30 of 45 T. Attema et al.

Fig. 4. Sub-extractor Em , as a (Q + μ)-query random-oracle algorithm .

the k-special-soundness property of Π , a witness for statement x can then be computed
efficiently from these transcripts.

To this end, we recursively introduce a sequence of “sub-extractors”E1, . . . , Eμ, where
Em aims to find a (1, . . . , 1, km, . . . , kμ)-tree of accepting transcripts. The main idea
behind this recursion is that such a (1, . . . , 1, km, . . . , kμ)-tree of accepting transcripts
is the composition of km appropriate (1, . . . , 1, km+1, . . . , kμ)-trees.

For technical reasons, we define the sub-extractors Em as random-oracle algorithms,
each one making Q+μqueries to a random oracle. As we will see, the recursive definition
of Em is very much like the extractor from the 3-move case, but with A replaced by the
sub-extractor Em+1; however, for this to work we need the sub-extractor to be the same
kind of object as A, thus a random-oracle algorithm making the same number of queries.
As base for the recursion, we consider the algorithmA (which outputs a single transcript,
i.e., a (1, . . . , 1)-tree); thus, the sub-extractor Eμ (which outputs a (1, . . . , 1, kμ)-tree)
is essentially the extractor of the 3-move case, but with A now outputting an index
vector I = (I1, . . . , Iμ), and with Eμ being a random-oracle algorithm, so that we can
recursively replace the random-oracle algorithm A by Eμ to obtain Eμ−1, etc.

Formally, the recursive definition of Em from Em+1 is given in Fig. 4, where Eμ+1 (the
base case) is set to Eμ+1 := A, and where Em exploits the following early abort feature
of Em+1: like A, the sub-extractor Em+1 computes the index vector it eventually outputs
by running P∗ as its first step (see Lemma 7). This allows the executions of Em+1 in the
repeat loop in Fig. 4 to abort after a single run of P∗ if the requirement I ′

m = Im on its
index vector I is not satisfied, without proceeding to produce the remaining parts y′, v′
of the output (which would invoke more calls to P∗).

The actual extractor E is then given by a run of E1, with the Q + μ random-oracle
queries made by E1 being answered using lazy-sampling.
Remark 10. Let us emphasize that within one run of Em , except for the query to Im

for which the response is “reprogrammed”, all the queries made by the multiple runs of
the sub-extractor Em+1 in the repeat loop are answered consistently, both with the run
of Em+1 in the first step and among the runs in the repeat loop. This means, a query to a
value ξ that has been answered by η in a previous run on Em+1 (within the considered
run of Em) is again answered by η, and a query to a value ξ ′ that has not been queried yet

Fiat–Shamir Transformation of Multi-Round... Page 31 of 45 36

in a previous run on Em+1 (within the considered run of Em) is answered with a freshly
chosen uniformly random η′ ∈ C. In multiple runs of Em , very naturally the random tape
of Em will be refreshed, and thus there is no guaranteed consistency among the answers
to the query calls of Em+1 across multiple runs of Em .

The following lemma captures some technical property of the sub-extractors Em .
Subsequently, Proposition 1 shows that Em , if successful, indeed outputs a
(1, . . . , 1, km . . . , kμ)-tree of accepting transcripts. Proposition 2 bounds the success
probability and expected runtime of Em . All statements are understood to hold for any
statement x and any m ∈ {1, . . . , μ + 1}.

Lemma 7. (Consistency of P∗ and Em) Em obtains the index vector I, which it eventu-
ally outputs, by running (I, π) ← P∗ as its first step. In particular, for any fixed choice
of the random oracle RO, the index vector I output by ERO

m matches the one output
by P∗,RO.

Proof. The first claim holds for Eμ+1 = A by definition of A, and it holds for Em with
m ≤ μ by induction, given that Em runs Em+1 as a first step. The claim on the matching
index vectors then follows trivially. �

Proposition 1. (Correctness) For any fixed choice of the random oracle
let (I, y1, . . . , ykm , v) ← ERO

m (x). If v = 1 then (y1, . . . , ykm) forms a
(1, . . . , 1, km, . . . , kμ)-tree of accepting transcripts.

Proof. All km+1 · · · kμ transcripts in a (1, . . . , 1, km+1, . . . , kμ)-tree contain the same
partial transcript (a1, c1, . . . , cm, am+1), i.e., the first 2m − 1 messages in all these
transcripts coincide. Hence, any (1, . . . , 1, km+1, . . . , kμ)-tree of transcripts has a well-
defined trunk (a1, c1, . . . , cm, am+1).

By induction on m, we will prove that if v = 1 then (y1, . . . , ykm)

forms a (1, . . . , 1, km, . . . , kμ)-tree of accepting transcripts with trunk
(a1,RO(I1), . . . ,RO(Im−1), am), where Im+1 = (a1, . . . , am+1). This obviously
implies the correctness claim.

For the base case m = μ + 1, recall that Eμ+1 = A, and that by definition of A and
its output (I, y, v), if v = 1 then y is an accepting transcript, and thus a (1, . . . , 1)-tree
of accepting transcripts with (a1,RO(I1), . . . ,RO(Iμ), aμ+1) as trunk where Iμ+1 =
(a1, . . . , aμ+1), by definition of I = (I1, . . . , Iμ).

For the induction step, by the induction hypothesis on Em+1 and its output
(I, y, v), if v = 1 then y is a (1, . . . , 1, km+1, . . . , kμ)-tree of accepting transcripts
with trunk (a1,RO(I1), . . . , am,RO(Im), am+1), where Im+1 = (a1, . . . , am+1).
This holds for (I, y1, v) output by Em+1 in the first step of Em , but also for
any invocation of Em+1 in the repeat loop with output (I′, y′, v′), here with trunk
(a′

1,RO
′(I ′

1), . . . , a′
m,RO′(I ′

m), a′
m+1), where I ′

m+1 = (a′
1, . . . , a′

m+1) and RO′ is such
that RO′(I j) = RO(I j) for all j �= m, while RO(Im) = ci and RO′(Im) = c′

i . By
definition of the output of Em , for y1 and y′ occurring in the output of Em , it is ensured
that Im = I ′

m .

36 Page 32 of 45 T. Attema et al.

Now note that, by Lemma 7, for the purpose of the argument, Em could have run P∗
instead of Em+1 to obtain I and I′. Therefore, by definition of the index vectors output
by P∗, which is such that I j is a (fixed-size) prefix of Im for j < m, it follows that also
I j = I ′

j for all j < m.
Therefore, the output y1, . . . , ykm of Em forms a (1, . . . , 1, km, . . . , kμ)-tree of ac-

cepting transcripts with trunk (a1,RO(I1), . . . , am−1,RO(Im−1), am), where Im =
(a1, . . . , am). This completes the proof. �

Proposition 2. (Run Time and Success Probability) Let Km = km · · · kμ. The extractor
Em makes an expected number of at most Km + Q · (Km − 1) queries to A (and thus to
P∗) and successfully outputs v = 1 with probability at least

ε(A) − (Q + 1) · κm

1 − κm

where κm := Er(km, . . . , kμ; N) is as defined in Eq.1.

Proof. The proof goes by induction on m. The base case m = μ + 1 holds trivially,
understanding that Kμ+1 = 1 and Er(∅, N) = 0. Indeed, Eμ+1 makes 1 call to A and
outputs v = 1 with probability ε(A). Alternatively, we can take m = μ as base case,
which follows immediately from Lemma 4.

For the induction step, we assume now that the lemma is true for m′ = m + 1 and
consider the extractor Em . As in the 3-move case, we observe that, within a run of Em , all
the queries that are made by the different invocations of Em+1 are answered consistently
using lazy sampling, except for the queries to the index Im , which is answered with
different responses c′. This is indistinguishable from having them answered by a full-
fledged random oracle RO : {1, . . . , U } → {1, . . . , N }, where we have enumerated the
domain and codomain ofRO as before. This enumeration allowsRO to be identified with
its function table (j1, . . . , jU) ∈ {1, . . . , N }U . Thus, the extractor is actually running
the abstract sampling game from Fig. 2.

However, in contrast to the instantiation of Sect. 4, the entries of the array M are now
probabilistic. Namely, while A is deterministic, the extractor Em+1 is a probabilistic
algorithm. Fortunately, this does not influence the key properties of the abstract sampling
game. For the purpose of the analysis, we may namely fix the randomness of the extractor
Em+1. By linearity of the success probability and the expected runtime, the bounds that
hold for any fixed choice of randomness also hold when averaged over the randomness.
Thus, we can apply Lemmas 2 and 5 to bound the success probability and the expected
runtime.8

To control the parameters P and T , which occur in the bounds of these lemmas,
we make the following observation. A similar observation was required in the proof
of Lemma 4.

8To be more precise, to allow for fresh randomness in the different runs of Em+1 within Em , we first replace
the randomness of Em+1 by F(j1, . . . , jU) for a random function F , where (j1, . . . , jU) is the function table
of the random oracle providing the answers to Em+1’s queries, and then we fix the choice of F and average
over F after having applied Lemmas 2 and 5.

Fiat–Shamir Transformation of Multi-Round... Page 33 of 45 36

First, by Lemma 7, the index vector I output by Em+1 matches the index vector output
by P∗, when given the same random oracle RO. Second, since P∗ is deterministic, its
output can only change when the random oracle is reprogrammed at one of the indices
i ∈ {1, . . . , U } queried by P∗. Therefore, for every (j1, . . . , jU), let S(j1, . . . , jU) ⊆
{1, . . . , U } be the set of points that P∗ queries to the random oracle when (j1, . . . , jU)

corresponds to the entire function table of the random oracle. Then, P∗ will produce the
same output when the random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU).
In particular, I(j1, . . . , ji−1, j, ji+1, . . . , jU) = I(j1, . . . , ji−1, j ′, ji+1, . . . , jU) for
all j, j ′ and for all i /∈ S(j1, . . . , jU). Furthermore, |S(j1, . . . , jU)| ≤ Q. Hence, the
conditions of Lemmas 3 and 6 are satisfied, and it follows that P ≤ Q + 1 and T ≤ Q.
We are now ready to analyze the success probability and the expected number of A
queries of Em .

Success Probability. By the induction hypothesis, the success probability pm+1 of
Em+1 is bounded by

pm+1 ≥ ε(A) − (Q + 1) · κm+1

1 − κm+1
.

Then, by Lemmas 2 and 3, the success probability pm of Em is bounded by

pm ≥ N

N − km + 1

(
pm+1 − (Q + 1)

km − 1

N

)

≥ N

N − km + 1

(
ε(A) − (Q + 1) · κm+1

1 − κm+1
− (Q + 1)

km − 1

N

)
.

By the recursive property (2) of κm = Er(km, . . . , kμ; N , . . . , N
)
, it follows that

N − km + 1

N
(1 − κm+1) = 1 − κm .

Hence,

pm ≥ ε(A) − (Q + 1) · κm+1

1 − κm
− (Q + 1)

km − 1

N − km + 1

= 1

1 − κm

(
ε(A) − (Q + 1) ·

(
κm+1 + (1 − κm)

km − 1

N − km + 1

))

= 1

1 − κm

(
ε(A) − (Q + 1) ·

(
1 − (1 − κm) · N

N − km + 1
+ (1 − κm)

km − 1

N − km + 1

))

= ε(A) − (Q + 1) · κm

1 − κm
,

which proves the claimed success probability.
Expected Number of A-Queries. Let the random variable Tm denote the number of

A-queries made by extractor Em . By the induction hypothesis, it holds that

E[Tm+1] ≤ Km+1 + Q · (Km+1 − 1).

36 Page 34 of 45 T. Attema et al.

We make one crucial observation, allowing us to achieve the claimed query complexity,
linear in Q. Namely, we can view the run of a (sub)extractor as a two-stage algorithm
that allows an early abort. By Lemma 7, after only one A-query Em+1 already returns
the index Im . At this stage, Em can decide whether to continue the execution of Em+1
or to early abort this execution. If the index is incorrect, i.e., it does not match the one
obtained in the first invocation of Em+1, then Em early aborts the execution of Em+1.
Only if the index is correct, the Em+1 execution has to be finished.

For this reason, we define the function (j1, . . . , jU) �→ �(j1, . . . , jU), where
�(j1, . . . , jU) is the (expected) costs of running Em+1 (completely) with random oracle
(j1, . . . , jU). Moreover, we set γ = 1 indicating the cost of an early abort invocation of
Em+1. These cost functions measure the expected number of calls to A.

Hence, by Lemmas 5 and 6, the expected cost of running Em is at most

E[Tm] ≤ km · E[�(C)] + γ · Q · (km − 1) = km · E[Tm+1] + Q · (km − 1)

≤ Km + Q · (Km − km) + Q · (km − 1) = Km + Q · (Km − 1),

where C is distributed uniformly at random in CU . This completes the proof. �

The existence of extractor E1, combined with the k-special-soundness property, im-
plies the following. This theorem shows that the Fiat–Shamir security loss for k-out-of-N
special-sound (2μ+1)-round interactive proofs is Q+1, i.e., the security loss is linear in
the query complexity Q of provers P∗ attacking the considered non-interactive random
oracle proof FS[Π]. In particular, the Fiat–Shamir security loss is independent of the
number of rounds (2μ + 1) of the interactive proof Π . As before, a subtle issue is that
the extractor needs to do the sampling without replacement efficiently. In Appendix A
we discuss how this can be done.

Theorem 2. (FS Transformation of a (k1, . . . , kμ)-Special-Sound Protocol) The Fiat–
Shamir transformation FS[Π] of a k = (k1, . . . , kμ)-special-sound interactive proof
Π , in which all challenges are sampled from a set C of size N, is knowledge sound with
knowledge error

κfs(Q) = (Q + 1)κ,

where κ := Er(k; N) is the knowledge error of the interactive proof Π .

6.2. Multi-Round Protocols with Arbitrary Challenge Sets

Thus far, we considered and analyzed multi-round interactive proofs in which all chal-
lenges are sampled uniformly at random from the same set C of cardinality N . However,
it is straightforward to verify that our techniques also apply to multi-round interactive
proofs with different challenge sets, i.e., where the i-th challenge is sampled from a set
Ci of cardinality Ni .

A natural first step in this generalization is to consider μ random oracles
ROi : {0, 1}≤u → Ci instead of one. Besides some additional bookkeeping, all the
reasoning goes through unchanged. Indeed, everything works as is when the prover P∗

Fiat–Shamir Transformation of Multi-Round... Page 35 of 45 36

has the additional freedom to choose which random oracle it queries. Thus, we obtain
the following generalization of Theorem 2.

Theorem 3. (FS Transformation of a k-out-of-N Special-Sound Interactive Proof)
The Fiat–Shamir transformation of a k-out-of-N special-sound interactive proof Π

is knowledge sound with knowledge error

κfs(Q) = (Q + 1)κ,

where κ := Er(k; N) is the knowledge error of the interactive proof Π .

Remark 11. Alternatively, one could fix μ mappings fi : {0, 1}∗ → Ci and define the
random oracle to output sufficiently long bitstrings. As before, this allows the prover
P∗ to take as input a single random oracle. Of course, this approach closely resembles
practice, where the random oracles are replaced hash functions. However, one must be
careful, since distinct bitstrings do not necessarily map to distinct challenges and uni-
formly random bitstrings do not necessary correspond to uniformly random challenges.

6.3. Adaptive Security

Thus far, we restricted our extractor analysis to the static or non-adaptive knowledge
soundness notion of Definition 9. More precisely, our knowledge extractor takes as input
a fixed statement x , is given oracle access to a static dishonest prover P∗ attacking the
considered protocol on input x , and aims to output a witness w for x .

However, our approach is easily modified towards proving adaptive knowledge sound-
ness (Definition 10). To this end, let Pa be an adaptive Q-query prover attacking the
adaptive Fiat–Shamir transformation FS[Π] of a k-out-of-N special-sound interactive
proof, i.e., Pa takes no input and outputs a statement-proof pair (x, π), with |x | = n
for some fixed n, together with some auxiliary information aux. The random oracle
algorithm A is defined to run (x, π,aux) ← Pa and verify that π is a valid proof for
statement x . The main difference with the static case is that the indices are now defined
as

I1 := (x, a1), I2 := (x, a1, a2), . . . , Iμ := (x, a1, . . . , aμ),

so as to match up with(4), i.e., with the adaptive Fiat–Shamir transformation.
The statement x can thus be considered as part of the first message (x, a1). Since all

transcripts in a tree of transcripts have a common first message, it is easily seen that the
extractor of Sect. 6, if successfully applied to this adaptive instantiation of A, outputs a
well-defined statement x together with a tree of accepting transcripts for this statement
x . Moreover, x is the statement output by the extractor’s first invocation of Pa.

For this reason, it immediately follows that our knowledge extractor, when applied
to adaptive Q-query provers Pa, has the required properties. This proves the follow-
ing theorem, showing that the adaptive Fiat–Shamir transformation of a special-sound
interactive proof is adaptively knowledge sound.

36 Page 36 of 45 T. Attema et al.

Theorem 4. (FS Transformation—Adaptive Knowledge Soundness) The adaptive
Fiat–Shamir transformation of a k-out-of-N special-sound interactive proof Π is adap-
tively knowledge sound with knowledge error

κfs(Q) = (Q + 1)κ,

where κ := Er(k; N) is the knowledge error of the interactive proof Π .

7. The Fiat–Shamir Transformation of Parallel Repetitions

In the previous sections, we have established a positive result; for a broad class of
interactive proofs the Fiat–Shamir security loss is only linear in the query complexity
Q and independent of the number of rounds. One might therefore wonder whether the
generic (Q + 1)μ security loss, for (2μ + 1)-move protocols, is only tight for contrived
examples. In this section, we show that this is not the case. We demonstrate a non-trivial
attack on the Fiat–Shamir transformation of the parallel repetition of k-special-sound
protocols.

Let Π = (P,V) be a (2μ + 1)-move k-special-sound interactive proof. We write
Π t = (P t ,V t) for its t-fold parallel repetition. That is, the prover P t (x;w) runs t
instances of P(x;w), i.e., each message is a tuple (a1, . . . , at) of messages, one for
each parallel thread of execution. Likewise, the verifier V t (x) runs t instances of V(x)

in parallel, i.e., each challenge is a tuple (c1, . . . , ct) of challenges, one for each parallel
thread of the execution. Finally, the verifier accepts if all parallel instances are accepting.

Assuming certain natural properties on Π , which are satisfied by typical examples, and
assuming again for simplicity that the challenge spaces Ci all have the same cardinality
N , we show that, when t ≥ μ, there exists a malicious Q-query prover P∗, attacking
FS[Π t], that, for any statement x , succeeds in convincing the verifier with probability
at least

1

2

Qμ

μt+μ
Er(k; N)t ,

assuming some mild conditions on the parameters. Given that Er(k; N)t equals the
soundness as well as the knowledge error of Π t ,9 our attack shows that the security
loss of the Fiat–Shamir transformation, when applied to the t-fold parallel repetition of
Π , is at least 1

2 Qμ/μt+μ (both, as a proof of language membership as well as a proof
of knowledge). This stands in stark contrast to a single execution of a k-special-sound
protocol, where the loss is linear in Q and independent of μ.

We go on to discuss the kind of k-special-sound protocols Π for which our attack
applies. For simplicity, we restrict our attention here to k = (k, . . . , k) and assume t
and Q to be multiples of μ. In Appendix B.3, we consider the case of arbitrary k, and
the restrictions on t and Q can be easily avoided with some adjustments to the bound

9The soundness and knowledge error of a single invocation of Π are both equal to Er(k; N). Therefore,
it immediately follows that the soundness error of the parallel repetition Π t is Er(k; N)t . The fact that the
knowledge error of Π t also equals Er(k; N)t follows from the recent work [5].

Fiat–Shamir Transformation of Multi-Round... Page 37 of 45 36

and the reasoning. Let � = (
, . . . ,
) where
 ≤ k − 1. The attack on FS[Π t] uses a
property most k-special-sound protocols Π satisfy, namely that there exists an efficient
attack strategy A against Π which tries to guess challenges up front so that:

1. In any round, A can prepare and send a message so that if he is lucky and the next
challenge falls in a certain set � of cardinality
, A will be able to complete the
protocol and have the verifier accept (no matter what challenges A encounters in
the remaining rounds), and

2. until A is lucky in the above sense, in any round A can actually prepare B distinct
messages as above, for a given parameter B.

We call protocols which admit such an attack strategy �-special-unsound with B potential
responses per round (see Appendix B.1 for a formal definition). The first point in partic-
ular implies an attack strategy for the interactive proof Π that succeeds with probability
Er(� + 1, N). Since many k-special-sound interactive proofs Π are �-special-unsound
with � = k − 1, this confirms the tightness of the knowledge error Er(k, N), as already
mentioned at the end of Sect. 2.2. The second point implies that in the context of the
Fiat–Shamir transformation, an attacker can produce and try multiple message-challenge
pairs in any round.

These requirements are very common (for non-trivial � and large B). For example,
the folding technique of [10], when used to fold two parts into one, satisfies (3, . . . , 3)-
special-soundness and (2, . . . , 2)-special-unsoundness with an exponential parameter
B; we discuss this in detail in Appendix B.2. Note that, while the honest prover is
deterministic, a dishonest prover can produce different messages (and hope to be lucky
with one of the corresponding challenges).

The following theorem gives a lower bound for the success probability of our attack
on the Fiat–Shamir transformation FS[Π t] of the t-fold parallel repetition Π t of an
interactive proof Π with certain common soundness and unsoundness properties.

Theorem 5. Let Π be a (2μ + 1)-move (k, . . . , k)-out-of-(N , . . . , N) special-sound
interactive proof that is (
, . . . ,
)-special-unsound with B responses per round for

 = k−1. Furthermore, let t, Q ∈ N be integer multiples of μ such that Q ·(

N

)t/μ ≤ 1/4
and B ≥ Q. Then there exists a Q-query dishonest prover P∗ against (P,V) = FS[Π t]
such that, for any statement x ∈ {0, 1}∗,

ε(P∗, x) = Pr
(VRO(x,P∗,RO) = 1

) ≥
(

1 −
(

1 −
(k − 1

N

)t/μ
)Q/μ)μ

≥ 1

2

Qμ

μt+μ
Er(k; N)t .

The runtime of P∗ is at most t Q times the runtime of attack strategy A against Π .

Proof. The basic idea of the attack is that (groups of) parallel threads can be attacked
individually and independently from each other over the different rounds of the protocol.
Concretely, the attack is given by the adversary P∗ against FS[Π t], which makes up to
Q = μ · Q′ queries, defined as follows: P∗ runs attack strategy A in parallel against
all t = μ · t ′ threads. Let us call a thread green if strategy A succeeds in guessing the
challenge for that thread (and hence,V will eventually accept for that thread). Otherwise,
a thread is red. All threads start out red, and the goal of P∗ is to turn all threads green.

36 Page 38 of 45 T. Attema et al.

To do so, in every round P∗ tries to turn at least t ′ = t/μ red threads into green threads
(or all red threads into green threads if fewer than t/μ remain). For this, P∗ uses A to
get the messages which it feeds to the random oracle. If P∗ was lucky with the received
challenges for at least t ′ = t/μ threads, then enough red threads turn green. Else, P∗
tries the considered round again, exploiting thatA can produce up to B distinct messages
that give him a chance, each one giving a fresh challenge from the random oracle. The
dishonest prover P∗ tries up to Q′ = Q/μ times per round until it gives up (and fails).

The number of queries P∗ makes to the random oracle is at most Q; hence, P∗
is a Q-query adversary. The probability that P∗ succeeds for any try in any round to
turn at least t ′ = t/μ red threads into green threads is at least (

N)t ′ = λt ′ , where we
introduce λ =

N to simplify the upcoming expressions. Therefore, since P∗ makes at
most Q′ = Q/μ queries in every round, the success probability for any fixed round is
at least

1 − (
1 − λt ′)Q′ ≥ Q′λt ′ − 2 Q′2λ2t ′ = Q′λt ′(1 − 2 Q′λt ′). (8)

where the inequality follows from the fact that 1 − (1 − x)n ≥ nx − 2n2x2, which
can be shown to hold when nx ≤ 1/2 (see Appendix B), which is (more than) satisfied
for x = λt ′ and n = Q′ by assumption. Hence, P∗ succeeds (in all μ rounds) with
probability at least

Q′μλt(1 − 2 Q′λt ′)μ ≥ Q′μλt(1 − 2Qλt ′) ≥ 1

2
Q′μλt ,

where we use that (1− z)n ≥ 1−nz for n ∈ N and z ∈ [0, 1] to argue the first inequality,

and Q ·(

N

)t ′ ≤ 1/4 for the second. To complete the analysis ofP∗’s success probability,
we observe that

Er(k; N) = 1 −
(

1 − k − 1

N

)μ

≤ μ · k − 1

N
= μ ·

N
= μ · λ.

Hence, the success probability of P∗ is at least 1
2 Q′μ(Er(k;N)

μ

)t , as claimed. �

Recall that we assume t and Q to be divisible by μ; this is mainly for simplicity. In
general, i.e., when dropping this assumption, the success probability has lower bound
1/2 · �Q/μ�μ · (

Er(k; N)/μ
)�t/μ�μ.

Acknowledgements

The first author was supported by EU H2020 Project No. 780701 (PROMETHEUS)
and the Vraaggestuurd Programma Cyber Security & Resilience, part of the Dutch Top
Sector High Tech Systems and Materials program. The third author was supported by
the topic Engineering Secure Systems (46.23.01) of the Helmholtz Association (HGF)
and by KASTEL Security Research Labs.

Fiat–Shamir Transformation of Multi-Round... Page 39 of 45 36

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

A. A Note on Sampling Without Replacement

Our extractor constructions require to efficiently sample from the challenge set C without replacement, until a
certain number of good elements are found or C is exhausted. Recall that we may assume C to be encoded as
{1, . . . , N } where N = |C| (see Definition 3). While we formally argue that the expected number of samples
without replacement is bounded, it is a priori not clear that these samples can be efficiently prepared. Indeed,
the naive way of re-sampling until a new element is obtained becomes very ineffective if one is close to having
exhausted C (which may well happen with probability ≈ 1/N). For this reason, we recall here how to sample
sequentially without replacement in an efficient manner, thereby justifying the expected polynomial runtime
of our knowledge extractors.

Sequential sampling for {1, . . . , N } without replacement is a fundamental statistical problem that has been
studied extensively, e.g., [4,21,29,31,35]. However, the first sampling algorithms have an expected runtime
that scales linearly in the size N of the population [29,31]. In our setting, the population (i.e., challenge set)
is oftentimes exponentially large, i.e., we require a more advanced sampling algorithm to argue knowledge
soundness. Vitter’s sampling algorithm [35] improved upon prior work and has an expected runtime that is
linear in the number
 of samples that have to be drawn. While Vitter’s approach is sufficiently efficient for our
purposes, it does require prior knowledge of the sample size
. Our knowledge extractors do not know how
many samples they will need to draw before sufficiently many good ones have been found, i.e., also Vitter’s
algorithm does not provide the required sampling strategy.

So let us now sketch a sequential sampling approach that does render our knowledge extractors efficient.
The population is (implicitly) initialized as C0 = {1, . . . , N } and the sampled set as S0 = ∅. The main
idea is that the sampler samples c uniformly at random from C0 and, if c /∈ S0, c is added to S0. Since
Pr(c /∈ S0) = 1 − |S0|/N , it holds that, as long as |S0| ≤ N/2, the expected number of samples before a
fresh c is found, and added to S0, is at most 2.

Unfortunately, this sampling strategy becomes less efficient as S0 grows and the extractor might very
well require more than N/2 samples. For this reason, once |S0| = N/2 (for simplicity we assume N to
be a power of two), the sampler defines a new population C1 = C0 \ S0 of size N/2, stored in an array
C1[1], . . . ,C1[N/2], and initializes S1 = ∅. The sampler now proceeds as before, but now using C1 and S1
until |S1| = |C1|/2 = N/4, at which point population C2 = C1 \ S1 and set S2 = ∅ are defined. In every
iteration, it requires at most 2 samples from Ci to find a new element that can be added to Si (in expectation).
However, the set-difference operation to create Ci = Ci−1\Si−1 takes time proportional in |Ci−1| = N/2i−1.
Fortunately, these costs can be amortized. More precisely, suppose the extractor ends up sampling
 challenges,
with N − N/2i <
 ≤ N − N/2i+1 for some 0 ≤ i ≤ log2 N . Then for each of the
 samples, the sampler
requires 2 trials. Further, the expected cost of creating the arrays C1, . . . ,Ci is proportional to

N + N

2
+ · · · + N

2i−1
= 2N − N

2i−1
< 2
.

Hence, the expected computational cost of sampling
 elements linear in
. Furthermore, the sampling strategy
(and the analysis) does not require the sample size to be known in advance, but also applies if the sample size
is determined by the sampled elements, i.e., if we keep sampling until k “good” elements are found, for a given

http://creativecommons.org/licenses/by/4.0/

36 Page 40 of 45 T. Attema et al.

k. The expected computational costs is then proportional to the expected number of samples. Altogether, this
shows that the extractor can indeed efficiently sample without replacement.

B. Detailed Discussion of the Attack

We discuss our attack in more detail, but also in more generality, here. Let Π be a (2μ + 1)-move public-coin
interactive proof for relation R with challenge sets C1, . . . ,Cμ.
In Appendix B.1, we give a formal definition of the unsoundness property required for our attack to succeed.
In Appendix B.2, we give an example of a multi-round protocol satisfying this unsoundness property, i.e., a
protocol to which our attack applies. In Appendix B.3, we generalize the attack to a broader class of protocols
and describe the properties of this generalization.

B.1. Special-Unsoundness with Multiple Potential Responses

For simplicity, we assume perfect correctness. The attack applies when Π satisfies the following property.

Definition 12. (�-special-unsoundness with B potential responses per round) We say that Π has �-special-
unsoundness for � = (
1, . . . ,
μ) ∈ N

μ if there exists a dishonest prover A of the following form, and so
that in the execution with V and input x the following holds:

• A starts off in active mode, which is so that in every round 2i − 1 when A sends the response ai to V ,
there exists a subset �i ⊆ Ci of cardinality
i (defined as a function of the state of A at that point) such
that if the subsequent challenge ci is in �i then A switches into passive mode.

• If A switches to passive mode then it remains in passive mode, and V will accept at the end of the
protocol execution.

We say Π is �-special-unsound with B potential responses per round if additionally the following holds:
As long as A is in active mode, the computation of ai involves a designated seed si , which is chosen

arbitrarily from some set Si . By redoing the computation with different seeds (but fixed randomness), A
can obtain at least B distinct ai ’s satisfying the properties specified above (i.e., existence of �i such that A
switches to passive mode if ci ∈ �i). Moreover, we require that distinct seeds produce distinct ai , that is, the
mapping from seed si to message ai is injective.

The “B potential responses per round”, which can be derived by changing the seed s, are used so that A can
“retry” each round at least B times. This will be used to obtain fresh challenges from the random oracles. The
requirement that different seeds produce different ai will simplify statements and proofs, but it will be evident
that it is stronger than necessary. One can relax the definition as long as A can produce distinct ai efficiently,
say by picking a few seeds at random; the (runtime) analysis must then take these additional tries into account.

Protocols that are (k1, . . . , kμ)-special-sound are often (k1 −1, . . . , kμ −1)-special-unsound. For example,
k-special-sound Σ-protocols are typically (k − 1)-special-unsound in that a dishonest prover can first pick
an arbitrary subset � ⊂ C of cardinality k − 1, then choose an arbitrary response z, and finally compute a
first message a (as a function of � and z), so that (a, c, z) is an accepting conversation whenever c ∈ �.10

Furthermore, different choices (possibly of a certain form) of the pre-chosen response z typically lead to
different values of a, thus satisfying the multiple responses per round property as well.

For multi-round k-special-sound protocols, this kind of attack often extends in such a way that once A is
successful in one round, it has all the information needed to continue as an honest prover, and the verifier will
accept. In other words, the passive mode of A usually corresponds to following the remainder of the protocol
honestly. Below, we discuss in detail that in particular Bulletproofs-like protocols satisfy the Definition 12.

10For 2-special-sound Σ-protocols, this is very much in line with being special honest-verifier zero-
knowledge

Fiat–Shamir Transformation of Multi-Round... Page 41 of 45 36

B.2. An Example Protocol

Bulletproofs-like protocols are typically (2, . . . , 2)-special-unsound (or worse), as we explain here. At the
core of these protocols is the folding technique of [10]. Here, we describe the adaptation considered [1], which,
in the plain DL-setting, is the following 3-special-sound Σ-protocol for proving knowledge of x ∈ F

n
q with

gx = h; we refer to this protocol as the folding protocol in the remainder. Here, g = (g1, . . . , gn) ∈ G
n and

h ∈ G are publicly known, where G is a group with prime order q, and gx := gx1 · · · gxn
n ; furthermore, it is

assumed (w.l.o.g.) that n is a power of 2, and so in particular n is even and we can write gL = (g1, . . . , gn/2)

and gR = (gn/2+1, . . . , gn/2), and similarly for x, so that gx is the component-wise product gx = gxL
L gxR

R
of gxL

L and gxR
R . Lastly, we may assume that g �= (1, . . . , 1), since in this case the relation gx = h is trivial

and so there is nothing for the prover to prove.

(
gc

L � gR
)z = ahcbc2

, (9)

where gc
L � gR denotes the component-wise product of gc

L and gR . The communication complexity of this
Σ-protocol can now be improved by not sending the answer z, but instead proving knowledge of x̃ with

g̃x̃ = h̃ := ahcbc2
for g̃ := gc

L � gR ; the latter is done by means of running another instance of the protocol
but now with the smaller witness x̃ = z. But then, also in this instance, instead of sending the answer one can
run yet another instance of the protocol to prove knowledge of the answer, etc. This results in a compressed
multi-round interactive proof of knowledge with communication complexity logarithmically in n (instead of
linear).

Towards arguing unsoundness, i.e., Definition 12, it follows directly from the construction design for the
compression protocol that once a dishonest prover holds the correct answer, then he can honestly follow the
remainder of the protocol and the verifier will accept. Thus, this defines the passive mode. For the active mode,
we observe that the following holds for the folding protocol. For any two c1, c2 ∈ Fq with c2

1 �= c2
2 and with

g̃1 := gc1
L � gR and g̃2 := gc2

L � gR both not being equal to (1, . . . , 1), A can pick an arbitrary answer

z ∈ F
n/2
q and solve the equation system

abc2
1 = g̃z

1h−c1

abc2
2 = g̃z

2h−c2

for a and b by applying the inverse of the matrix

(
1 c2

1
1 c2

2

)
to both sides “in the exponent”.

Then, by construction, the pre-chosen answer z satisfies (9) if the verifier’s challenge c happens to be in
� = {c1, c2}, and thus by switching to the passive mode now if this happens to be the case and following
the remainder of the protocol honestly, A will make the verifier accept, as required by Definition 12. Also, if
desired, A can solve the above equation system with a different choice of z to obtain a new pair (a, b). More
precisely, let i ∈ {1, . . . , n/2} be so that the i-th coordinate of, say, g̃1 is not 1 (which exists by choice of c1),
then the q possible choices of the i-th coordinate zi ∈ Fq of z lead to q distinct right-hand sides in the above
equation system, and thus to q distinct pairs (a, b), when keeping the remaining coordinates of z fixed.

B.3. Generalizing Theorem 5 to Arbitrary Special-Unsound Protocols

Theorem 6 removes the restriction
1 = · · · =
μ in Theorem 5. Indeed, it considers a (
1, . . . ,
μ)-special-
unsound protocol with arbitrary
i ’s.

Theorem 6. Let Π be a (2μ + 1)-move public-coin interactive proof with challenge spaces C1, . . . ,Cμ.
Suppose Π has (
1, . . . ,
μ)-special-unsoundness with B responses per round. Let Π t be the t-fold parallel

repetition of Π . Let m1, . . . , mμ ∈ N such that
∑μ

i=1 mi = t , and set αi = (

i|Ci |)

mi . Let Q = μQ′

for Q′ ∈ N with Q′ ∑μ
i=1 αi < 1/4 and Q′ ≤ B. Then there is a Q-query dishonest prover P∗ against

36 Page 42 of 45 T. Attema et al.

(P,V) = FS[Π t] so that for every statement x

ε(P∗, x) = Pr
(VRO(x,P∗,RO) = 1

) ≥ 1

2

(
Q

μ

)μ

·
μ∏

i=1

αi .

The run time ofP∗ is O(t ·Q ·TA), where TA is an upper-bound on the runtime of some �-special-unsoundness
dishonest prover A attacking the (interactive) proof system Π (i.e., when A computes one message ai per
round).

We recover the statement of Theorem 5 by considering Π that is (
, . . . ,
)-special-unsound and has challenge
spaces of fixed size |Ci | = N , and by setting m1 = · · · = mμ = t/μ and thus α1 = · · · = αμ = (k−1

N)t/μ

then. In general, the freedom in choosing m1, . . . , mμ allows to adapt the number of threads that should be
successfully attacked in each round, which is useful when the |Ci |’s and/or the
i ’s vary over the different
rounds.

Proof. The proof is analogous to the proof of Theorem 5, with the attack working in a thread-by-thread
manner. Let A be a (
1, . . . ,
μ)-special-unsoundness malicious prover for Π with B potential responses per
round. Let P∗ be the adversary defined as follows:

1. Start t parallel instances A with input x , denoted as A1, . . . ,At . We write a j
i for the (2i − 1)-th move

message of the j-th instance, and similarly for the corresponding unsoundness set �
j
i .

2. From i = 1, repeat until i = μ

– Try up to Q/μ times:

• For all A j which are in active mode, pick a seed s j
i ∈ S, distinct from all seeds previously

chosen for A j in this round.

• Run all A j to obtain the (2i − 1)-th move message a j
i for all i, j . Moreover, compute the

challenges c j
i for all threads j .

• If, after receiving the challenges c j
i , at least

∑i
k=1 mk of the A j ’s would be in passive mode,

send the challenges and increase i (i.e., move on to attacking the next round). In particular, if
at least mi A j ’s switch from active to passive, i will increase.

3. P∗ receives a j
μ+1 from A j (for j = 1, . . . , t) and completes the fake proof.

First, let us analyze the efficiency of P∗. Clearly, P∗ is a Q-query random-oracle algorithm. Moreover, P∗
emulates at most t · Q (partial) runs of the �-special-unsoundness malicious prover instances A j .
Now, let us analyze the success probability. For the i-th challenge, P∗ will execute the inner loop body at

most Q′ ∈ N times, where Q = μQ′ by definition. Moreover, for each retry, at least one message a j
i is

different from its previous choices. (Because different seeds s j
i lead to different a j

i for any A j which is in
active mode, and at least one A j is still in active mode, because otherwise the inner loop increases i). Thus,
the random oracle queries provide fresh random challenges. The probability that an inner iteration in move
2i − 1 succeeds for a uniformly random challenge choice is at least αi = (
i /|Ci |)mi , since by construction
at most mi threads/instances A j need to be lucky in this round. Consequently, the probability that Q′ tries are
sufficient to switch enough A j from active to passive mode in the i-the iteration is

1 − (1 − αi)
Q′ ≥ Q′αi − 2(Q′αi)

2 . (10)

For the inequality we used that 1 − (1 − x)n ≥ nx − 2n2x2 for any x ≥ 0 and n ∈ N with 0 ≤ nx ≤ 1/2,
where the latter follows from

|1 − (1 − x)n − nx | ≤
n∑

i=2

(
n

i

)
xi ≤

n∑

i=2

(nx)i ≤
∞∑

i=2

(nx)i = n2x2

1 − nx
≤ 2n2x2 .

Noting that Q′αi ≤ Q′ ∑
i αi ≤ 1/4 ≤ 1/2 by assumption, we can thus indeed conclude (10).

Fiat–Shamir Transformation of Multi-Round... Page 43 of 45 36

As every round must be successful for P∗ to succeed, the overall success probability of P∗ is thus at least

μ∏

i=1

(
1 − (1 − αi)

Q′) ≥
μ∏

i=1

(
Q′αi − 2(Q′αi)

2) = Q′μ
μ∏

i=1

αi ·
μ∏

i=1

(1 − 2Q′αi) .

Using that
∏μ

i=1(1 − zi) ≥ 1 − ∑μ
i=1 zi for zi ≥ 0, we can further bound the right-hand side as

Q′μ
μ∏

i=1

αi ·
μ∏

i=1

(1 − 2Q′αi) ≥ Q′μ
μ∏

i=1

αi ·
(

1 − 2
μ∑

i=1

Q′αi

)
≥ 1

2
· Q′μ

μ∏

i=1

αi ,

where we used again Q′ ∑
i αi ≤ 1/4 for the final inequality. This proves the claim.

�

References

[1] T. Attema, R. Cramer, Compressed Σ-protocol theory and practical application to plug & play secure
algorithmics, in D. Micciancio, T. Ristenpart, editor, CRYPTO 2020, Part III. LNCS, vol. 12172
(Springer, Heidelberg, 2020), pp. 513–543

[2] T. Attema, R. Cramer, L. Kohl, A compressed Σ-protocol theory for lattices, in T. Malkin, C. Peikert,
editors, CRYPTO 2021, Part II, Virtual Event, August 2021. LNCS, vol. 12826 (Springer, Heidelberg,
2021), pp. 549–579

[3] T. Attema, R. Cramer, M. Rambaud, Compressed Σ-protocols for bilinear group arithmetic circuits
and application to logarithmic transparent threshold signatures, in M. Tibouchi, H. Wang, editors ASI-
ACRYPT 2021, Part IV. LNCS, vol. 13093 (Springer, Heidelberg, 2021), pp. 526–556

[4] J.H. Ahrens and U. Dieter. Sequential random sampling. ACM Trans. Math. Softw., 11(2):157–169, 1985
[5] T. Attema, S. Fehr, Parallel repetition of (k1, . . . , kμ)-special-sound multi-round interactive proofs, in

Y. Dodis, T. Shrimpton, editors, CRYPTO. Lecture Notes in Computer Science, vol. 13507(Springer,
2022), pp. 415–443

[6] T. Attema, S. Fehr, M. Klooß, Fiat-Shamir transformation of multi-round interactive proofs, in Theory
of Cryptography Conference (TCC) (2022)

[7] S. Ames, C. Hazay, Y. Ishai, M. Venkitasubramaniam, Ligero: lightweight sublinear arguments without
a trusted setup, in B.M. Thuraisingham, D. Evans, T. Malkin, D. Xu, editors, ACM CCS 2017. (ACM
Press, October/November 2017), pp. 2087–2104

[8] M.R. Albrecht, R.W.F. Lai, Subtractive sets over cyclotomic rings - limits of Schnorr-like arguments
over lattices, in T. Malkin, C. Peikert, editors, CRYPTO 2021, Part II, Virtual Event, August 2021. LNCS,
vol. 12826 (Springer, Heidelberg, 2021), pp. 519–548

[9] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, G. Maxwell, Bulletproofs: Short proofs for con-
fidential transactions and more, in 2018 IEEE Symposium on Security and Privacy. (IEEE Computer
Society Press, May 2018), pp. 315–334

[10] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, C. Petit, Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting, in M. Fischlin, J.-S. Coron, editors, EUROCRYPT 2016, Part II. LNCS,
vol. 9666 (Springer, Heidelberg, 2016), pp. 327–357

[11] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, N.P. Ward, Aurora: transparent succinct
arguments for R1CS, in Y. Ishai, V. Rijmen, editors, EUROCRYPT 2019, Part I. LNCS, vol. 11476
(Springer, Heidelberg, 2019), pp. 103–128

[12] E. Ben-Sasson, A. Chiesa, N. Spooner, Interactive oracle proofs. in M. Hirt, A.D. Smith, editors,
TCC 2016-B, Part II. LNCS, vol. 9986 (Springer, Heidelberg, October/November 2016), pp. 31–60

[13] B. Bünz, B. Fisch, A. Szepieniec, Transparent SNARKs from DARK compilers, in A. Canteaut, Y. Ishai,
editors, EUROCRYPT 2020, Part I. LNCS, vol. 12105 (Springer, Heidelberg, 2020), pp. 677–706

[14] A.R. Block, J. Holmgren, A. Rosen, R.D. Rothblum, P. Soni, Time- and space-efficient arguments from
groups of unknown order, in T. Malkin, C, Peikert, editors, CRYPTO 2021, Part IV, Virtual Event, August
2021. LNCS, vol. 12828 (Springer, Heidelberg, 2021), pp.123–152

36 Page 44 of 45 T. Attema et al.

[15] M. Bellare, R. Impagliazzo, M. Naor, Does parallel repetition lower the error in computationally sound
protocols? in 38th FOCS, October 1997. (IEEE Computer Society Press, 1997), pp. 374–383

[16] B. Barak, Y. Lindell, Strict polynomial-time in simulation and extraction, in 34th ACM STOC, May 2002.
(ACM Press, 2002), pp. 484–493

[17] J. Bootle, V. Lyubashevsky, N.K. Nguyen, G. Seiler, A non-PCP approach to succinct quantum-safe
zero-knowledge, in D. Micciancio, T. Ristenpart, editors, CRYPTO 2020, Part II. LNCS, vol. 12171
(Springer, Heidelberg, 2020), pp. 441–469

[18] M. Bellare, G. Neven, Multi-signatures in the plain public-key model and a general forking lemma, in
A. Juels, R.N. Wright, S. De Capitani di Vimercati, editors, ACM CCS 2006, October/November 2006,
(ACM Press, 2006), pp. 390–399

[19] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G.N. Rothblum, R.D. Rothblum, D. Wichs, Fiat–Shamir:
from practice to theory, in M. Charikar, E. Cohen, editors, 51st ACM STOC, June 2019. (ACM Press,
2019), pp. 1082–1090

[20] A. Chiesa, P. Manohar, N. Spooner, Succinct arguments in the quantum random oracle model, in D.
Hofheinz, A. Rosen, editors, TCC 2019, Part II. LNCS, vol. 11892 (Springer, Heidelberg, 2019), pp.
1–29

[21] L. Devroye. Non-Uniform Random Variate Generation. (Springer, Berlin, 1986)
[22] J. Don, S. Fehr, C. Majenz, C. Schaffner, Security of the Fiat–Shamir transformation in the quantum

random-oracle model, in A. Boldyreva, D. Micciancio, editors, CRYPTO 2019, Part II. LNCS, vol. 11693
(Springer, Heidelberg, 2019), pp. 356–383

[23] R. del Pino, V. Lyubashevsky, G. Seiler, Short discrete log proofs for FHE and ring-LWE ciphertexts, in
D. Lin, K. Sako, editors, PKC 2019, Part I. LNCS, vol. 11442 (Springer, Heidelberg, 2019), pp. 344–373

[24] A. Fiat, A. Shamir, How to prove yourself: pactical solutions to identification and signature problems,
in A.M. Odlyzko, editor, CRYPTO’86, LNCS, vol. 263. (Springer, Heidelberg, 1987), pp. 186–194

[25] C. Gentry, S. Halevi, V. Lyubashevsky, Practical non-interactive publicly verifiable secret sharing with
thousands of parties, in O. Dunkelman, S. Dziembowski, editors, EUROCRYPT 2022, Part I, May/June
2022. LNCS, vol. 13275 (Springer, Heidelberg, 2022), pp. 458–487.

[26] C. Ganesh, H. Khoshakhlagh, M. Kohlweiss, A. Nitulescu, M. Zajac, What makes Fiat–Shamir zk-
SNARKs (updatable SRS) simulation extractable? in SCN. Lecture Notes in Computer Science, vol.
13409 (Springer, Berlin, 2022), pp. 735–760

[27] A. Ghoshal, S. Tessaro, Tight state-restoration soundness in the algebraic group model, in T. Malkin,
C. Peikert, editors, CRYPTO 2021, Part III, Virtual Event, August 2021. LNCS, vol. 12827 (Springer,
Heidelberg, 2021), pp. 64–93

[28] M. Hoffmann, M. Klooß, A. Rupp, Efficient zero-knowledge arguments in the discrete log setting,
revisited. in L. Cavallaro, J. Kinder, X. Wang, J. Katz, editors, ACM CCS 2019, November 2019 (ACM
Press, 2019), pp. 2093–2110

[29] T.G. Jones. A Note on Sampling a Tape-File. Commun. ACM, 5(6):343, 1962.
[30] J. Jaeger, S. Tessaro. Expected-time cryptography: generic techniques and applications to concrete

soundness, in R. Pass, K. Pietrzak, editors, TCC 2020, Part III, LNCS, vol. 12552 (Springer, Heidelberg,
2020), pp. 414–443

[31] D.E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms. Addison-Wesley,
Boston 1969.

[32] M. Maller, S. Bowe, M. Kohlweiss, S. Meiklejohn, Sonic: zero-knowledge SNARKs from linear-size
universal and updatable structured reference strings, in L. Cavallaro, J. Kinder, X. Wang, J. Katz, editors,
ACM CCS, November 2019, (ACM Press, 2019), pp. 2111–2128

[33] D. Pointcheval, J. Stern, Security proofs for signature schemes, in U.M. Maurer, editor, EUROCRYPT’96.
vol. 1070, LNCS. (Springer, Heidelberg, 1996), pp. 387–398

[34] D. Unruh, Post-quantum security of Fiat–Shamir, in T. Takagi. T. Peyrin, editors, ASIACRYPT 2017,
Part I, December 2017. LNCS, vol. 10624. (Springer, Heidelberg, 2017).

[35] J.S. Vitter, An efficient algorithm for sequential random sampling. ACM Trans. Math. Softw., 13(1):58–
67, 1987.

[36] D. Wikström, Special soundness revisited. Cryptology ePrint Archive, Report 2018/1157, 2018. https://
eprint.iacr.org/2018/1157

[37] D. Wikström, Special soundness in the random oracle model. Cryptology ePrint Archive, Report
2021/1265, 2021. https://eprint.iacr.org/2021/1265.

https://eprint.iacr.org/2018/1157
https://eprint.iacr.org/2018/1157
https://eprint.iacr.org/2021/1265

Fiat–Shamir Transformation of Multi-Round... Page 45 of 45 36

[38] R.S. Wahby, I. Tzialla, A. Shelat, J. Thaler, M. Walfish, Doubly-efficient zkSNARKs without trusted
setup, in 2018 IEEE Symposium on Security and Privacy, May 2018 (IEEE Computer Society Press,
2018), pp. 926–943

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Fiat–Shamir Transformation of Multi-Round Interactive Proofs (Extended Version)
	1. Introduction
	1.1. Background and State of the Art
	1.2. Our Results
	1.2.1. Positive Result
	1.2.2. Negative Result

	1.3. Related Work
	1.3.1. Independent Concurrent Work
	1.3.2. The Forking Lemma

	1.4. Structure of the Paper

	2. Preliminaries
	2.1. Interactive Proofs
	2.2. Special-Sound Multi-Round Protocols
	2.3. Non-Interactive Random Oracle Proofs (NIROP)
	2.4. (Non)-Interactive Arguments
	2.5. Adaptive Security
	2.6. Fiat–Shamir Transformations
	2.7. Negative Hypergeometric Distribution

	3. An Abstract Sampling Game
	4. Fiat–Shamir Transformation of Sigma-Protocols
	5. Refined Analysis of the Abstract Sampling Game
	6. Fiat–Shamir Transformation of Multi-Round Protocols
	6.1. Multi-Round Protocols with a Single Challenge Set
	6.2. Multi-Round Protocols with Arbitrary Challenge Sets
	6.3. Adaptive Security

	7. The Fiat–Shamir Transformation of Parallel Repetitions
	Acknowledgements
	References

