
https://doi.org/10.1007/s00145-023-09452-8
J Cryptol (2023)36:10

Research Article

An Efficient Threshold Access-Structure for
RLWE-Based Multiparty Homomorphic Encryption

Christian Mouchet
École polytechnique fédérale de Lausanne, Lausanne, Switzerland

christian.mouchet@epfl.ch

Elliott Bertrand
Effixis SA, Saint-Sulpice, Switzerland

elliott.bertrand@gmail.com

Jean-Pierre Hubaux
École polytechnique fédérale de Lausanne, Lausanne, Switzerland

jean-pierre.hubaux@epfl.ch

Communicated by David Pointcheval and Nigel Smart

Received 27 July 2022 / Revised 14 February 2023 / Accepted 14 February 2023
Online publication 22 March 2023

Abstract. We propose and implement a multiparty homomorphic encryption (MHE)
scheme with a t-out-of-N -threshold access-structure that is efficient and does not re-
quire a trusted dealer in the common random string model. We construct this scheme
from the ring-learning-with-error assumptions and as an extension of the MHE scheme
of Mouchet et al. (PETS 21). By means of a specially adapted share re-sharing proce-
dure, this extension can be used to relax the N -out-of-N -threshold access-structure of
the original scheme into a t-out-of-N -threshold one. This procedure introduces only a
single round of communication during the setup phase, after which any set of at least t
parties can compute a t-out-of-t additive sharing of the secret-key with no interaction;
this new sharing can be used directly in the scheme of Mouchet et al. We show that,
by performing Shamir re-sharing over the MHE ciphertext-space ring with a carefully
chosen exceptional set, this reconstruction procedure can be made secure and has negli-
gible overhead. Moreover, it only requires the parties to store a constant-size state after
its setup phase. Hence, in addition to fault tolerance, lowering the corruption thresh-
old also yields considerable efficiency benefits, by enabling the distribution of batched
secret-key operations among the online parties. We implemented and open-sourced our
scheme in the Lattigo library.

Keywords. Multiparty homomorphic encryption, Threshold access-structures, Secure
multiparty computation.

© The Author(s) 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09452-8&domain=pdf

10 Page 2 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

1. Introduction

Multiparty homomorphic encryption (MHE) enables computations to be carried out on
encrypted data provided by multiple users, without requiring decryption. By general-
izing traditional single-party homomorphic encryption (HE) to multiple users, MHE
techniques constitute a promising family of solutions for the secure multiparty compu-
tation setting (MPC), where N parties aim to compute a function value over their joint
inputs while keeping these inputs private. Notably, these MHE-based solutions are char-
acterized by their low communication complexity [3] as well as their amenability to the
paradigms of cloud computing such as light client/powerful server types of architecture
[14].

Several generations of MHE schemes were proposed over the years, generally fol-
lowing the advances of single-party HE constructions. As the most recent generation of
HE schemes based on ring-learning-with-errors (RLWE) is now implemented, used and
standardized, recent works have also introduced multiparty variants of these schemes
[14]. Among these multiparty schemes, threshold schemes [14] have been demonstrated
as particularly efficient due to their compactness and are already included in some open-
source libraries [13,15].

MHE-based MPC. Multiparty homomorphic encryption techniques can be used to con-
struct efficient secure multiparty computation protocols, commonly referred to as two-
round MPC. These MHE-based MPC protocols consist in a one-time Setup phase, after
which any number of function evaluations can be performed in a two-round online phase
[3].

In the Setup phase, the parties make use of a special-purpose multiparty protocol
in order to generate a collective public key that supports encryption and homomorphic
evaluation, and for which the corresponding secret-key is securely distributed among the
parties. The online, input-dependent phase consists in three steps: Input, Evaluation, and
Output. During the Input phase (round one), the parties use the collective public encryp-
tion key to encrypt their inputs and disclose the resulting ciphertexts to the other parties.
Then, the desired computation is carried out, by using the homomorphic operations of
the HE scheme. Finally, the parties take part in a multiparty protocol to decrypt the re-
sult ciphertext(s) in the Output phase (round two). Contrary to their counterparts based
on linear secret-sharing schemes (LSSS) or garbled circuits, the offline Setup phase of
MHE-based MPC solutions produces public-keys that can be reused for an unlimited
number of function evaluations.

Mouchet et al. propose a RLWE-based MHE scheme in which the secret-key is ad-
ditively shared between the parties and for which the threshold decryption protocol
requires a single round of interaction [14]. They show that, as for its precursor based
on learning-with-errors (LWE) [3], this scheme has a fully public transcript and can
support MPC tasks over any public authenticated channel. As a result, this scheme can
support computation among a large number of resource-limited parties by using a third-
party honest-but-curious cloud provider that acts as a share aggregator (for the setup and
output protocols) and homomorphic evaluator (for the input and evaluation phases).

Access-Structures. For a secret-sharing scheme over a set of partiesP , we refer to a subset
S ⊂ P of parties that can reconstruct the secret as a qualifying set and to the set A ⊂

An Efficient Threshold Access-Structure Page 3 of 20 10

Powerset(P) of all qualifying sets as the access-structure of the scheme. The access-
structure to the secret-key of an MHE scheme determines the access-structure to the
encrypted inputs which, in turn, determines the security properties of the corresponding
MPC protocol instance. The scheme of Mouchet et al. uses an additive structure for its
secret-key, which instantiates an N -out-of-N -threshold access-structure: all parties have
to collaborate for the decryption protocol to succeed. Although this enforces the strictest
access-structure (only one qualifying set) hence provides strong security guarantees,
this also requires more stringent availability requirements on the protocol participants.
In practical systems involving many parties, we would typically want to extend the semi-
honest model with the case of parties going offline for an undetermined amount of time
(e.g., due to technical issues). For scenarios in which a fraction t

N of honest participants
can be guaranteed, t-out-of-N -threshold access-structures can relax this requirement by
enabling decryption (and other types of secret-key operations) to be performed among
subgroups of at least t parties.

Boneh et al. proposed an MHE scheme with t-out-of-N -threshold access-structure
[5], but their construction requires to choose between non-compact party states or non-
compact ciphertexts, with both options resulting in a significant overhead in practice.
However, their scheme targets the strong asynchronous setting, where parties do not need
to synchronize with each other during the protocol execution. While this is necessary for
their end result (of building a universal thresholdizer for non-threshold cryptographic
primitive), it might be an overkill for many end-user MPC scenarios (e.g., encrypted
federated learning) which are primarily concerned with computation and communica-
tion efficiency. Hence, this raises the question of whether there exists a scheme, in the
synchronous setting, that is simpler and more efficient.

1.1. Our Results

In this work, we introduce an efficient t-out-of-N -threshold MHE scheme for the syn-
chronous setting. We contribute our scheme as a simple extension to the N -out-of-N -
threshold scheme of Mouchet et al. [14] that relaxes its access-structure to a t-out-of-
N -threshold one. We also contribute its implementation in the Lattigo library [12,13]
and evaluate its performance through microbenchmarks and an application case study.

The t-out-of-N -Threshold Scheme. We propose a set of procedures that extend, in a
natural and efficient way, the scheme of Mouchet et al. to a t-out-of-N -threshold access-
structure. We follow the known approach of re-sharing the additive secret-key-shares
with the Shamir secret-sharing scheme [17], but with a specially adapted instance of the
Shamir secret-sharing that we define over the ciphertext-space ring. Then, thanks to the
linearity of the N -out-of-N -threshold scheme’s secret-key operations (e.g., threshold
decryption), we obtain a compact and efficient scheme. Notably, we show that the re-
shares can be pre-aggregated, resulting in a constant-size state party state, and that the
t-out-of-N secret-key-reconstruction can be performed efficiently within the secret-key
operation itself. We show that, in the synchronous setting, this requires a simple non-
interactive pre-computation to the corresponding operation in the N -out-of-N scheme,
yet performed among N = t parties. Our construction is generic and can be used to
instantiate multiparty variants of the BGV, BFV and CKKS schemes.

10 Page 4 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

Implementation and Benchmarks. We implemented our constructions in Lattigo [13], an
open-source library for multiparty homomorphic encryption. We report on the bench-
mark performance for our implementation and analyze the results in the context of MHE-
based MPC. Furthermore, we show how to harness the t-out-of-N -threshold access-
structure to accelerate the execution of batches of secret-key operations in both the
offline setup and online phases. We exemplify this through an application case study:
the end-to-end-encrypted federated neural network training of Sav et al. [16].

The remainder of this paper is organized as follows: We review the existing works on
threshold encryption for lattice-based construction in Sect. 1.2 and provide the necessary
background in RLWE-based MHE and secret-sharing techniques in Sect. 2. Then, we
develop the main technique, in Sect. 3, and its implementation and evaluation, in Sect. 4.

1.2. Related Work

Bendlin and Damgård considered the case where the parties obtain Shamir secret-shares
of a secret-key by means of pseudo-random secret-sharing (PRSS) techniques [4]. This
results in a non-interactive secret-key-generation procedure, but it is non-compact as it
requires one key per possible subset of adversarial parties. Due to this factorial expansion,
this scheme would not be practical for large number of parties.

Asharov et al. noticed that share re-sharing could be used to achieve a t-out-of-N -
threshold access-structure in (the extended version of) their seminal work on LWE-based
multiparty homomorphic encryption [3]. However, they did not specify the concrete
secret-sharing scheme and assumed an extra round of interaction, prior to the decryption
round, to reconstruct a failing party’s share. Additionally, directly reconstructing the
shares is undesirable in practice, as it would reveal the failing party’s share to the parties.
We show that this is not needed in practice, as reconstruction can be performed within
the secure decryption protocol directly.

Boneh et al. proposed a t-out-of-N -threshold HE scheme based on learning-with-
errors that also relies on re-sharing the secret-key shares, yet in a stronger asynchronous
setting where parties are unable to determine which other parties are online at the time
of generating their decryption shares [5]. This additional constraint is necessary for
the composability of their scheme that they use as a building block for higher-level
cryptographic primitives in their work. However, it comes with a significant complexity
and performance overhead, and their setup phase requires a trusted dealer to perform
the sharing. Yet, Boneh et al. observe that enabling the parties to determine which other
parties are online before the decryption phase would lead to a simpler scheme. We
confirm this observation by showing that, in the semi-honest model with failures, there
indeed exists a simpler, more compact and more efficient scheme that does not require
a trusted dealer. We elaborate on these differences in Sect. 4.1, where we provide a
comparison between their construction and our scheme.

Concurrently to our work, Urban and Rambaud proposed an alternative MHE-based
MPC approach that provides guaranteed output delivery while minimizing the num-
ber of synchronous rounds needed in the setup phase and requiring no synchronous
communication during the evaluation phase. Their approach is also based on a linear

An Efficient Threshold Access-Structure Page 5 of 20 10

secret-sharing scheme over RLWE rings [18], but their construction targets generality
rather than efficiency as it allows the FHE coefficient modulus to be a composite with
factors that are smaller than the number of parties. Our construction targets efficiency
for the parameterization supported by the current FHE implementation, for which the
structure of the coefficient modulus is already constrained for efficiency reasons.

2. Preliminaries

We first present our system and adversary model, as well as the main system goals. Then,
we present the main building blocks of our solution.

2.1. Adversary Model and System Goals

We consider a set P of N parties {P1, . . . , PN } (the system) in a secure multiparty
computation setting, where an adversary A is able to corrupt up to t − 1 parties. We
assume that the adversary is static and passive, yet we further enable the adversary to take
the corrupted parties offline for an arbitrary amount of time. The parties can communicate
through private authenticated channels and through a public, synchronous, authenticated
channel. Finally, we assume that the parties have access to a public common random
string (CRS).

System Goals. Let xi be the private input of party Pi in some message space M, let
f : MN → M be a public arithmetic function over the message space, and let λ be a
security parameter. We formulate the following system goals:

– Functionality. The system must compute y = f (x1, . . . , xN) through a multiparty
protocol.

– Privacy. There must exist a simulator program SIM f that can simulate all the
interactions between the parties (the transcript), when provided only with the output
y and the inputs from the adversary. For an attacker to distinguish between the real
and simulated interaction, the success probability must be a negligible function in
λ.

– Fault Tolerance. After the inputs are received for all parties, the output y should be
delivered to the honest parties as long as at least t parties are online and active.

Informally, the protocol execution should not reveal anything more about the inputs
than that which can be deduced from the output y alone. We also observe that the fault
tolerance requirement, guaranteed output delivery, is limited to the case where faulty
parties provided their inputs before going offline. This is because not all functions can
be successfully computed under partial inputs.

We now briefly introduce the building blocks of our construction: the scheme of
Mouchet et al. [14], its instantiation as an MPC protocol and the secret-sharing scheme
of Shamir [17].

10 Page 6 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

2.2. N-out-of-N-Threshold Encryption for RLWE

We recall the notation and core procedures of the RLWE N -out-of-N -threshold En-
cryption scheme (MHE Scheme) [14] that we extend in Sect. 3. Its ciphertext-space is
a polynomial quotient ring Rq = Zq [X]/(Xn + 1) where the polynomial degree n is a
power of two and where the polynomial coefficient modulus q is a product of L different
primes q1, . . . , qL . Hence, we can use the isomorphism Rq ∼= Rq1 ×· · ·× RqL provided
by the Chinese remainder theorem (CRT) to perform the operations in the residue rings,
without resorting to arbitrary precision integer arithmetic. Moreover, we chose each qi
such that qi ≡ 1 mod 2n, which enables the representation of Rqi elements under the
number theoretic transform domain (NTT), under which both ring operations are per-
formed coefficient-wise. We denote a ← D the sampling of a according to a distribution
D. We simplify this notation for the case of uniform sampling of a ring element that we
denote a ← Rq . Let Key(Rq) be a secret-key distribution over Rq for which the coeffi-
cients are sampled uniformly in {−1, 0, 1} mod q, let Err(Rq) be an error distribution
where the coefficients are sampled from a discrete Gaussian distribution of small vari-
ance σ 2, and let Smudge(Rq) be a suitable smudging distribution for the noise flooding
technique [3,14] (typically, a discrete Gaussian distribution of large variance). Finally,
letCRS(Rq) be the uniform distribution in Rq according to the common reference string
(i.e., elements sampled from this distribution are the same for all parties).

Scheme: MHE

– MHE.Setup: The parties agree on the public parameters (n, q, σ,Key,Err).
– MHE.SecKeyGen: Each party Pi samples si ← Key(Rq).
– MHE.PubKeyGen(s1, . . . , sN):

1. Each party Pi samples p1 ← CRS(Rq), e ← Err(Rq) and discloses:

p0,i = −si p1 + e.

2. Each party computes p0 = ∑
p0,i and sets pk = (p0, p1).

– MHE.Encrypt(pk, m): Sample u ← Key(Rq), e0, e1 ← Err(Rq) and output:

ct = (c0, c1) = (m + up0 + e0, up1 + e1).

– MHE.Decrypt(ct, s1, . . . , sN):

1. Each party Pi samples ei ← Smudge(Rq) and discloses hi = c1si + ei .
2. Each party can then compute m ≈ c0 + ∑

hi .

We refer to s = ∑N
i=1 si as the ideal secret-key for the scheme. As the full collective

knowledge of s is required to decrypt ciphertexts, the MHE scheme implements an
N -out-of-N -threshold access-structure over its ciphertexts. More generally, we refer to
the secret-key-dependent operations of the scheme as secret-key operations. Note that
we omitted the MHE.Eval procedure as it depends on the specific plaintext encoding

An Efficient Threshold Access-Structure Page 7 of 20 10

strategy of the RLWE scheme in use but does not depend on the access-structure for
threshold schemes (we briefly discuss the encoding strategy below).

Plaintext Encoding and Homomorphic Evaluation. Due to the error that is inherent to
the encryption scheme, the MHE.Decrypt procedure outputs an approximate message,
and users need to rely on plaintext encoding techniques. The way to encode a plaintext
into a message m and to decode it back after decryption is specific to the scheme in
use. Common strategies include scaling the plaintext up by a factor � and rely on
quantization and rounding for the decoding [9,11]. Furthermore, it is common to apply
FFT-like transforms to the plaintext polynomials in order to enable coefficient-wise
encrypted arithmetic. Such techniques, often referred to as packed encoding, enable
users to encode up to n Zq messages in n-independent ciphertext slots, where n is
the polynomial degree. The chosen encoding strategy defines how the homomorphic
operations are performed (i.e., the specific Eval algorithm). Yet, these considerations
are independent of the secret-key and the core MHE scheme can be used to instantiate
multiparty variants of the BFV [7,11], CKKS [9] or BGV schemes [8]. Our t-out-of-N -
threshold access-structure will preserve this property.

Evaluation Keys. Some homomorphic operations require the evaluator to be provided
with operation-specific public-keys, often referred to as evaluation keys. For example,
compact multiplication involves a relinearization operation [11] which requires a so-
called relinearization key. Likewise, plaintext slots rotation by k slots can be operated
as an homomorphic automorphism which requires rotation-specific rotation-keys (i.e., a
key for each needed rotation parameter k). Although generating a single key for a one-
slot rotation (k = 1) would suffice to operate any rotation in theory, it is more efficient to
generate keys for all (or most) of the rotations required by the circuit, in order to operate
all (or most) rotations in constant time. We refer the reader to the original scheme [14]
for details about the generation of evaluation keys (they are straightforward adaptation
of the MHE.PubKeyGen procedure). In the scope of this work, suffice to observe that
these procedures are secret-key operations and that generating many rotation-keys (e.g.,
as required by the bootstrapping operation [6]) represents a significant cost. In Sect. 3.5,
we observe that this cost can be efficiently distributed among the parties by taking
advantage of the t-out-of-N -threshold access-structure.

Secure Multiparty Computation. The MHE scheme directly yields a generic secure
multiparty computation protocol in the two-roundsMPC model; we refer to this protocol
as the MHE-MPC protocol. This model comprises two phases: the first being input
independent and optional in the PKI setting (hence is not counted as one of the two
rounds).

In the offline Setup phase, the parties run the MHE.Setup, MHE.SecKeyGen and
MHE.PubKeyGen procedures. The output of this phase is the parties’ individual secret-
keys and a set of collective public encryption and evaluation-keys that can be used for
an unlimited number of iterations of the second phase.

In the Online phase, the parties use the MHE.Encrypt procedure to encrypt their
private inputs to the computation and send the resulting ciphertexts to the other parties.
Then, the function evaluation is performed under encryption by using the Eval algorithm

10 Page 8 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

of the scheme. Finally, the parties use the MHE.Decrypt procedure to output the final
result.

Within our system model, the MHE-based MPC protocol satisfies the functional-
ity and privacy system goals of Sect. 2.1, but it does not satisfy the fault tolerance one.

Fault Tolerance. TheMHE-MPCprotocol naturally provides some fault tolerance against
parties going offline for a finite amount of time. As opposed to its LSSS-based coun-
terparts, a party that goes offline after providing its inputs does not prevent the com-
putation from making progress, as the homomorphic evaluation can be performed non-
interactively. The same is true for a party that momentarily goes offline after the Setup
phase, except that, similar to the plaintext case, the party’s input will not be available
to the computation. In both cases, the main drawback is that all parties need to connect
eventually (to participate in the decryption protocol of the output phase) for the output
to be delivered. This might be problematic in settings where a group of parties seek to
tolerate a fraction of them going offline for an undetermined amount of time. In our
construction, we use the Shamir secret-sharing scheme to solve this problem.

2.3. Shamir Secret-Sharing

We recall the secret-sharing scheme of Shamir that implements a t-out-of-N -threshold
access-structure on its secrets, based on polynomial interpolation in a finite field [17].
For the sake of notation, we consider the reconstruction from the first t shares. Indeed,
the procedure generalizes to any set of at least t shares.

– Shamir.Setup: The parties agree on a field K and each party Pi ∈ P is associated
with a nonzero element αi ∈ K such that for i 	= j then αi 	= α j .

– Shamir.Share(s, t , α1, . . . , αN): To share a message s ∈ K among N parties
such that t shares are needed to reconstruct s, sample c1, . . . , ct−1 ← K and send
si = s + ∑t−1

k=1 ckα
k
i to party Pi .

– Shamir.Combine(s1, . . . , st , α1, . . . , αt): To reconstruct a message s from shares
s1, . . . , st , compute

s =
t∑

i=1

si

t∏

j=1, j 	=i

α j

α j − αi
. (1)

We observe that the Shamir.Share procedure samples a degree-(t − 1) polyno-
mial S(X) ∈ K [X] such that S(0) = s and distributes S(αi) to party Pi , and the
Shamir.Combine procedure computes the Lagrange interpolation at point X = 0 to
reconstruct the secret. We refer to the sequence of public-points (α1, . . . , αN) as the
Shamir public-points.

3. t-out-of-N -Threshold Encryption for RLWE

We now present our main contribution. We provide an overview of the main ideas behind
the scheme in Sect. 3.1. Then, we present the secret-sharing scheme that we use for the

An Efficient Threshold Access-Structure Page 9 of 20 10

share re-sharing in Sect. 3.2. Finally, we present our t-out-of-N -Threshold Encryption
for RLWE in Sect. 3.3.

3.1. Overview

We start from the well-known share re-sharing approach, which is to apply the Shamir
secret-sharing scheme to the additive shares of the ideal secret-key s of theMHE scheme.
Intuitively, this technique enables any set of at least t parties to reconstruct the shares of
the missing parties and to take their place in the decryption procedure. However, a naive
instantiation of this idea over an arbitrary secret-sharing space would be inefficient: It
would require the non-failing parties to either reconstruct the shares of the failing parties
(which would forever remove them from the access-structure and add a communication
round) or to compute their shares by running a secure computation over the secret-
sharing space (which would require costly Rq arithmetic emulation over this space).
Also, it would require each party to store all N re-shares throughout the entire protocol,
whereas we require a constant-size state.

Instead, we perform Shamir re-sharing directly over the ring Rq . In this way, we can ex-
ploit the linearity of both the ideal secret-key and the re-sharing scheme to obtain a more
compact and communication-efficient scheme. More specifically, assuming Rq is our
Shamir secret-sharing space, we denote Si ∈ Rq [X] the secret degree-(t−1) polynomial
sampled by party Pi during the Shamir.Share procedure, and λi = ∏t

j=1, j 	=i
α j

α j−αi

be the i-th Lagrange coefficient in the reconstruction using the Shamir public-points
α1, . . . , αt . Then, we observe that the Shamir.Combine operation commutes with the
ideal-secret-key-reconstruction:

s =
N∑

i=1

si =
N∑

i=1

t∑

j=1

Si (α j)λ j =
t∑

j=1

λ j

N∑

i=1

Si (α j) =
t∑

j=1

s′
j . (2)

This presents several opportunities for our construction, which we outline below as
Remarks 1 to 3.

Remark 1. The Shamir secret-sharing scheme is usually defined over an arbitrary field,
which guarantees the correctness and security of the Lagrange interpolation for enforcing
the access-structure. However, there are no such guarantees over arbitrary rings. For Eq.
(2) to be correct and the resulting scheme to be secure, we need to show that these
properties hold in the ring Rq .

Remark 2. From Eq. (2), we observe that the new sharing over t parties has an additive
structure for which the j-th term can be locally (pre-)computed by each Pj ∈ Pt , if the
set of parties that are participating to the secret-key operation is known.

Remark 3. The newly computed t-out-of-N share s′
i can be seen as a new additive shar-

ing of s and can simply be used by the parties instead of si (their N -out-of-N counterpart)
in the usual MHE decryption protocol.

10 Page 10 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

We present the concrete Shamir secret-sharing scheme in Sect. 3.2 and show that
it satisfies the requirements of a secret-sharing scheme (as per Remark 1). Then, we
present our t-out-of-N -threshold scheme; we can formulate it as a direct extension of
the N -out-of-N -threshold MHE scheme for RLWE (due to Remarks 2 and 3).

3.2. Shamir Secret-Sharing in Rq

The usual Shamir secret-sharing scheme is instantiated over a field. This guarantees that
all nonzero elements are units hence that Lagrange coefficients exist. Indeed, computing
a Lagrange coefficient requires inverting elements of the form αi − α j where αi and α j

are the Shamir public-points. However, working in a field is not a requirement. In fact, it
is a known result that using a ring is possible, as long as the set of Shamir public-points
form an exceptional sequence [1,10]. We now briefly present this result in our notation
and terminology.

Definition 1. (From [1]) For a ring R, the sequence α1, . . . , αN of elements of R is an
exceptional sequence if αi − α j is a unit in R for all i 	= j .

Theorem 1. (From [1])Let R be a commutative ring andα1, . . . , αN be an exceptional
sequence in R. Then, a Shamir secret-sharing scheme instantiated in R with Shamir
public-points, α1, . . . , αN , is correct and secure.

Let us assume that α1, . . . , αN is an exceptional sequence for Rq . Then, by instantiat-
ing a t-out-of-N Shamir secret-sharing scheme that uses the elements of this exceptional
sequence as the Shamir public-points, we obtain from Theorem 1 that our secret-sharing
scheme for Rq is correct and secure for a threshold access-structure. Hence, we now
define how to choose our Shamir public-points from Rq in such a way that guarantees
an exceptional sequence and enables an highly efficient implementation.

Choice of Shamir public-points. We first observe that checking whether an arbitrary se-
quence of Rq elements form an exceptional sequence is easy: For each nonzero pairwise
differences, it suffices to check that all coefficients of the difference polynomial under
the CRT and NTT representation is nonzero. This holds because the inverse of each
nonzero coefficient can be computed individually by the little Fermat theorem. How-
ever, computing these inverses for arbitrary elements of Rq would represent a costly
operation that would result in an inefficient Combine operation.

Instead, we propose to restrict the choice of Shamir public-points to constant polyno-
mials in Rq = Zq [X]/(Xn + 1) (i.e., polynomials of the form αX0 for α ∈ Z

∗
q). On the

one hand, it yields a significant performance boost as computing the Lagrange coefficient
now only require scalar multiplications in Zq . On the other hand, this provides us with
a simple procedure for choosing Shamir public-points that guarantee an exceptional se-
quence: Let qmin = min(q1, . . . , qL) with q1, . . . , qL the prime factors of q. We observe
that for N < qmin , choosing N distinct values in Zqmin as the Shamir public-points will
guarantee an exceptional sequence. Indeed, for any i 	= j , −qmin < αi − α j < qmin ,
αi − α j 	= 0 and the residue mod qk is nonzero for any prime factor qk of q. Then,
a simple application of the CRT on Rq is enough to prove that αi − α j is a unit in Rq .

An Efficient Threshold Access-Structure Page 11 of 20 10

Therefore, any mapping from P onto Zqmin can be used, including the textbook one that
commonly uses i for party Pi , if i is a positive integer. We observe that it is critical for
implementations to check that Shamir public-points are nonzero.

Choosing the Shamir public-points from the restricted set has the side effect of limiting
the number of parties to qmin−1. But this is not an issue in most cases, because the factors
of q are already constrained by the encryption scheme’s requirement. More precisely,
they have to be primes congruent to 1 mod 2n where n is the degree of the ring (which
is typically larger than 211 in the FHE setting). However, this could be a limitation in a
setting where parties independently and randomly sample their own public-points, as the
probability of a collision would be too high. For such use-cases, it might be preferable
to sample points in Zq where the probability of collision is negligible and then check
that the sequence forms an exceptional sequence, which occurs with high probability.

3.3. Scheme Extension

We present our t-out-of-N -threshold scheme for RLWE, which we formulate as an
extension of the N -out-of-N -threshold scheme of Mouchet et al. [14].

Share Re-sharing Scheme. For a set of partiesP in theMHE scheme where Pi ∈ P holds
secret-key share si , we define our re-sharing scheme as the three-tuple of proceduresT =
(Setup,Thresholdize,Combine). Intuitively, Scheme T applies the Shamir secret-
sharing
scheme over Rq introduced in Sect. 3.2 to the parties’ key, which relaxes the N -out-
of-N access-structure of the MHE scheme of Sect. 2.2 to a t-out-of-N -threshold one.

Scheme: T

– T.Setup: Each party Pi ∈ P is associated with a public-point αi ∈ Rq

such that αi − α j is a unit for all i , j , i 	= j .
– T.Thresholdize(t , s1, ..., sN , α1, ..., αN):

1. Each party Pi samples ci,1, ..., ci,t−1 ← Rq .
2. Each party Pi sends s̃i, j = si + ∑t−1

k=1 ci,kα
k
j to each party Pj .

3. Each party Pi receives s̃ j,i from each party Pj and computes:

s̃i =
N∑

j=1

s̃ j,i .

– T.Combine(s̃1, ..., s̃t , α1, ..., αt): For P ′ ⊆ P, |P ′| ≥ t , each party Pi ∈ P ′
computes s′

i = s̃i
∏t

j=1,i 	= j
α j

α j−αi
.

We observe that the output of the T.Thresholdize is only one ring element per-party,
due to the re-share being aggregatable. This is because the summation in N on the
right-hand side of Eq. (2) does not depend on which t of the N parties participate in the

10 Page 12 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

reconstruction and can be pre-computed by each party Pi , after it receives all the S j (αi)

from its peers.
We also observe that only the T.Thresholdize procedure is interactive and that it

requires a single round of pairwise interactions between the parties over confidential
channels. Once performed, the parties have access to Shamir shares (s̃1, . . . , s̃N), from
which each party Pi can locally compute its share s′

i in an additive sharing (s′
1, . . . s

′
t)

of s among any subgroup of at least t parties in P (as per Remark 2). Consequently,
each party Pi can simply use its new share s′

i directly in the MHE procedures. This is
the main idea for our next construction.

t-out-of-N-Threshold MHE scheme. We propose our construction as the union tuple
MHE ∪ T, which provides a t-out-of-N -threshold encryption scheme. We detail this
construction as Scheme TMHE. As per Remark 2, the T.Combine procedure requires
the parties to obtain the set of participating parties from the environment. We formalize
this requirement by providing the parties with an oracle access to the set of online parties.
We denote Ponline ← Env such an oracle query where Ponline ⊆ P is the set of online
parties at the time the environment is queried. We assume that the oracle returns the
same set to all parties for a given secret-key operation. However, we do not assume this
across different secret-key operations, and the set of parties performing the setup might
differ from the set performing decryption. Indeed, as per Eq. 2, any set of at least t parties
can reconstruct s. In our (synchronous) model, this oracle can be realized with a simple
broadcast round of communication to gather the identities of online parties, yet with
the small caveat that, after this broadcast round, the parties might fail. In Sect. 3.4, we
discuss how to deal with faulty oracles that return an incorrect set of online parties.

Scheme: TMHE

– TMHE.Setup: run the MHE.Setup and T.Setup procedures.
– TMHE.SecKeyGen:

1. run (s1, ..., sN) ← MHE.SecKeyGen.
2. run T.Thresholdize(t, s1, ..., sN , α1, ..., αN).

– TMHE.PubKeyGen(s̃1, ..., s̃t):

1. obtain Ponline ← Env
2. if |Ponline| < t , return ⊥
3. choose t parties Ponline and run (s′

1, ..., s
′
t) ← T.Combine

4. execute the MHE.PubKeyGen(s′
1, ..., s

′
t) protocol.

– TMHE.Encrypt(pk, m): run the MHE.Encrypt procedure.
– TMHE.Decrypt(ct, s̃1, ..., s̃t):

1. obtain Ponline ← Env
2. if |Ponline| < t , return ⊥
3. choose t parties Ponline and run (s′

1, ..., s
′
t) ← T.Combine

4. execute the MHE.Decrypt(ct, s′
1, ..., s

′
t) protocol.

TMHE-Based MPC Protocol. The instantiation of an MPC protocol from our scheme is
the same as for the MHE scheme of Mouchet et al., yet it satisfies the fault tolerance re-

An Efficient Threshold Access-Structure Page 13 of 20 10

quirement of Sect. 2.1. This is, it tolerates up to N−t parties going offline for an undeter-
mined amount of time, as long as the failing parties completed the TMHE.SecKeyGen
procedure and provided their encrypted inputs to the computation. We elaborate on the
differences between the TMHE and MHE instantiations in Sect. 4.1.

3.4. Dealing with Faulty Oracles

Our model does not exclude the possibility of a party crashing after the oracle response. In
such a case, step 4 of theTMHE.Decrypt cannot be completed due to missing share(s) in
the disclose phase of the MHE.Decrypt protocol. In practice, such a failure is generally
detected and resolved by setting a time limit (timeout) for the parties to provide their
decryption shares and by defining the parties’ behavior in the case of such timeouts.
Whereas the exact values for the timeout are indeed application dependent, we now
discuss how parties can react to such timeouts to guarantee the eventual decryption of a
ciphertext in a secure way.

Let Ptimeout be the set of parties which did not provide their share in time during
a secret-key operation; a partial yet insecure solution is to repeat steps 3 and 4 of the
operation, with P ′

online ← Ponline\Ptimeout where \ denotes the set difference. As such,
this solution is insecure because the underlying MHE.Decrypt procedure is not secure
under the composition of several decryptions of the same ciphertext ct = (c0, c1) (in-
formally, (sc1 + e1, sc1 + e2) leaks information about sc1 when e1 and e2 are sampled
independently). However, the key observation is that obtaining a new ciphertext ct′ such
that Dec(ct) = Dec(ct′) is easy with any asymmetric additive HE scheme. Hence, our
solution consists in adding a re-randomization step, by adding a fresh encryption of zero
to the target ciphertext before repeating the MHE.Decrypt step.

3.5. Accelerating Batched Multiparty Secret-Key Operations

The t-out-of-N -Threshold access-structure also enables the group of key-share holders
to efficiently parallelize batches of secret-key operations, when more than t participants
are online. Performing batches of secret-key operations is common in MHE-based MPC
protocols:

– At the Setup phase—when the parties have to generate a number of key-switching
keys (often referred to as evaluation key) to support nonlinear operations such as
ciphertext-ciphertext multiplication and ciphertext slot rotations.

– At the Evaluation phase—if the parties rely on interactive protocols to reduce the
noise or to raise the level of ciphertexts as a part of the circuit in order to avoid
the overhead of using bootstrapping [14,16]. These protocols can be abstracted
as performing a masked decryption and a re-encryption and hence are secret-key
operations.

– At the Output phase—when the function’s output consists in multiple ciphertexts.
This could be by design (of the ideal functionality), or because the encryption
parameters do not enable packing enough values in one ciphertext.

Let k be the number of secret-key operations to be performed (e.g., the number of
rotation-keys to be generated), and let Ponline be the set of online parties. The parties

10 Page 14 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

in Ponline can be organized into k subgroups of t distinct parties, and the work can be
distributed among the subgroups. Mouchet et al. show that the overhead of running one
MHE secret-key operation protocols within each subgroup of size t can be made constant
for each party, by relying on tree-based share aggregation patterns [14]. Hence, the
total overhead for each party in performing the k secret-key operations can be reduced
to (kt)/|Ponline|, which is t/|Ponline| times the overhead of performing these same k
operations in the N -out-of-N -threshold scheme. In Sect. 4.3, we evaluate the effect of
using this technique in the setup and in the evaluation phase of a concrete instance of
the MHE-MPC protocol: the federated neural network training algorithm of Sav et al.
[16].

4. Evaluation

We now discuss our proposed construction from the theoretical and practical standpoints.

4.1. Theoretical Evaluation

We first study the overhead and additional assumptions of the threshold scheme, with
respect to the original MHE scheme. Then, we discuss the main differences between the
threshold scheme of Boneh et al. and our proposed construction.

Comparison with the Base MHE Scheme. From the system model standpoint, the main
difference between the TMHE scheme, and the base MHE scheme of Mouchet et al. [14]
is indeed that our construction enables t-out-of-N access-structures. Hence, instantiating
the MHE-based MPC protocol with our scheme satisfies the fault tolerance requirement
of Sect. 2.1. Moreover, the TMHE-based instantiation retains most of the features from
the MHE-based one: (a) Its offline phase is re-usable and has to be performed only once
for a given set of parties and encryption parameters. (b) Its online phase has a fully public
transcript and consists in only two rounds of interaction among the parties. However,
the TMHE.SecKeyGen relies on confidential communication channels between the
parties (to execute the T.Thresholdize re-sharing procedure), which is not the case for
the originalMHE.SecKeyGenprocedure. In other words, theTMHE-basedMHE-MPC
protocol does not have a fully public transcript in its offline phase, whereas the MHE-
based one does. However, private communication is required for only a single round
of communication and is not a major obstacle in many peer-to-peer and cloud-assisted
models.

From the computational cost standpoint, the threshold extension requires additional
state to be stored and exchanged by each party. We summarize the related costs in Table 1.
The TMHE.SecKeyGen is the only operation where this overhead is not negligible:
It requires each party to store a degree-(t − 1) polynomial in Rq [X], to evaluate this
polynomial N times (for X a degree-0 polynomial), and to send and receive N−1 Shamir
secret-shares, whereas the base scheme does not require any interaction to generate the
secret-key. The fact that the key-generation phase is only a one-time offline phase that
is re-usable for any number of circuit-evaluation enables the amortization of this step in
many applications. Regarding secret-key operations (PubKeyGen and Decrypt), the

An Efficient Threshold Access-Structure Page 15 of 20 10

Table 1. Threshold extension costs, measured in number of Rq elements per-party for the internal state
and network communication, and in asymptotic function of N and t for the per-party computational cost.
We distinguish between the costs associated with the generation (SecKeyGen) operation and the usage
(SecKeyOp ∈ {PubKeyGen,Decrypt}) of the secret-key.

Party’s state Network cost per-party Comp. cost
SecKeyGen SecKeyOp SecKeyGen SecKeyOp SecKeyGen SecKeyOp

MHE 1 1 0 1 O(1) O(1)

TMHE t 1 2(N − 1) 1 O(t + Nt + N) O(t)

Table 2. Benchmarked HE Parameters. The polynomial degree n and coefficient modulus q size in bits are
taken from the standardization document [2]. L is the number of prime factors of q.

Set Pol. deg. (n) Coeff. size (L) Coeff. size (log2 q)

I 213 4 218
II 214 8 438
III 215 15 881

only overhead is the local computation of the Combine procedure that is O(t). This
overhead, however, is close to negligible in practice. This is because the computation of
the Lagrange coefficient, which is done over Zq thanks to the compact Shamir public-
points selection of Sect. 3.3, is the only part of this computation that depends on t . We
demonstrate this by benchmarking our implementation, in Sect. 4.2.
Comparisonwith the SchemeofBoneh et al.Boneh et al. proposed a t-out-of-N -threshold
scheme as an essential building block to their universal thresholdizer for cryptographic
primitives [5]. However, they consider a stronger asynchronous setting, where parties
are unable to determine (or optimistically guess) the set of online other parties when
performing secret-key operations. Essentially, their solution is to perform the Lagrange
interpolation homomorphically, when aggregating the shares. But such an aggregation
can only be performed when the Lagrange coefficients are small with respect to q.
Therefore, their first solution consists in using a {0, 1}-LSSS to share the secret-key of
the scheme. For t-out-of-N -threshold access-structure, this implies a per-party state in
O(N 4.2) to store the secret-key shares. Their second solution consists in using Shamir
secret-sharing, which requires only a O(1) storage for the secret-key shares (assum-
ing a trusted setup). However, this requires increasing the size of the modulus q by a
O(N !3) multiplicative factor, thus rendering the encryption scheme non-compact and
more difficult to parametrize (increasing the coefficient modulus while keeping the other
parameters fixed reduces the security of RLWE). In contrast, our scheme targets the syn-
chronous setting, yet is much simpler and more efficient, which enabled its implemen-
tation and its integration in an existing library. Notably, it can be seen as an extension of
an existing scheme, requires a O(1) storage for the secret-key shares, and has negligible
online overhead. Moreover, it does not require a trusted dealer.

10 Page 16 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

Table 3. Threshold extension T benchmarks (with per-step breakdown for Thresholdize, see Sect. 3.3) for
N = 20 parties and threshold t = 7, 14, 19. These values represent the per-party CPU time in milliseconds.

Param. I II III
t 7 14 19 7 14 19 7 14 19

Thresholdize Step 1 6.0 13.0 17.9 26.2 56.8 78.7 91.7 198.2 275.6
Step 2 4.2 8.8 12.3 16.6 35.6 50.0 67.3 146.9 202.1
Step 3 0.2 0.9 3.4
Total 10.4 22.0 30.4 43.7 93.2 129.5 162.4 348.5 481.2

Combine < 0.1 < 0.1 < 0.1 0.1 0.1 0.1 0.3 0.4 0.4

Table 4. Threshold scheme TMHE benchmarks in milliseconds for N = 20 parties and threshold t =
7, 14, 19. These values represent the per-party CPU time in milliseconds.

Param. I II III
t 7 14 19 7 14 19 7 14 19

SecKeyGen MHE.SecKeyGen 0.5 2.1 7.4
T.Thresholdize 10.4 22.0 30.4 43.7 93.2 129.5 162.4 348.5 481.2
Total 10.9 22.5 30.9 45.8 95.3 131.6 169.8 355.9 488.6

Decrypt T.Combine <0.1 <0.1 <0.1 0.1 0.1 0.1 0.3 0.4 0.4
MHE.Decrypt 0.8 2.8 11.6
Total 0.8 0.8 0.9 2.9 2.9 2.9 11.9 12.0 12.0

4.2. Basic Operations Benchmarks

We implemented the scheme extension T in the Lattigo library [13] (that already imple-
ments the MHE scheme) and benchmarked its performance on an AMD Ryzen 9 5900X
CPU (3.7GHz clock, 6 M of L2-cache) for several common choices of encryption pa-
rameters (summarized in Table 2) and several values of the threshold t . Note that our
implementation itself uses no parallelization, but its interface allows a party to generate
the shares for each other party separately in the step 2 of the Thresholdize operation.
Hence, this step can be parallelized and the actual latency divided by min(N ,C) where
C is the number of cores available. In the scope of this micro-benchmark, we report the
total CPU time to abstract this setting-dependent variable and to show the actual cost
of the computation (the latency being relatively low in the context of a networked sys-
tem). We report the results for the threshold extension T in Table 3 and for the relevant
operations of the TMHE scheme in Table 4.

We observe that the Thresholdize algorithm is the most expensive operation, with a
consistently higher network cost. We also observe that the cost of the procedure grows in
O(Nt) as expected. Hence, for adversarial models admitting a fixed fraction (t−1)/N of
dishonest parties, the per-party CPU-cost of the setup will be quadratic in the number of
participants. Due to the compact Shamir public-point technique described in Sect. 3, the
Combine step is very efficient and its cost is significantly lower than the operations of the
MHE scheme to which it is a pre-processing (in theTMHE scheme). For example, the cost
of generating a party’s decryption share in the TMHE scheme for parameter set III with
N = 20, t = 7 is 12.0 ms, only 0.4 ms of which are spent on the Combine operation.

An Efficient Threshold Access-Structure Page 17 of 20 10

We conclude that, from a CPU time perspective, the threshold access-structure comes at
an almost negligible cost with respect to the non-threshold scheme. Consequently, the
main overhead of the scheme remains the pairwise exchange of Shamir secret-shares
during the one-time key-generation phase.

4.3. Case Study: Encrypted Federated Neural Network Training

The main application of our TMHE scheme is the MHE-MPC protocol, which is a
generic MPC protocol. To further demonstrate the effects of using our construction in
a concrete application of this protocol, we now consider a federated learning scenario
in which multiple parties seek to train a neural network model on their joint datasets,
under encryption.

Sav et al. used the MHE-MPC protocol to perform federated neural network training
and inference under N -out-of-N -threshold encryption [16]. Their approach relies on
the CKKS variant of the MHE scheme and faces two important challenges: First, it
relies heavily on ciphertext-slots rotations for many different rotation values (mostly
for the matrix operations), hence requires many rotation-keys to be generated in the
offline setup phase (see Sect. 2.2). Second, the high multiplicative depth of the training
algorithm requires the parties to refresh the ciphertexts during the computation, by means
of an interactive refresh protocol (to circumvent the high cost of a local bootstrapping),
which can be seen as a masked decryption and a re-encryption of the ciphertext. The
use of secret-key operations in the training phase has two consequences: it limits the
system to synchronous learning scenarios (where all parties have to be online for the
whole training phase) and it introduces a significant communication overhead which
constitutes the system’s main bottleneck.

We now describe the effect of using the CKKS variant of our TMHE scheme in
Sav et al.’s system, assuming a t-out-of-N -threshold setting. In the scope of this case
study, we focus on their MNIST instantiation where N = 10 parties train a 3-layer
neural network to perform handwritten digit recognition. This scenario uses a polynomial
degree n = 214, a coefficient modulus of log2 q = 438 bits with L = 9 primes,
and requires 623 rotation-keys to be generated1 along with the public encryption- and
relinearization-keys.

Setup Phase. To generate the public encryption-, relinearization-, and rotation-keys, we
propose to equally distribute the set of keys to be generated among the online parties
(up to a difference of 1 key per-party). Each party then picks a random set of t − 1
other parties per key it is responsible for, queries these other parties for their shares and
aggregates the them (as defined in the TMHE scheme). Finally, each party retrieves the
aggregated share of the keys it is not responsible for (from the designated party for that
key).

We implemented a proof of concept Go application for this setup procedure based on
our open-source TMHE scheme implementation in Lattigo. The protocol interactions
were implemented as a client–server application enabling the parties to query each other

1The work of Sav et al. actually abstracts the setup phase and their code is closed-source. This value was
obtained through communication with the authors.

10 Page 18 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

Table 5. Threshold MHE Setup cost for N = 10 parties, t = 8, 6, 4, 623 rotation-keys. The values are the
largest measured per-party costs among all parties along with their ratio with respect to the t = N case.

Scheme MHE TMHE
t 10 7 5 3

Time [s] CPU time 149.9 (100%) 120.1 (80.1%) 108.6 (72.4%) 88.7 (59.1%)
Wall time 67.1 (100%) 53.7 (80.0%) 48.6 (72.4%) 35.1 (52.3%)

Network [GB] Sent 5.3 (100%) 4.5 (84.9%) 3.9 (73.6%) 3.3 (62.2%)
Received 5.3 (100%) 4.4 (83.01%) 3.8 (71.7%) 3.2 (60.4%)

for their respective shares as well as for the aggregated shares they are responsible
for. The application performs all queries to the other parties in parallel, to estimate the
minimum wall time latency of the setup phase. We benchmarked this implementation on
a network of 10 machines equipped with an Intel Xeon E5-2680 v3 CPU (2.5 GHz, 30
MB cache) and 256 GB of RAM. To simulate a realistic WAN-like network, we limited
the network’s bitrate to 1 Gbits/sec and introduced a 10 ms latency. We instrumented
our code to report the total amount of data sent and received for each party, as well as
the total wall time for the execution of the setup phase, and we extracted the CPU time
from the operating system’s metric. Our experiment assumes that all parties are online
to perform the setup.

The results for the MNIST setup are summarized in Table 5. Our experimental result
confirms that the use of our TMHE scheme reduces the per-party cost when more than t
parties are participating to the setup. We do not observe a factor t

N reduction with respect
to the t = N case (which uses the MHE scheme directly). This is because the final phase
(query of the aggregated shares) still depends on N when all parties are online. But the
cost reduction remains significant, hence motivating the t-out-of-N -threshold scheme
when the threat models allows it. We also observe a larger gap between the CPU and
wall times for t = 3, as the parallelization of batched secret-key operation described
in Sect. 3.5 starts being effective. We note that this effect should be observed also for
t = 5, but is not. This suggests that more engineering would be needed, for example,
by partitioning the set of parties into two groups operating individually for the share
generation and aggregation phase.

Online Phase. The training algorithm used by Sav et al. is an iterative distributed gradient
descent with two phases per iteration. The first phase is a local gradient descent, where
each party computes its local gradients through forward–backward propagation. The
second phase is a global model update where a designated party aggregates all the
gradients and updates the model weights. The model weights and the gradients are
encrypted throughout the whole process, and the number of iterations is a parameter of
the system. The source code of their system being closed source, we study its online
phase from a theoretical perspective. More precisely, we focus on its communication
complexity because it constitutes the main bottleneck of the algorithm.

This bottleneck is caused by the use of the interactive refresh protocol for ciphertext
that has reached a certain level Lref (the smallest level at which the refresh protocol is
correct and secure, see Section 5.F of [16]). In phase 1, each party requires β refresh
where β is a function of model size and encryption parameters (also see Section 5.F of
[16]). In phase 2, the designated party requires l refreshes (one per non-input layer). A

An Efficient Threshold Access-Structure Page 19 of 20 10

single instance of the refresh protocol requires the initiator to broadcast the level-Lref

ciphertext to be refreshed and to collect one share per-party. The ciphertext consists of two
ring elements at level Lref , and each share consists of one ring element at level Lref and
one ring element at the largest level L . Assuming 8-bytes encoding for the coefficients,
the transcript of a single refresh protocol is of size E = 8n(3Lref + L) bytes per-party
assisting the initiator in the protocol. In the N -out-of-N -threshold model, this represents
a total communication of Nβ(N − 1)E bytes for the first phase and of l(N − 1)E in
the second. For the MNIST instance, this represents a communication of 644.1 MB per
iteration (β = 4, l = 2, L = 7 and Lref).

We propose the following modification to the framework of Sav et al., which is again
a straightforward application of the TMHE scheme: In the local gradient descent phase
(1), each party picks a random subgroup of t − 1 other parties in the set of online parties
and performs all refresh protocols among this group. In the global model update phase
(2), the aggregator randomly partitions the set of online parties into � |Ponline|

t � groups
and distributes the batch of l refresh protocols among the groups. The proposed changes
extend the framework to the asynchronous learning scenario (with a tolerance of N − t
offline parties). In the case where all parties are online, it reduces the communication
complexity for phase 1 and 2 to, respectively, Nβ(t − 1)E and l(t − 1)E , which cor-
responds to a total of 286.3 MB per iteration for the MNIST instance. Additionally,
it divides the latency of step 2 by � |Ponline|

t �. Hence, as for the setup phase, the use of
our fault-tolerant scheme also comes with a general reduction in the online phase costs,
especially when it relies on the refresh protocol.

5. Conclusion

In this work, we have extended the multiparty homomorphic encryption scheme of
Mouchet et al. [14] with a t-out-of-N -threshold access-structure. We have demonstrated
that the approach of re-sharing the secret-key shares composes well with their approach
and that this yields an elegant and efficient solution. Notably, the extension introduces
additional interaction at the key-generation phase only and, due to our technique for
compact Shamir public-points, has only a negligible memory and CPU time overhead
with respect to the base scheme. As a result, not only does our scheme provide fault
tolerance to the MHE-based MPC protocol, but it also reduces the per-party costs and
overall latency when the number of online parties is above the threshold. We implemented
our scheme and open-sourced it in the Lattigo library.

Funding Open access funding provided by EPFL Lausanne

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

10 Page 20 of 20 C. Mouchet, E. Bertrand, and J.-P. Hubaux

References

[1] M. Abspoel, R. Cramer, I. Damgård, D. Escudero, C. Yuan, Efficient information-theoretic secure multi-
party computation overZ/pkZ via galois rings, in Theory of Cryptography Conference (Springer, 2019),
pp. 471–501

[2] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine,
K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sahai, V. Vaikuntanathan, Homomorphic
encryption security standard, HomomorphicEncryption.org, Toronto, Canada, Tech. Rep. (2018)

[3] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, D. Wichs, Multiparty computation with
low communication, computation and interaction via threshold FHE, inAnnual International Conference
on the Theory and Applications of Cryptographic Techniques (Springer, 2012), pp. 483–501

[4] R. Bendlin, I. Damgård, Threshold decryption and zero-knowledge proofs for lattice-based cryptosys-
tems, in Theory of Cryptography Conference (Springer, 2010), pp. 201–218

[5] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Rasmussen, A. Sahai, Threshold cryptosys-
tems from threshold fully homomorphic encryption, in Annual International Cryptology Conference
(Springer, 2018), pp. 565–596

[6] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, J.-P. Hubaux, Efficient bootstrapping for approximate
homomorphic encryption with nonsparse keys, in Annual International Conference on the Theory and
Applications of Cryptographic Techniques (Springer, 2021), pp. 587–617

[7] Z. Brakerski, Fully homomorphic encryption without modulus switching from classical GapSVP, in
Annual Cryptology Conference (Springer, 2012), pp. 868–886

[8] Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) fully homomorphic encryption without bootstrap-
ping. ACM Trans. Comput. Theory (TOCT) 6(3), 1–36 (2014)

[9] J.H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic encryption for arithmetic of approximate numbers,
in International Conference on the Theory and Application of Cryptology and Information Security
(Springer, 2017), pp. 409–437

[10] R. Cramer, I.B. Damgård, J.B. Nielsen, Secure multiparty computation and secret sharing, in Secure
Multiparty Computation and Secret Sharing (Cambridge University Press, 2015), pp. 236–298. https://
doi.org/10.1017/CBO9781107337756.012

[11] J. Fan, F. Vercauteren, Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch.
2012, 144 (2012)

[12] Lattigo v3, Online: https://github.com/tuneinsight/lattigo, EPFLLDS, Tune Insight SA (2022)
[13] C. Mouchet, J.-P. Bossuat, J. Troncoso-Pastoriza, J. Hubaux, Lattigo: A multiparty homomorphic en-

cryption library in Go, in WAHC 2020-8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, vol. 15 (2020)

[14] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, J.-P. Hubaux, Multiparty homomorphic encryption
from ring-learning-with-errors. Proc. Privacy Enhancing Technol. 2021(4), 291–311 (2021)

[15] Palisade homomorphic encryption software library, Online: https://palisadecrypto.org/.
[16] S. Sav, A. Pyrgelis, J.R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat, J.S. Sousa, J.-P. Hubaux,

Poseidon: Privacy-preserving federated neural network learning, in 28thAnnualNetwork andDistributed
System Security Symposium (2021)

[17] A. Shamir, How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[18] A. Urban, M. Rambaud, Share and shrink: Ad-hoc threshold fhe with short ciphertexts and its application

to almost-asynchronous mpc, Cryptology ePrint Archive, Paper 2022/378, https://eprint.iacr.org/2022/
378 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1017/CBO9781107337756.012
https://doi.org/10.1017/CBO9781107337756.012
https://github.com/tuneinsight/lattigo
https://palisadecrypto.org/
https://eprint.iacr.org/2022/378
https://eprint.iacr.org/2022/378

	An Efficient Threshold Access-Structure for RLWE-Based Multiparty Homomorphic Encryption
	1. Introduction
	1.1. Our Results
	1.2. Related Work

	2. Preliminaries
	2.1. Adversary Model and System Goals
	2.2. N-out-of-N-Threshold Encryption for RLWE
	2.3. Shamir Secret-Sharing

	3. t-out-of-N-Threshold Encryption for RLWE
	3.1. Overview
	3.2. Shamir Secret-Sharing in Rq
	3.3. Scheme Extension
	3.4. Dealing with Faulty Oracles
	3.5. Accelerating Batched Multiparty Secret-Key Operations

	4. Evaluation
	4.1. Theoretical Evaluation
	4.2. Basic Operations Benchmarks
	4.3. Case Study: Encrypted Federated Neural Network Training

	5. Conclusion
	References

