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Abstract. Generic vulnerability assessment of cipher implementations against Fault
Attacks (FA) is a largely unexplored research area. Security assessment against FA is
critical for FA countermeasures. On several occasions, countermeasures fail to fulfil
their sole purpose of preventing FA due to flawed design or implementation. This pa-
per proposes a generic, simulation-based, statistical yes/no experiment for evaluating
fault-assisted information leakage based on the principle of non-interference. It builds
on an initial idea called ALAFA that utilizes t-test and its higher-order variants for
detecting leakage at different moments of ciphertext distributions. In this paper, we
improve this idea with a Deep Learning (DL)-based leakage detection test. The DL-
based detection test is not specific to only moment-based leakages. It thus can expose
leakages in several cases where t-test-based technique demands a prohibitively large
number of ciphertexts. Further, we present two generalizations of the leakage assess-
ment experiment—one for evaluating against the statistical ineffective fault model and
another for assessing fault-induced leakages originating from “non-cryptographic” pe-
ripheral components of a security module. Finally, we explore techniques for efficiently
covering the fault space of a block cipher by exploiting logic-level and cipher-level fault
equivalences. The efficacy of our proposals has been evaluated on a rich test suite of
hardened implementations, including an open-source Statistical Ineffective Fault Attack
countermeasure and a hardware security module called Secured-Hardware-Extension.
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1. Introduction

Fault Attacks (FA) [1,2] have recently gained significant attention from industry and
academia. The core idea of fault-assisted cryptanalysis is to deliberately perturb data or
control-flow of a system and gain information about the secret through faulty system re-
sponses. There exist several physical means of injecting faults with malicious intentions.
Popular methods for embedded platforms include clock-glitching [3], under-powering
[4], electromagnetic (EM) pulses [5], and laser-based fault injection [4,6]. It is also
possible to inject faults remotely on high-end processors and Graphics Processing Units
(GPU) with the Rowhammer bug [7] and malicious exploitation of dynamic voltage-
frequency scaling [8,9]. The nature and precision of injected faults in a system usually
vary with injection mechanisms. Classical fault tolerance techniques often fall prey to
precisely placed and repeatable faults.

Fault injection is, however, only one aspect of FAs. The key extraction process also de-
pends critically on the underlying algorithm and its implementation. The standard way of
performing an FA is to analyze the algorithm along with a logical abstraction of physical
faults known as a fault model. Classically, data-corruption faults affecting a few bits or
bytes in the state of a cipher are exploited in FAs. Such faults can be uniformly random,
or may have some statistically biased distribution (including constant-valued faults).
However, one cannot rule out faults in the control-flow nor faults at the instruction-
level, which have also been shown as fatal for cryptographic implementations on several
occasions [10,11]. Recently, attacks have been developed using ineffective faults by
exploiting the dependence of such absence of faults on the underlying data. Such attacks
have been used to break most of the existing hardened implementations [12,13].

1.1. FA Countermeasures

This paper focuses on FAs in the context of block ciphers. Existing block ciphers alone
cannot prevent FAs, and suitable countermeasures are required. FA countermeasures are
incorporated at the algorithm-level [14,15] or at a lower level of abstraction, such as in
the assembly instructions [10,11] or hardware circuits [16–18]. Most of these counter-
measures utilize some form of redundancy (time, hardware, or information redundancy)
to detect/correct the presence of a fault in the computation. Detection countermeasures
are the most widely deployed FA countermeasures. Such countermeasures perform an
explicit check to detect the faulty computation and then react by either muting or ran-
domizing the output [15,19,20]. Infective countermeasures avoid this explicit check.
This class of countermeasures introduces a randomized infection function in the ci-
pher computation that masks a faulty ciphertext making it useless for attack [14,21].
Instruction-level countermeasures add redundant instructions in the assembly code with
the assumption that an attacker may not be able to bypass all of them at once [10,11].
With the recent advent of Statistical Ineffective Fault Attack (SIFA), a new class of
countermeasures has been proposed. Such SIFA countermeasures incorporate redun-
dancy checks in a per-bit manner to detect/correct every fault (whether effective and
ineffective) [16–18] and thereby, destroy the data-dependent statistical bias causing key
leakage. Table 1 presents a summary of countermeasures and fault models.
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Table 1. Different countermeasure classes and fault models.

Type Description Fault model Description

Time/Space
Redundancy
[15]

Performs two
computations on
the same data
and compares
the result. No
output if fault is
found.

Bit stuck-at/flip [6,22] Corrupts a bit intermediate
state

Code-based
Redundancy
[20]

Redundancy using
error-detection
codes

Nibble/byte [2,23] Corrupts multiple bits within
a byte/nibble

Infective
[14,21,24,25]

Same as
time/space
redundancy, but
no explicit
comparison.
Randomizes the
outcome upon
fault detection

Biased bit-flips [12,22] Data-dependent bit-flips,
useful for biased FA or
SIFA

Instruction Level
[10,11]

Uses redundant
instructions.

Bit-flips in masked S-Boxes
[13,22]

Bit-flips in S-Box
intermediate computation.
Useful for SIFA on masked
S-Boxes

Combined
[13,19,21,26]

Combined
SCA-FA coun-
termeasures,
CAPA, M&M

Single-/Multi-Instruction
Skip [10,11]

Instruction-Skip in
microprocessors

SIFA
countermeasures
[16,17,26]

Bit-level error-
detection/correction
to counter
ineffective faults

Control fault [11,20,27] Loop abort/changing
outcome of if/else block

1.2. Issues with FA Countermeasure Evaluation

Unfortunately, many of the existing FA countermeasures [10,14,28,29] have been found
insecure even (sometimes) against the fault models they are designed to protect for. A
fundamental cause behind such design failures is that there exists no general mechanism
for security assessment in the context of FAs. Unlike block ciphers, countermeasures are
often engineered in-house, considering several other aspects like resource/performance
constraints and time to market. The design team or security certification facilities often
analyze them as an end product, which may leave critical loopholes unobserved. Devising
a generic methodology for evaluating FA is, therefore, an open scope of research.

1.3. Our Contributions

Deep Learning-Based Leakage Detection for FA. In this paper, we introduce a
Deep Learning (DL)-assisted and automated yes/no testing methodology for as-
sessing the security provided by an FA countermeasure called Deep Learning Fault
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Attack Leakage Assessment Test (DL-FALAT). DL-FALAT extends our previous
proposal of leakage detection using t-test, referred to as ALAFA [30], in terms
of detection ability. In short, DL-FALAT detects potential information leakage in
ciphertext (also called traces) distributions of a block cipher under the influence
of faults. The root of this approach lies in the theory of non-interference [31].
Informally, achieving non-interference implies that any change in the secret data
processed by a program cannot be sensed by observing the public outcome. This, in
turn, implies zero mutual information between the secret and the public outcome.
In the context of FAs, checking non-interference results in comparing two cipher-
text distributions [30]. The main utility of DL here is to realize a detection test
for checking if two distributions are the same or different. We propose simple DL
models which work well irrespective of the design-under-test and fault model (over
our test suite), enabling the leakage assessment with a low ciphertext count. For FA
leakage assessment, low ciphertext count is critical as one has to perform the test on
several fault locations in a design for ensuring security [32–35]. Another advantage
of DL for leakage assessment is that it can detect the leakage-order automatically,
unlike ALAFA [30]. The statistical order of the leakage is not known a priori for
FA countermeasures (unlike Side-Channel Attack aka. SCA countermeasures, such
as masking). Finally, we present a systematic flow to interpret the outcomes of the
DL-based detection test. Major strengths of DL-FALAT lie in its simplicity and
the feature of not depending on any non-trivial information regarding a hardened
algorithm. It is supposed to be applied at a pre-deployment stage, where an evalua-
tor is allowed to simulate faults at different points within the implementation code
and can change the keys. We also assume that the evaluator may have access to
the unprotected cipher algorithm for analysis. However, it does not need to know
details of the protected implementation beyond fault simulation capability.
Enhancing the Leakage Assessment Experiment. The second contribution of
this work is to enhance the non-interference experiment. By non-interference ex-
periment (referred to as leakage assessment experiment in this paper), we mean the
process of simulating two different ciphertext distributions corresponding to two
different fault/key values. As the first enhancement to this experiment, we tailor it
for detecting the so-called Statistical Ineffective Fault Analysis (SIFA). As a second
enhancement, we propose a compare-with-uniform variant of the basic experiment,
which can be utilized for testing so-called non-cipher components of a security
module against FAs. Most of the time, cryptographic primitives are associated with
other peripheral components, such as mask generation logic or input delivery logic,
which can also be targeted by an attacker leading to an exploitable leakage. Leakage
of such kind can be successfully detected by the compare-with-uniform experiment.
Covering the Fault Space. The leakage test has to be performed for several fault
locations in an implementation. However, simulating faults for every location might
lead to a longer test time, as the fault space of a block cipher is quite large [32,33].
In order to efficiently handle fault spaces, we exploit different types of equivalences
present in the fault space of a block cipher. More precisely, fault equivalences at
gate-level circuits and the cipher/algorithm-level are exploited to provide reasonable
coverage over the fault space without exhaustively testing every fault location. Such
equivalences partition the fault space into several equivalence classes, and testing
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each class member is sufficient. The gate-level equivalences are explored with the
TetraMax tool from Synopsys, and the algorithm-level fault equivalences are found
using an automated fault analysis tool called ExpFault [33].
The Test Suite. We test DL-FALAT over a representative set of FA countermea-
sures, including detection, infective, instruction-level, SIFA, and combined coun-
termeasures. Both (protected) software and hardware implementations are eval-
uated. To evaluate the holistic leakage assessment capability of DL-FALAT on
“non-cipher” components, we test a hardware-software co-design of an automo-
tive security standard called Secured-Hardware-Extension (SHE). We also detect
some non-trivial implementation vulnerabilities for this. Furthermore, DL-FALAT
analyzes CAPA [19] and the vulnerability of M&M [21], which are untold in the
literature yet. We also evaluate the security claims of two recent proposals called
Friet [26] and DEFAULT [36]. Overall, we observe that our framework detects
published attacks with no false negatives.

1.4. Related Work

VerFI and FIVER. A parallel line of work in this direction is due to [35,37], which
applies fault diagnosis approaches specific to hardware implementations for eval-
uating FA countermeasures. The approach in [37], called VerFI, is based on fault
simulation for a set of test vectors and faults. VerFI monitors internal signals and
the ciphertexts for detecting faults and expects the implementation details. The tool
proposed in [35] (FIVER) does the same, using formal verification for all possible
test vectors. Both approaches check if a fault is detected at some predefined obser-
vation points, including ciphertexts. However, vulnerabilities in countermeasures
are typically not limited to their fault detection modules but also depend on the
recovery modules. We practically establish this fact for infective countermeasures,
where we show that a faulty outcome does not always imply an attack. Also, as
established by SIFA and some recent attacks [22,38], a fault-free output does not
necessarily imply security. Therefore, DL-FALAT checks the information leakage
due to faults rather than simply detecting the faults. Also, checking the leakage
at the ciphertext seems a reasonable idea as it represents the actual exploit of an
FA. Finally, both [35,37] try to speed up the fault simulation through customized
tools. In DL-FALAT, we aim to improve the leakage assessment, a complementary
requirement to efficient fault simulation. We, therefore, use commercially available
fault simulation tools.
DL in SCA and FA. Recent years have also seen several applications of DL in
the context of SCAs, including leakage detection [39–42]. However, the leakage
in SCA [43] is different from that of FA.1 One of the major issues in FA leakage
assessment is that one has to test several fault locations [32–35,37]. Hence, the
statistical test at each location must operate with reasonable data complexity. The

1The leakage function in FA varies between attack strategies, fault models, ciphers and countermeasure
algorithms (unlike SCA leakage functions which are usually specified by Hamming weight/distance). For
example, in a typical differential fault analysis attack, the leakage function is decided by the fault propagation
path, which varies with the cipher, the fault location, and the countermeasure.
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DL-based flow presented in this paper is specifically tailored for that purpose,
which was not required for the DL-based SCA leakage detection approach [40].
Such test tailoring is non-trivial, as it involves careful selection of the DL models
and constructing the iterative approach proposed in this work.

Recently, FAs on DL models have gained attention from the research community [44–
46]. The goal of these attacks is either misclassification or information leakage from the
DL models. However, this line of work differs significantly from what we explore in
this paper. Further, Reinforcement Learning has been utilized to find catastrophic faults
in safety-critical systems [47]. However, [47] does not deal with the security aspects
of fault injection. A more relevant work is due to [48], which identifies fault locations
corresponding to some output differentials in a stream cipher using machine learning.
Machine learning replaces contemporary correlation-based distinguishers in this regard.
Finally, in [34], authors combine Boolean Satisfiability (SAT) solving with Random
Forest to explore the exploitable fault space of a block cipher. The work in [34] aims
to replace complex SAT solving in many cases with machine learning for identifying
exploitable faults. However, the analysis is limited to unprotected implementations. To
the best of our knowledge, DL-FALAT is the first work which evaluates the contemporary
fault models and countermeasures using a DL-based framework for leakage assessment.

1.5. Organization of the Paper

The paper is organized as follows. In Sect. 2, we present the concept of leakage in
FA and its connection to the theory of non-interference. This is followed by the basic
descriptions of the leakage assessment experiments and the t-test based detection test.
Section 3 introduces the DL-based leakage detection test in detail. Section 4 outlines two
enhancements to the leakage assessment experiment. The fault space exploration strate-
gies using fault equivalence are presented in Sect. 5. Case studies on FA countermeasures
are described in Sect. 6. We conclude in Sect. 7. A discussion on instruction-level fault
simulation methods using GNU Debugger (GDB) is presented in “Appendix A”.

2. Fault Attack and Leakage Assessment

In this section, we elaborate on the concept of information leakage for FA and relate it
with non-interference. Subsequently, we present two basic experiments for examining
leakage.

2.1. Information Leakage in Fault Attacks

Leakage in fault attacks is manifested as ciphertexts (or differentials of correct and faulty
ciphertexts). Formally, it is described as:

LFA = C = F( f,P,K) (1)

with f denoting the value of the intermediate state differential at the point of fault
injection (also denoted as the value of the fault mask or simply fault value), P denoting
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the plaintext variable and K denoting the secret key variable. The parameter f takes
value according to some fault model F . The function F represents the fault propagation
path through the cipher computation. The observable for the adversary in FAs is the
ciphertext under the influence of faults (C) (resp. the differential between the correct
and the faulty ciphertext denoted as ΔC). The observables can be extended to certain
variables other than ciphertexts. Later in this paper, we shall use a more general form of
the observables (Sect. 4.2).

According to Eq. (1), the leakage in FA depends upon three quantities. The plaintextP
is public and can be controlled by the adversary. The key K is supposed to remain secret
for obvious reasons. Further, as shown in [30], the fault value f at some intermediate
state of the cipher computation should also be treated as a secret for protected ciphers.
This follows directly from the arguments in [49]. In [49], it is shown that the number of
leaked bits lk due to a fault, injected before at least the last nonlinear operation in a block
cipher, can be represented as lk = H(K)−H( f )−const . Here, H(·) denote the Shannon
Entropy. The (small) constant factor const comes due to the differential properties of
the S-Boxes. If f is known, H( f ) = 0, implying lk = (H(k) − const) ≈ H(k). In
other words, the entire key is leaked if the fault value is known.

We note that the proof in [30] regarding the secrecy of f considers the fault to be
injected before at least the last nonlinear operation of the cipher, which is a requirement
for most FAs [2,12]. Faults injected after the last nonlinear (or before the first nonlinear
operation) can only be exploited if it is data-dependent (e.g., stuck-at faults). No statistical
bias or differential relation can be formed without a nonlinear operation in the fault
propagation path. Data-dependent faults are the only way of leaking information in such
cases. Even for such cases, knowing f reveals the secret. For stuck-at-0 faults, the fault
mask (value) is f = 0 only if the state value at injection point is 0 ( f = 1, otherwise).
The same logic applies to stuck-at-1 faults. The knowledge of the intermediate state
exposes the key. To summarize, the observation regarding the exposure of fault mask in
[30] is consistent even for those locations which are not followed by a nonlinear layer.
Condition for No Leakage In the case of unprotected implementations, both key and
f leak via the faulty ciphertexts, and the abovementioned arguments for leakage apply
directly. Therefore, the only way of preventing FA is to prevent the information flow from
bothK and f to the ciphertexts obtained during a fault injection event. In practice, all the
existing fault attack countermeasures try to achieve this. Accordingly, a countermeasure
is considered secure if it satisfies the two following equations:

I(C,K|P) = 0 and I(C, f |P) = 0. (2)

I(X,Y |Z) is the conditional mutual information between random variables X and Y
given Z . These two definitions can be used interchangeably for leakage assessment.
However, we aim to evaluate the hardened implementations without utilizing algorith-
mic details. The lack of algorithmic details refrains the analytical estimation of mutual
information and leaves data-based statistical estimation as the only option. Although
such data-based estimation of mutual information is possible, it is challenging and still
an active area of research [50,51].
LeakageAssessmentwithNon-Interference The technical difficulty in estimating mu-
tual information can be circumvented by an alternative interpretation of the leakage with
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the theory of non-interference. The non-interference property guarantees the absence of
sensitive information flow from the input to any observable point of a system. For FA-
induced leakage, non-interference between the key or the fault value with the ciphertext
or ciphertext differential implies that the attacker cannot exploit the ciphertext to ex-
tract the secret. Assessment of non-interference in programs is performed by assigning
program variables with different security levels. In particular, some of the variables are
secret (marked as ‘high’), and the rest of them are public (‘low’). If the underlying pro-
gram is probabilistic, then the program variables can be treated as random variables.2

In this setting, non-interference implies that the mutual information between the ‘high’
input variables and the ‘low’ output variables is zero. This condition is the same as the
definition of security provided in Eq. (2), considering ciphertexts as ‘low’ variables and
key and faults as ‘high’ variables. However, an equivalent [31], easy-to-use formulation
of non-interference exists, which does not require estimating the mutual information. If
the low outputs differ in two independent runs of a program having the same low inputs
but different high inputs (h and h′), then the program leaks about its high inputs. Other-
wise, the program achieves non-interference. For probabilistic programs, the difference
in low outputs is manifested as the difference between two distributions generated with
the same low inputs. We utilize this notion to assess security. Comparing two ciphertext
distributions suffice in this case.

2.2. Basic Experiments in Leakage Assessment

This subsection presents two variants of the leakage assessment experiment based on
the notion of non-interference presented before. Both fault and key are treated as secrets
(’high’ inputs). For simplicity, we keep the value of one of the secret inputs fixed during
our testing, which results in two experiments.

The interference experiment with fixed key and varying fault value is presented in
Algorithm 1. The algorithm takes a protected cipher C, and two fault values f1 and f2,
and a key k as inputs. Algorithm 1 runs two independent simulations of C for f1 and f2
with fixed plaintext p and key k. One should note that C may internally generate random
numbers to randomize the outcome in each run. The simulation traces (the ciphertexts),
denoted as T f1 and T f2 , are then subjected to a statistical test T EST (). The T EST ()

checks the equality of the distributions resulting from the two simulation traces and
returns T RUE if the distributions are unequal. If T EST () returns T RUE , Algorithm 1
returns YES, indicating a violation of non-interference. The second interference exper-
iment (ref. Algorithm 2) is realized similarly, but by varying the keys and keeping the
fault value fixed. The test in Algorithm 2 runs on the ciphertext differentials. This is to
handle the cases when the fault has an incomplete diffusion to the ciphertext. Consider-
ing ciphertexts rather than the differentials would leave a constant difference between
the instances of two classes Tk1 and Tk2 , which may result in false positives in T EST ().

The choice between Algorithm 1 and 2 depends on the type of application being
tested and the fault model. Keeping the key fixed is found to be the most convenient

2A probabilistic program PP is a routine, which contains both probabilistic and deterministic assignments
and variables, when represented in Single-Static-Assignment (SSA) form. A PP takes a joint distribution of
input variables and outputs a joint distribution of output variables.
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option for cases where fault values vary within some finite range (for example, in the
case of byte faults, the range is {1, 2, · · ·, 255}). This is because the size of the keyspace
is much larger than the size of the fault space, and this size would matter in certain
situations. For example, in the case of code-based detection countermeasures, not every
fault value or key value (considering a fixed plaintext and fault value) is leaky, as a
faulty state might get detected by the error-detection module, causing zero leakage.
In such cases, one must exhaustively search the fault/keyspace to identify potential
leaky faults (resp. keys). While this search is relatively easy for a fault space of size
255, it becomes computationally intensive for the keyspace, which is much larger. Most
other countermeasures, such as infective/instruction-level, behave uniformly on any fault
value. Therefore, testing on arbitrary fault values suffices in practice for them. Varying
the key is convenient for control-flow faults, bit-flip/stuck-at faults, or instruction-skip
faults. In such cases, the fault can take a single value (e.g., a control fault may change
the execution flow of a program by altering a decision from “yes” to “no”. The only
faulty value is “no”).

The non-interference experiments can be optimized or generalized for certain coun-
termeasure classes, fault models, or observables. One such optimization, specific to
detection countermeasures has been presented in [30] (as a preprocessing step for se-
lecting fault value pairs (( f1, f2)) causing leakage). We propose two other optimizations
in Sect. 4. We focus on the detection test T EST () in the next subsection and the subse-
quent section.

2.3. t-Test for Leakage Detection

One way of implementing T EST () is to apply Welch’s t-test [30]. A t-test gives a
probability to examine the validity of the null hypothesis as the samples in both sets were
drawn from the same population. Large absolute values of the t-test statistic (denoted as
t) indicate that the datasets have different distributions. A threshold of |t | > 4.5 indicates
that the confidence of the test is > 0.99999.

In modern block ciphers, ciphertexts are of 64, or 128 bits, and treating them as a
single random variable during the t-test is impractical. One solution is to treat them
as multivariate quantities. Each bit, nibble or byte of ciphertexts can be treated as a
variable. We propose considering both bit and byte-level divisions separately. The t-test
applies to discrete-valued variables if the sample size is reasonably large [52–54] due
to the Central Limit Theorem (CLT) [55]. In all our experiments, we keep the sample
size more than 500 to ensure statistical significance of the t-statistic. Being univariate,
the t-test applies separately to each variable. However, information leakage may not be
manifested in this univariate setting. To see this, let us consider two variables V1 and
V2 such that V1 = X ⊕ r and V2 = r . Here, X is a leakage component depending
on the key and the fault value, and r is a random variable. In a univariate setting, if
we run the t-test on two different instances of V1 caused by two different fault values
(to be precise, X = X f1 in the first distribution and X = X f2 in the second one), the
t-test concludes that these two distributions are equal. This is due to the presence of
the random mask r . However, considering the joint distribution of V1 and V2 makes the
leakage visible, as the effect of the mask r gets nullified. To capture such leakage, the
t-test must be performed in a multivariate setting. One approach for extending t-test to
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the multivariate setting is to consider the centered product (i.e., higher-order statistical
moments) of different variables [30,56]. The centered product approach has been utilized
successfully in ALAFA.

In ALAFA, the T EST () function begins with performing a univariate test (bit/byte-
level) and continues with d-th order testing, for d = 1, 2, . . . ,G, until a leakage is
observed. G is to be specified by the user. We note that G should vary from 1 to 16 if
the ciphertext is treated byte-wise and 1 to 32 or 1 to 128 if treated nibble/bitwise. The
simulation time (S in Algorithm 1, 2) increases for higher G values and hence, decides
the test complexity. However, higher G values ensure a stronger security guarantee.

Algorithm 1 TEST-INTERF-FAULT

Input: Protected Cipher C, Fault value f1,
f2, Key k, Simulation counter S

Output: Yes/No
1: T f1 := ∅; T f2 := ∅
2: p := GENPT ()

3: for i ≤ S do
4: T f1 := T f1 ∪ C(p, k, f1)

5: T f2 := T f2 ∪ C(p, k, f2)

6: end for
7: if (T EST (T f1 ,T f2 )) then
8: Return Yes
9: else
10: Return No
11: end if

Algorithm 2 TEST-INTERF-KEY

Input: Protected Cipher C, Fault value f ,
Key k1, k2, Simulation counter S

Output: Yes/No
1: Tk1 := ∅; Tk2 := ∅
2: p := GENPT ()

3: corr1 := C(p, k1)

4: corr2 := C(p, k2)

5: for i ≤ S do
6: Tk1 := Tk1 ∪ {corr1 ⊕ C(p, k1, f )}
7: Tk2 := Tk2 ∪ {corr2 ⊕ C(p, k2, f )}
8: end for
9: if (T EST (Tk1 ,Tk2 )) then
10: Return Yes
11: else
12: Return No
13: end if

3. DL-FALAT: Deep Learning-based Detection Test

The t-test and its higher-order variants indeed work for realizing T EST (), but with some
critical theoretical and practical limitations. Higher-order t-test can only capture different
statistical moments, which has been shown to be sub-optimal in the context of SCA
leakages [57,58], even resulting in false negatives. Nevertheless, t-test for FA leakage
assessment can also be problematic from a usability perspective. The leakage-order in FA
does not formally relate to the countermeasure construction. This is in contrast to SCA
countermeasures such as masking, where the maximum possible leakage-order directly
relates to the masking order. The multivariate and higher-order leakages in FA are usually
formed due to the fault propagation and improper construction of the countermeasures
(e.g., for certain infection functions in infective countermeasures). Consequently, no
information regarding the maximum order of such leakages is available a priori to the
designer or the evaluator. The security guarantee depends upon the evaluator’s choice
of the maximum test order G for t-test.

DL methods are renowned for learning in highly multivariate scenarios and can take
several complex interrelations among different features (beyond moments) into con-
sideration [40,59,60]. Further, DL does not require any order-related information to be
given from the evaluator side, as it can automatically discover the dependencies between
different input features. This motivates us to propose DL-FALAT, a DL-based fault anal-
ysis tool. During our experimentation, it is found that DL performs significantly better in
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noisy scenarios and for very high leakage-orders compared to the t-test-based approach.
We refer to [61] for background on DL.

3.1. DL-based Leakage Testing: Main Idea and Challenges

The idea behind DL-FALAT is to train a Neural Network (NN) as a binary classifier with
two sets of ciphertexts resulting from two different secret values. Afterward, the clas-
sification capability of the trained model is evaluated on a validation set. The accuracy
result obtained over the validation set signifies the amount of information learned by the
network. A better-than-random guess over the validation set indicates the existence of
leakages from the countermeasure. On contrary, if the validation accuracy is random, it
implies the absence of leakage.

Although the approach stated above is simple, it poses several caveats and challenges
during implementation. We list them as follows:

Decision Making. One fundamental challenge in DL is to quantify the decision
threshold based on which one can distinguish between a leaky and a non-leaky
implementation.
Sample Size. It is always desirable that the detection test returns a consistent deci-
sion with the lowest possible number of samples. The sample size becomes critical
as one needs to test multiple fault locations [32,33,35], requiring several fault sim-
ulations for each of them.
Model Selection. In an ideal world, one specific DL model should work for a
large class of test scenarios. The critical question is whether or not there exists
one such single model. According to the “No-Free-Lunch-theorem” [62], such a
universally best model cannot exist. However, our problem space is limited—we
only work on ciphertext distributions in the FA context. Moreover, as we point out
later, we do not need the model to fit optimally for each dataset. Instead, a sign of
learning is sufficient. Therefore, it is reasonable to believe that a small set of such
models might exist and works well across a large set of benchmarks considered
in this work. However, constructing such models is an important problem. Model
selection becomes more challenging when the number of data samples is less, as
there may be a tendency to overfit. Overfitting [61] is a phenomenon in ML where
the model starts memorizing the training data and, as a result, fails to generalize
(i.e., fails to provide consistent prediction on new data). A sign for overfitting is a
low training error but high validation error.
Interpretation. How to obtain meaningful insights (such as univariate or multi-
variate leakage, the position of leaky bytes/bits in the ciphertext, etc.) from the DL
results?

We begin by addressing the first two issues simultaneously in the next subsection, as
there are some interrelations between them.

3.2. Iterative Training and Decision Making

If better-than-random learning occurs for a DL model, it implies the existence of leakage.
One key insight, in this case, is thatThe learning does not require to be the “best”. Even a
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Algorithm 3 DL-TEST-INTERF-FAULT
Input: Protected cipher C, Fault value f1, f2, Key k,

Simulation counter S, Initial simulation counter Sini t , Model M
Output: Yes/No
1: T f1 := ∅; T f2 := ∅
2: p := GENPT ()

3: St := Sini t
4: leak := Null
5: while St ≤ S do
6: for i ≤ Sini t /2 do
7: T f1 := T f1 ∪ 〈C(p, k, f1), 0〉 � Add labels to the data as “0” or “1”
8: T f2 := T f2 ∪ 〈C(p, k, f2), 1〉
9: end for
10: Dt := T f1 ∪ T f2
11: 〈D1

t ,D2
t , · · ·,DK

t 〉 := GEN-CROSS-VALID-SET(Dt ) � Generate K subsets for cross-validation
12: At := ∅
13: for i ≤ K do
14: Trit := ⋃K

j=0
j �=i

D j
t

15: Vlit := Di
t

16: ait := Train-and-Validate(M, Trit , Vl
i
t ) � Get the validation accuracy

17: At := At ∪ {ait }
18: end for
19: if (t_Test(At ) ⇒ H0) then � Perform one-tailed t-Test
20: leak := False
21: else
22: leak := True
23: end if
24: if leak then
25: Return Yes
26: else
27: if St ≤ S then
28: St := St + Sini t
29: else
30: break
31: end if
32: end if
33: end while
34: Return No

small indication of learning is sufficient to decide leakage.However, this indication must
come with high (preferably quantifiable) statistical confidence. This insight is valuable
for keeping the sample size for training and validation relatively small and for selecting
models.

Overall Flow. There is no clear thumb rule to determine the proper amount of
data required for training in DL. Hence, we begin the training with small training
and validation sets and iteratively increase their size by taking feedback from a
decision-making operation, indicating whether there is any leakage. The training
and validation iteration continues until leakage is detected or a user-defined dataset
size limit has been reached. This iterative process helps us to test with the minimum
possible number of samples.

The DL-based leakage assessment experiment is outlined in Algorithm 3. The
basic experiment is the same as the one described in Algorithm 1. However, the
T EST () is replaced with the iterative DL-based test. A straightforward extension
for Algorithm 2 is also possible. The dataset under consideration is denoted as
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D = T f1 ∪ T f2 (resp. Tk1 ∪ Tk2 ). The instances from the set T f1 (resp. Tk1 ) are
labeled as “0”, and the instances from the set T f2 (resp. Tk2 ) are labeled as “1”. The
training and validation begin with a small dataset size Sinit . The size of the set D is
increased adaptively in each iteration by adding an equal number of samples from
both of its constituent sets. To represent the varying size ofD, from now onward, we
use the notation Dt denoting the dataset at t-th iteration. The entire set Dt is divided
into training and validation sets Trt and Vlt , respectively. At the t-th iteration, the
model is trained withTrt and validated overV lt . The test continues until a maximum
dataset size S is reached or some leakage is detected. Table 2 presents the parameter
settings for Algorithm 3 decided experimentally based on our test suite. We did not
observe any change in the leakage trend beyond these ciphertext counts for different
countermeasure classes from our test suite. The Sinit is chosen empirically. In the
case of infective countermeasures, we mostly observed multivariate leakage. For
such countermeasures, we apply an optimization for saving the total learning time
for multiple iterations of Algorithm 3 while keeping the test still reliable. If leakage
is not observed within S = 10, 000, we perform another single learning iteration
with a large sample count as a final confirmation test. In our experiments, 20,0000
samples gave reliable results in such cases.
K-fold Cross-Validation. For training and validation to be robust even over small
datasets, we adopt the stratified K-fold cross-validation approach, which is well-
known for preventing overfitting [63] (line 11 to line 18 in Algorithm 3). The K -fold
cross-validation can be explained as follows. The entire dataset Dt is randomly
partitioned into K equal-sized subsets D1

t ,D2
t , · · ·,DK

t (|D j
t | = |Dt |

K , ∀ j). The

stratified feature ensures that for each D j
t , an equal number of samples are there

from both of the classes (label-0 and label-1). Next, K −1 of these subsets are used
for training the model M, and one subset is used as a validation set. This process
is repeated K times, giving each subset one chance to be used as a validation set.
The main idea is to check if the model M is capable of generalizing its knowledge
for unseen datasets or not.
One-Sided t-test forDecisionMaking. In our testing methodology, we accumulate
the validation accuracy (as fraction of correctly classified examples) for all the K
validation sets in a specific iteration t (the corresponding set is denoted as At =
〈a1

t , a
2
t , · · ·aKt 〉, where each a j

t denote the validation accuracy while validating on

D j
t )). To check leakage, we test the following hypothesis:

H0 : μAt = 0.5, and H1 : μAt > 0.5. (3)

Here, μAt denote the mean over set At . In case of leakage, the alternative hypothesis
H1 is accepted. We apply one-sided t-test with significance level α = 0.0001%,
and degrees of freedom K − 1. The t-value threshold is t = 4.5 (i.e., t ≥ 4.5
implies leakage). Acceptance of the alternative hypothesis indicates that the average
validation accuracy is better than random guess (i.e., 0.5), which indicates that the
DL model is learning and there is leakage. The choice of K plays a critical role
in making this t-test statistically significant. A value larger than 30 is commonly
recommended to make the CLT hold [64] (p. 157). We choose K = 50. A larger
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Table 2. Parameters for DL-based Leakage Detection Flow.

Sinit S K

500 10000 (for infective countermeasures) 50
5000 (for time/space/information/instruction redundancy, SIFA faults))

value increases the runtime [65] (p. 70) of the test without changing the outcomes,
as checked by us.

3.3. Selection of the DL Model and Parameter Choices

One of the major challenges of the leakage assessment problem is to select a generalizable
model (M), which should not depend upon the design under test or the nature of leakage.
As already pointed out, one advantage we have in leakage assessment is that the learning
need not be the best. Any better-than-random validation accuracy is acceptable. This fact
allows some flexibility for model selection and also helps to find a few models to scale
for a large test suite.
Bit and Byte Models We use two models shown in Listing 1.1 and 1.2. The manifes-
tation of leakage in the ciphertext structures is interpreted at the bit-level or byte-level.
This choice is motivated by the structures of existing ciphers and countermeasures,
which mostly follow bit/byte-level structures. Hence, we use two separate models for
bit (Listing 1.1) and byte-level (Listing 1.2) analysis. Both models can detect leakages
due to fault attacks, irrespective of the fault model or the leakage detection experiment.
We make this claim based on the fact that both models compare two distributions. The
only difference between them is the granularity considered for the input ciphertexts.
However, the number of ciphertexts required for detecting leakage varies between the
two models depending on the underlying cipher and countermeasure structure (bit/byte).
Since one of the main motivations of this work is to reduce data complexity, we propose
using both models simultaneously on the data for practical purposes.
The Network Architecture The models have been developed using the Python-based
Keras library [66], which uses TensorFlow [67] in the backend. Both networks have
one input layer, two fully connected (or Dense) hidden layers, and one output layer.
The hidden layers in the bit model contain 8 and 4 neurons, whereas the hidden layers
in the byte model contain 32 and 16 neurons, respectively. In both models, the output
layer contains 2 neurons. The hidden layers use Rectified Linear Unit (ReLu) activation
function, whereas the output layers use Softmax activation function. Also, Batch
Normalization is applied between the dense layers.3 As the loss function, we use
categorical cross-entropy. The Adam optimizer [69] is chosen for the learning process
(mostly with default parameter settings, as per Keras). The number of training epochs
is fixed to 50. However, we apply early-stopping technique [61] to stop the learning
process whenever we observe leakage in cross-validation. This stopping epoch varies
for different dataset due to their respective leakage patterns.

3Batch Normalization speeds up the learning process [68].
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Listing 1.1. Bit-Model.

model = Sequential ([
Dense(8, input_dim =128,

activation=’relu’)
BatchNormalization ()
Dense(4, activation=’relu’)
BatchNormalization ()
Dense(2,

activation=’softmax ’)])

Listing 1.2. Byte-Model.

model = Sequential ([
Dense (32, input_dim =16,

activation=’relu’)
BatchNormalization ()
Dense (16, activation=’relu’)
BatchNormalization ()
Dense(2,

activation=’softmax ’)])

It can be observed that the proposed models are simple. An advantage of simple
models is the reduced risk of overfitting, especially while we try to use as little data as
possible. We verified that none of our examples leads to overfitting even while trained
with the minimum number of samples required. The K -fold cross-validation reduces the
chances of overfitting, in general [61]. We further investigate the difference between the
training and validation loss for each of the K folds to ensure no overfitting. If the two
losses are similar, then the model is not overfitting, and this is the case for our models
on the test suite.

3.4. Leakage Interpretation Techniques

Motivation There exist multiple approaches in the literature to interpret the decisions
made by a DL model, and they have also been used previously in the context of SCA
security [39,40]. However, some issues have not been addressed clearly in the SCA/FA
literature. Firstly, it may happen that the model only takes certain leaky features (i.e.,
ciphertext bits/bytes) into consideration while ignoring others. Such a situation is natural
as the desired classification may be easily achieved by considering a subset of features
only. However, exposing all leakage points is a vital issue as it can provide valuable
information on how to attack. Secondly, in the DL-based method, it is difficult to under-
stand whether the leakage is univariate or multivariate, especially when both kinds of
leakage points are present in one trace (this is the case in some of our examples). Note
that t-test-based method addresses this issue by gradually increasing the analysis order
d. The motivation behind leakage interpretation is to extract such information from a
DL model.
Sensitivity Analysis We use the trained network model M for leakage interpretation
and adopt an iterative approach. The very first step we perform is a Sensitivity Analysis
(SA) [39], which returns the contribution of each feature in learning the leakage. Math-

ematically, the Sensitivity (Imi ) for each feature is computed as Imi =
∣
∣
∣
∑

j
∂y0
∂xi

· X j
i

∣
∣
∣.

Here, xi denotes the i-th input of the model M, y0 is the first output of M, and X j
i

is the value of the i-th input in the j-th ciphertext from the validation set. The partial
derivative computes how much the output y0 changes with respect to an input xi . The
sensitivity is an aggregate of the changes over the entire validation set for each input.
For SA, we consider a fresh and sufficiently large validation set while computing the
feature importance values. Although the overall ciphertext count increases, we suggest
performing leakage interpretation only for fault locations showing some sign of leak-
age. Generating extra traces for a few leaky fault locations seems reasonable, rather than
doing this for all probable fault locations in an implementation [32–34].
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Finding Leakage Points The SA step assigns real values to individual features (i.e.,
ciphertext bit/bytes) by which they can be ranked according to their contributions to
the decision making. In our analysis, we first begin with the subset of most important
features. The most important subset of features (MI ) is determined by a threshold
ThMI . If the Imi value of a feature is ≥ ThMI , we consider the feature as important.
We found that the average of all Imi s works well as ThMI over our entire test suite,
giving meaningful results. While such a choice for ThMI is empirical and based on
experimental observations, we note that choosing the average as ThMI has some clear
advantages. It does not require us to specify another extra parameter. It gives consistent
results when most features have similar Imi values, as the average will be close to that
value. Also, if some of the Imi s are significantly higher than the rest, there is no risk
of missing these high Imi points. Finally, since our leakage interpretation is an iterative
process, there is not much risk of missing an important feature due to ThMI . If some
feature is important for classification but still not designated as important in one iteration,
it will become so in the next iteration.

Once the MI has been determined, the analysis follows two separate paths. In the first
path, we eliminate all the features in MI from the actual trace by assigning them to 0. We
repeat the learning on the modified trace and check if the model still learns the leakage.
If the model does not learn, the dataset size is gradually increased to some predefined
count. This count is kept higher than the standard leakage detection to gradually expose
even the most difficult-to-detect leakage points (we choose this count as 20,0000 based
on all our experiments). The feature elimination and training iterate until all feature
points are exhausted or the model fails to learn. In the second path, the MI set obtained
in an iteration is tested to check whether the leakage is univariate or multivariate. We
apply the same trick of eliminating feature points in this case. However, only one point
from MI is eliminated at each step, and the training is repeated with the truncated MI
set. If the leakage is univariate, even a single point in M I would be able to classify.
In case of multivariate leakage, the classification would require multiple points. Note
that this mechanism can only distinguish between univariate and multivariate leakages
and would not necessarily indicate the exact leakage-order. In order to achieve the exact
order, one must perform the analysis for each subset of MI . While this is feasible if MI
is small, it would be costly to perform for larger MI sizes. Experimental validation of
leakage interpretation is presented in Sect. 6, where we show that it can identify some
previously proposed attacks in the literature only from the ciphertexts.

3.5. Discussion

We further investigate the model selection issue by considering other relatively complex
models, such as Convolutional Neural Nets (CNNs). It is found that the data complexities
for leakage detection in CNNs are very similar to those with our models. One reason
behind such observation is that we do not require the best possible learning to happen.
We believe that simple networks are still better than complex ones, as they are less
prone to overfitting. We also check another model type having a single neuron output
and sigmoid activation. The motivation behind such a construction is that we target
a binary classification problem. Binary classification can also be handled with a single-
output network rather than a 2-output one, as we used in this work. It is found that
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the results are slightly worse than the 2-output (one-hot) encoding. More precisely, we
require roughly 200 − 500 extra ciphertexts for different test cases with sigmoid
activation. Another relevant question is whether other statistical tests, which are not
moment-dependent, work better in this context than our DL-based method. We consider
the χ2-test, which has been used before for leakage detection in SCA [58]. In terms
of data complexity, the χ2-test performs similar to the DL-based test in many cases.
However, there are pathological cases where the performance of the χ2-test is inferior to
the DL-based test. One typical example is an infective countermeasure called RIMBEN
[25], for which DL requires 20,000 traces and χ2-test requires roughly 80,000). Most
importantly, the test-order has to be specified even for the χ2-test, which is not required
for the DL.

4. Proposed Generalizations of Leakage Assessment Tests

This section proposes two generalizations of the leakage assessment experiment itself.
The first extends the experiments for SIFA faults, while the second enhances the leakage
and observable definitions for “non-cipher” components.

4.1. Handling SIFA Faults

SIFA utilizes the fact that the activation (generation of a faulty value at the location of
injection) and propagation (propagation of the fault through the circuit) of a fault depend
on secret intermediate values. As a result, an injected fault may remain “ineffective” for
specific intermediate values and eventually result in correct ciphertexts. As a simple
example of how ineffective faults happen, consider that an attacker injects a stuck-at-0
fault to some intermediate bit of the cipher. If the actual value of the bit is 0, no alteration
will occur, and a correct ciphertext can be observed. In contrast, if the actual value is 1,
it will result in a faulty execution. Typically, SIFA exploits the correct ciphertexts for
key recovery instead of faulted ones, and this feature is crucial for bypassing most of
the existing state-of-the-art FA countermeasures [12,13].

The goal of this section is to tailor the test methodology in a way that can meaningfully
capture SIFA. One straightforward approach (adopted in [37]) is to declare a counter-
measure as secure if every fault propagates to the output or every fault gets corrected (so
that the ineffectivity of faults does not depend upon secrets). However, this is conser-
vative and will lead to false positives in several cases. For example, masking prevents
SIFA [17] for certain restricted fault models, even if there is a mix of correct and faulty
ciphertexts. To defeat masking with SIFA, one would require to fault certain specific
points inside S-Boxes [13], which may not be feasible for every implementation. Hence,
a mix of correct and faulty executions does not necessarily mean that SIFA would occur.

SIFA Fault Models. SIFA faults are modeled in two ways. We model biased faults
as the probability of a bit b remaining unchanged during fault injection (pr0→0
if b = 0 and pr1→1 if b = 1). For biased faults, this probability is not equal
for b = 0 and b = 1 (i.e., pr0→0 �= pr1→1). An example of such faults is the
stuck-at-0 (resp. stuck-at-1) fault where the probability of b remaining unchanged
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is 1 for b = 0, and 0 for b = 1. Such faults create correct ciphertexts dependent
on intermediate state bits [12]. The second fault model is required for performing
SIFA on masked implementations. Here, we perform bit faults within the masked
nonlinear operations inside S-Boxes so that the correct output becomes dependent
on some unmasked intermediate value [13].
Modifications to the Basic Experiment. We now describe the modifications to the
basic leakage assessment experiment. Most SIFA fault models use bit-level faults
for which only one possible value of fault exists (i.e., if the bit is originally 0, the
faulty value is 1 and vice versa). Our approach is to vary the key instead of the
fault values (k1 and k2). Only constraint over k1 and k2 is that if the encryption of p
with k1 results in bit value 0 (or 1) in the fault injection point, then the encryption
of p with k2 must result in bit value 1 (or 0) in the injection point. For masked
implementations, if some shares of an intermediate bit b are targeted with a fault,
it is required that b = 0 (resp. b = 1) for k1 and b = 1 (resp. b = 0) k2. Finally, we
apply a simple trick which exposes the bias in fault injection (if any) at the ciphertext.
For detection countermeasures, the faulted output (usually represented as a fixed
string) is replaced with random strings of the same length as correct ciphertexts.
This replacement eliminates the unwanted constant differences between the two
ciphertext distributions to be tested due to fixed strings. No replacement is required
for infective countermeasures as they already output randomized ciphertexts in case
a fault is detected. The leakage test is performed on the differentials between the
correct and faulty ciphertexts.
Why SIFA Leakage is Exposed? It is a tempting question how SIFA leakage gets
exposed through the modifications proposed in the last paragraph. The differentials
corresponding to the correct ciphertexts obtained in the fault injection campaign are
equal to zero. The differentials corresponding to the faulty ciphertexts are random.
Each of the datasets corresponding to keys k1 and k2 (denoted as Tk1 and Tk2 )
thus contains zero-valued bit/byte strings along with some random strings. Let us
denote the count of zero-valued strings as Cnt0 and random strings as Cnt1 in
one of the datasets (say in Tk1 ). The ratio R=0 = Cnt0|Tk1 | nearly equals to either

pr0→0 or pr1→1 depending on the value of the faulted intermediate bit b while
the plaintext p is encrypted with k1. This is because b remains unaltered either
with probability pr0→0 or pr1→1, which eventually results in a correct ciphertext.
Next, let us consider the two datasets Tk1 and Tk2 . As already mentioned, b assumes
different values for k1 and k2. One may observe that the ratios R=0 for these two
datasets become different. This is because in one of the cases (say for k1), R=0
equals to pr0→0, while in the other case it equals to pr1→1. The difference in the
ratios establishes the fact that the two underlying distributions in Tk1 and Tk2 are
also different, which indicates leakage. Otherwise, there is no leakage and a SIFA
cannot be performed. Similar arguments can be given for the other fault model for
masking implementations.
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Algorithm 4 TEST-INTERF-GENERALIZED
Input: Protected Cipher C, Fault value f1, f2 Target Observable O, Simulation counter S
Output: Yes/No
1: T fm := ∅;
2: p := GENPT ()

3: k := GENK EY ()

4: Oc := Simulate(C, p, k, NULL)

5: O fm := Simulate(C, p, k, fm ) for m ∈ {1, 2}
6: if (Oc ! = O fm ) then
7: for i ≤ S do
8: T fm := T fm ∪ Simulate(C, p, k, fm )

9: end for
10: for i ≤ S do
11: U := U ∪ GENUN I FORM ()

12: end for
13: if (T EST (T fm ,U)) then � T EST is performed with the DL-based approach.
14: if (O = g(K)) then � If O is a function (g) of key.
15: if ( f1! = f2) then
16: Return DL-TEST-INTERF-FAULT(C, p, f1, f2, S)

17: else
18: k1 := GENK EY ()

19: k2 := GENK EY ()

20: Return DL-TEST-INTERF-KEY(C, p, f, k1, k2, S) � f1 = f2 = f
21: end if
22: else
23: Return Yes
24: end if
25: else
26: Return No
27: end if
28: else
29: Return No
30: end if

4.2. Assessing “Non-Cipher” Leakages—Compare-with-Uniform

There are situations where a fault in some key-independent component may indirectly
cause key leakage. For example, the security of a masked implementation strongly de-
pends on the availability of uniformly random bit sequences. Any deviation from uniform
randomness may enable an SCA. An adversary may de-randomize masks using faults.
One concrete realization of such derandomization (for hardware) has been presented in
[70]. In [70], the fault corrupts a random number generator (RNG) using Hardware Tro-
jan Horses (HTH). Corrupting the input logic for key/nonce/mask is a general use-case
for such exploits. Algorithm 2 is not applicable in such contexts as many such cases do
not directly associate with key (such as the mask or nonce). Algorithm 1 will also not
work because leakage of fault values does not lead to any meaningful information unless
faults are injected inside the cipher computation.

Compare-with-Uniform Experiment. In order to generalize the leakage assess-
ment for the situations mentioned above, we first extend the notion of the observ-
ables beyond ciphertexts. An observable O is a set of variables either input or
output to a cryptographic module. Apart from the ciphertexts, examples of ob-
servables include the key, mask and nonce inputs to a crypto-core. The proposed
enhancement to the non-interference test is based on a simple principle—if the dis-
tribution assumed by an observable changes (to a non-uniform distribution) due
to a fault injection, then such a fault can be exploited by an adversary. To test
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this, we compare any observable distribution resulting from a fault injection with a
uniformly random distribution using T EST (). The fault here is simulated several
times for a single fault value. We call this as a compare-with-uniform experiment.
The intuition behind this test is that if the fault event results in randomizing the out-
come of the target observableO, then no information can be extracted from it even
by the attacker. Deviation from randomness may directly indicate chances of poten-
tial attacks caused due to randomness loss (e.g., nonce repetition or a non-uniform
mask for SCA resistance).
IntegratedTest Flow.An integrated test flow considering all observable definitions
is presented in Algorithm 4. For every fault injection point, we first check if the
fault influences the observable or not (line. 6) by changing its value. Next, fault
simulation is performed for a single effective fault value, and the simulation data
are subject to the compare-with-uniform test. In case the test indicates no distinction
from uniform random, we may safely terminate the experiment for the fault location
indicating no leakage. In the other case, it suspects leakage. Further, if the observable
is found key-dependent, we run one of Algorithm 1 or 2 (whichever is suitable) and
establish the existence of key-dependent leakage.

5. Handling the Fault Space

Ideally, the fault simulation and the leakage detection test should be performed for
each fault location and fault model. However, the number of testable locations can be
reduced by exploiting the equivalences present in the fault space of a block cipher. In this
section, we describe two types of equivalence relations—equivalence at the gate-level
and equivalence at the block cipher-level. The gate-level fault equivalences are useful
for hardware and bitsliced software implementations, whereas the equivalence due to
structural redundancies of ciphers is utilized for any software/hardware implementation.

5.1. Fault-Equivalence at Gate-Level

Testing for stuck-at faults (bit-level) is well-studied in the domain of digital testing [71].
Generating test vectors for a given combinational circuit with W number of nets/wires
(input, internal or output) requires considering total 2 × W faults (both stuck-at-0 and
stuck-at-1 fault for each wire). Test generation for each of these faults needs solving
an NP-Complete problem [71]. While it seems challenging for large-scale circuits with
millions of gates, it is practical and implemented in several commercial tools. One way of
handling such a huge fault space is to reduce/collapse the total fault set using equivalence
relations among the faults. Tests generated for such a collapsed set of faults guarantee
good fault coverage over the entire circuit. This is referred to as fault-collapsing [71].
Fault Equivalence and Dominance Fault collapsing utilizes two fundamental proper-
ties called fault-equivalence and fault-dominance to generate a reduced fault set which
covers all possible single stuck-at-fault scenarios. The fault equivalence is defined as
follows:
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Fig. 1. Fault collapsing for AND: aEquivalent stuck-at-0 faults;b stuck-at-1 fault at y dominates the stuck-at-1
faults at the input nets; c Collapsed fault set; d Fault equivalence for NOT gate .

Definition 1. (Fault equivalence) Let Z f l denotes the input–output mapping realized
by a circuit Z with a fault f l induced in it (at some specific net). Two faults f l1 and f l2
are considered equivalent if Z f l1(x) = Z f l2(x), for x ∈ I (I is the set of all possible
inputs to the circuit).

Fault equivalence (ref. Definition 1) can be tracked structurally from the circuit netlist.
For example, we refer to the AND gate shown in Fig. 1a. In this case, the stuck-at-0
faults at the inputs and the output are equivalent. It can be observed that the test pattern
a = 1, b = 1 detects the stuck-at-0 faults at a or b. The same pattern detects the stuck-
at-0 fault at the output y. Hence, stuck-at-0 faults at a, b and y are equivalent. From
another viewpoint, a stuck-at-0 fault at any of a, b or y sets the output value y to 0.
Hence, the corresponding mappings Za,st0 Zb,st0 and Zy,st0 are equivalent. Simulating
any one of these three faults will have the same impact on the output.

The fault dominance is defined as follows:

Definition 2. (Fault dominance) Let T f l1 be the set of all tests that detect a fault f l1.
A fault f l2 dominates f l1 if and only if f l1 and f l2 are equivalent under T f l1 .

The idea of fault dominance (ref. Definition 2) is illustrated in Fig. 1b where the stuck-
at-1 fault at y dominates the stuck-at-faults at a and b. The test vectors a = 0, b = 1 and
a = 1, b = 0 detects the stuck-at-1 faults at a and b, respectively. The same test vectors
can also detect stuck-at-1 fault at y. The reduced fault set after collapsing is shown in
Fig. 1c. One may observe that instead of a total of 6 faults, one needs to test only 3. A
similar example of collapsing based on equivalence is shown in Fig. 1d for a NOT gate.
Fault Dominance and Biased Faults One may note that the dominance property only
claims equivalence on a set of test vectors T f l1 . In practice, there can be test vectors
outside T f l1 , which detects the fault f l2. Referring to the AND gate example in Fig. 1b,
the stuck-at-1 fault at y gets detected even with a = 0, b = 0, whereas none of the
stuck-at-1 faults at a and b gets detected with this input. While this is not an issue for
conventional Automatic Test Pattern Generation (ATPG), it is important to analyze if
such collapsing is also appropriate in a FA context or not. More precisely, we want to
evaluate that if no fault simulation is performed at the fault location y (and a decision
regarding its exploitability is made based on fault simulations at a or b), would it result
in a fault negative? As it turns out, this is not an issue for attacks based on random fault
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(a) (b)

Stuck-at-1

Stuck-at-0

Fig. 2. Fault collapsing for a combinational circuit: a Uncollapsed faults (total 32); b Collapsed faults (total
15).

models (e.g., DFA). This is because such attacks require at most one input for a given
fault location which can activate or propagate the fault. The definition of fault dominance
guarantees this. For attacks considering biased and ineffective faults, however, such
dominance-based collapsing may result in a slight variation in the bias. For example, the
stuck-at-1 fault at the output y of the AND gate will result in correct computation for
input value (a = 1, b = 1), and faulty computation for (a = 0, b = 0), (a = 0, b = 1)

and (a = 1, b = 0). On the other hand, if decision regarding this fault location is made
based on the stuck-at-1 fault at a, there will be faulty computation for (a = 0, b = 1)

and correct computation for (a = 0, b = 0), (a = 1, b = 1) and (a = 1, b = 0). Similar
observations can be made for fault simulation at b. Although it is an approximation to
use the fault simulations of a or b to decide about leakage at y, the value dependency
of the fault persists. Any value-dependent bias in fault is sufficient for an attack. Hence,
the collapsing remains sound even for FA.
Reduction in Fault Set Fault collapsing at the gate-level provides a certain amount
of reduction in the size of the fault space for single stuck-at faults. Figure 2 shows a
simple illustration of this claim. Further, Table 3 provides the counts for the collapsed
and uncollapsed fault lists for an unprotected AES implementation, as well as a TI
implementation of PRESENT and a SIFA-protected implementation of PRESENT (ref.
column 2–3). The fault lists are obtained by running a complete ATPG in full-scan mode
over the circuits using Synopsys TetraMAX.4 We have also provided the fault coverage
statistics over the circuits. Fault coverage is the ratio of detected fault count and total
(collapsed) fault count. Although in these cases, the fault coverage is 100%, in certain
situations, fault coverage may go below 100% as some faults may remain undetectable
even after an ATPG run. Such undetectable faults, however, do not influence FA testing
as undetectable faults can never corrupt the ciphertexts. A full-scan ATPG converts
the sequential circuit to a combinational one and labels those faults as detectable, which
reaches some circuit register. In a block cipher datapath, if a fault reaches a state register, it

4The syntheses were performed using Synopsys Design Compiler and DFT Compiler (with STMicro-
electronics CMOS65—a 65nm technology library due to STMicroelectronics). No area/timing optimization
was imposed during synthesis. All Synopsys tools utilized in this work are under registered trademarks of
Synopsys Inc (https://www.synopsys.com).

https://www.synopsys.com
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Table 3. Fault collapsing with gate-level and algorithm-level equivalence.

Hardware #Uncollapsed
fault-list

#Collapsed
fault-list

%Fault-coverage #Collapsed
fault-list after
algorithm-level
equivalence

Unprotected AES 26,358 23,560 100% 660
TI-PRESENT 22,049 17,918 100% 1051
ANTISIFA 66,489 54,147 100% 3182

also reaches the ciphertext with high probability. Hence, enlisting detectable faults based
on the full-scan circuit is sound.
Handling Bit-Flip Faults So far, we have discussed bit stuck-at faults on the nets of
a circuit. It is also common to consider single bit-flip faults in fault attacks. The list
of bit-flip faults is decided based on the list of stuck-at faults, as the fault-list contains
every feasible single-bit fault location. A bit-flip fault for a net can be expressed as the
conjunction of stuck-at-0 and stuck-at-1 fault.
Handling Multi-Bit Faults FAs also exploit multiple-bit fault models such as byte/nib-
ble faults. Considering every possible multiple-bit fault would result in a fault space
which is exponential over the single-bit fault space. Instead, we utilize certain features
of the practical faults to restrict the fault space.Most practical faults only corrupt certain
consecutive bits in a register. Hence, we only consider faults within a byte, a nibble, or
(in rare cases) within multiple consecutive bytes. Further, multi-bit faults are captured
only at the register boundaries. This is derived from practical observations. Even single-
bit faults fan-out to multiple bits at a register [16,71]. A multiple-bit fault inside the
combinational path would eventually result in a single/multiple-bit fault at some reg-
ister boundary. Overall, considering all single-bit faults in the combinational path and
multiple-bit faults at register boundaries should holistically cover most of the feasible
faults in a target implementation.

5.2. Fault Equivalence in Block Ciphers

Block ciphers are constructed by repeating basic sub-blocks (such as S-Boxes and diffu-
sion layers) several times. Such sub-blocks are equivalent in terms of fault attacks with
respect to the attack complexity. For example, all 16 S-Boxes in an AES round have
similar fault propagation properties and hence, similar attack complexities. Such equiv-
alences can be exploited to drastically reduce the fault space. The idea is to deduce such
equivalences from an unprotected version of the cipher under test (preferably a high-
level algorithmic representation as used in automated fault attack tools such as ExpFault
[72]). Such equivalence relations are used later to test protected implementations.
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Definition 3. (Fault Equivalence in Block Ciphers) Two fault locations f l1 and f l2
according to a specific fault model are considered equivalent if they result in attacks with
the same complexity. The attack complexity is defined as a tuple 〈Rm, Eval〉 where Rm
denotes the exhaustive key search complexity after the attack and Eval denotes the
complexity of associated key guessing operation.

The definition of fault attack complexity above follows the one defined in ExpFault
[33]. One should note that this definition mentions the fault locations and does not
comment on fault values. The fault model specification abstracts the value of a fault
(byte/nibble faults are usually multi-valued). For example, in a byte fault model, every
fault value at a specific location is considered equivalent, and showing exploitability for
one fault value pair is sufficient. For biased faults, every statistical bias at a fault location
is equivalent.
Cipher-LevelEquivalence:AnExampleWe consider the AES block cipher to illustrate
the utility of such equivalences. If a byte fault is injected at the input of a 9th round S-
Box, it results in an attack recovering 32 key bits. We used the automated fault analysis
tool ExpFault [72] for exploring all byte fault locations at the input of the 9th round
S-Box operation.5 Every byte location results in an attack that requires an exhaustive
search of 28 (i.e., Rm = 28). For the evaluation of the keys, at most, 32 key bits have to
be guessed simultaneously, making the key guessing complexity Eval = 232. Hence, all
16 byte locations (i.e., S-Box) inputs are considered equivalent, and testing one of them
should suffice. Any byte fault between the 8th and 9th round MixColumns is equivalent
to each other. We also note that FA countermeasures usually do not destroy the structural
similarities within the original cipher structures. Hence, deciding the equivalence over
an unprotected implementation and using those exploitable locations for testing the
protected implementations works fine.

To further illustrate the concept of cipher/algorithm-level fault equivalence, we now
use graphical representations generated from the ExpFault tool (called Cipher Depen-
dency Graph or CDG in ExpFault’s terminology). Although such graphs are not among
the normal outputs of ExpFault, they can be generated for debugging purposes from the
version of the tool we used. Figure 3 displays one such graphical representation of the last
two rounds of AES. Each node here corresponds to a state bit. Each topological layer
in the graph represents the input of a sub-operation (i.e., SubBytes, ShiftRows,
MixColumns, and AddRoundKey). The S-Box and MixColumns layers are repre-
sented as complete subgraphs, and red nodes represent the key bits. The directions of the
arrows are towards the ciphertext, and the last topological level represents the ciphertext.

Each topological layer (except those involving key addition) of the AES CDG con-
tains 128 nodes. Starting from the 9th round input (as we consider the fault injection at
the 9th round), the entire CDG contains four subgraphs disconnected from each other.
For the sake of representation, we place these four subgraphs as Fig. 3a–d. Without loss
of generality, we consider two independent fault injection scenarios at two different byte
locations in subgraph Fig. 3b, c. The fault propagation path for Fig. 3b is colored blue,
and the other is colored green. Both subgraphs involve the same number of key bits from
the last round, which this attack can extract. Moreover, both graphs are isomorphic to

5There are 16 such locations.
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each other if we ignore a few nodes from the first topological layer. The complexity
components Rm and Eval are the same for these two fault injections due to the isomor-
phic graph structures. Hence, these two fault locations can be considered equivalent, and
analyzing one would be sufficient. The CDG structure confirms that all 16 S-Box inputs
(input nodes to the 8 × 8 complete subgraphs in the first two layers) are equivalent.

5.3. Putting it All Together

Overall, we go by the following steps:

– Perform the algorithm-level fault collapsing using the ExpFault tool. Get the list
of equivalent fault locations and select only a single location from each equiva-
lence class. Such locations are described as the inputs to some sub-operation (e.g.,
SubBytes, ShiftRows, MixColumns) by ExpFault [72].

– Select the module which implements the sub-operation specified in the previous
step. For hardware/bitsliced implementation, perform gate-level fault collapsing for
this module only and populate the fault list. Simulate each fault from this fault list
by stitching extra gates at the fault locations. For example, a bit-flip fault can be
generated by stitching a 2-input XOR gate at the fault location. One input of the
XOR gate is attached to the fault location, whereas the other input is set to 1 to
flip the value at the fault location. This strategy is also used for generating stuck-at
and other fault models by changing the gate type (e.g., using AND/OR gates). For
software implementations, target every instruction within this module using the
GDB-based methodology described in “Appendix A”.

– Acquire simulation data for each fault location and apply the DL-based leakage
detection test.

Column 4 in Table 3 illustrates the outcome of such testing in terms of fault loca-
tions tested (for hardware implementations). Testing one S-Box per round for AES and
PRESENT is sufficient, and the size of the corresponding fault set is significantly smaller
than the entire fault space of the circuits.

6. Case Studies

This section presents the case studies used to evaluate the proposals made in the last
few sections. Our evaluation set contains representatives from each of the countermea-
sure classes described in Table 1. Moreover, to establish the usefulness of the compare-
with-uniform extension in Sect. 4.2, we present a scenario of mask-derandomization
and evaluate the firmware of a Hardware Security Module (HSM) called SHE [76]. The
redundancy, infective, and instruction countermeasure are implemented in software. The
combined SCA-FA and SIFA countermeasures are implemented in hardware, except for
CAPA [19] and M&M [21], which are simulated in Python. We implement these two
countermeasures for KATAN-32 [77] block cipher and test representative fault locations
at different building blocks to only verify the security claims from the papers. Addition-
ally, we also test two recently proposed countermeasures—Friet [26], and DEFAULT
[36], which are simulated in C. The SHE design is a hardware/software co-design where
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Fig. 3. Illustration: Cipher-level fault equivalence.
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Table 4. Summary of results.

Countermeasures 1-byte
Fault

Single Inst.
Skip

Multi Inst.
Skip

Skip-based
Control
Fault

SIFA
Faults
(Biased
Bit-Flip
Faults)∗

SIFA
Faults
(Unbiased
Bit-Flip
at Gate
Input)

Time/Space/
Information
Redun-
dancy;
Infective

Simple
time/s-
pace
redundancy+

Secure Secure Secure Secure Insecure Insecure

1-bit parity
[15]
(infor-
mation
redundancy)+

Insecure Insecure Insecure Secure Insecure Insecure

Infective
[14]
(without
noise)

Insecure Insecure Insecure – Insecure Insecure

Infective
[14]
(with
noise)

Insecure Insecure Insecure – Insecure Insecure

Infective
[25]
(RIM-
BEN)

Insecure Insecure Insecure – Insecure Insecure

Infective
[28]

Secure Secure Secure Insecure Insecure Insecure

Infective
[24]

Insecure Insecure Insecure – Insecure Insecure

Inst. Level Idempotent
Inst. [10]

Secure Secure Insecure – Insecure Insecure

SCA+FA
Com-
bined

Masking
[73]+
Classical
FA
Counter-
measure

Secure – – – Secure Insecure

CAPA
[19]∗∗∗

Secure Secure Secure – Secure Secure

M&M
[21]∗∗∗

Secure Secure Secure – Secure Insecure

Friet
[26]∗∗∗

Secure Secure Secure – Secure Secure
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Table 4. continued.

Countermeasures 1-byte
Fault

Single Inst.
Skip

Multi Inst.
Skip

Skip-based
Control
Fault

SIFA
Faults
(Biased
Bit-Flip
Faults)∗

SIFA
Faults
(Unbiased
Bit-Flip
at Gate
Input)

SIFA
Counter-
measure

AntiSIFA
[74]∗∗

Secure – – – Secure Secure

Impeccable
Circuits
II [16]∗∗

Secure – – – Secure Secure

Fault-
Resilient
Cipher

DEFAULT
[36]∗∗∗

Insecure Insecure Insecure – Insecure Insecure

Security
Module

SHE
Firmware
[75]

– – Insecure
for faults
in data
transfer

– – –

∗Bit-stuck-at faults are special cases of biased bit-flip faults
+Insecure against paired faults at the comparison and combined FA-SCA
∗∗Secure up to a predefined security order
∗∗∗Instruction-level faults are simulated at high-level by corrupting constituent bitwise-logical statements

the crypto-core is in hardware, and the rest of the computation is running as firmware
in a soft-core processor (for simplicity, we check some parts of the firmware). Table 4
summarizes the outcomes of leakage assessment over the test suite for different fault
models.

Due to the presence of the gate and algorithm-level fault equivalences, we only need
to simulate faults for one S-Box per round at its inputs, outputs, or intermediates points
for most of our test cases involving AES and PRESENT. To further (reasonably) reduce
the number of locations to be tested, we target only the last three rounds (six rounds for
infective countermeasures [14,28] as dummy rounds are present) of the ciphers in most
of our test cases. This is because most fault attacks target only the last few rounds of
block ciphers. Although attacks such as Fault Template Attacks (FTA) [22] exist, which
are also applicable for middle rounds, their working principle is the same in every round.
Therefore, checking the last few rounds suffice.

A summary of implementations tested, along with timing results, is given in Table 5.
The experiments are performed on three systems with Intel Xeon processors, each having
64 processing elements. The code length here presents the total number of instructions
executed (for X86-64 architecture). For instruction-skip experiments, we model up to
3 consecutive skips. The instruction-level countermeasure tested implements up to 2
redundant instructions and requires two consecutive skips to expose leakage. An attack
discovered for SHE requires 3 consecutive skips. Therefore, we need not go beyond 3
skips in this work. However, this choice is empirical and can be increased to any value
until the skips are consecutive. We present the average leakage detection time (fault
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Table 5. Leakage detection time of the examples tested with Algorithm 3.

Software
Examples

Code Size
(# inst.)

#Checked
Insts.

Avg. Leak-
age De-
tection
Time/fault
location (in
seconds)

Hardware
Examples

Total Fault
Count
(in full-
scan) (Col-
lapsed)

#Location
Checked ×
#rounds

Avg Leak-
age De-
tection
Time/fault
location (in
seconds)

Time
Redun-
dancy

83,270 532 564.8 Combined
SCA +
FA

17,918 1051 × 3 304.45

Parity [15] 50,544 597 425.94 AntiSIFA
[17]

54,147 3182 × 3 302.63

Infective
[14]

20,8380 1170 620.41 Impeccable
Circuits
II [16]
(3-way
red)

17,731 3744 × 1 300.38

Infective
[25]

97,519 532 682.65 Impeccable
Circuits
II [16]
(7-way
red)

88,721 13,895 × 1 301.76

Infective
[28]

16,6520 1052 868.82

Infective
[24]

90,491 532 573.26

Idempotent
Inst. [10]

96,593 1127 426.38

SHE
Firmware
[76]

205 205 436.16

simulation + learning) for each fault location. In the following subsections, we compare
the results of the DL-based leakage detection with t-test. The t-test results are denoted
as ALAFA.

6.1. Infective Countermeasures

We consider four infective countermeasures in our test suite.

Example 1. (Infective Countermeasure [14]) This infective countermeasure random-
izes the outcome with an infection function upon detecting a fault. The protected im-
plementation executes each round of AES two times—the first one contributes to actual
encryption, and the second one is redundant. Furthermore, there are (optional) random
“dummy” rounds (round computations over a random state changing at each encryp-
tion). Dummy round computations randomly occur between each actual and redundant
round to confuse the attacker regarding the correct fault injection location. The nonzero
XOR differential between actual and redundant computation is used to “infect” the state
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during fault injection, which is further combined with the actual, redundant and dummy
round computations. This results in a randomized ciphertext.

Our first experiment considers the countermeasure without the dummy rounds. With-
out loss of generality, we describe fault injections at the 9th round of AES state. Leakage
is observed in this case. Figure 4a compares the outcome from DL-FALAT to that of
ALAFA [30] in terms of absolute t-values. The byte-wise testing performs better for
both ALAFA and DL-FALAT in this case. The leakage has been detected with 1400
ciphertexts (when the line crosses the red region at t = 4.5) for DL-FALAT, while
ALAFA requires 7000 ciphertexts.

Next, we figure out the leakage-orders for the DL-FALAT, for which we perform
the SA (ref. Section 3.4). The SA is reported here for the 9th round exploitable fault
location. The first set of leaky points (i.e., the MI ) are the bytes [4, 5, 6, 7] from the
16-byte ciphertext (Fig. 4b). MI sets are constructed using the average sensitivity of all
points in the trace as threshold ThMI (red lines in Fig. 4b–e), as described is Sect. 3.4.
The ciphertext count required to expose this leakage is 1400. An analysis of the MI set
reveals this leakage to be multivariate (Fig. 4f) as at least 3 bytes in MI are required
for learning the leakage. We iteratively continue by removing the features in the MI set
and increasing the ciphertext count to expose other leakage points. The second set of
leakage points is ([12, 13, 14, 15]). Exposing these points need no further increase in the
ciphertext count, giving some hint that the leakage-order of the first two sets might be
equal (Fig. 4c). The next set of leakage points getting exposed are [0, 1, 2, 3], for which
40,000 ciphertexts are required (ref. Figure 4d). Finally, the third leakage column gets
exposed with ciphertext count of 20,0000 (ref. Figure 4e). Leakage is multivariate for
all these MI sets. The variation in ciphertext counts for different leakage sets indicates
that the statistical order may not be the same for all of them, which is supported by the
actual attack presented in [28]. Precisely, column [4, 5, 6, 7] and [12, 13, 14, 15] have
(bivariate) leakage-order 1, column [0, 1, 2, 3] has an leakage-order 2, and the third
column has order 3 (ref. Equation 5 in [28]). This experiment justifies the importance
and validity of our leakage interpretation step.

Example 2. (Countermeasure [14] with Dummy Rounds) In this example, the leak-
age detection is performed on [14] with the dummy rounds included. Dummy rounds
induce noise in fault injection as the attacker cannot determine the exact round of injec-
tion. The amount of noise depends on the dummy round count (#dum). For reasonable
dummy round counts of #dum (i.e., #dum = 20, 25, 30, 35, 40), the signal probabilities
are 0.256, 0.202, 0.164, 0.136 and 0.114, respectively, if we target AES 9th round. Fig-
ure 5a presents the leakage profiles for the number of dummy rounds for both ALAFA
and DL-FALAT. DL-FALAT outperforms ALAFA by a huge margin for all noisy cases.
Even for a large ciphertext count of 20,0000, ALAFA fails to detect the leakage while
DL-FALAT succeeds. The leakage interpretation results are very similar to that of the
previous example.

Example 3. (RIMBEN [25]) RIMBEN (Random Infection based on Modified Benes
Network) detects the presence of a fault by taking the differential of a cipher and a
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Leakage of Infective countermeasure [14] with single-byte fault: a Variation of absolute t-test scores
for DL-FALAT and ALAFA with respect to ciphertext count; b SA results for the first iteration; c SA results
for the second iteration; d SA results for the third iteration; e SA results for the fourth iteration; f MI analysis
for the first iteration .
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(a) (b)

Fig. 5. Comparative analysis of DL-FALAT with ALAFA: a Infective countermeasure [14] with dummy
rounds and a single-byte fault. The absolute values of t-statistic have been plotted for different count of
dummy rounds #dum. The amount of noise increases with the increase in #dum; b Variation of absolute t-test
scores for DL-FALAT and ALAFA for RIMBEN countermeasure .

(a) (b)

Fig. 6. Infective countermeasure RIMBEN [25] with single-byte fault:aSA analysis results from first iteration;
b MI analysis results from first iteration.

redundant computation state at each round during encryption. The fault is propagated
through the computation, and at the end, the faulty ciphertext (C) is XOR-ed (masked)
with a random bit string and returned as output. The random bit string is generated from
the fault differential ΔC , utilizing a preprocessing logic and two consecutive Benes
networks. The random bitstring outputted by this construction has a Hamming Weight
(HW) of N

2 , where N denote the block size of the cipher, as well as the size of the
N × N Benes network. Standard values of N are 128 or 64. We consider a protected
AES implementation for which N = 128.

Figure 5b illustrates the analysis on RIMBEN. We report results for a fault injec-
tion at the 9th round of AES state. The analysis has been performed for both bit and
byte-level abstractions of the ciphertexts. The bit-level results (presented here) require
lower ciphertext count. The DL-FALAT observes the leakage within 8000 ciphertexts.
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(a) (b)

Fig. 7. a Infective countermeasure [28] with single-byte fault: DL-FALAT and ALAFA leakage profile; b
Infective countermeasure [28] with instruction-skip-based loop-abort: DL-FALAT and ALAFA leakage profile
.

In contrast, ALAFA cannot detect any leakage.6 ALAFA fails because all 128 bits par-
ticipate in decision-making. Leakage detection with 128-th-order analysis would require
an impractically large trace count to converge.

While performing the leakage interpretation, the first step of SA reveals the set of
60 points, as shown in Fig. 6a. However, the points not included in this M I also have
some observable sensitivity, which is exposed in the next iteration of analysis. The size
of the MI set is 60. This is because the HW of the masking string in RIMBEN is 64.
Therefore, knowledge of roughly half (60) of the ciphertext bits is sufficient for the DL
model to decide the boundary between two classes with better-than-random accuracy.
The analysis of MI shows that after removing 10 points the validation accuracy becomes
0.5 (Fig. 6b). This implies that the leakage is highly multivariate, as considering even
50 points keeps the entropy of the mask sufficiently high, refraining from classification.
Attacks reported in [78] also exploit this low HW feature of RIMBEN.

Example 4. (Infective countermeasure [28]) This example considers the infective
countermeasure proposed at CHES 2014 [28] as an improvement over [14]. Suppose a
single/multi-byte data-corruption happens in any cipher, redundant or dummy round. In
that case, the protected cipher outputs a fresh random string instead of a randomized
infected intermediate state as in [14]. The countermeasure is first tested for a single-byte
fault model. As can be seen in Fig. 7a, no leakage is observed in this case, both by
DL-FALAT and ALAFA.

An instruction-skip in this countermeasure corrupting the loop counter variable (dur-
ing the last 2 rounds) creates a univariate information leakage, as shown in Fig. 7b. The
cipher outputs the input of the 10-th round instead of a random string during such loop
abort faults. Faults at other control variables, such as the “if” condition, which checks

6ALAFA requires the construction of all possible subsets up to the specific leakage-order. In the present
case, we need to go up to order 128. The number of subsets up to order 128 is 2128, which is infeasible to
cover. So we consider one case where the order of test is 128. The result shown in the plots is for test order
128.
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(a) (b)

(c)

Fig. 8. Infective countermeasure [24] with single-byte fault: a Variation of leakage with ciphertext count for
DL-FALAT and ALAFA; b SA for the DL-FALAT leakage for one iteration of iterative leakage interpretation;
c Analysis of the MI set in one iteration of leakage interpretation.

if the state differential is nonzero, also lead to information leakage. Due to its structure,
such control variables are predominant in this countermeasure.

Example 5. (Infective countermeasure [24]) This countermeasure utilizes an infec-
tion function having a linear diffusion function followed by a randomized nonlinear
mixing function. Both ALAFA (for d = 2) and DL-FALAT indicate leakage for single-
byte fault model (Fig. 8a).7 The leakage is multivariate, and DL-FALAT automatically
discovers that. As shown in Fig. 8b, two consecutive points attain almost the same sen-
sitivity values. Multiple such pairs get captured in one MI set during the first iteration
of the interpretation experiment. We also found that removing features in one MI set
exposes another set of leakage points without incrementing the dataset size. This indi-
cates that the order of leakages might be the same throughout the ciphertext. Analysis
of an MI set is presented in Fig. 8c, indicating a multivariate leakage.

7Note that for this countermeasure, leakage has been observed while the ciphertexts are considered bit-
wise.
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(a) (b)

(c)

Fig. 9. Leakage analysis and leakage interpretation for the parity example: a Comparative leakage analysis
of DL-FALAT and ALAFA; b SA of leakage; c MI analysis indicating univariate leakage .

6.2. Detection Countermeasures

We consider a simple time redundancy countermeasure and an information redundancy
countermeasure using 1-bit parity.

Example 6. (Simple two-way redundancy [15]) Our first example utilizes simple
two-way redundancy for error-detection. This countermeasure returns ⊥ (or a random
string) if there is a mismatch between two redundant branches at the ciphertext. Among
different fault models, here we mention the case with single-byte fault. All faults get
detected for a single-byte fault in one computation branch, and the constant output ⊥ is
indistinguishable for two different fault values ( f1, f2). Hence, no leakage is caused for
single-byte faults. A univariate leakage can be observed if, along with the byte fault, an
instruction-skip-based control fault is utilized to corrupt the outcome of the XOR oper-
ation performing the check at the end. In this paper, we do not consider multiple-cycle
(i.e., multiple non-consecutive faults) fault scenarios. However, the leakage assessment
experiments remain unchanged for those cases.
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Example 7. (One-bit parity [15]) Next, we consider 1-bit parity-based error-detection
implemented on AES. The countermeasure is bypassed for 50% of the byte faults having
even parity and hence insecure. To quickly discover a leaky fault pair ( f1, f2) for ap-
plying Algorithm 1, we use the preprocessing step mentioned in [30]. Figure 9a presents
the leakage profile. The analysis of the MI set indicates 4 leakage points for a 9th round
fault injection. The leakage is univariate, as the learning can be performed with high
accuracy even with a single feature point (Fig. 9b, c). One should note that although
the leakage is observed in this case, finding a leaky fault is rare for a well-formed code-
based redundancy. Hence, even if there is leakage for code-based countermeasures, the
exploitability depends on the rarity of the leaky faults.

6.3. Instruction-level Countermeasures

Example 8. (Idempotent instructions [10,11]) The instruction-level countermeasures
against FAs rely on the fact that an adversary can only skip a certain number of con-
secutive instructions simultaneously. The instruction redundancy protects against output
corruption for a certain number of consecutive skips. To test the applicability of DL-
FALAT for such instruction-level countermeasures, we implement the scheme proposed
in [10] for AES without any algorithm-level protection. The scheme in [10] replicates
some machine instructions in a code multiple times if there is no impact of replicating
these instructions on the outcome of the code. Such instructions are called idempotent
instructions. For example, a load instruction moving data from a memory location to a
register can be treated as idempotent. Such a load instruction does not affect the compu-
tation even if it is repeated (consecutively) multiple times. Many arithmetic and logical
instructions in X86-64/ARM architecture are idempotent. Also, many non-idempotent
instructions can be implemented by combining multiple idempotent instructions [10,11].
In our example, each idempotent instruction is duplicated once. The instruction-skip ex-
periments are performed with the GDB-based tool described in “Appendix A”. While
performing a single instruction-skip, we observe no leakage. However, leakage can be
observed if two consecutive instructions are skipped simultaneously (ref. Figure 10).
Leakage interpretation experiments confirm that the leakage is univariate.

6.4. Leakage Assessment for SIFA

In this subsection, we test SIFA leakage according to the enhancements proposed in
Sect. 4.1. We first validate an FA-protected (with time redundancy) unmasked AES, fol-
lowed by a combined SCA-FA-protected PRESENT (hardware implementation). Next,
we validate hardware implementations of two recently proposed SIFA countermeasures,
AntiSIFA [74] and Impeccable Circuits II [16].

Example 9. (FA-protected AES [15]) In our first example (FA-protected AES), we
simulate a stuck-at-0 fault (pr0→0 = 1, pr1→1 = 0). The leakage profile for this attack
is shown in Fig. 11a, which presents the (univariate) leakage profile for both ALAFA and
DL-FALAT. We observe a similar leakage for pr0→0 = 0.75, pr1→1 = 0.25. However,
an experiment with pr0→0 = 0.5, pr1→1 = 0.5 (Fig. 11b) does not show any leakage
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Fig. 10. Instruction-level countermeasure with duplicate idempotent instructions [10]. Two consecutive skips
expose univariate leakage .

even though there is a mix of correct and faulty ciphertexts. This is expected and shows
that having many ineffective faults does not always indicate the chances of SIFA. This
observation also emphasizes why a dedicated test for SIFA is needed instead of only
relying on the absence of ineffective faults. Such a conservative strategy underestimates
the security in certain cases when only unbiased bit-flips happen on a target.

Example 10. (Masking and FA protection [13]) Next, we test a combined countermea-
sure on PRESENT [79] that uses Threshold Implementation (TI) [73] for SCA protection
and simple time redundancy (two identical computations followed by check at the end)
for FA protection. We observe no leakage with single-bit stuck-at-0 faults in the S-Box
input (one share is corrupted) or linear layer input. Themasking here changes the impact
of a stuck-at fault similar to the situation where pr0→0 = 0.5, pr1→1 = 0.5. However,
we observe leakage (ref. Figure 11c) while injecting inside TI equations (we injected a
single bit-flip fault in a register at the middle of the S-Box).

Example 11. (SIFA countermeasure: ANTISIFA [17]) We next focus on two SIFA
countermeasures from [16,17]. The first countermeasure, called AntiSIFA, incorpo-
rates fine-grained error-correction in a per-bit manner with a masked implementation of
PRESENT. The error-correction is performed with majority-voting at the end of each
round. Moreover, the error-correction logic is instantiated multiple times to make it
fault-tolerant. The original proposal presents an example implementation with single-
bit error-correction. While tested with single-bit faults (even the one inside S-Boxes, as
described in the last example), it is found that the countermeasure successfully prevents
SIFA. This supports the claims made in the original paper (ref. Figure 12a).
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(a) (b)

(c)

Fig. 11. a Variation of leakage with ciphertext count for SIFA (on AES with redundancy) with pr0→0 = 1,
pr1→1 = 0; b Variation of leakage with ciphertext count for SIFA (on AES with redundancy) with pr0→0 =
0.5, pr1→1 = 0.5; c Variation of leakage with ciphertext count for SIFA on masking .

Example 12. (SIFA countermeasure: Impeccable Circuits-II [16]) The final experi-
ment on SIFA is for an open-source hardware implementation of the Impeccable-Circuits
II [16]. This test case is implemented on CRAFT [80], which is a tweakable block ci-
pher engineered for incorporating code-based countermeasures. The main idea of this
countermeasure is to throttle the negative impacts of fault propagation by introducing
special checkpoints within the circuit, as well as forcefully making some circuit paths
independent of each other. Moreover, linear code-based (resp. majority-voting-based)
error-correction is incorporated to counter SIFA. We test the open-source hardware im-
plementation for this countermeasure,8 having single-bit error-correction (3-way redun-
dancy), and 2-bit error-correction (7-way redundancy). In the experiments, we test for
different single-bit and multi-bit faults. Here, we only mention results SIFA testing with
stuck-at-0/1 faults for a single round. For 3-way (resp. 7-way) redundancy, it is found
that single-bit (resp. 2-bit) faults get corrected. The results are depicted in Fig. 12b, c,
respectively. Such results establish that the proposal in [16] abides by its claims.

8https://github.com/emsec/ImpeccableCircuitsII.

https://github.com/emsec/ImpeccableCircuitsII
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(a) (b)

(c)

Fig. 12. Evaluating SIFA countermeasures: a AntiSIFA [17] with single-bit fault; b Impeccable Circuit II
[16] with single-bit error-correction and single-bit fault; c Impeccable Circuit II with 2-bit error-correction
and 2-bit fault .

6.5. FA Security of Other Combined Countermeasures

Example 13. (CAPA [19]) CAPA [19] and M&M [21] are two recently proposed com-
bined countermeasures claiming security against combined SCA-FA adversaries. How-
ever, in this paper, we only evaluate their FA security. CAPA adapts multiparty computa-
tion (with active and passive security guarantees) for a block cipher. The computation is
divided into tiles, with each tile representing one party of the computation. The commu-
nications between tiles are limited and secured using extra randomness (called Beaver
triples). The input is first shared into d independent shares to provide SCA security. Each
share is processed within a tile. The input is multiplied with a (or multiple) randomly
generated, nonzero hash key α to generate information-theoretic hashes. The hash key
is also maintained in a shared manner. CAPA computes on the shared values and their
corresponding hashes for each gate. The hash check is performed during the computa-
tion of the nonlinear gates, and the computation aborts upon finding a mismatch. The
active (i.e., FA) security stems from the fact that the hash key is changed randomly at
every cipher execution. In order to bypass the hash check, an adversary must inject a
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(a) (b)

Fig. 13. a CAPA [19] with bit-flip SIFA fault during an AND gate computation: DL-FALAT and ALAFA
leakage profile with varying ciphertext count; b M&M [21] with bit-flip SIFA fault during an AND gate
computation: DL-FALAT and ALAFA leakage profile with varying ciphertext count.

fault such that the hash value of the correct and the faulty states are equal. This happens
with probability 2−sm , where m is the number of hash keys and GF(2s) is the finite field
for the cipher [19].

In order to validate CAPA, we implement it for the KATAN-32 [77] block cipher
in Python. KATAN-32 is a 32-bit block cipher with a simple round function mostly
consisting of shift operations, with only 4 AND and 8 XOR operations per round.
Additionally, there are 4 XOR operations in the key schedule. In our implementation
of KATAN with CAPA, each basic gate is replaced with an equivalent CAPA gate. We
also maintain m = 8 hash keys to provide a practical fault detection capability. The
computations are performed over the field GF(2). Faults are simulated for input, output
and intermediate computation of one representative CAPA gate from each gate-type
within a round. CAPA provides security against bit-stuck-at, bit-flip, and byte faults.
Next, we perform a SIFA evaluation. SIFA evaluation is interesting as SIFA was not
explicitly mentioned in the adversary model of CAPA. We found that CAPA provides
security against SIFA faults. The result of one such experiment is depicted in Fig 13a. The
fault model tested for this specific experiment is a single-bit flip at one of the input shares
of a CAPA AND gate. If the fault propagates through the AND gate, it would corrupt (or
not corrupt) the AND output depending on the data on the other input of the AND gate
(in other words, it would result in a data-dependent ineffectivity of the fault). However,
no leakage is observed in this case, even with such data-dependent ineffective faults.
We investigated the reason behind this SIFA resistance of the scheme. In CAPA, the
AND computation is performed with the help of random Beaver triples 〈a, b, c〉, where
a, b, and c denote shares of bit variables a, b and c, respectively. For a valid Beaver
triple c = ab. During the AND computation, the shares are blinded with a, b. These
blinded shares are next broadcasted among all the tiles. The hash check is performed
after this broadcast operation, and if the check passes, the remaining computations for
the multiplication are performed. Such hash check before the multiplication prevents
SIFA, as no fault is allowed to pass through non-linear gates in this case, which is the
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(a) (b)

Fig. 14. a SIFA testing on Friet [26] with bit-flip SIFA fault during an AND gate computation: DL-FALAT
and ALAFA leakage profile with varying ciphertext count; b SIFA testing on SIFA-protected Friet [26]:
DL-FALAT and ALAFA leakage profile with varying ciphertext count .

sole cause behind attacks like SIFA and FTA [22]. Operations until the hash check are
linear. The result remains the same even for biased bit-flip faults. In a nutshell, CAPA
is found secure for the fault models and locations tested in this work.

Example 14. (M&M [21]) The M&M countermeasure adopts concepts similar to
CAPA but is lightweight from an implementation perspective. The generation and main-
tenance of hashes throughout the computation are similar to that of CAPA. However,
instead of checking hashes at each nonlinear gate, M&M performs an infective com-
putation at the end. While it makes M&M lightweight compared to CAPA, it cannot
provide the SIFA security anymore. To validate this, we perform the SIFA evaluation
with DL-FALAT on a KATAN-32 implementation having M&M. As shown in Fig 13b,
DL-FALAT indicates leakage in this case. This is, however, not surprising as M&M
already excludes SIFA from its security claims. Overall, M&M respects its claimed
security.

Example 15. (Friet [26]) Friet [26] proposes the concept of code-abiding permuta-
tions, where a permutation operates over a codeword and outputs a codeword from the
same code. The work also presents a concrete instantiation called Friet-P, embedding a
parity code. Friet-P builds on a permutation called Friet-PC having 384-bits organized
into three 128-bit limbs (denoted as a, b and c). The operations (XOR, AND, and bitwise
circular-shift) are performed between the limbs. A round of Friet-PC consists of two limb
transpositions (linear), a round constant addition (linear), two mixing steps (linear), and
a nonlinear step. The Friet-P permutation adds an extra limb with Friet-PC called the
parity limb (d). After every step of the permutation round, the parity limb maintains the
invariant d = a⊕ b⊕ c. This invariant is used for fault detection. An Authenticated En-
cryption (AE) scheme has been constructed based on Friet-P. The Friet-P permutation,
however, does not protect against SIFA. In order to achieve SIFA protection, authors
have utilized the ideas proposed in [81], requiring masking and error-detection. Every
fault in this SIFA countermeasure becomes effective, eliminating SIFA.
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Although Friet contains both masking and FA countermeasure, we only evaluate the
claims made concerning FA (including SIFA). Friet claims security against non-SIFA
attacks if the fault is limited to only one limb. It uses 1-bit parity, and there are no
operations (except bit shifts) within a limb. Therefore, claiming security for faults in
one limb is equivalent to claiming single-bit security corresponding to 4 bits, each
belonging to a separate limb. In order to verify the security, we used the C code provided
by the authors of the Friet paper.9 The C code only provides the Friet-PC permutation.
Therefore, we implemented the Friet-P and its SIFA-protected version. The code is
implemented only for simulated evaluation with faults and not checked for SCA.

The leakage test is run over 128-bit tags from Friet-P, a recommended tag size in Friet
[26]. We assume that the permutation is initialized with 256 bits of key, and the rest
of the input bits are public [26]. To validate the security for non-SIFA faults, we inject
single/multi-bit faults in one limb at a time. The key is fixed, and the fault values vary.
The permutation is secure for this test as it outputs ⊥ in all cases, irrespective of the fault
value. Next, we perform SIFA testing on the permutation without SIFA protection. SIFA
occurs for both stuck-at and bit-flip faults. The inputs of the AND gates are vulnerable to
bit-flip faults resulting in SIFA, while the stuck-at faults work for any location. The result
of the SIFA experiment with bit-flip faults is presented in Fig. 14a. Finally, we perform
SIFA testing on the SIFA-protected version. As shown in Fig. 14b, this one successfully
prevents SIFA, establishing the claims made in the paper. It is worth mentioning that
the original proposal for SIFA protection in [81] does not provide combined security as
shown in [38]. Validating combined security is currently out of the scope of DL-FALAT.
We, therefore, leave the validation of the combined security of Friet as interesting future
work.

6.6. DEFAULT

Example 16. DEFAULT is a block cipher claiming inherent resilience against DFA
[36]. The proposal is distinct from all other countermeasure evaluated in this work as
it does not prevent faulty ciphertexts from reaching the output. Instead, it is claimed
that the attack complexity with the faulty ciphertexts will be high, making the attacks
computationally impractical. In order to achieve such security, DEFAULT uses partially
linear S-Boxes at the beginning and end of the cipher computation. The initial and
final rounds are called DEFAULT-Layer, while the middle rounds are called DEFAULT-
Core. The DEFAULT-Core is a standalone block cipher using strong S-Boxes. The
DEFAULT-Layer uses partially linear S-Boxes, which are not strong enough against
differential cryptanalysis but are helpful to prevent FAs. The partially linear S-Boxes in
the DEFAULT-Layers make the key recovery difficult with DFA, as the DFA equations
output several key suggestions instead of a unique one. DEFAULT claims to make the
DFA complexity 2

n
2 for an n-bit block cipher.

In order to evaluate the DFA security of DEFAULT, we test with fixed key and two
different fault values. An implementation in C has been procured from the authors of the
paper. DF-FALAT and ALAFA show leakage in this case (ref. Figure 15). This is because
the output ciphertexts are neither randomized nor muted and always result in two distinct

9https://github.com/thisimon/Friet.git.

https://github.com/thisimon/Friet.git
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Fig. 15. Leakage assessment of DEFAULT [36].

values for two different fault values. This is not surprising as, in principle, it is possible to
exploit these ciphertexts for an attack. However, the attack complexity would be higher.
The task of DL-FALAT is to indicate the leakage and not to determine the exploitability
of such leakage. In fact, recent DFA on DEFAULT shows that the anticipation made by
DL-FALAT is indeed true. DFAs can be performed within practical complexity on any
version of DEFAULT with such faulty ciphertexts [82].

Most of the countermeasures tested in this work are vulnerable to two equal faults in
redundant branches. The detection countermeasures and the implicit detection mecha-
nisms of infection countermeasures are bypassed with two equal faults. Therefore, faulty
ciphertexts reach the output causing univariate leakage. Exceptions include countermea-
sures based on information redundancy, Friet and CAPA and M&M, where computations
in redundant branches differ. Also, DEFAULT is a different variant altogether, with no
redundancy. Finally, it is worth noting that the simple time/space redundancy counter-
measure is vulnerable against a combined side-channel and fault attack [83]. We believe
that DL-FALAT, with its observables extended with side-channel traces, will be able
to detect this class of attacks. As shown in several recent combined attacks [38,84],
side-channel leakage is exploited for extracting the fault differentials or ineffectivity of
faults. In other words, side-channel leakage is an extended observable for such combined
attacks along with faulty outcomes. In some cases, side-channel leakage also replaces
faulty outcomes as observables. DL-FALAT, therefore, should extend to such leakage if
the side-channel leakage is considered observable instead of (or along with) ciphertexts.
This is because the type of leakage remains fundamentally the same (i.e., FA leakage)
even for such combined attacks. However, a detailed investigation of this is left as future
work.
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6.7. Generalized Leakage Assessment

In order to illustrate the compare-with-uniform experiment presented in Sect. 4.2, we
consider two use-cases. Our first use-case considers fault injection in the mask deliv-
ery logic of a masked AES implementation. De-randomization of masks, which may
eventually lead to successful SCAs, is detected in this experiment. Next, we consider
a use-case for the SHE HSM firmware where the key loading operation shows leakage
under the influence of faults.

Example 17. (Maskde-randomization) In this example, we consider an SCA-resistant
AES implementation, which expects a fresh random mask of 128 bits for every execu-
tion. The SCA security strongly depends on the uniform random distribution of the
mask. Without loss of generality, we assume a software implementation in this case, and
an instruction-skip fault model. For a target architecture having 32-bit bus width, the
128-bit mask is supplied to the AES module in chunks of 32 bits, as shown in Listing 1.3.
In this pseudocode, the mask values originate from memory locations M11, M12, M13,
and M14. The observable O is the mask input register of the AES. An adversary may
skip one or multiple of these instructions causing the mask to remain fixed for all ex-
ecutions. In this case, we assume the first 32-bit data transfer is skipped resulting in a
zero mask value for that 32 bits. Due to the existence of a precharge logic, the registers
in a masked implementation are often set to zero before loading the mask. Skipping a
load instruction, therefore, can set the respective part of mask to zero. The procedure
described in Algorithm 4 can identify such loss of randomness by detecting a deviation
from the uniform random. Note that there is no need for running TEST-INTERF-KEY
or TEST-INTERF-FAULT as the mask does not vary with the key. The leakage assess-
ment results are presented in Fig. 16.

Listing 1.3. Mask Derandomiza-
tion.

→mov reg1 , <M11 >
mov reg2 , <M12 >
mov reg3 , <M13 >
mov reg4 , <M14 >

Example 18. (Non-Cipher Leakage from SHE) This example considers an automo-
tive security standard called SHE [75], which provides services like secure boot, en-
cryption, key storage, and authentication for automotive electronic control units (ECU).
SHE standard recommends an HSM, which includes a hardware implementation of AES
for encryption and authentication support, a True Random Number Generator (TRNG),
and private memory and storage with restricted access from other hardware components
outside the HSM. The secure storage contains the firmware(s) and the secret keys used
by the ECU. Multiple commercial microprocessors support SHE as a Cryptographic
Service Engine (CSE) [75,85]. The HSM can only be accessed through specialized
instructions and registers in such implementations. The CSE firmware is executed on
specialized hardware called CSE core, often realized with a 32-bit processor.
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Fig. 16. Leakage assessment results .

In order to evaluate the robustness of a SHE implementation against FA, we construct a
proof-of-concept implementation (ref. Figure 17a) according to the specifications given
in [75,76]. The entire prototype has been implemented on the ZedBoard Zynq-7000
platform. A MicroBlaze softcore processor serves as the CSE controller (core). A 32-bit
AXI data bus communicates between the CSE core and the private memory components.
The firmware is written in C using the MicroBlaze C library supported by Xilinx.

We evaluate the firmware code which an instruction-skip attacker can target. Without
loss of generality, we consider the basic encryption support provided by CSE. The 32-bit
bus architecture of our implementation allows the 128-bit key to be transferred to the
AES core in chunks of 32-bits. Therefore, a 128-bit transfer requires four consecutive
calls to the 32-bit data transfer operation of MicroBlaze, as shown in Listing 1.4 (this
operation, in turn, makes a call to the 32-bit data transfer instruction swi of MicroB-
laze). In our experiments, we skip one (or more) of these data transfer operations. The
observable here is the key register inside the AES core. The AES core is reset after each
execution. So, the key register contains zero at the beginning. Algorithm 4 detects the
presence of a key leakage in this case. The compare-with-uniform test in Fig. 17b first
indicates leakage. Due to the key dependency of the observable, the next test invoked is
TEST-INTERF-KEY (as with a skip, we had only one fault value). Figure 17c presents
the result of this experiment indicating leakage.

A thorough investigation reveals that the leakage observed in this case is exploitable.
The instruction-skip can result in a scenario where a number of key bits are fixed to zero.
Skipping three consecutive data transfer operations will set 96 key bits to zero, and only
32 bits of the original key will remain intact. Upon receiving the faulty ciphertexts, the
adversary can run an exhaustive search of 32 bits and recover the unaltered 32 bits in
the corrupted key. The rest of the key bits can also be recovered by repeating this attack
three more times. The computational complexity of this attack is 232.
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Fig. 17. a SHE Prototype: Basic Architecture; b Leakage profiles for compare-with-uniform; c Leakage for
two different keys.

Listing 1.4. Code Snippet for AXI Data Transfer.

Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR ,KEY0);
Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR +4,KEY1);
Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR +8,KEY2);
Xil_Out32(XPAR_AESCORE_0_S00_AXI_BASEADDR +12,KEY3);

7. Conclusion

Security evaluation of an FA-protected implementation is a problem of utmost practical
importance. In this paper, we have proposed a DL-assisted leakage detection test DL-
FALAT, which can evaluate protected block cipher implementations as well as leakages
in peripheral components of security modules. It automatically detects the order of
leakage, which is not straightforward to detect from the countermeasure structure in FA.
The test is not only suitable for filtering out malformed designs but can also figure out
the points of vulnerabilities. We have shown how a variant of this test can be utilized to
evaluate SIFA. A comprehensive guideline for evaluating the fault space of a block cipher
is also presented, which utilizes the equivalences present in fault space. Experimental
validation over different countermeasure classes establishes that DL-FALAT can rule
out flawed designs. Although, in principle, a t-test-based leakage detection test should
also detect all the leakages given enough data, DL-FALAT detects it with lower data
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complexity than t-test in many cases. A potential future direction in this research is to
adopt the test for public-key implementations and symmetric-key modes.

A. Simulation of Instruction-Level Faults using GDB

Listing 1.5. AddRoundKey of AES.

for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
state[j][i]^=

RoundKey[round*Nb*4+i*Nb+j];
}
}

Listing 1.6. X86-64 assembly (line. 5).

movl -8(%rbp), %eax
cltq
movl -4(%rbp), %edx
movslq %edx , %rdx
salq $2 , %rdx
addq %rax , %rdx
leaq state (%rip), %rax
addq %rdx , %rax
:
:
addq %rdx , %rax
movb %cl , (%rax)

Listing 1.7 presents an example of how an instruction-skip event can be simulated
using GDB.10 We assume the availability of the high-level C code (e.g., Listing 1.5).
A part of the assembly corresponding to line 5 of this code is shown in Listing 1.6.
This code corresponds to the AddRoundKey of AES, and the line serves as a target
for our injection. A breakpoint is set at line number 5 of this high-level code. The
breakpoint is also conditioned to be encountered only when i == 0 and j == 0. Such
conditional breakpoints allow us to create the instruction-skip faults at specific loop
iterations. The skip is realized on the first instruction of Listing 1.6 by executing lines
6–10 in the GDB script of Listing 1.7. The core idea is to change the address stored in
the program counter register to the following address. Any instruction can be targeted
by moving the execution to the desired instruction with the nexti command of GDB.
GDB also allows explicit modification of program counter value. Multiple consecutive
instruction-skips can be implemented using this fact. The current implementation of our
instruction-fault simulator expects the position of a skip in terms of the function name
and target loop counter value (if required) as inputs. However, it can also simulate skips
for every instruction from the beginning of a program.

Listing 1.7. GDB snippet for instruction-skip in Listing 1.5, 1.6.

break main; break 5
condition 2 (i == 0 && j == 0)
r
c
set $var1 = $instn_length($pc)
set $var2 = $pc + $var1
set $var3 = $instn_length($var2)
set $var4 = $pc + $var3 + $var1
jump *( $var4)

10https://www.sourceware.org/gdb/.

https://www.sourceware.org/gdb/
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