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Abstract. We present several improvements to the framework of differential-linear
attacks with a special focus on ARX ciphers. As a demonstration of their impact, we
apply them to Chaskey and ChaCha and we are able to significantly improve upon the
best attacks published so far.
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1. Introduction

Symmetric cryptographic primitives play major roles in virtually any cryptographic
scheme and security-related application. The main reason for this massive deployment

∗This article is an extended version of the paper presented at CRYPTO 2020 [1]. Some further
improvements introduced in [2] are included.
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of symmetric primitives, i.e., (tweakable) block ciphers, stream ciphers, hash functions,
or cryptographic permutations, is their significant performance advantage. Symmetric
primitives usually outperform other cryptographic schemes by up to several orders of
magnitude.

One class of design of symmetric primitives that is inherently motivated by (software)
efficiency is the ARX-based design. ARX is short for addition (modulo a power of two),
word-wise rotation andXOR. Indeed, ciphers following this framework are composed of
those operations and avoid the computation of smaller S-boxes through look-up tables.
As CPUs may have these operations implemented on the hardware level, particularly
an addition unit and a barrel shifter, executing them on such CPUs based on a suitable
register size is inherently fast.

The block cipher FEAL [3] was probably the first ARX cipher presented in the litera-
ture, and by now, several state-of-the-art ciphers follow this approach. One of the most
important (families of) ARX ciphers is certainly the one formed by Salsa20, ChaCha and
their variants [4,5]. Designed by Bernstein, these ciphers are now the default replacement
for RC4 in TLS due to their high efficiency and the simplicity of their implementations
and are thus some of the most widely used ciphers in practice. Besides being used in
TLS, ChaCha is also deployed in several other products, and in particular, it is used as
a building block in the popular hash functions Blake and Blake2 [6,7].

The ARX-based design approach is not restricted to stream ciphers, as it can also be
used in the design of efficient block ciphers (e.g., Sparx [8]), cryptographic permutations
(e.g., Sparkle [9]), and message authentication codes (MACs). For the latter, Chaskey
[10] is among the most prominent examples.

Besides the advantage of having efficient implementations, there are also good reasons
for ARX-based designs regarding security. The algebraic degree of ARX ciphers is
usually high after only a very few rounds, as the carry bit within one modular addition
already has an almost maximal degree. Structural attacks like integral [11] or invariant
attacks [12] are less of a concern and rotational cryptanalysis [13], originally invented
for ARX ciphers, can be efficiently prevented in most cases by the XOR of constants.

When it comes to differential [14] and linear attacks [15], ARX-based designs often
show a peculiar behavior. For a small number of rounds, i.e., only very few modular
additions, the differential probabilities (resp., absolute linear correlations) are very high.
In particular, for a single modular addition, those are equal to 1 due to the linear behavior
of the least significant and, in the case of differentials, most significant bits. Moreover,
for a single modular addition, the differential probabilities and linear correlations are
well understood, and we have at hand nice and efficient formulas for their computation
[16,17]. In the case of (dependent) chains of modular additions, bitwise rotations, and
XORs, the situation is different, and experimentally checking the probabilities is often
the best way to evaluate the behavior.

While a few rounds are thus very weak, for a well-crafted ARX scheme, the probabil-
ities of differentials and the absolute correlations of linear approximations decrease very
quickly as the number of rounds increases. Indeed, this property led to the long-trail
strategy for designing ARX-based ciphers [8].

Now, for symmetric primitives, the existence of strong differentials and linear approx-
imations for a few rounds with a rapid decrease of probabilities (resp. absolute corre-
lations) is exactly the situation in which considering differential-linear attacks [18] is



Improved Differential-Linear Attacks Page 3 of 61 29

Table 1. (Partial) key-recovery attacks on Chaskey and ChaCha .

Target Key size Rounds Time Data References

Chaskey 128 6 228.6 225 [19]
7 267 248 [19]

250 240.21 Section 9.3
7.5 277 248 Section 9.4

ChaCha 256 6 2139 230 [22]
2136 228 [23]
2116 2116 [20]
289 248 Section 10.4
277.4 258 Section 10.5

7 2248 227 [22]
2246.5 227 [23]
2238.9 296 [24]
2237.7 296 [20]
2235.22 – [21]
2230.86 248.83 Section 10.6

7.25 2255.62 248.36 [25]

promising. In a nutshell, differential-linear attacks combine a differential with probabil-
ity p for the first r rounds of the cipher and a linear approximation with correlation q
for the next t rounds into a linear approximation for r + t rounds with correlation pq2

that can be turned into an attack with data complexity of roughly p−2q−4.
Indeed, it is not surprising that the best attacks against many ARX constructions,

including ChaCha and Chaskey, are differential-linear [19–21]. Our work builds upon
those ideas and improves differential-linear attacks on ARX ciphers along several dimen-
sions.

1.1. Our Contribution

In this paper, we present the best known1 attacks on Chaskey and ChaCha. Our
improvements over prior work are based on improvements in the differential, the linear
part, the LLR statistic, and the key-recovery part of differential-linear attacks.

Differential part
For the differential part, our observation is both simple and effective. Recall that for

a differential-linear attack. One needs many (roughly q−4) pairs to fulfill the difference
in the first part of the cipher, that is, many right pairs for the differential. Now, imagine
that an attacker could construct many right pairs with probability (close to) one, given
only a single right pair. It would immediately reduce the data complexity of the attack
by a factor of p−1. As we will see, this situation is rather likely to occur for a few

1After presenting those results at CRYPTO 2020 [1], improved attacks on ChaCha have been proposed
[26]. Later, [27] pointed out mistakes in some parts of [26], leading to an updated version that has been
published on the Cryptology ePrint Archive [28]. Very recently, another improved differential-linear attack
has been presented [25].
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rounds of many ARX ciphers, particularly for ChaCha and Chaskey. The details of those
improvements are presented in Sect. 5.

Linear part
For the linear part, our first observation is that it is often beneficial to not restrict

to a single mask but rather consider multiple linear approximations. As we detail in
Sect. 6, this nicely combines with an improved version of the partitioning technique for
ARX ciphers [19,29], which splits the space of ciphertexts into subsets to increase the
correlation of linear approximations. The starting point of our attacks is a new way of
partitioning the ciphertexts, summarized in Sect. 3. Note that, although we use multiple
linear masks in the attack, because of partitioning the ciphertexts, we basically use only
a single linear mask for each ciphertext. This way, we avoid possible dependencies that
would be hard to analyze otherwise.

LLR statistic
Our advanced partitioning technique for the linear part exploits linear approximations

with different correlations for every ciphertext. One ciphertext pair causes high absolute
correlation, but another might cause lower absolute correlation. It is not appropriate to
treat these ciphertext pairs in the same manner. We use the log-likelihood ratio (LLR)
statistic to solve this problem. According to the Neyman–Pearson lemma [30], the LLR
test is the most powerful statistical test and, as such, has been used as a cryptanalytic
tool (see, e.g., [31,32]). In our case, the use of the LLR statistic is beneficial because we
can exploit all partitions which were discarded by the original partitioning technique in
[1]. The details of the LLR-based technique are presented in Sect. 7.

Key recovery
Related to the improvement in the linear part and LLR statistic, we present a significant

speed-up in the key recovery part. Here, the main observation is that after considering
multiple masks and the partitioning technique, several key bits appear only linearly
in the approximations. In particular, their value does not affect the absolute value of
the correlation but rather the sign only. Instead of guessing those keys individually as
done in previous attacks, this observation allows us to recover them by applying the
fast Walsh–Hadamard transform (FWHT). Similar ideas have already been described in
[33]. Details of this approach are given in Sect. 8.

Putting these improvements into one framework and applying this framework to
round-reduced variants of ChaCha and Chaskey results in significantly reduced attack
complexities. Our attacks and their corresponding complexities are summarized in
Table 1, together with a comparison to the best attacks published so far. It is impor-
tant to note that, as these attacks are on round-reduced variants of the ciphers only,
they do not pose any threat on the full-round versions of ChaCha or Chaskey. Rather,
these attacks strengthen our trust in the design. We expect that our improvements have
applications to other ciphers, especially ARX-based designs.

2. Preliminaries

By ⊕, we denote the XOR operation, i.e., addition in F
n
2, and by +, we either denote the

addition in Z, or the modular addition mod 2n (we identify elements of F
n
2 with elements
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Fig. 1. The structure of a classical differential-linear distinguisher .

of Z by regarding them as binary representations), depending on the context. For x ∈ F
n
2,

we denote by x̄ the bitwise complement of x . Note that we have −x = x̄ + 1. Given a
non-empty set S ⊆ F

n
2 and a Boolean function f : F

n
2 → F2, we define

Corx∈S [ f (x)] := 1

|S|
∑

x∈S
(−1) f (x).

If for (another) Boolean function g : F
n
2 → F2, we have Corx∈S [g(x) ⊕ f (x)] = c, we

say that g(x) ≈ f (x) holds with correlation c if x ∈ S.
We denote the i th unit vector of a binary vector space by [i] and the sum of unit vectors

[i1]⊕[i2]⊕· · ·⊕[it ] by [i1, i2, . . . , it ]. Given a vector x ∈ F
n
2, x[i] denotes the i th bit of

x , and x[i1, i2, . . . , it ] denotes
⊕t

j=1 x[i j ]. For γ, x ∈ F
n
2, we define the inner product

by 〈γ, x〉 = ⊕n−1
i=0 γ [i]x[i]. In particular, x[i1, i2, . . . , it ] = 〈x, [i1, i2, . . . , it ]〉.

In the remainder of this paper, we assume that, when a randomly chosen sampling
set S ⊆ F

n
2 is a (sufficiently large) subset of F

n
2, Corx∈S [ f (x)] is a good approxi-

mation for Corx∈Fn2 [ f (x)]. In other words, we assume that the empirical correlations
obtained by sampling for a sufficiently large number of messages closely match the
actual correlations.

We denote by N (μ, σ 2) the normal distribution with mean μ and variance σ 2. By
�, we denote the cumulative distribution function of the standard normal distribution
N (0, 1). Thus if X ∼ N (μ, σ 2), it holds that

Pr [X ≤ �] = �

(
� − μ

σ

)
.

2.1. Differential-Linear Attacks

We first recall the basic variant of differential-linear cryptanalysis as introduced by
Langford and Hellman [18], and the enhancement by Biham, Dunkelman, and Keller



29 Page 6 of 61 C. Beierle et al.

E1

Em

E1

Em

Δin

Δm

p

E2 E2
q q

r

Γm Γm

Γout Γout

Fig. 2. A differential-linear distinguisher with experimental evaluation of the middle correlation r .

[34]. Figure 1 shows the overview of the distinguisher. An entire cipher E is divided
into two subciphers E1 and E2, such that E = E2 ◦ E1, and a differential distinguisher
and a linear distinguisher is applied to the first and second part, respectively.

In particular, assume that the differential �in
E1→ �m holds with probability

Prx∈Fn2 [E1(x) ⊕ E1(x ⊕ �in) = �m] = p.

Let us further assume that the linear approximation �m
E2→ �out has correlation

Corx∈Fn2 [〈�m, x〉 ⊕ 〈�out, E2(x)〉] = q. The differential-linear distinguisher exploits
the fact that, under the assumption that E1(x) and E2(x) are independent random vari-
ables, we have

Corx∈Fn2 [〈�out, E(x)〉 ⊕ 〈�out, E(x ⊕ �in)〉] = pq2. (1)

Therefore, by preparing εp−2q−4 pairs of chosen plaintexts (x, x̃), for x̃ = x ⊕ �in,
where ε ∈ N is a small constant, one can distinguish the cipher from a pseudorandom
permutation.

In practice, there might be a problem with the assumption that E1(x) and E2(x) are
independent, resulting in wrong estimates for the correlation. To provide a better justi-
fication of this independence assumption (and in order to improve attack complexities),
adding a middle part is a simple solution and usually done in recent attacks (includ-
ing ours). Here, the cipher E is divided into three subciphers E1, Em and E2 such that
E = E2 ◦ Em ◦ E1 and the middle part Em is experimentally evaluated. In particular,
let

r = Corx∈S [〈�m, Em(x)〉 ⊕ 〈�m, Em(x ⊕ �m)〉] ,

where S denotes the set of samples over which the correlation is computed. Then, the
total correlation in Eq. 1 can be estimated as prq2. Recently, as a theoretical support
for this approach, the Differential-Linear Connectivity Table (DLCT) [35], has been
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introduced. The overall attack framework is depicted in Fig. 2 and we will use this
description in the remainder of the paper.

Finally, in order to better understand Eq. (1), we denote the differential-linear corre-
lation (known as the auto-correlation in the theory of Boolean functions) on E by

AutE (�in, α, α′) := 2−n
∑

x∈Fn2
(−1)〈α,E(x)〉⊕〈α′,E(x⊕�in)〉,

where Eq. (1) is special case such that α = α′ = �out.

2.2. Partitioning Technique for ARX-based Designs

Partitioning allows increasing the correlation of the differential-linear distinguisher by
deriving linear equations which hold conditioned on ciphertext and key bits. We recall
the partitioning technique as used in [19]. Let a, b ∈ F

m
2 and let z = a + b. When i = 0

(lsb), the modular addition for bit i becomes linear, i.e., z[0] = a[0] ⊕ b[0]. Of course,
for i > 0, the i th output bit of modular addition is not linear on the inputs. However, by
restricting (a, b) to a specific subset, we might obtain other linear relations. In previous
work, the following formula on z[i] was derived.

Lemma 1. [19] Let a, b ∈ F
m
2 and z = a + b. For i ≥ 2, we have

z[i] =
{
a[i] ⊕ b[i] ⊕ a[i − 1] if a[i − 1] = b[i − 1]
a[i] ⊕ b[i] ⊕ a[i − 2] if a[i − 1] �= b[i − 1] and a[i − 2] = b[i − 2].

3. New Partitioning Technique

Before introducing our new attack framework for differential-linear attacks, we first
introduce some new partitioning techniques.

The original idea of the partitioning technique [29] is to divide all the data into some
partitions, and only using those partitions that can decrease the data complexity. The
generalized partitioning technique in [19] also has the same feature, i.e., when a single
modular addition is analyzed, all the data are divided into four partitions and one out of
those four is discarded.

Our new partitioning techniques are twofold. First, we introduce linear masks for
partitions that have originally been discarded. Our new FWHT-based key recovery using
the LLR statistic allows us to efficiently use such partitions. Second, we additionally
introduce a partitioning technique to compute z[i]⊕ z[i −1] with the same key guessing
cost as the evaluation of z[i]. There are multiple linear trails with high correlation in the
ARX ciphers. The new partition is useful when we dynamically change available linear
trails for each partition.

Let us consider two m-bit words z0 and z1 and a modular addition operation

F
2m
2 → F

2m
2 , (z1, z0) �→ (y1, y0) = (z1, z0 + z1),
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[ ][i]
z1 z0

y1 y0

z1 z0

y1 y0

Fig. 3. Two examples of the partitioning technique. In the first case (left picture), we are interested in an
approximation for z0[i]. In the second case (right picture), we are interested in an approximation for z0[i] ⊕
z0[i − 1]. The corresponding partitions and approximations are given in Lemmas 2 and 3, respectively .

as depicted in Fig. 3. In the attacks we present later, we are interested in the value
z0[i] = (y0 − y1)[i] = (y0 + ȳ1 +1)[i]. Notice that for i ≤ 2 there exist trivial relations
for z0[i]. The following lemma deals with the case i ≥ 3, which is relevant for our
applications.

Lemma 2. Let s = y0 ⊕ ȳ1 and let i ≥ 3. Let Sb0b1 := {(y1, y0) ∈ F
2m
2 | s[i − 1] =

b0 and s[i − 2] = b1}. We have

z0[i] ≈

⎧
⎪⎨

⎪⎩

y0[i] ⊕ y1[i] ⊕ y0[i − 1], with cor. −1, if (y1, y0) ∈ S0∗,
y0[i] ⊕ y1[i] ⊕ y0[i − 2], with cor. −1, if (y1, y0) ∈ S10,

y0[i] ⊕ y1[i] ⊕ y0[i − 3], with cor. −2−1, if (y1, y0) ∈ S11,

(2)

where S0∗ = S00 ∪ S01.

Proof. Figure 4 represents the computation of z0[i], where z0 = y0 − y1 = y0 + ȳ1 +1.
In fact, if c[i] denotes the carry occurring at bit position i , and assume that c[−1] := 1,
we have that z0[i] = y0[i] ⊕ y1[i] ⊕ 1 ⊕ c[i − 1] for all i ≥ 0.

Let us first assume that (y1, y0) ∈ S0∗, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 0. Then,
c[i − 1] = y0[i − 1] if i ≥ 1. Thus,

z0[i] = y0[i] ⊕ y1[i] ⊕ 1 ⊕ y0[i − 1],

for all i ≥ 1, and we obtain the first equality.
Next, let us assume that (y1, y0) ∈ S10, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 1 and y0[i −

2] ⊕ ȳ1[i − 2] = 0. Then, c[i − 1] = c[i − 2], and c[i − 2] = y0[i − 2] if i ≥ 2. Thus,

z0[i] = y0[i] ⊕ y1[i] ⊕ 1 ⊕ y0[i − 2],

for all i ≥ 2, and we obtain the second equality.
Finally, let us assume that (y1, y0) ∈ S11, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 1 and

y0[i − 2] ⊕ ȳ1[i − 2] = 1. Then, c[i − 1] = c[i − 2], and c[i − 2] = c[i − 3] if i ≥ 3.
Thus,

z0[i] = y0[i] ⊕ y1[i] ⊕ 1 ⊕ c[i − 3]
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z0[i] z0[i − 1] z0[i − 2] z0[i − 3]

y0[i] y0[i − 1] y0[i − 2] y0[i − 3]

ȳ1[i] ȳ1[i − 1] ȳ1[i − 2] ȳ1[i − 3]+

· · ·

· · ·

· · ·

c[i − 1] c[i − 2] c[i − 3] c[i − 4]

Fig. 4. Representation for z0 = y0 + ȳ1 + 1 .

[i]

[ ] [ ][i]

[i]

[i]

Fig. 5. Two linear trails with correlation 2−1 .

holds for all i ≥ 3. The carry c[i −3] is the output of the majority function as c[i −3] =
maj (c[i − 4], y0[i − 3], ȳ1[i − 3]), and a linear approximation, c[i − 3] ≈ y0[i − 3],
holds with correlation 2−1. Thus, we have

z0[i] ≈ y0[i] ⊕ y1[i] ⊕ y0[i − 3]

with correlation −2−1, and we obtain the final approximation. �

The representations for the partitions S0∗ and S10 are the same as in Lemma 1. We
additionally introduce a linear approximation for the partition S11, which was discarded
in the original partitioning technique. Note that the cost to determine partitions is not
increased compared to the previous partitioning technique because we simply use the
discarded partition. The cost increase only involves the new bit y0[i − 3], but thanks
to our FWHT-based key recovery technique, the cost increase will be negligible. We
discuss it in detail in Sect. 8.

Due to the propagation rules for linear trails over modular addition, we may end up
with multiple linear trails that are closely related to each other. As an example, Fig. 5
shows two possible trails, where [i] and [i, i−1] denote the corresponding linear masks.
The partitioning technique described above evaluates z0[i], but we can expect that there
is a highly biased linear trail in which z0[i] ⊕ z0[i − 1] needs to be evaluated instead
of z0[i]. In the trivial method, we would apply the partitioning technique of Lemma 2
for z0[i] and z0[i − 1] separately, which requires the knowledge of 3 bits of information
from y in total. Our new partitioning method allows us to determine the partition with
the knowledge of only the same 2 bits of information as needed for evaluating the case
of z0[i], namely (y0[i − 1] ⊕ y1[i − 1]) and (y0[i − 2] ⊕ y1[i − 2]). This is especially
helpful if y consists of the ciphertext XORed with the key, so we need to guess less key
bits to evaluate the partition.
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Lemma 3. Let s = y0 ⊕ ȳ1 and let i ≥ 3. Let Sb0b1 := {(y1, y0) ∈ F
2m
2 | s[i − 1] =

b0 and s[i − 2] = b1}. We have

z0[i] ⊕ z0[i − 1]

≈

⎧
⎪⎨

⎪⎩

y0[i] ⊕ y1[i], with cor. 1, if (y1, y0) ∈ S1∗,
y0[i] ⊕ y1[i] ⊕ y0[i − 1] ⊕ y0[i − 2], with cor. −1, if (y1, y0) ∈ S00,

y0[i] ⊕ y1[i] ⊕ y0[i − 1] ⊕ y0[i − 3], with cor. −2−1, if (y1, y0) ∈ S01,

where S1∗ = S10 ∪ S11.

Proof. By evaluating the modular addition z0 = y0 + ȳ1 + 1, we have

z0[i] ⊕ z0[i − 1] = y0[i] ⊕ ȳ1[i] ⊕ c[i − 1] ⊕ y0[i − 1] ⊕ ȳ1[i − 1] ⊕ c[i − 2],

where c[i − 1], resp., c[i − 2] denotes the carry occurring at bit position i − 1, resp.,
i − 2. As before, we define c[−1] := 1.

Let us first assume that (y1, y0) ∈ S1∗, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 1. Then, clearly
c[i − 1] = c[i − 2]. Thus,

z0[i] ⊕ z0[i − 1] = y0[i] ⊕ y1[i],

and we obtain the first equality.
Next, let us assume that (y1, y0) ∈ S00, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 0 and y0[i −

2] ⊕ ȳ1[i − 2] = 0. Since y0[i − 1] ⊕ ȳ1[i − 1] = 0, we have c[i − 1] = ȳ1[i − 1].
Since y0[i − 2] ⊕ ȳ1[i − 2] = 0, we have c[i − 2] = y0[i − 2]. Thus,

z0[i] ⊕ z0[i − 1] = y0[i] ⊕ y1[i] ⊕ 1 ⊕ y0[i − 1] ⊕ y0[i − 2],

and we obtain the second equality.
Finally, let us assume that (y1, y0) ∈ S01, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 0 and

y0[i −2]⊕ ȳ1[i −2] = 1. Since y0[i −1]⊕ ȳ1[i −1] = 0, we have c[i −1] = ȳ1[i −1].
Since y0[i − 2] ⊕ ȳ1[i − 2] = 1, we have c[i − 2] = c[i − 3]. Thus,

z0[i] ⊕ z0[i − 1] = y0[i] ⊕ y1[i] ⊕ 1 ⊕ y0[i − 1] ⊕ c[i − 3].

The carry c[i−3] is the output of the majority function as c[i−3] = maj (c[i−4], y0[i−
3], ȳ1[i − 3]), and a linear approximation, c[i − 3] ≈ y0[i − 3], holds with correlation
2−1. Thus,

z0[i] ⊕ z0[i − 1] ≈ y0[i] ⊕ y1[i] ⊕ y0[i − 1] ⊕ y0[i − 3]

holds with correlation −2−1, and we obtain the final approximation. �

In practice, we need to consider a more complicated partition. For example, we some-
times consider the case that the approximated function consists of multiple modular
subtractions and rotation. A summary of our partitioning is given in “Appendix A”.
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Fig. 6. The new attack framework .

4. High-Level Overview of the New Attack Framework

In this section, we introduce a high-level overview of our new attack framework for
differential-linear attacks with the partitioning technique. The framework consists of
several novel techniques, which are: (1) amplifying the probability of the differential
part by carefully choosing an appropriate linear subspace U for generating good pairs,
(2) choosing the linear masks dynamically depending on each partition, and (3) an
FWHT-based technique for improving the key recovery part when using partitions.

Figure 6 shows the high-level description of the general structure. Here F corresponds
to the part of the cipher that we are going to cover using our improved key-guessing
strategy. Our aim is to recover parts of the last whitening key k by using a differential-

linear distinguisher given by s (multiple) linear approximations 〈�(pi )
out , z〉 ⊕ 〈�(p j )

out , z̃〉.
In the following, we assume that the ciphertext space F

n
2 is split into a direct sum P ⊕R

with nP := dim P and nR := dim R = n − nP , so that the partitions will be given
by the cosets Tpi = pi ⊕ R for any pi ∈ P (i.e., pi represents a set of the partition).
Notice that, without loss of generality, we can also assume that c ∈ F

n
2 is divided into

two parts cP ∈ F
nP
2 = P and cR ∈ F

n−nP
2 = R, and c = (cP , cR); similarly, we can

write k = (kP , kR) and y = (yP , yR). Then, for any pi ∈ P , the partition Tpi ⊂ F
n
2 is

defined as Tpi = {y ∈ F
n
2 | yP = pi }. Since both formalizations are equivalent, we will

use either interchangeably depending on the context.
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4.1. The Differential Part

The first step of the attack is to collect many (x, x⊕�in) satisfying E1(x)⊕E1(x⊕�in) =
�m , which are called right pairs. Let X be the set defined as

X = {x ∈ F
n
2 | E1(x) ⊕ E1(x ⊕ �in) = �m}.

If pairs are used from X , the probability of the differential part becomes 1 and the
correlation of the differential-linear distinguisher also increases. To collect many such
pairs efficiently, we use a linear subspace U . In the simplest case, this subspace is chosen
such that for any x ∈ X and any u ∈ U it holds that x ⊕u ∈ X , i.e., (x ⊕u, x ⊕u⊕�in)

is a right pair as well. However, this strict requirement restricts the size of U significantly
and for the attack it is sufficient if this implication is true for most elements in X . To
capture this precisely, we define a subset X ′ of the set of right pairs X as

X ′ = {x ∈ X | x ⊕ u ∈ X for all u ∈ U}.

Once we find an x ∈ X ′, we can find 2dimU right pairs for free. The differential probabil-
ity p is in fact defined as p = |X |/2n , which means we can reduce the data complexity
by the factor p−1 when X ′ = X . We would like to remark that this idea has already been
used in other contexts, e.g., the differential attack [36], but to best of our knowledge,
it has not been applied to differential-linear attacks. We discuss the differential part in
detail in Sect. 5.

4.2. The Linear Part

The idea is to identify several tuples (Tpi , �
(pi )
out , γ (pi )), i ∈ {1, . . . , s}, where γ (pi ) ∈ R,

for which we can observe a high absolute correlation

εi := Cory∈Tpi

[
〈�(pi )

out , z〉 ⊕ 〈γ (pi ), y〉
]
.

In the simplest case, we would have εi = 1, i.e.,

y ∈ Tpi ⇒
(
〈�(pi )

out , z〉 = 〈γ (pi ), y〉 = 〈γ (pi ), c〉 ⊕ 〈γ (pi ), k〉
)

.

In other words, by considering only a specific subset of the ciphertexts (defined by Tpi )
we obtain linear relations in the key with a high correlation.

The correlation of the differential-linear distinguisher for E2 ◦ Em ◦ E1, which is
denoted by qi, j , is defined as

qi, j := Cor x∈X such that
(y,ỹ)∈Tpi ×Tp j

[
〈�(pi )

out , z〉 ⊕ 〈�(p j )

out , z̃〉
]
.

In practice, it is not feasible to compute qi, j for all partitions indexed by (i, j) when
each correlation is low and the number of partitions is large. Therefore, we introduce
the following assumption.
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Assumption 1. The correlation qi, j is independent of Tpi × Tp j . In other words, we
assume

qi, j = Corx∈X
[
〈�(pi )

out , z〉 ⊕ 〈�(p j )

out , z̃〉
]

for all i, j.

We finally observe the following correlation for (y, ỹ) by guessing the secret key, and
the final correlation is defined as

ρi, j := Cor x∈X such that
(y,ỹ)∈Tpi ×Tp j

[
〈γ (pi ), y〉 ⊕ 〈γ (p j ), ỹ〉

]
.

In addition to Assumption 1, we use the following assumption in order to estimate the
final correlation.

Assumption 2. The correlations qi, j , εi , and ε j are independent of each other, and ρi, j
can be estimated as

ρi, j = εiε j qi, j . (3)

Unfortunately, Assumption 2 does not hold in general because it ignores the impact of
the auto-correlation-linear hull effect. Namely, for a more precise evaluation, we need to
consider multiple differential-linear trails with tuples (Tpi , ∗, γ (pi )), where ∗ represents
arbitrary linear masks, and ρi, j can be computed as the sum of these correlations. In other

words, we need to consider multiple �
(pi )
out for each fixed (Tpi , γ

(pi )). We later discuss
the auto-correlation-linear hull in Sect. 6. There it is also shown that, when considering
the auto-correlation-linear hull, Assumptions 1 and 2 are replaced by the assumption
that the hull is dominated by a single trail in order to justify Eq. (3).

How to identify belonging partitions is very important. It highly depends on the speci-
fication of the target cipher. Applications to Chaskey and ChaCha are too complicated to
understand this behavior. We provide some simple cases for a more easy understanding
of this behavior in “Appendix B”.

4.3. LLR-Based Statistical Test

According to the Neyman–Pearson Lemma, the LLR test is the most powerful statistical
test and as such has been used as a cryptanalysis tool (see, e.g., [31,32]). Considering
the use of multiple linear trails with different correlations, the LLR test is more appro-
priate than the simple sum without considering the different correlations of each linear
approximation.

Let us consider our differential-linear attacks using N pairs. An important remark is
that each of the N pairs contributes differently to the correlations. Therefore, we need to
consider the contribution to the theoretical correlation of each of them. Let (y, ỹ) be the
�th pair and let us assume that y and ỹ belong to the i th and j th partitions, respectively,
i.e., yP = pi and ỹP = p j (for ease of notation, we do not make the dependency of
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y, ỹ, i, j on � explicit). We then get the 1-bit representation

w� = 〈y, γ (pi )〉 ⊕ 〈ỹ, γ (p j )〉

and consider the probability

π� = Pry,ỹ [w� = 0] .

We refer to the theoretical correlation as ρi, j when the i th and j th partitions are used.

Namely, π� = ρi, j+1
2 . For simplicity, let C� denote this correlation for the �th pair (and

the i th and j th partitions are used for this pair), i.e., C� = ρi, j = 2π� − 1.
Let D0 and D1 be the random vector distributions

D0 : (B(1, π1), . . . ,B(1, πN )) , D1 : (B(1, 1/2), . . . ,B(1, 1/2)) .

where B(n, π�) are independent binomial distributions with n trials and success proba-
bility π�, and where the π� are not necessarily distinct.

Our goal is to distinguish whether w := (w1, . . . , wN ) is the result of sampling
from D0 (i.e., the real distribution) or D1 (i.e., the random distribution). Let q0 and q1
be the probability that w := (w1, . . . , wN ) is the result of sampling from D0 or D1,
respectively. Thus,

q0 = Pr [X = w | X ∼ D0] , q1 = Pr [X = w | X ∼ D1] .

The LLR statistic is defined as ln(q0/q1), and it is computed as

ln

(
q0

q1

)
= 1

2

N∑

�=1

ln
(

1 − C2
�

)
+ 1

2

N∑

�=1

ln

(
1 − C�

1 + C�

)
(−1)w� .

Let us assume that the LLR statistic follows normal distributions N (μ0, σ
2
0 ) and

N (μ1, σ
2
1 ) when the correct and wrong keys are guessed, respectively. We have

μ0 = −μ1 = 1

2

N∑

�=1

C2
� = N

2
C, σ 2

0 = σ 2
1 =

N∑

�=1

C2
� = NC,

where by C we denote the average of the squared correlation, i.e., C := 1
N

∑N
�=1 C

2
� .

We later show the formula described above in Sect. 7.

4.4. WHT-Based Key Recovery Technique

We use (y, ỹ) to identify partitions and compute the LLR statistic. Note that y ∈ Tpi ⇔
c ∈ Tpi ⊕ kP , so we need to guess nP bits of k to partition the ciphertexts into the
corresponding Tpi . Note that, since we require γ (pi ) ∈ R, we obtain linear relations
only on kR.
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Let (c, c̃) be the pair of ciphertexts. The partition the pair belongs to is determined by
yP = cP ⊕ kP . Therefore, part of the key kP is guessed to identify the partition. After
guessing kP , we get the following approximation.

〈y, γ (yP )〉 ≈ 〈ỹ, γ (ỹP )〉 ⇒ 〈c ⊕ k, γ (yP )〉 ≈ 〈c̃ ⊕ k, γ (ỹP )〉
⇒ 〈c, γ (yP )〉 ⊕ 〈c̃, γ (ỹP )〉 ≈ 〈k, γ (yP ) ⊕ γ (ỹP )〉

Since the left side is known, we get the parity of k with respect to the linear mask
γ (yP ) ⊕ γ (ỹP ). For a linear subspace, W defined by W := Span{γ (pi ) ⊕ γ (p j ) | i, j ∈
{1, . . . , s}}, the approximations above involve dim W bits of information for k. By using
the fast Walsh–Hadamard transform (FWHT), we do not need to guess dim W bits for
every pair of texts, and the time complexity is estimated as 2nP (2N + dim W · 2dim W ),
where nP is the bit length of kP . We discuss this procedure in detail in Sect. 8.

5. The Differential Part—Finding Many Right Pairs

Let us be given a permutation E1 : F
n
2 → F

n
2 and a differential �in

E1→ �m that holds
with probability p. In other words,

|{x ∈ F
n
2 | E1(x) ⊕ E1(x ⊕ �in) = �m}| = p · 2n .

In a usual differential-linear attack on a permutation E = E2 ◦ Em ◦ E1 as explained in
Sect. 2.1, the internal structure of E1 could be in general arbitrary and we would consider
randomly chosen x ∈ F

n
2 to observe the ciphertexts of the plaintext pairs (x, x ⊕ �in).

For each of those pairs, the differential over E1 is fulfilled with probability p, which
results in a data complexity of roughly εp−2r−2q−4 for the differential-linear attack. In
other words, we did not exploit the particular structure of E1. In particular, it would be
helpful to know something about the distribution of right pairs (x, x ⊕ �in) ∈ F

n
2 × F

n
2

which fulfill the above differential.
Let us denote by X the set of all values that define right pairs for the differential, i.e.,

X = {x ∈ F
n
2 | E1(x) ⊕ E1(x ⊕ �in) = �m}.

To amplify the correlation of a differential-linear distinguisher, instead of choosing
random plaintexts from F

n
2, we could consider only those that are in X . In particular, we

have2

Corx∈X [〈�out, E(x)〉 ⊕ 〈�out, E(x ⊕ �in)〉] = rq2.

Since the set X might have a rather complicated structure and is key-dependent,
we cannot use this directly for an arbitrary permutation E1. However, if X presents

2Under the assumption that the sets {〈�out, E(x)〉 ⊕ 〈�out, E(x ⊕ �in)〉 | x ∈ X } and {〈�out, E(x)〉 ⊕
〈�out, E(x ⊕ �in)〉 | x ∈ S} are indistinguishable, where S denotes a set of uniformly chosen samples of the
same size as X .
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a special structure such that, given one element x ∈ X , we can generate many other
elements in X for free,3 independently of the secret key, we can use this to reduce the
data complexity in a differential-linear attack. For example, if X contains a large affine
subspace A = U ⊕ a, given x ∈ A, we can generate (roughly) 2dimU elements in X for
free, namely all elements x ⊕ u, for u ∈ U . In order to obtain an effective distinguisher,
we must be able to generate enough plaintext pairs to observe the correlation of the
differential-linear approximation. In particular, we require |U | > εr−2q−4.

This will be exactly the situation we find in ChaCha. Here the number of rounds
covered in the differential part is so small that it can be described by the independent
application of two functions (see Sect. 5.1).

If |U | is smaller than the threshold of εr−2q−4, we cannot generate enough right
pairs for free to obtain a distinguisher by this method and we might use a probabilistic
approach (see Sect. 5.2).

In Sect. 5.3, we show how the conditional differential framework can be used to
efficiently find bigger sets U , as well as to recover some information on the key, and
provide some ideas to adapt it to the ARX scenario.

5.1. Fully Independent Parts

Let E1 : F
n
2 → F

n
2 with n = 2m be a parallel application of two block ciphers

E (i)
1 : F

m
2 → F

m
2 , i ∈ {0, 1} (for a fixed key), i.e.,

E1 : (x (1), x (0)) �→ (E (1)
1 (x (1)), E (0)

1 (x (0))).

Suppose that, E (0)
1 presents a differential α

E (0)
1→ β with probability p. We consider the

differential �in
E1→ �m with �in = (0, α) and �m = (0, β), which also holds with

probability p. Given one element (x (1), x (0)) ∈ X , any (x (1) ⊕ u, x (0)) for u ∈ F
m
2 is

also contained in X , and we can thus generate 2m right pairs for free.
If 2m > εr−2q−4, a differential-linear distinguisher on E = E2 ◦ Em ◦ E1 would

work as follows:

1. Choose a = (a(1), a(0)) ∈ F
n
2 uniformly at random.

2. Empirically compute

Corx∈a⊕(Fm2 ×{0}) [〈�out, E(x)〉 ⊕ 〈�out, E(x ⊕ �in)〉] .

3. If we observe a correlation of rq2 using εr−2q−4 many x , the distinguisher suc-
ceeded. If not, start over with Step 1.

With probability p, we choose an element a ∈ X in Step 1. In that case, the dis-
tinguisher succeeds in Step 3. Therefore, the data complexity of the distinguisher is
εp−1r−2q−4, compared to εp−2r−2q−4 as in the classical differential-linear attack.

3Or at least with a cost much lower than p−1, see Sect. 5.2.
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5.2. Probabilistic Independent Parts

Since the previous decomposition is not always possible or 2m might not be big enough,
we are also interested in the situations in which the differential part cannot be simply
written as the parallel application of two functions. Again, the goal is, given one element
x ∈ X , to be able to generate εr−2q−4 other elements in X , each one with a much lower
cost than p−1. Suppose that U ⊆ F

n
2 is a subspace with |U | > εr−2q−4 and suppose that

Pru∈U [x ⊕ u ∈ X | x ∈ X ] = p1, where p1 is much larger than p. The data complexity
of the improved differential-linear distinguisher would then be εp−1 p−2

1 r−2q−4. Note
that the probability p1 may also depend on x . In particular, there might be x ∈ X ′ ⊆ X
for which p1 is (almost) 1, but the probability to draw such an initial element x from F

n
2

is p′, which is smaller than p. Then, the data complexity would be εp′−1 p−2
1 r−2q−4.

For instance, this will be the case for the attack on Chaskey (Sect. 9), where we have
p1 ≈ 1 and p′ = p × 222/256.

In such situations, we propose an algorithmic way to experimentally detect suitable
structures in the set of right pairs. The idea (see Algorithm 1 for the pseudocode) is to
detect canonical basis vectors within the subspace U . Running this algorithm for enough
samples will return estimates of the probability γ j that a right pair x ∈ X stays a right
pair when the j th bit is flipped, i.e.,

γi = Pr [x ⊕ [i] ∈ X | x ∈ X ] .

When applied to a few rounds of ARX ciphers, it can be expected that there are some
bits that will always turn a right pair into a right pair, i.e., γi = 1. Moreover, due to
the property of the modular addition that the influence of bits on distant bits degrades
quickly, high values of γ j �= 1 can also be expected. As we will detail in Sect. 9 this
will be the case for the application to Chaskey.

Algorithm 1 Computing probabilistic independent bits
Require: Number of samples T , input difference �in, output difference �m
Ensure: Probabilities γ0, γ1, . . . , γn−1
1: Let s = 0 and c j = 0 for j ∈ {0, . . . , n − 1}.
2: for i = 1 to T do
3: Pick a random X and compute E1(X) and E1(X ⊕ �in)

4: if E1(X) ⊕ E1(X ⊕ �in) = �m then
5: Increment s
6: for j ∈ {0, . . . , n − 1} do
7: Prepare X̂ where the j th bit of X is flipped.
8: if E1(X̂) ⊕ E1(X̂ ⊕ �in) = �m then
9: Increment c j
10: end if
11: end for
12: end if
13: end for
14: for j ∈ {0, . . . , n − 1} do
15: γ j = c j /s
16: end for
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5.3. Using the Conditional Differential Framework for Finding Better Subspaces

A practical way for producing a set of pairs of data whose elements all verify a certain
differential path reflects a similar scenario to the one which is considered in conditional
differential attacks. In [36], in the context of NLFSR-based primitives, the elements of
the basis of U are called freebits and involve more complex relations derived from the
differential paths than just simple single-bit relations. In Sect. 3.2 of [36], three types of
conditions are presented: type 0, which only involve public bits (which is common in
NLFSR initialization, but not in ARX or SPN constructions); type one, which involve
both secret and public bits; and type 2, which are conditions directly on the keybits. The
freebits are actually the ones that do not affect type 1 conditions. Using these definitions
we can improve previous attacks in two ways: increasing for free the number of keybits
recovered by the differential-linear attack thanks to type 2 conditions, and increasing
the size of U by using the freebits as defined in [36].

In this section, we provide some hints and general ideas on how to use this framework
for improving the analysis in ARX constructions. In “Appendix C” we provide a detailed
example on how to determine additional keybits with type 2 conditions and on how to
increase the number of freebits with evolved relations for Chaskey.

Conditional differential framework for differential-linear attacks
Using the definitions from [36, Sect. 3.2], it is easy to see how to improve the differ-

ential part of some attacks (quite straightforwardly for ARX) in three main ways:

1. We can increase the size ofU by exhausting the input values that keep the conditions
of type 1 fixed to a certain value (as was done in the applications in that paper), as
if these conditions were true, they would stay true for all the sampling set. These
exhausted bits might not be completely free as type 1 conditions need to remain
constant.

2. When considering a particular set of plaintexts to check if it is the one verifying
the differential path, some information on the value of some associated keybits
or keybit relations can be presupposed (given directly by conditions of type 2
and indirectly by conditions of type 1). This means that, for all the cases, we can
suppose some information on the key as known. This information might be used
to recover more bits and more importantly, could reduce the complexity of the
key-search part in the final rounds.

3. Combination of both: guessing some keybits, that might be useful for the linear
part, and that simultaneously might allow to detect sampling bit relations that
follow the path with probability 1.

Main ideas for exploiting the conditions on ARX
We now present some general ideas for exploiting conditions on ARX constructions.

Even though some of them might seem trivial, it is nonetheless helpful to set them as
rules to follow.

We can define some rules that apply when flipping the parity of differences. Instead of
using only single non-active bit flipping for defining the freebits, we can study the effect
of flipping the parity of the differences as additional sampling bits when possible. We
can identify several relevant cases, and we present here four cases of particular interest:
(i) If a pair of differences is going to be erased after a modular addition (which implies



Improved Differential-Linear Attacks Page 19 of 61 29

they have a different parity), changing the parity of one will need changing the parity
of the other. (ii) If a bit difference is staying at the same position (and not propagating
further) after a modular transition, changing its parity will not affect the transition. (iii)
If two active bits at position i will produce a difference after the modular addition at
position i + 1 (move the difference), flipping both active bits at the same time will
change the parity of the output at i + 1. (iv) If two words are added with a difference in
position i and in positions i and i+1, respectively, and we want to absorb the differences
after the modular additions, the carries of the previous positions will not affect the bits
after position i . We can also change the parity of the three bits simultaneously, and the
differences will still be absorbed, and the values will stay the same. Of course, all this
might have an effect on further rounds, which will have, in turn, to be taken into account.

It is also useful to keep in mind that when we identify several input bits that only
influence the differential transitions by a xor, swapping a pair number of these will not
alter the verification of the path.

When dealing with carries, they might affect transitions with low probability. It is
interesting to keep in mind that, when there is a sum of two zeros at position i , the value
of all the bits at lower positions will not affect the carries at any higher positions. That
might imply that a small guess (for instance 2 keybits for fixing two bits to zero) can
generate many more bits for the sampling part with probability one if they only affected
the differential path through these carries.

6. Auto-Correlation-Linear Hulls and Partitioning

In this section, we want to better understand how to compute the correlations ρi, j when
the i th and j th partitions are used. This will allow us to shed light on Assumptions 1
and 2.

For this, we will derive general formulas which express the differential-linear correla-
tion with restricted output of a function composed of two parts. Note that in the following
we do not make any assumptions on the independence of these parts. Furthermore, the
notion of an auto-correlation-linear hull developed below will allow to improve upon
the attacks by considering multiple intermediate masks.

G1

G1

G2

G2

Δ

Γ

Γ′

γ

γ′
(∈ M)

(∈ N)

We start by considering the unrestricted variant. Given two functions G1,G2 : F
n
2 →

F
n
2, an input difference � and two output-masks γ and γ ′, let H := G2 ◦ G1 and

AutH (�, γ, γ ′) := 2−n
∑

x∈Fn2
(−1)〈γ,H(x)〉⊕〈γ ′,H(x⊕�)〉

be the differential-linear correlation on H .
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We are interested in how to compute the differential-linear correlation when consid-
ering intermediate masks � and �′. In a second step, the outputs will be restricted to
coming from a set M and a set N , respectively.

Note that this approach is different from the considerations in [37] as there it was
about how to compute the auto-correlation by connecting the differential and the linear
part correctly, while here we extend a differential-linear correlation using a second linear
approximation of the parts.

This auto-correlation can be expressed as

AutH (�, γ, γ ′) =
∑

u∈Fn2
Ĥ(u, γ )Ĥ(u, γ ′)(−1)〈u,�〉, (4)

where we denote by

Ĥ(u, γ ) = 2−n
∑

x∈Fn2
(−1)〈γ,H(x)〉+〈u,x〉

the correlation of the approximation of H with input and output masks u and γ . This
follows from the connection of the Walsh–Hadamard transform and the convolution of
functions (see, e.g., [38, Proposition 11]), but can also be verified directly.

In our attack framework, G1 would correspond to E2 ◦ Em ◦ E1 and G2 to F and we
would experimentally estimate the auto-correlation and multiply it with the correlation
of G2 with input mask � and output mask γ , i.e., we estimate

AutH (�, γ, γ ′) ≈ Ĝ2(�, γ )Ĝ2(�
′, γ ′) AutG1(�, �, �′). (5)

This is of course only an approximation and we now want to get an explicit expres-
sion of the hull effect, i.e., of all the parts we ignore in the above expression without
making any assumptions. Furthermore, we have to take the partitioning of the outputs
into account.

For this, we use the fact (see [39]) that we can split the correlation of H into

Ĥ(u, γ ) =
∑

�∈Fn2
Ĝ1(u, �)Ĝ2(�, γ )

with an intermediate mask �, i.e., the linear hull. Putting this back in the definition of
the auto-correlation, we get the following.

Proposition 1. (Auto-Correlation-Linear Hull) Let G1,G2 : F
n
2 → F

n
2 . For any

�, γ, γ ′ ∈ F
n
2 we then have

AutG2◦G1(�, γ, γ ′) =
∑

�,�′∈Fn2
Ĝ2(�, γ )Ĝ2(�

′, γ ′) AutG1(�, �, �′).
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Proof. Let H = G2 ◦ G1. Then

AutG2◦G1(�, γ, γ ′)

=
∑

u∈Fn2
Ĥ(u, γ )Ĥ(u, γ ′)(−1)〈u,�〉

=
∑

u∈Fn2

⎛

⎝
∑

�∈Fn2
Ĝ1(u, �)Ĝ2(�, γ )

⎞

⎠

⎛

⎝
∑

�′∈Fn2
Ĝ1(u, �′)Ĝ2(�

′, γ ′)

⎞

⎠ (−1)〈u,�〉

=
∑

�,�′∈Fn2
Ĝ2(�, γ )Ĝ2(�

′, γ ′)
∑

u∈Fn2
Ĝ1(u, �)Ĝ1(u, �′)(−1)〈u,�〉

=
∑

�,�′∈Fn2
Ĝ2(�, γ ′)Ĝ2(�

′, γ ) AutG1(�, �, �′).

�

So, as could be expected, the linear hull theorem has a natural extension to an auto-
correlation-linear hull theorem and the approximation in Eq. (5) corresponds to focusing
on a single (�, �′) while actually all pairs (�, �′) have to be considered. It remains to
see how restricting the input, i.e., partitioning, affects this expression.

6.1. Impact of Partitioning on the Correlation

We again consider a function H : F
n
2 → F

n
2, an input difference �, output-masks γ and

γ ′ and two non-empty subsets M, N of F
n
2. We are interested in

Aut(M,N )
H (�, γ, γ ′) := 2n

|M ||N |
∑

x∈Fn2
H(x)∈M,H(x⊕�)∈N

(−1)〈γ,H(x)〉⊕〈γ ′,H(x⊕�)〉.

One would hope that one can still use Eq. (4) with minor modifications. That is basically
by replacing the correlation of H by its restricted version. To capture this, for a function
F : F

n
2 → F

n
2 and a non-empty set S ⊆ F

n
2 we denote by

F̂ |S(a, b) := 1

|S|
∑

x∈S
(−1)〈b,F(x)〉⊕〈a,x〉

the correlation when the input is restricted to the set S. Later, it will actually be the
output that is restricted, which will be handled by considering the inverse of the function
(and swapping input and output-mask). Using Lemmas 4 and 5, we can state the main
insight of this section as Proposition 2.
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Lemma 4. We have

Aut(M,N )
H (�, γ, γ ′) =

∑

u∈Fn2
Ĥ−1|M (γ, u)Ĥ−1|N (γ ′, u)(−1)〈u,�〉.

Proof. We start by expanding the right-hand side of the equation, denoted by L , as
follows

L =
∑

u∈Fn2
Ĥ−1|M (γ, u)Ĥ−1|N (γ ′, u)(−1)〈u,�〉

= 1

|M ||N |
∑

u∈Fn2

⎛

⎝
∑

y∈M
(−1)〈u,H−1(y)〉⊕〈γ,y〉

⎞

⎠

⎛

⎝
∑

y′∈N
(−1)〈u,H−1(y′)〉⊕〈γ ′,y′〉

⎞

⎠ (−1)〈u,�〉

= 1

|M ||N |
∑

y∈M,y′∈N
(−1)〈γ,y〉⊕〈γ ′,y′〉 ∑

u∈Fn2
(−1)〈u,H−1(y)⊕H−1(y′)⊕�〉

= 2n

|M ||N |
∑

y∈M,y′∈N
H−1(y′)=H−1(y)⊕�

(−1)〈γ,y〉⊕〈γ ′,y′〉.

We now define x as H−1(y) and we get

L = 2n

|M ||N |
∑

x∈Fn2
H(x)∈M,H(x⊕�)∈N

(−1)〈γ,H(x)〉⊕〈γ ′,H(x⊕�)〉

which is equal to Aut(M,N )
H (�, γ, γ ′) by definition. �

In order to get the restricted version of the auto-correlation-linear hull, we have to
understand the linear hull of a restriction first.

Lemma 5. Let H = G2 ◦ G1 : F
n
2 → F

n
2 and let S ⊆ F

n
2 be a non-empty set. Then

Ĥ |S(γ, �) =
∑

μ∈Fn2
Ĝ2(μ, �)Ĝ1|S(γ, μ)

Proof. We have

∑

μ∈Fn2
Ĝ2(μ, �)Ĝ1|S(γ, μ)

= 1

2n|S|
∑

μ∈Fn2

⎛

⎝
∑

y∈Fn2
(−1)〈�,G2(y)〉⊕〈μ,y〉

⎞

⎠
(
∑

x∈S
(−1)〈μ,G1(x)〉⊕〈γ,x〉

)
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= 1

2n|S|
∑

y∈Fn2 ,x∈S
(−1)〈�,G2(y)〉⊕〈γ,x〉 ∑

μ∈Fn2
(−1)〈μ,y⊕G1(x)〉

= 1

|S|
∑

x∈S,y=G1(x)

(−1)〈�,G2(y)〉⊕〈γ,x〉

= 1

|S|
∑

x∈S
(−1)〈�,G2(G1(x))〉⊕〈γ,x〉 = Ĥ |S(γ, �).

�

Proposition 2. (Auto-Correlation-Linear Hull with Restriction) Let G1,G2 : F
n
2 →

F
n
2 and let M, N ⊆ F

n
2 be non-empty sets. For any �, γ, γ ′ ∈ F

n
2 we then have

Aut(M,N )
G2◦G1

(�, γ, γ ′) =
∑

�,�′∈Fn2

̂G−1
2 |M (γ, �)

̂G−1
2 |N (γ ′, �′) AutG1(�, �, �′).

Proof. Starting with Lemma 4, we express the restricted auto-correlation as

T = Aut(M,N )
H (�, γ, γ ′) =

∑

u∈Fn2
Ĥ−1|M (γ, u)Ĥ−1|N (γ ′, u)(−1)〈u,�〉,

and substitute the correlations by using Lemma 5 as

Ĥ−1|M (γ, u) =
∑

�∈Fn2

̂G−1
1 (�, u)

̂G−1
2 |M (γ, �)

and

Ĥ−1|N (γ ′, u) =
∑

�′∈Fn2

̂G−1
1 (�′, u)

̂G−1
2 |N (γ ′, �′).

Doing this we get

T =
∑

u∈Fn2

⎛

⎝
∑

�∈Fn2

̂G−1
1 (�, u)

̂G−1
2 |M (γ, �)

⎞

⎠

⎛

⎝
∑

�′∈Fn2

̂G−1
1 (�′, u)

̂G−1
2 |N (γ ′, �′)

⎞

⎠ (−1)〈u,�〉

=
∑

�,�′∈Fn2

̂G−1
2 |M (γ, �)

̂G−1
2 |N (γ ′, �′)

∑

u∈Fn2

̂G−1
1 (�, u)

̂G−1
1 (�′, u)(−1)〈u,�〉.

Using the fact that, when considering the correlation of the inverse, input and output
masks get swapped, we can rewrite this as

T =
∑

�,�′∈Fn2

̂G−1
2 |M (γ, �)

̂G−1
2 |N (γ ′, �′)

∑

u∈Fn2
Ĝ1(u, �)Ĝ1(u, �′)(−1)〈u,�〉.
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The last part, according to Eq. (4), is nothing else than the auto-correlation of G1 and
thus we conclude

T =
∑

�,�′∈Fn2

̂G−1
2 |M (γ, �)

̂G−1
2 |N (γ ′, �′) AutG1(�, �, �′)

as claimed. �

Relation to Assumptions 1 and 2
Proposition 2 provides a more precise interpretation of Eq. (3). Recall that G1

corresponds to E2 ◦ Em ◦ E1 and G2 to F . The part εi and ε j correspond

directly to ̂G−1
2 |M (γ, �) and ̂G−1

2 |M (γ, �), while the value qi, j is now replaced by
AutG1(�, �, �′). Our main observation is that we can still consider the unrestricted
auto-correlations of G1 in this hull, which means that Assumption 1 is actually not
needed, and Assumption 2, about the independence of the parts, can be replaced by
the assumption that the hull is dominated by a single trail, that is a single choice of
intermediate masks �,�′.

Moreover, using Proposition 2 allows to improve upon the correlation by considering
multiple intermediate masks, as we demonstrate in the application to Chaskey in Sect. 9.

7. LLR-based Statistical Test

Let us consider our differential-linear attacks using N pairs. Following the notation
introduced in Sect. 4.3, we let (y, ỹ) be the �th pair and we assume that y and ỹ belong
to the i th and j th partitions, respectively (we recall that, for ease of notation, we do not
make the dependency of y, ỹ, i, j on � explicit). Then, let us consider

w� = 〈y, γ (pi )〉 ⊕ 〈ỹ, γ (p j )〉

for the �th pair (y, ỹ), and consider the probability

π� = Pry,ỹ [w� = 0] .

Note that π� = ρi, j+1
2 , and for simplicity, let C� denote this correlation for the �th pair

(and the i th and j th partitions are used for this pair), i.e., C� = ρi, j = 2π� − 1.
Let D0 and D1 be the distributions

D0 : (B(1, π1), . . . ,B(1, πN )) , D1 : (B(1, 1/2), . . . ,B(1, 1/2)) .

where B(n, π�) is the binomial distribution with n trials, each having probability π� of
success, where 0 ≤ π� ≤ 1 are not necessarily distinct.

Let q0 and q1 be the probabilities that w := (w1, . . . , wN ) is the result of sampling
from D0 (i.e., from the real distribution) or D1 (i.e., the random distribution), respectively.
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Thus

q0 = Pr [w = X | X ∼ D0] =
N∏

�=1

π
w�

� (1 − π�)
1−w�,

q1 = Pr [w = X | X ∼ D1] =
N∏

�=1

2−1 = 2−N .

The LLR statistic is defined as ln(q0/q1). The likelihood of D0 is larger than that of D1
when ln(q0/q1) > 0. Then the LLR statistic can be rewritten as

ln

(
q0

q1

)
= ln

(
2N ×

N∏

�=1

π
w�

� (1 − π�)
1−w�

)

= N ln(2) +
N∑

�=1

w� ln(π�) +
N∑

�=1

(1 − w�) ln(1 − π�)

= N ln(2) +
N∑

�=1

ln(1 − π�) +
N∑

�=1

ln

(
π�

1 − π�

)
w�.

Note that the first term is constant, but the second and third term depend on the value
of the guessed key bits, which affects the partition of the pairs. With a slight abuse of
notation, we treat qi as a random variable.

Note that, when we use C� instead of π�, the LLR statistic is rewritten as

LLR = N ln(2) +
N∑

�=1

ln (1 − π�) +
N∑

�=1

ln

(
π�

1 − π�

)
w�

= N ln(2) +
N∑

�=1

ln

(
1 − C�

2

)
+

N∑

�=1

ln

(
1 + C�

1 − C�

)
1 − (−1)w�

2

=
N∑

�=1

ln
(√

1 − C�

√
1 + C�

)

︸ ︷︷ ︸
0.5 ln

(
1−C2

�

)

+1

2

N∑

�=1

ln

(
1 − C�

1 + C�

)
(−1)w� .

We can now determine the means and variances of the LLR statistic under D0 and D1
in terms of the correlations Cl .

Proposition 3. LetW andR be the LLR statistics when w is chosen from D1 and D0,
respectively. Then, the means E[W] and E[R] are estimated as

E [W] ≈ −1

2

N∑

�=1

C2
� , E [R] ≈ 1

2

N∑

�=1

C2
� .
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Proof. Assuming that w is chosen from D1, the average value of each w� is 1/2.

E [W] = E

[
ln

(
q0

q1

)]
= N ln(2) +

N∑

�=1

ln(1 − π�) +
N∑

�=1

2−1 ln

(
π�

1 − π�

)

= N ln(2) +
N∑

�=1

ln(1 − π�) +
N∑

�=1

2−1 ln(π�) −
N∑

�=1

2−1 ln(1 − π�)

= N ln(2) +
N∑

�=1

2−1 ln(π�(1 − π�)).

Let C� = 2π� − 1, and π�(1 − π�) = 1+C�

2 × 1−C�

2 = 1−C2
�

4 . Therefore,

E [W] = N ln(2) +
N∑

�=1

2−1 ln

(
1 − C2

�

4

)

= N ln(2) +
N∑

�=1

2−1 ln(1 − C2
� ) −

N∑

�=1

ln(2)

= 1

2

N∑

�=1

ln(1 − C2
� ).

Using the Taylor series of ln(1 − C2
� ), we can approximate this expression with −C2

�

when C2
� is close to 0. Therefore

E [W] ≈ −1

2

N∑

�=1

C2
� .

Next, assuming that w� is chosen from D0, the average value of w� is 1/2 + C�/2.
Therefore

E [R] = −1

2

N∑

�=1

C2
� +

N∑

�=1

C�

2
ln

(
π�

1 − π�

)
.

Since π�/(1 − π�) = 1+C�

1−C�
, we can rewrite the second term as

N∑

�=1

C�

2
ln

(
π�

1 − π�

)
=

N∑

�=1

C�

2
ln

(
1 + C�

1 − C�

)

=
N∑

�=1

C�

2
(ln(1 + C�) − ln(1 − C�)) ≈

N∑

�=1

C2
� ,
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where we have used again a Taylor approximation of ln(1 + z) for the last step. We
conclude that

E [R] ≈ 1

2

N∑

�=1

C2
� .

�

Proposition 4. LetW andR be the LLR statistics when w is chosen from D1 and D0,
respectively. Then, the variances Var[W] and Var[R] are estimated as

Var [W] ≈ Var [R] ≈
N∑

�=1

C2
� .

Proof. In order to compute the variance of ln
(
q0
q1

)
, for simplicity we treat the term π�

as a constant. We have experimentally verified that this is reasonable. With this in mind,
we can write

Var

[
ln

(
q0

q1

)]
≈ Var

[
N∑

�=1

w� ln

(
π�

1 − π�

)]
.

Assuming that w is chosen from D1, we know that the variance of w� is 1/4. As before,
since π�/(1 − π�) = 1+C�

1−C�
, we obtain

N∑

�=1

1

4

[
ln

(
1 + C�

1 − C�

)]2

=
N∑

�=1

1

4
(ln(1 + C�) − ln(1 − C�))

2

and using Taylor approximation:

Var [W] ≈
N∑

�=1

1

4
(ln(1 + C�) − ln(1 − C�))

2 ≈
N∑

�=1

C2
�

Similarly, assuming that w is chosen from D0, the variance of w� is 1/4 − C2
� /4.

Therefore, we want to compute

Var [R] ≈
N∑

�=1

1

4

(
1 − C2

�

) [
ln

(
1 + C�

1 − C�

)]2

which is approximated with Taylor to

N∑

�=1

1

4

(
1 − C2

�

) [
ln

(
1 + C�

1 − C�

)]2

≈
N∑

�=1

C2
� − C4

� .
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Therefore, the variance in both cases is approximately

N∑

�=1

C2
� .

�

7.1. Distinguishing Between the Distributions

Our experiments indicate that the LLR statistic is normally distributed both in the ran-
dom and in the real case. While this could potentially be treated theoretically, using, e.g.,
some variant of the central limit theorem, we prefer to back this up by experiments in the
applications. For now let N (μ0, σ

2
0 ) and N (μ1, σ

2
1 ) be the (assumed) normal distribu-

tions for the LLR statistics when the correct and wrong keys are guessed, respectively.
The previous computation has shown that

μ0 = −μ1 = 1

2

N∑

�=1

C2
� = N

2
C, σ 2

0 = σ 2
1 =

N∑

�=1

C2
� = NC,

where by C we denote the average of the squared correlation, i.e., C := 1
N

∑N
�=1 C

2
� .

In order to distinguish between the two distributions, we are interested in the gap
between μ0 − μ1 and σ0(= σ1).

μ0 − μ1

σ1
= NC√

NC
=
√
NC =

√√√√
N∑

�=1

C2
� . (6)

Therefore, the larger
∑N

�=1 C
2
� , the bigger the gap is. This implies that in order to

maximize this gap, no data should be discarded. That is, there should be no partition
with correlation zero. This is different from what happened in [1], where the same gap

can approximately be represented as
∑N

�=1|C�|√
N

=
√
Nc2, where c = 1

N

∑N
�=1|C�|. In

other words, this gap is proportional to the squared value of the average of the (absolute
value of the) correlation (c), while for the LLR statistic the same gap is proportional to
the average of squared correlations (C). We remark that the latter is always larger than
the former, as expected when using the LLR.

8. WHT-based Key Recovery Technique

We use the LLR statistic to recover the secret key. Recall that the LLR statistic is
calculated as

LLR = 1

2

N∑

�=1

ln
(

1 − C2
�

)
+ 1

2

N∑

�=1

ln

(
1 − C�

1 + C�

)
(−1)w�,
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where w� = 〈y, γ (yP )〉⊕〈ỹ, γ (ỹP )〉 and (y, ỹ) is the �th pair in N pairs. Only ciphertext
pair (c, c̃) can be observed by attackers. Which partition the pair belongs to is determined
by yP and ỹP . Therefore, the key denoted by kP is guessed to identify the partition and
yP = cP ⊕ kP . After guessing kP , we can get the following 1-bit representation:

w� = 〈y, γ (yP )〉 ⊕ 〈ỹ, γ (ỹP )〉
= 〈c, γ (yP )〉 ⊕ 〈c̃, γ (ỹP )〉 ⊕ 〈k, γ (yP ) ⊕ γ (ỹP )〉.

We need not only kP but also 〈k, γ (yP ) ⊕ γ (ỹP )〉 to compute w�. Let kR denote
involved key bits, and the size is dim W , where a linear subspace W is defined by
W := Span{γ (pi ) ⊕ γ (p j ) | i, j ∈ {1, . . . , s}}. The trivial procedure would require
guessing kP and kR for every pair, for a time complexity of 2N × 2nP+dim W , where
nP is the bit length of kP .

In this section, we introduce a more advanced procedure, where the fast Walsh–
Hadamard transform (FWHT) is applied instead of guessing kR for every pair. As a
result, the time complexity is reduced to 2nP (2N + dim W · 2dim W ).

8.1. Using the FWHT for Key Recovery

The first step in the key recovery procedure is guessing kP to identify partitions.
Once we have guessed these key bits, the first term of the LLR statistic, i.e., α :=
1
2

∑N
�=1 ln

(
1 − C2

�

)
, is constant and independent of w�. Thus, in order to determine the

LLR, we compute LLR′ = LLR − α as

LLR′ = 1

2

N∑

�=1

ln

(
1 − C�

1 + C�

)
(−1)w�

= 1

2

N∑

�=1

ln

(
1 − C�

1 + C�

)
(−1)〈c,γ (yP )〉⊕〈c̃,γ (ỹP )〉 × (−1)〈k,γ (yP )⊕γ (ỹP )〉.

Then, by using an array β, whose element β(γ ) is defined as

β(γ ) := 1

2

N∑

�=1:γ=γ (yP )⊕γ (ỹP )

ln

(
1 − C�

1 + C�

)
(−1)〈c,γ (yP )〉⊕〈c̃,γ (ỹP )〉,

LLR′ is computed as

LLR′ =
∑

γ∈W
β(γ ) × (−1)〈k,γ 〉.
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Algorithm 2 Key-recovery
Require: Cipher E , sample size N , threshold �.
Ensure: List of key candidates (kP , kL) for nP + dim W bit of information on k.
1: for � ∈ {1, . . . , N } do
2: x

$← U ⊕ a
3: (c(�), c̃(�)) ← (E(x), E(x ⊕ �in))

4: end for
5: for k′

P ∈ P do
6: α ← 0
7: for γ ∈ W do
8: β(γ ) ← 0
9: end for
10: for � ∈ {1, . . . , N } do
11: (c, c̃) ← (c(�), c̃(�))
12: Compute yP = cP ⊕ k′

P and ỹP = c̃P ⊕ k′
P to identify partitions.

13: Identify Ti × T j for (yP , ỹP ) and get corresponding correlation ρi, j .

14: γ ← γ (yP ) ⊕ γ (ỹP )

15: α ← α + 1
2 ln(1 − ρ2

i, j )

16: β(γ ) ← β(γ ) + 1
2 ln

( 1−ρi, j
1+ρi, j

)
(−1)〈c,γ (yP )〉⊕〈c̃,γ (ỹP )〉

17: end for
18: Compute β̂ by using the Fast Walsh-Hadamard Transform.
19: C(k′

P , k′
R) ← α + β̂(k′

R)

20: if C(k′
P , k′

R) > � then
21: Save (k′

P , k′
R) as a key candidate.

22: end if
23: end for

Given a real-valued function f : F
n
2 → R, the Walsh–Hadamard transform evaluates

the function

f̂ : F
n
2 → R, x �→

∑

y∈Fn2
f (y) × (−1)〈x,y〉.

A naive computation needs O(22n) steps (additions and evaluations of f ), i.e., for each
x ∈ F

n
2, we compute (−1)〈x,y〉 f (y) for each y ∈ F

n
2. The Fast Walsh–Hadamard

transform is a well-known recursive divide-and-conquer algorithm that evaluates the
Walsh–Hadamard transform in O(n2n) steps. We refer to, e.g., [38, Section 2.3] for the
details.

Algorithm 2 shows the attack procedure using the FWHT. We first collect N ciphertext
pairs, and therefore, it needs 2N queries to E as the data complexity. We next guess kP
and prepare a real number α and the array of real numbers β to compute the LLR statistic.
For every stored ciphertext pair, we identify partitions, get corresponding correlation ρi, j
and linear mask γ , and update α and β accordingly. We finally apply the FWHT to β

and the LLR statistics are computed as α + β̂(kL). The overall running time can be
estimated as 2nP (2N + dim W · 2dim W ).
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8.2. Success Probability of Algorithm 2

In the following, we assume that the distributions involved can be well estimated by
normal approximations. This significantly simplifies the analysis. Note that we opted
for a rather simple statistical model ignoring, in particular, the effect of the wrong key
distribution by assuming the simple randomization hypothesis and ignoring the way we
sample our plaintexts (i.e., known vs. chosen vs. distinct plaintext). Those effects might
have major impact on the performance of attacks when the data complexity is close to
the full code-book and the success probability and the gain are limited. However, none
of this is the case for our parameters. In our concrete applications, we have verified the
behavior experimentally wherever possible.

For the statistical model for the right key, this implies that the counter can be expected
to approximately follow a normal distribution with parameters

C(kP , kL) ∼ N
(
N

2
C, NC

)
,

where C = 1
N

∑N
�=1 C

2
� . The wrong key counters (under the simple randomization

hypothesis) are approximately normally distributed with parameters

C(k′
P , k′

L) ∼ N
(

−N

2
C, NC

)
.

With this, we can deduce the following proposition.

Proposition 5. After runningAlgorithm2 for p−1 times, the probability that the correct
key is among the key candidates is

psuccess ≥ 1

2
Pr [C(kP , kL) ≥ �] = 1

2

(
1 − �

(
� − N

2 C√
NC

))
.

The expected number of wrong keys is 2nP+dim W

p ×
(

1 − �

(
�+ N

2 C√
NC

))
.

9. Application to Chaskey

Chaskey [10] is a lightweight MAC algorithm whose underlying primitive is an ARX-
based permutation in an Even-Mansour construction, i.e., Chaskey-EM. The permutation
operates on four 32-bit words, i.e., the block size is 128 bits. In the version proposed in
[10], the permutation employs 8 rounds of the form depicted in Fig. 7. In [40], the author
proposed a version with an increased number of rounds (from 8 to 12), and this version
is currently standardized in ISO/IEC 29192-6:2019. The designers claim security up to
280 computations as long as the data are limited to 248 blocks.



29 Page 32 of 61 C. Beierle et al.

vr3

vr0

vr1

vr2

5

16

8

7

16

13

wr
0

wr
1

wr
3

wr
2 vr+1

0

vr+1
1

vr+1
3

vr+1
2

Fig. 7. The round function of Chaskey .

Let (vr0, v
r
1, v

r
2, v

r
3) be the input of the r th round function, and (wr

0, w
r
1, w

r
2, w

r
3)

denotes the state after applying the half round for (vr0, v
r
1, v

r
2, v

r
3). Please refer to Fig. 7

for each index of the branches.

9.1. Overview of Our Attack

We first show the high-level overview of our attack. Similar to the previous differential-
linear attack from [19], we first divide the cipher into three sub ciphers. For the 7-round
attack, we use E1 covering 1.5 rounds, Em covering 4 rounds, and E2 covering 0.5
rounds, and the key-recovery, i.e., the function F , is covering 1 round. We also present
a 7.5-round attack, where E2 covers 1 round instead of 0.5 rounds.

The differential characteristic and the linear trail are applied to E1 and E2, respec-
tively, while the experimental differential-linear distinguisher is applied to the middle
part Em . Note that, since the differential-linear distinguisher over Em is constructed
experimentally, its absolute correlation must be high enough to be detectable by using a
relatively small sampling space. Moreover, since it is practically infeasible to check all
input differences and all output linear masks, we restricted ourselves to the case of an
input difference of Hamming weight 1 and linear masks of the form [i] or [i, i + 1], i.e.,
1-bit or consecutive 2-bit linear masks. As a result, when there is a non-zero difference
only in the 31st bit (msb) of w1

0, i.e., �m = (([]), ([]), ([31]), ([])), we observed the
following two differential-linear distinguishers with correlations 2−5.1:

AutEm (�m, ([], [], [20], []), ([], [], [20], [])) ≈ 2−5.1, (7)

AutEm (�m, ([], [], [20, 19], []), ([], [], [20, 19], [])) ≈ 2−5.1. (8)

These correlations4 are estimated using a set consisting of 226 random samples of w1.
This is significant enough since the standard deviation assuming a normal distribution is
213. Note that we do not focus on the theoretical justification of this 4-round experimental
differential-linear distinguisher in this paper and we start the analysis for E1 and E2 from
the following subsection.

4The first case is exactly the one shown in [19], but its correlation was reported as 2−6.1. We are not sure
about the reason for this gap, but we think that 2−6.1 refers to the bias instead of the correlation.



Improved Differential-Linear Attacks Page 33 of 61 29

Table 2. Probability that adding one basis element affects the output difference .

Probability Basis Number of indices

γ j = 1 v2 : 16,17,18,19,20,22,23,24,25,30,31 18
v3 : 16,17,18,19,20,22,23

0.93 ≤ γ j < 1 v0 : 19,20,31 v3 : 24,25,30 8
v1 : 19,20

γ j = 1 v0[8] ⊕ v1[8, 13] ⊕ v2[29] 4
v2[21, 29] ⊕ v3[21]
v0[18, 21, 30] ⊕ v1[21, 26, 30] ⊕ v2[3, 26] ⊕ v3[26, 27]
v2[15] ⊕ v3[15]

9.2. Using Conditional Differentials

Before we discuss the improved basis we have found using the conditional differential
technique, we first recall the basis of U introduced in [1] (see the first two-row blocks in
Table 2). Here, the threshold of the probability is relaxed from 0.95 to 0.93, and v3[30]
(in red) is newly added in the basis. The conditional differential techniques provide us
with four other basis elements with probability 1, which cannot be found by Algorithm
1 [1] (see the third-row block in Table 2). A linear subspace U , formed by elements that
don’t affect the output with probability 1, and whose dimension is 18+4 = 22 is finally
used to attack 7-round Chaskey. In addition, all, i.e., 18 + 8 + 4 = 30, basis elements
are used to attack 7.5-round Chaskey.

In “Appendix C”, we provide the details on how to obtain these relations. We use the
conditional differential framework and Fig. 18 in order to recover for free the value of
some keybits and also to find additional bits of information for sampling and increase
the dimension of U from 18 as given in [1] (and involving exclusively one-bit relations)
to 22, or 23 if one-bit relation on the key is known. The new proposed set of freebits (or
relations with probability 1) is optimal and no more such relations exist.

9.2.1. Keybits That Are Obtained for Free

If we find a set of inputs that verifies the differential path, we can directly deduce the
following linear relations on the keybits, due to the conditions where differences are
absorbed during the first modular additions (or the other way round, for each guess of
these values, build sets of inputs that verify the 6 related conditions): k1[8] ⊕ k0[8],
k1[21]⊕ k0[21], k1[30]⊕ k0[30] and k2[26]⊕ k3[26], k2[21]⊕ k3[21], k2[26]⊕ k3[27].
Note that these techniques can be used after mounting concrete attacks shown in
Sects. 9.3 and 9.4. Thus, this does not contribute to accelerating our key-recovery attacks.

9.2.2. Additional Space for Sampling

Compared with the linear subspace U shown in [1], the dimension of U increases by 4
by adding vectors listed in the third-row block in Table 2 to the basis. In order to find
these relations, we have used the rules presented in Sect. 5.3, and some more detailed
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explanations can be found in “Appendix C” for the interested reader using Fig. 18. We
summarize this in the following lemma:

Lemma 6. There is a set X ′ ⊆ F
128
2 of size 2128−17 and a 22-dimensional linear

subspace U , such that for any element x ∈ X ′ and any u ∈ U it holds that E1(x ⊕ u) ⊕
E1(x ⊕ u ⊕ �in) = �m, where E1 denotes 1.5 rounds of Chaskey.

Our improved 7-round attack uses this linear subspace.
One additional probability-one relation can be obtained if we flip the bit v2[27] and

at the same time v2[29] = v2[29] ⊕ v2[28] ⊕ v3[28]. The issue with this one is that it
depends on the relation of k2[28] ⊕ k3[28] (guessing this bit of information for instance
would allow us to have an extra sampling bit) and it will not be used in the attack.

In addition to the probability-one relations, we can consider a larger linear subspace
by adding relations with very high probabilities.

Lemma 7. There is a setX ′ ⊆ F
128
2 whose size is about 2128−17.28 and a 30-dimension

linear subspace U , such that for any element x ∈ X ′ and any u ∈ U it holds that
E1(x ⊕ u) ⊕ E1(x ⊕ u ⊕ �in) = �m where E1 denotes 1.5 rounds of Chaskey.

We can build a 30-dimensional linear subspace such that all its elements verify simultane-
ously the differential with probability 2−17.28. For this, we consider the 22-dimensional
linear subspace of Lemma 6 and add to its basis the 7 vectors from [1] and v3[30]. Our
7.5-round attack uses this linear subspace.

9.3. The 7-Round Attack

9.3.1. List of Differential-Linear Distinguishers

As shown in Eqs. (7) and (8), we have two differential-linear distinguishers with correla-
tions 2−5.1, where two output linear masks, ([], [], [20], []) and ([], [], [20, 19], []) , are
available. By extending ([], [], [20], []) and ([], [], [20, 19], []) by 0.5 rounds, respec-
tively, we can get four linear masks (see Fig. 8). When both texts in pairs use either of
ψ(0) or ψ(1), the correlation is ±2−6.42. Moreover, when both texts in pairs use either
of ψ(2) or ψ(3), the correlation is ±2−6.42.

We have other linear masks whose absolute correlation is relatively high but lower
than 2−6.43. Table 3 summarizes 12 output masks.

For any (i, j) ∈ {0, 1} × {0, 1} and (i, j) ∈ {2, 3} × {2, 3}, the correlations of the
differential-linear distinguishers are estimated by the combination of two output masks
as follows:

Aut(β(i)
0 , β

( j)
0 ) = δ

(i)
0 · δ

( j)
0 · 2−6.42, Aut(β(i)

0 , β
( j)
1 ) = δ

(i)
0 · δ

( j)
1 · 2−7.70,

Aut(β(i)
0 , β

( j)
2 ) = δ

(i)
0 · δ

( j)
2 · 2−8.76, Aut(β(i)

1 , β
( j)
1 ) = δ

(i)
1 · δ

( j)
1 · 2−8.95,

Aut(β(i)
1 , β

( j)
2 ) = δ

(i)
1 · δ

( j)
2 · 2−10.01, Aut(β(i)

2 , β
( j)
2 ) = δ

(i)
2 · δ

( j)
2 · 2−11.06,
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Fig. 8. Four 0.5-round linear trails for the 7-round attack .

Table 3. List of output linear masks after 6 rounds .

Type Linear mask δ

ψ(0) β
(0)
0 = ([27], [], [11, 4, 3], []) 1

β
(0)
1 = ([27], [], [11, 4, 2], []) 1

β
(0)
2 = ([27], [], [11, 4, 1], []) 1

ψ(1) β
(1)
0 = ([27, 26], [], [11, 10, 4], []) −1

β
(1)
1 = ([27, 26], [], [11, 10, 4, 3, 2], []) 1

β
(1)
2 = ([27, 26], [], [11, 10, 4, 3, 1], []) 1

ψ(2) β
(2)
0 = ([27, 26], [], [11, 10, 4, 3], []) 1

β
(2)
1 = ([27, 26], [], [11, 10, 4, 2], []) 1

β
(2)
2 = ([27, 26], [], [11, 10, 4, 1], []) 1

ψ(3) β
(3)
0 = ([27], [], [11, 4], []) 1

β
(3)
1 = ([27], [], [11, 4, 3, 2], []) −1

β
(3)
2 = ([27], [], [11, 4, 3, 1], []) −1

where Aut(β(i), β( j)) = AutE2◦Em (�m, β(i), β( j)) and δ
(i)
h ∈ {1,−1} is defined by the

δ column in Table 3. Each correlation is estimated by using 235 pairs. Considering that
the lowest correlation is 2−11.06, an estimation with 235 pairs is reliable enough. These
differential-linear distinguishers are finally used to estimate the theoretical correlation
by considering the auto-correlation-linear hull.

9.3.2. Theoretical Correlations with Auto-Correlation-Linear Hull

To understand how to estimate the theoretical correlation, we provide an example. We
observe a pair of ciphertexts (c, c̃) and guess key bits to identify the partition.
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Table 4. List of partition points for the attack against 7-round Chaskey.

ζ1 Choice: (w6
0[16], w6

0[16, 15])
P1 � pi ∼= (sR [15], sR [14])
Linear: v3[16], v0[16], v0[15], v0[14], v0[13]

ζ2 Choice: (v6
2 [11], v6

2 [11, 10])
P2 � pi ∼= (v3[18] ⊕ v2[9, 17], sL [10], sL [9], sL [18], sL [17])
Linear: v3[19], v1[11], v2[11], v2[10], v2[9], v2[8], v1[19], v2[19], v2[18], v2[17], v2[16]

ζ3 Choice: (v6
2 [4], v6

2 [4, 3])
P3 � pi ∼= (v3[11] ⊕ v2[2, 10], sL [3], sL [2], sL [11], sL [10])
Linear: v3[12], v1[4], v2[4], v2[3], v2[2], v2[1], v1[12], v2[12], v2[11], v2[10], v2[9]

Table 4 summarizes the partition points for the 7-round attack. To identify the partition,
we need to know

sR[15], sR[14], v3[18] ⊕ v2[9, 17], sL [10], sL [9], sL [18], sL [17],
v3[11] ⊕ v2[2, 10], sL [3], sL [2], sL [11], (sL [10]),

and 11-bit key guessing is enough, where sL = k1 ⊕ k2 and sR = k0 ⊕ k3. After we
guess the 11-bit key, we assume that ζ1 � pi ∼= (0, 0), ζ2 � pi ∼= (0, 0, 0, 1, 0), and
ζ3 � pi ∼= (0, 0, 0, 1, 0) for c. We now consider the case that the linear trail ψ(3) is used
for both texts in a pair. When β

(3)
0 is used, available linear masks and corresponding

correlation are computed as follows:

• To compute w6
0[16], γ = 11100 is used with correlation −1.

• To compute v6
2[11], γ = 11111011010 is used with correlation −1.

• To compute v6
2[4], γ = 11111011010 is used with correlation −1.

Note that the partition shown in Fig. 16 is directly available to evaluate v6
2[11]. For

other bits, e.g., v6
2[4], corresponding correlations must be reevaluated because the 11th

bit and 4th bit provide slightly different correlations. Assuming all partition points are
independent, the correlation is

F̂−1|Tpi
(γ pi , β

(3)
0 ) = −1 × −1 × −1 = −1

due to the piling-up lemma [15].
We also assume that ζ1 � pi ∼= (0, 0), ζ2 � pi ∼= (0, 0, 1, 0, 0), and ζ3 � pi ∼=

(0, 0, 0, 1, 0) for c̃. When β
(3)
0 is used, available linear masks and corresponding corre-

lation are computed as follows:

• To compute w̃6
0[16], γ = 11100 is used with correlation −1.

• To compute ṽ6
2[11], γ = 11111011100 is used with correlation 2−0.263.

• To compute ṽ6
2[4], γ = 11111011100 is used with correlation −1.

Again, assuming all partition points are independent, the correlation is

F̂−1|Tp j
(γ p j , β

(3)
0 ) = −1 × 2−0.263 × −1 = 2−0.263.
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Thus, when β
(3)
0 and β

(3)
0 are used for c and c̃, respectively, the correlation (with one

trail) is estimated as

F̂−1|Tpi
(γ pi , β

(3)
0 ) × F̂−1|Tp j

(γ p j , β
(3)
0 ) × AutE2◦Em (�m, β

(3)
0 , β

(3)
0 )

= −1 × 2−0.263 × (δ
(3)
0 × δ

(3)
0 × 2−6.42) = −2−6.683.

We now take the auto-correlation-linear hull into account. Instead of β
(3)
0 for c, we

use β
(3)
1 and compute the correlation when the same linear mask γ is used.

• To compute v6
2[4, 3, 2], γ = 11111011010 is used with correlation 2−0.677.

Therefore,

F̂−1|Tpi
(γ pi , β

(3)
1 ) = −1 × −1 × 2−0.677 = 2−0.677.

Therefore, when ψ
(3)
1 and ψ

(3)
0 are used for c and c̃, respectively, the correlation (with

one trail) is estimated as

F̂−1|Tpi
(γ pi , β

(3)
1 ) × F̂−1|Tp j

(γ p j , β
(3)
0 ) × AutE2◦Em (�m, β

(3)
1 , β

(3)
0 )

2−0.677 × 2−0.263 × (δ
(3)
1 × δ

(3)
0 × 2−7.70) = −2−8.64.

We estimate 3 × 3 = 9 correlations and sum up these correlations (considering the
sign). As a result, when ψ

(3)
1 and ψ

(3)
0 are used, the absolute correlation increases to

2−5.90893. We similarly estimate correlations when different linear trails are used, but in
fact, using ψ

(3)
1 and ψ

(3)
0 causes the highest absolute correlation on this partition. Remark

that once the indicator is given, the best linear mask and corresponding correlation are
computed. The complexity is about 22kP , which is negligible in comparison with the
time complexity of the whole attack.

9.3.3. Experimental Reports

The absolute correlation of each partition is high enough so that we experimentally
verify our attack procedure. In our experiments, we used the right pair and the correct
key to observe the LLR statistic for the correct case. On the other hand, the right pair is
not used for the wrong case.

The LLR statistic depends on the sum of the squared correlation NC = ∑N
�=1 c

2
� . We

estimated C ≈ 2−14.711, and NC ≈ 39.1 when N = 220 pairs are used. The following
shows the comparison of the LLR statistics, where the theoretical distribution is drawn
by the normal distribution with mean NC/2 (for a correct case) and −NC/2 (for wrong

case) and the standard deviation
√
NC . By repeating our attack procedure 1024 times,

two experimental histograms are drawn (see Fig. 9). A slight gap is observed between
the theoretical distribution and experimental histogram in the correct case. Note that
the experimental one is more biased than the theoretical estimation. We expect that the
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Fig. 9. Comparison with LLR statistics to attack 7-Round Chaskey .

reason comes from the additional auto-correlation-linear hull that we do not take into
account.

We finally estimate the data and time complexities. To identify the partition, we need
to guess the 11-bit secret key. We also enumerated elements of the linear subspace W
and computed the basis by using Gaussian elimination. As a result, the dimension of
W is 10. Because of Lemma 6, 217 iterations are required to find the right pair. Thus,
we need to remove 211+10+17 = 238 wrong cases. When 221 pairs are used, we have
NC ≈ 78.2. With a success probability of 90%, we can construct a 45.5-bit filter, which
is enough to remove 238 wrong cases. We finally estimate the time complexity by using
the formula as follows:

T = p−1 × 2nP ×
(

2N + dim W2dim W
)

= 217 × 211 ×
(

2 × 221 + 10 × 210
)

≈ 250.00.

9.4. The 7.5-Round Attack

We further extend four 0.5-round linear trails to eight 1-round linear trails. For every
linear trail, we have two different trails whose absolute correlation is slightly lower.
Table 5 shows 24 such output masks. For any (i, j) ∈ {0, 1, 2, 3} × {0, 1, 2, 3} and
(i, j) ∈ {4, 5, 6, 7}×{4, 5, 6, 7}, the correlations of the differential-linear distinguishers
are estimated by the combination of two output masks as follows:

Aut(β(i)
0 , β

( j)
0 ) = δ

(i)
0 · δ

( j)
0 · 2−9.72, Aut(β(i)

0 , β
( j)
1 ) = δ

(i)
0 · δ

( j)
1 · 2−10.99,

Aut(β(i)
0 , β

( j)
2 ) = δ

(i)
0 · δ

( j)
2 · 2−12.04, Aut(β(i)

1 , β
( j)
1 ) = δ

(i)
1 · δ

( j)
1 · 2−12.26,

Aut(β(i)
1 , β

( j)
2 ) = δ

(i)
1 · δ

( j)
2 · 2−13.32, Aut(β(i)

2 , β
( j)
2 ) = δ

(i)
2 · δ

( j)
2 · 2−14.40,

where Aut(β(i), β( j)) = AutE2◦Em (�m, β(i), β( j)) and δ
(i)
h ∈ {1,−1} is defined by the

δ column in Table 5. These correlations are estimated by using 240 pairs. Considering
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Table 5. List of output linear masks after 6.5 rounds .

Type Linear mask δ

ψ(0) β
(0)
0 = ([16, 15], [31, 0], [19, 12, 11, 4, 3], [19, 12]) 1

β
(0)
1 = ([16, 15], [31, 0], [19, 12, 11, 4, 2], [19, 12]) 1

β
(0)
2 = ([16, 15], [31, 0], [19, 12, 11, 4, 1], [19, 12]) 1

ψ(1) β
(1)
0 = ([16, 15], [31, 0], [19, 12, 4], [19, 12, 11]) −1

β
(1)
1 = ([16, 15], [31, 0], [19, 12, 4, 3, 2], [19, 12, 11]) 1

β
(1)
2 = ([16, 15], [31, 0], [19, 12, 4, 3, 1], [19, 12, 11]) 1

ψ(2) β
(2)
0 = ([16], [0], [19, 18, 12, 4, 3], [19, 18, 12, 11]) 1

β
(2)
1 = ([16], [0], [19, 18, 12, 4, 2], [19, 18, 12, 11]) 1

β
(2)
2 = ([16], [0], [19, 18, 12, 4, 1], [19, 18, 12, 11]) 1

ψ(3) β
(3)
0 = ([16], [0], [19, 18, 12, 11, 4], [19, 18, 12]) 1

β
(3)
1 = ([16], [0], [19, 18, 12, 11, 4, 3, 2], [19, 18, 12]) −1

β
(3)
2 = ([16], [0], [19, 18, 12, 11, 4, 3, 1], [19, 18, 12]) −1

ψ(4) β
(4)
0 = ([16, 15], [31, 0], [19, 12, 11, 4], [19, 12]) 1

β
(4)
1 = ([16, 15], [31, 0], [19, 12, 11, 4, 3, 2], [19, 12]) −1

β
(4)
2 = ([16, 15], [31, 0], [19, 12, 11, 4, 3, 1], [19, 12]) −1

ψ(5) β
(5)
0 = ([16, 15], [31, 0], [19, 12, 4, 3], [19, 12, 11]) 1

β
(5)
1 = ([16, 15], [31, 0], [19, 12, 4, 2], [19, 12, 11]) 1

β
(5)
2 = ([16, 15], [31, 0], [19, 12, 4, 1], [19, 12, 11]) 1

ψ(6) β
(6)
0 = ([16], [0], [19, 18, 12, 11, 4, 3], [19, 18, 12]) −1

β
(6)
1 = ([16], [0], [19, 18, 12, 11, 4, 2], [19, 18, 12]) −1

β
(6)
2 = ([16], [0], [19, 18, 12, 11, 4, 1], [19, 18, 12]) −1

ψ(7) β
(7)
0 = ([16], [0], [19, 18, 12, 4], [19, 18, 12, 11]) 1

β
(7)
1 = ([16], [0], [19, 18, 12, 4, 3, 2], [19, 18, 12, 11]) −1

β
(7)
2 = ([16], [0], [19, 18, 12, 4, 3, 1], [19, 18, 12, 11]) −1

the lowest absolute correlation is 2−14.6, an estimation with 240 pairs is reliable enough.
We use the same method as the attack against 7-round Chaskey to determine a linear
mask and estimate the corresponding correlation.

Table 6 summarizes the partition points for the 7.5-round attack. To identify the
partition, we need to know

sR[22], sR[21], sR[20], sR[19], sR[18], sL [24], sL [23],
v3[28] ⊕ v0[27, 14], sL [15], sL [14], sL [28], sL [27],
v1[25] ⊕ v2[8, 1], sR[2], sR[1], sR[9], sR[8],
v1[18] ⊕ v2[26, 1], sR[27], sR[26], (sR[2]), (sR[1]),
v1[10] ⊕ v2[25, 18], (sR[19]), (sR[18]), (sR[26]), sR[25],
sL [30], sL [29], (sL [28]), (sL [27])

and 24-bit key guessing is enough, where sL = k0 ⊕ k1 and sR = k2 ⊕ k3.
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Table 6. List of partition points for the attack against 7.5-round Chaskey.

ζ1 P1 � pi ∼= (sR [22], sR [21], sR [20], sR [19], sR [18])
(v7

2 [23], v7
0 [23, 22]) Linear: v3[23], v2[23], v2[22], v2[21], v2[20], v2[19], v2[18], v2[17]

ζ2 P2 � pi ∼= (sL [24], sL [23])
(v7

0 [25], v7
0 [25, 24]) Linear: v1[25], v0[25], v0[24], v0[23], v0[22]

ζ3 P3 � pi ∼= (v3[28] ⊕ v0[27, 14], sL [15], sL [14], sL [28], sL [27])
(w6

0[16], v7
0 [16, 15]) Linear: v3[29], v1[16], v0[16], v0[15], v0[14], v0[13], v1[29], v0[29], v0[28],

v0[27], v0[26]
ζ4 P4 � pi ∼= (v1[25] ⊕ v2[8, 1], sR [2], sR [1], sR [9], sR [8])
(w6

2[19], v7
0 [19, 18]) Linear: v1[26], v3[3], v2[3], v2[2], v2[1], v3[10], v2[10], v2[9], v2[8], v2[7]

ζ5 P5 � pi ∼= (v1[18] ⊕ v2[26, 1], sR [27], sR [26], sR [2], sR [1])
(w6

2[12], v7
0 [12, 11]) Linear: v1[19], v3[28], v2[28], v2[27], v2[26], v2[25], v3[3], v2[3], v2[2], v2[1])

ζ6 P6 � pi ∼= (v1[10] ⊕ v2[25, 18], sR [19], sR [18], sR [26], sR [25])
(w6

2[4], v7
0 [4, 3]) Linear: v1[11], v3[20], v2[20], v2[19], v2[18], v2[17], v3[27], v2[27], v2[26],

v2[25], v2[24]
ζ7 P7 � pi ∼= (sL [30], sL [29], sL [28], sL [27])
(v7

0 [31]) Linear: v1[31], v0[31], v0[30], v0[29], v0[28], v0[27], v0[26]
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Fig. 10. Comparison with LLR statistics to attack 7.5-Round Chaskey .

9.4.1. Experimental Reports

Each absolute correlation is relatively lower than for a 7-round attack, but it is still
possible to verify our attack procedure experimentally by using about 228 pairs. Like the
7-round attack, we used a right pair and the correct key to observe the LLR statistic for
the correct case, and a right pair is not used for the wrong case.

We estimated C ≈ 2−24.37, and NC ≈ 12.38 when N = 228 pairs are used. Figure 10
shows the comparison of the LLR statistics, where the theoretical distribution is drawn
by the normal distribution with mean NC/2 (for a correct case) and −NC/2 (for wrong

case) and the standard deviation
√
NC . By repeating our attack procedure 256 times, two

experimental histograms are drawn. Similar to the 7-round attack, a slight gap between
the theoretical distribution and experimental histogram is observed in the correct case.
We again expect that the reason comes from the other auto-correlation-linear hull that we
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Fig. 11. Comparison with LLR statistics to attack 7.5-Round Chaskey when multiple linear masks are used
every partition .

do not consider. We estimate the data and time complexities. To identify the partition, we
need to guess the 25-bit secret key. We also enumerated elements of the linear subspace
W and computed the basis by using Gaussian elimination. As a result, the dimension of
W is 21. To find a right pair, we need 217.28 iterations because of Lemma 7. Thus, we
need to remove 224+21+17.28 = 262.28 wrong cases. Chaskey outputs at most 248 data,
the number of available pairs is at most 248−17.28−1 = 229.72. Then, NC ≈ 40.78. With
a success probability of 90%, we can construct a 22.5-bit filter, which is insufficient to
remove all wrong cases. Considering 217.28 iterations to find a right pair, the performance
to filter wrong keys decreases to 5.22 bits. We finally estimate the time complexity as

T = p−1 · 2nP ·
(

2N + dim W2dim W
)

= 217.28 · 224 ·
(

2 · 230 + 21 · 221
)

≈ 272.28.

9.4.2. Using Multiple Linear Approximations Every Partition

Only filtering 25.22 wrong keys is not always enough to attack 7.5-round Chaskey. To
recover the unique key under the restriction of 248 data, we use an extended attack, where
multiple linear approximations are used for every partition. In the 7.5-round attack, there
are 2×4×4 = 32 linear approximations, and we choose only one approximation with the
highest absolute correlation. However, why do we not use the other 31 approximations?
The use of these approximations allows us to reduce the data complexity significantly.
Of course, this is a little controversial technique because we are unlikely to assume
that each approximation is independent. Fortunately, since our attack can be verified
experimentally, we implemented our attack under this controversial assumption.

We estimated C ≈ 2−22.86. When N = 228 pairs are used, NC ≈ 35.26, which
increases from 12.38. Figure 11 shows the comparison of the LLR statistics, where the
theoretical distribution is drawn by the normal distribution with mean NC/2 (for a correct
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case) and −NC/2 (for wrong case) and the standard deviation
√
NC . By repeating

our attack procedure 256 times, two experimental histograms are drawn. Despite the
controversial assumption, our theoretical estimation can simulate the experimental result
nicely. Therefore, for the application to 7.5-round Chaskey, we conclude that using
multiple linear approximations independently does not have any issue.

We estimate the data and time complexities. Again, since only 229.72 pairs are avail-
able, NC ≈ 116.16. With a success probability of 90%, we can construct a 69.6-bit filter,
enough to remove 262.28 wrong cases. The number of approximations, 32, is multiplied.
We finally estimate the time complexity as

T = p−1 × 2nP ×
(

2N × 32 + dim W2dim W
)

= 217.28 × 224 ×
(

2 × 229.72 × 32 + 21 × 221
)

≈ 277.00.

10. Application to ChaCha

The internal state of ChaCha is represented by a 4 × 4 matrix whose elements are 32-bit
vectors. In this section, the input state for the r th round function is represented as

⎛

⎜⎜⎝

vr0 vr1 vr2 vr3
vr4 vr5 vr6 vr7
vr8 vr9 vr10 vr11
vr12 vr13 vr14 vr15

⎞

⎟⎟⎠ .

The QR (an abbreviation for quarterround) function is applied in odd and even rounds
on every column and diagonal, respectively. We also introduce the notion of a half round,
in which the QR function is divided into two sub-functions depicted in Fig. 12. Let wr be
the internal state after applying a half round on vr . Moreover, we use the term branches
for a, b, c and d, as shown in Fig. 12.

In the initial state of ChaCha, a 128-bit constant is loaded into the first row, a 128-
or 256-bit secret key is loaded into the second and third rows, and a 64-bit counter and
64-bit nonce are loaded into the fourth row. In other words, the first three rows in v0

are fixed. For r -round ChaCha, the odd and even round functions are iteratively applied,
and the feed-forward values v0

i � vri is given as the key stream for all i . Note that we
can compute vri for i ∈ {0, 1, 2, 3, 12, 13, 14, 15} because corresponding v0

i is known.

10.1. Overview of Our Attack

We use the same attack strategy as for Chaskey. The cipher is divided into the sub ciphers
E1 covering 1 round, Em covering 2.5 rounds, and E2 covering 1.5 rounds to attack 6
rounds, where the key recovery is applied the last single round (F). One difference to
Chaskey is the domain space that the attacker can control. In particular, we cannot control
branches a, b, and c because fixed constants and the fixed secret key are loaded into these
states. Thus, only branch d can be varied. It implies that active bit positions for input
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Fig. 12. The odd and even round functions of ChaCha .

differences are limited to branch d, and a difference �m with Hamming weight 1 after
E1 will not be available due to the property of the round function. Therefore, we first
need to generate consistent �m whose Hamming weight is minimized. The following
shows such differential characteristics over one QR function:

�in = (([]), ([]), ([]), ([i])) → �m = (([i + 28]), ([i + 31, i + 23, i + 11, i + 3]),
([i + 24, i + 16, i + 4]), ([i + 24, i + 4])).

The probability that pairs with input difference �in satisfy this characteristic is 2−5

on average. We discuss the properties of this differential characteristic in Sect. 10.2 in
more detail.

We next evaluate an experimental differential-linear distinguisher for the middle
part Em . When the Hamming weight of �m is 1, and the active bit is in the lsb, it
allows the absolute correlation of linear trails for E2 to be lower. For i = 6, i.e.,
�m = (([2]), ([5, 29, 17, 9]), ([30, 22, 10]), ([30, 10])), we find the following four
differential-linear distinguishers:

AutEm (�m, j , α j , α j ) = 2−8.3

for j ∈ {0, 1, 2, 3}, where �m, j is a difference such that �(v1
j , v

1
j+4, v

1
j+8, v

1
j+12) = �m

(and other branches are constant), and α j is a linear mask such that the lsb of the branch
w3

( j+1) mod 4 is 1 (and the others are 0). When this experimental distinguisher is combined
with the differential characteristic for E1, it covers 3.5 rounds with a 1-bit output linear
mask �m . This differential-linear distinguisher is improved by 0.5 rounds from the
previous distinguisher with 1-bit output linear mask (see [20,22]).

10.2. Differential Part

The QR function is independently applied to each column in the first round. Therefore,
when the output difference of one QR function is restricted by �m , the input of the other
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three QR functions are trivially independent of the output difference. It implies that we
have 96 independent bits, and we can easily amplify the probability of the differential-
linear distinguisher. On the other hand, we face a different problem: the probability of
the differential characteristic (�in,�m) highly depends on the value of the secret key.
For example, for �v0

12[6] = 1, we expect that there is a pair (v0
12, v

0
12 ⊕0x00000020)

satisfying �(v1
0, v1

4, v1
8, v1

12) = �m , but it depends on the constant v0
0 and the key values

v0
4 and v0

8 . We cannot find such a pair for 292 out of 1024 randomly generated keys in
our experiments. On the other hand, when we can find it, i.e., on 732 out of 1024 keys,
the average probability satisfying �(v1

0, v1
4, v1

8, v1
12) = �m is 2−4.5. This experiment

implies the existence of “strong keys” against our attack5. However, note that we can
vary the columns in which we put a difference, which involves different key values. Since
the fraction of “strong keys” is not so high, i.e., 292/1024, we can assume that there is
at least one column in which no “strong key” is chosen with very high probability.

To determine the factor p, for 1024 randomly generated keys, we evaluated p−1 ran-
domly chosen nonces and counters, where the branch in which we induce the difference
is also randomly chosen. As a result, we can find a right pair on 587 keys with p−1 = 25

iterations. Therefore, with p = 2−5, we assume that we can find a right pair with a
probability of 1/2 in this stage of the attack.

In the following, we explain our attack for the case that v0
12 is active, �(v1

0, v1
4, v1

8, v1
12)= �m . Note that the analysis for the other three cases follows the same argument.

10.3. Linear Part for the 6-Round Attack

To attack 6-round ChaCha, we first construct a 5-round differential-linear distin-
guisher, where 1.5-round linear trails are appended (i.e., the E2 part) to the 3.5-round
experimental differential-linear distinguisher from the previous section. We have two
1.5-round linear trails given by

Cor[w3
1[0] ⊕ ψ(1)] = 2−1, Cor[w3

1[0] ⊕ ψ(0)] = −2−1,

where ψ(1) = ψ ⊕ v5
10[6] and ψ(0) = ψ ⊕ v5

14[6], and

ψ = (v5
5[19, 7] ⊕ v5

10[19, 7] ⊕ v5
15[8, 0]) ⊕ (v5

1[0] ⊕ v5
6[26] ⊕ v5

11[0])
⊕ (v5

13[0]) ⊕ (v5
3[0] ⊕ v5

9[12] ⊕ v5
14[7]).

Figure 13 shows the two 1.5-round linear trails. Since their correlations are ±2−1, we
have 2×2 differential-linear distinguishers on 5 rounds whose correlations are ±2−10.3.
Note that the sign of each correlation is deterministic according to the output linear
mask.

5The theoretical justification is discussed in [27] after the proposal of our original paper [1].
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Fig. 13. Two linear trails for 1.5-round ChaCha .
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Fig. 14. Key recovery for 6-round ChaCha .

10.4. Key Recovery for the 6-Round Attack

Our 6-round attack uses these 5-round differential-linear distinguishers, and the 1-
round key recovery is shown in Fig. 14. Let c = (c0, . . . , c15) be the correspond-
ing output, and let v = (v0, . . . , v15) be the sixteen 32-bit values before the secret
key is added. Note that the secret key is only added with half of the state and pub-
lic values are added with the other state. Therefore, we simply regard vi = ci for
i ∈ {0, 15, 1, 12, 2, 13, 3, 14}.

First, we partially extend two linear masks for the last round to be linearly computed.
Figure 14 summarizes the extended linear masks, where we need to compute the bits
labeled by a red color. Moreover, for simplicity, we introduce t0, t10, t11, and t3 as
depicted in Fig. 14.

Each bit in v to which the secret key is not added can be computed for free. For
the other bits, we need to guess some key bits first. We first explain the simple case,
i.e., we compute vi [ j] from ci . As an example, we focus on v7[7], which involves k7
nonlinearly. We apply the partition technique to compute this bit. By guessing k7[6] and
k7[5] (remember that k7[7] cancels out in the differential-linear approximation), (3/4)

data are available with correlation ±1, and the remaining (1/4) data6 is available with
correlation −2−1. Since vi [0] is linearly computed by ci [0], there are 13 simple partition
points in which we need to guess key bits. In total, we need to guess a 26-bit key.

6This correlation is estimated originally when the key k7 changes randomly, but k7 is a fixed constant.
These correlations are much higher or lower according to the fixed key, but on key average, which is the natural
attack assumption for symmetric-key ciphers, the average correlation is −2−1.
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Computing bits in v5 and t is a bit more complicated than the simple case above. For
example, let us consider v5

9[12], and this bit can be computed as

v5
9[12] = (c9 � k9 � c14 � (c3 ⊕ (v14 ≫ 8)))[12]

= ((c9 � c14 � (c3 ⊕ (v14 ≫ 8))) � k9)[12].

Since we can compute (c9 � c14 � (c3 ⊕ (v14 ≫ 8))) for free, this case is equivalent
to the simple case. We also use this equivalent transformation for t10, t11, and v10[19].
In total, we have 6 such partition points, and some partition points can share the same
key, e.g., 2-bit key k10[18] and k10[17] is already guessed to compute v10[19]. Guessing
4 bits of additional key is enough to compute each bit. Since we have two linear masks
ψ(0) and ψ(1), we dynamically change an applied linear mask according to the data such
that correlations to compute v5

10[7]/v5
10[7, 6] become ±1.

We cannot use the equivalent transformation to compute bits in t0 and t3. Then, we
further extend this linear mask with correlation 2−1. For example, we have the following
approximations

t0[8] ≈ v0[8, 7] ⊕ v5[15] ⊕ v10[8] ⊕ 1, t0[8] ≈ v0[8] ⊕ v5[15, 14] ⊕ v10[8, 7],

for t0[8] with correlation 2−1, and we can use preferable approximations depending
on the data. Namely, we first guess k10[7] and determine which linear approximations
are available. Then, we guess k5[14] and k5[13] and compute v5[15] (resp. v5[15, 14]).
In order words, by guessing 3-bit key, 3/4 data are available with correlation ±2−1

and 1/4 data are available with correlation ±2−2. We also use the same technique for
t3[7]/t3[7, 6].

10.4.1. Estimating the Average of the Squared Correlation

Based on the analysis above, we estimate the average of the squared correlation. We
suppose each partitioning point is independent when its indicator uses different bits to
calculate the average.

We start evaluating the function involving the 1st diagonal.

• The indicator to compute t0[8] is (c5 ⊕ k5)[14], (c5 ⊕ k5)[13], and (c10 ⊕ k10)[7].
As discussed before, the average of the squared correlation is 3/4× (2−1)2 +1/4×
(2−2)2.

• The indicator to compute v5[26] is the 25th and 24th bits in (c5 ⊕ k5). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v5[7, 6] is the 6th and 5th bits in (c5 ⊕ k5). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v5
10[19] is the 18th and 17th bits in ((c10 � c15 � (c0 ⊕

(c15 ≫ 8))) ⊕ k10). As discussed before, the average of the squared correlation is
3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v5
10[7] (or v5

10[7, 6]) is the 6th bit in ((c10 � c15 � (c0 ⊕
(c15 ≫ 8))) ⊕ k10). Here, we change the applied linear mask according to the
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observed ciphertext such that correlations become 1. Thus, the average of the
squared correlation is 1.

• The indicator to compute t10[19] is the 18th and 17th bits in ((c10 � c15)⊕ k10). As
discussed before, the average of the squared correlation is 3/4×(1)2+1/4×(2−1)2.

• The indicator to compute t10[7] is the 6th and 5th bits in ((c10 � c15) ⊕ k10). As
discussed before, the average of the squared correlation is 3/4×(1)2+1/4×(2−1)2.

• The indicator to computev10[31] is the 30th and 29th bits in (c10⊕k10). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to computev10[19] is the 18th and 17th bits in (c10⊕k10). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

In total, we guess 6 key bits in k5 and 7 key bits in k10. The average of the squared
correlation is the product of these nine partitioning points, i.e., about 2−4.396.

We similarly evaluate the function involving the 2nd, 3rd, and 4th diagonals.

• The indicator to compute v6[19] is the 18th and 17th bits in (c6 ⊕ k6). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v6[13] is the 12th and 11th bits in (c6 ⊕ k6). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v6[7] is the 6th and 5th bits in (c6 ⊕ k6). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute t11[26] is the 25th and 24th bits in ((c11 � c12)⊕ k11). As
discussed before, the average of the squared correlation is 3/4×(1)2+1/4×(2−1)2.

• The indicator to computev11[12] is the 11th and 10th bits in (c11⊕k11). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v11[6] is the 5th and 4th bits in (c11 ⊕ k11). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

For the 2nd diagonal, we guess 6 key bits in k6 and 6 key bits in k11. The average of the
squared correlation is about 2−1.797.

• The indicator to compute v7[7] is the 6th and 5th bits in (c7 ⊕ k7). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

For the 3rd diagonal, we guess 2 key bits in k7. The average of the squared correlation
is about 2−0.300.

• The indicator to compute t3[7, 6] or t3[7] is (c4 ⊕ k4)[13], (c4 ⊕ k4)[12], and
(c9 ⊕ k9)[6]. As discussed before, the average of the squared correlation is 3/4 ×
(2−1)2 + 1/4 × (2−2)2.

• The indicator to compute v4[19] is the 18th and 17th bits in (c4 ⊕ k4). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v4[7] is the 6th and 5th bits in (c4 ⊕ k4). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v5
9[12] is the 11th and 10th bits in ((c9 � c14 � (c3 ⊕

(c14 ≫ 8))) ⊕ k9). As discussed before, the average of the squared correlation is
3/4 × (1)2 + 1/4 × (2−1)2.

• The indicator to compute v9[12] is the 11th and 10th bits in (c9 ⊕ k9). As discussed
before, the average of the squared correlation is 3/4 × (1)2 + 1/4 × (2−1)2.
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For the 4th diagonal, we guess 6 key bits in k4 and 3 key bits in k9. The average of the
squared correlation is about 2−3.498.

Therefore, we guess 36 key bits in total, and the average of the squared correlation
(for the linear part of one of each pair) is 2−9.991. The average of the squared correlation
for the whole approximation is estimated by

C = (2−10.3)2 × (2−9.991) × (2−9.991) ≈ 2−40.582.

Note that, unlike Chaskey, once these key bits are correctly guessed, all linearly involved
bits are either determined or canceled out by XORing another text. It implies dim(W ) =
0, and we do not need to proceed with the FWHT.

10.4.2. Data and Time Complexities and Success Probability

Based on the LLR statistic, we estimate the data complexity and the corresponding
success probability.

To find a right pair, we repeat Algorithm 2 25 times. If we use a right pair and guess
the correct key, the LLR statistic follows the normal distribution N ( N2 C, NC) when the
correct key is guessed. On the other hand, we assume that it follows N (− N

2 C, NC) for
either using a wrong pair or wrong guess.

We need to filter (5+36)-bit wrong guess by this difference of the normal distributions.
By using Proposition 5, the expected number of wrong keys is less than 1 when

� ≥
√
NC ×

(
�−1(1 − 2−41) − N

2
C

)
.

When we use N = 247 pairs, � ≈ 23.303 and7 psuccess = 0.491. For this success
probability, the data complexity is 21+47+5 = 253. We guess 236 keys for each texts, the
required time complexity is 253+36 = 289.

10.5. Another 6-Round Attack

The aforementioned attack is the straightforward application of our attack framework,
and it could be optimal considering the data complexity. Interestingly, we have another
strategy where less time complexity is possible, although it increases data complexity.8

In the aforementioned attack, we guessed many key bits for each ciphertext. Now,
instead of guessing many key bits, we deduce kP for observed ciphertexts such that the
absolute correlations become 1 (except for t0[8] and t3[7] or t3[7, 6]). For example, to
compute v5[26], we first check (c5[25]‖c5[24]). When we guess (k5[25]‖k5[24]) as 00,
the indicator is 11 and the absolute correlation is lower than 1. For another guessing, we
have representations whose correlation is ±1. We skip guessing the key as 00 for this
ciphertext only to reduce the time complexity.

7Note that it means that the success probability is 0.491 × 2 = 0.982 under the condition that the right
pair is successfully obtained during 25 iterations.

8This is the same attack proposed in our original paper [1].
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We have 21 partitioning points, and 3/4 data are available for each point. Only for
one point, i.e., v5

10[7]/v5
10[7, 6], we do not need to reduce the available data by changing

the applied linear masks dynamically. In summary, the fraction of available partitions is
(3/4)20 ≈ 2−8.3. Both texts in each pair must belong to an available partition, and the
fraction of available pairs is 2−16.6. The final correlation is 2−10.3 × (2−2) × (2−2) =
2−14.3, and the average of the squared correlation is estimated by C = 2−28.6.

To find a right pair, we repeat Algorithm 2 25 times. By using Proposition 5, the
expected number of wrong keys is less than 1 when

� ≥
√
N∗C ×

(
�−1(1 − 2−41) − N∗

2
C

)
,

where N∗ = N × 2−16.6. When we use N = 252 pairs, N∗ = 235.4 and � ≈ 19.693
and9 psuccess ≈ 0.5. For this success probability, the data complexity is 21+52+5 = 258.

On this attack, we do not need to guess 236 keys for all 258 data. On each data, we
guess available key bits only. Therefore, the time complexity is estimated as

1/p × (2N + 2N∗ × 2nP ) = 25 × (253 + 236.4 × 236) ≈ 277.4.

10.6. The 7-Round Attack

Unfortunately, 7-round ChaCha is too complicated to apply our technique to the linear
part. On the other hand, thanks to our contribution for the differential part, we find a new
differential-linear distinguisher which is improved by 0.5 rounds. Therefore, to confirm
the effect of our contribution for the differential part, we use the known technique, i.e.,
the probabilistic neutral bits (PNB) approach, for the key-recovery attack against 7-round
ChaCha. The PNB-based key recovery is a fully experimental approach. We refer to [22]
for the details and simply summarize the technique as follows:

• Let the correlation in the forward direction (a.k.a, differential-linear distinguisher)
after r rounds be εd .

• Let n be the number of PNBs given by a correlation γ . Namely, even if we flip one
bit in PNBs, we still observe correlation γ .

• Let the correlation in the backward direction, where all PNB bits are fixed to 0 and
non-PNB bits are fixed to the correct ones, be εa .

Then, the time complexity of the attack is estimated as 2256−nN + 2256−α , where the
data complexity N is given as

N =
⎛

⎝
√

α log(4) + 3
√

1 − ε2
aε

2
d

εaεd

⎞

⎠
2

,

where α is a parameter that the attacker can choose.

9Note that it means that the success probability is almost 1 under the condition that the right pair is
successfully obtained during 25 iterations.
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In our case, we use a 4-round differential-linear distinguisher with correlation
εd = 2−8.3. Under pairs generated by the technique shown in 10.2, we experimen-
tally estimated the PNBs. With γ = 0.35, we found 74 PNBs, where non-zero bits of
the following bit-vectors represent PNB:

v4 : 0x00098080
v5 : 0x8CFFE7FC
v6 : 0xF8087FC0
v7 : 0x0000403C
v8 : 0x80000100
v9 : 0xF8198183

v10 : 0x80700007
v11 : 0xF8000000.

Then, the correlation is εa = 2−10.6769. Then, with α = 36, we have N = 243.83 and the
time complexity is 2225.86. Again, since we need to repeat this procedure p−1 times, the
data and time complexities are 248.83 and 2230.86, respectively.10

11. Conclusion and Future Work

We presented new ideas for differential-linear attacks and, particularly, the best attacks
on ChaCha,11 one of the most widely used ciphers in practice, and Chaskey. We hope
that our framework finds more applications. In particular, we think that it is a promising
future work to investigate other ARX designs for our ideas.

Besides the direct application of our framework to more primitives, our work raises
several more fundamental questions. As explained in the experimental verification, we
sometimes observe higher LLR statistics than expected, making the attacks more efficient
than estimated. The gap would come from the difficulty of estimating the accurate
correlation of all partitions. Our paper does not solve how to estimate these correlations
accurately and efficiently.

Another important open question is in the 7-round attack on ChaCha. We applied the
partitioning technique to the 6-round attack. Our result outperforms PNB techniques,
which is an experiment-based key recovery technique. Unfortunately, using this tech-
nique in 7-round ChaCha is too complicated. A more simple and powerful key recovery
procedure exploiting the partitioning technique would beat the PNB-based key recovery
like the 6-round attack. However, it is still an open question in our paper.

10When we estimate εa , we used the average correlation. When we used the median instead of the average,
εa = 2−11.1687. Then, the data and time complexities are 249.7856 and 2231.823, respectively.

11Some follow-up works [25–27,41] have been proposed after our original proposal [1]. Our attack is still
the best for 6-round attack in the context of key recovery. Even for 7 rounds, there have not been follow-up
works that essentially improve the complexity yet. On the other hand, Coutinho and Neto presented more
efficient distinguishing attacks in [41], and Miyashita, Ito, and Miyaji showed the key-recovery attack on 7.25
rounds in [25].
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A. Summary of Partitioning

We summarize various partition rules for modular addition. Note that we can verify
the correlation of each case experimentally because they have a very high absolute
correlation.

A.1. Single Modular Addition

Let us start with the most simple case of a single modular addition. To compute the
parity z0[i] and z0[i] ⊕ z0[i − 1] (shortly denoted by z0[i, i − 1]) from c0 and c1 (see
Fig. 15), we represent each element of P as two-bit values b0b1, therefore dividing the
whole set into four subsets

Tb0b1 = {(y1, y0) ∈ (Fn
2)2 | b0b1 ∼= s[i − 1]‖s[i − 2]},

where s = ȳ1 ⊕ y0. Note that these partition can be constructed by guessing two bits of
key information, i.e., (k1 ⊕ k0)[i − 1] and (k1 ⊕ k0)[i − 2]. Linear masks used in the
previous partitioning technique involves 4 bits, i.e., y1[i], y0[i], y0[i −1], and y0[i −2].
Our new partitioning technique additionally involves y0[i − 3], and parities z0[i] and
z0[i, i − 1] are approximated to

〈γ, y1[i]‖y0[i]‖y0[i − 1]‖y0[i − 2]‖y0[i − 3]〉,

where γ and the corresponding correlations are summarized in Fig. 15.

k0k1

c0c1

z0z1

y0y1

F

b0b1b0b1b0b1
z0[i]z0[i]z0[i] z0[i, i − 1]z0[i, i − 1]z0[i, i − 1]

γγγ εεε γγγ εεε

00 11100 -1 11110 -1
01 11100 -1 11101 −2−1

10 11010 -1 11000 1
11 11001 −2−1 11000 1

Fig. 15. Partitions for a single modular addition .
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z2z1 z3

8

c2c1 c3

k2k1 k3

v 1 v 3v 2

b0b1b2b3b4b0b1b2b3b4b0b1b2b3b4
z2[11]z2[11]z2[11] z2[11, 10]z2[11, 10]z2[11, 10]

γγγ εεε γγγ εεε

00000 11110111100 −2−2 11110011100 1
00001 11111011100 −2−1 11110011100 2−1

00010 11111011010 −1 11111111010 −2−2

00011 11111011010 −2−1 11110011010 −2−1

00100 11111011100 2−0.263 11110011100 2−0.263

00101 11111011111 2−1.263 11110011100 2−0.263

00110 11111011010 −2−0.263 11110011010 2−0.263

00111 11111011010 −2−0.263 11110011001 2−1.263

01000 11100011100 1 11100111100 2−2

01001 11100011100 2−1 11101011100 2−1

01010 11101111010 −2−2 11101011010 1
01011 11100011010 −2−1 11101011010 2−1

01100 11100011100 2−0.263 11101011100 −2−0.263

01101 11100011100 2−0.263 11101011111 −2−1.263

01110 11100011010 2−0.263 11101011010 2−0.263

01111 11100011001 2−1.263 11101011010 2−0.263

10000 11111011100 −1 11111111100 −2−2

10001 11111011100 −2−1 11110011100 2−1

10010 11110111010 −2−2 11110011010 1
10011 11111011010 2−1 11110011010 2−1

10100 11111011100 −2−0.263 11110011100 2−0.263

10101 11111011111 −2−1.263 11110011100 2−0.263

10110 11111011010 2−0.263 11110011010 2−0.263

10111 11111011010 2−0.263 11110011001 2−1.263

11000 11101111100 −2−2 11101011100 1
11001 11100011100 2−1 11101011100 2−1

11010 11100011010 1 11100111010 2−2

11011 11100011010 2−1 11101011010 −2−1

11100 11100011100 2−0.263 11101011100 2−0.263

11101 11100011100 2−0.263 11101011111 2−1.263

11110 11100011010 2−0.263 11101011010 −2−0.263

11111 11100011001 2−1.263 11101011010 −2−0.263

Fig. 16. Partition for two consecutive modular additions .

A.2. More Complicated Case

In a similar way, we can extend the technique for the case of two consecutive modular
additions. A concrete example, which is used to attack 7-round Chaskey, is shown in
Fig. 16.

The goal is to compute the parity z2[11] and z2[11, 10] from c1, c2, and c3 (see
Fig. 16). We split the ciphertext into 25 partitions (this time indexed by five-bit values
b0b1b2b3b4 representing the generic element of P) in the following way:

Tb0b1b2b3b4 = {(v1, v2, v3) ∈ (Fn
2)3 | b0b1b2b3b4 ∼=(v3[18] ⊕ v2[17] ⊕ v2[9])‖

s[10]‖s[9]‖s[18]‖s[17]},

where s = v̄1 ⊕ v2. In order for previously discarded partition to be available, our new
partitioning technique additionally involves v2[8] and v2[16], and parities z2[11] and
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k0k1

c0c1

z0z1

y0y1

F

Fig. 17. A simple toy example with a single modular addition .

z2[11, 10] are approximated to

〈γ, v3[19]‖v1[11]‖v2[11]‖v2[10]‖v2[9]‖v2[8]‖v1[19]‖v2[19]‖v2[18]‖v2[17]‖v2[16]〉,

where γ is appropriately chosen following Fig. 16. We remark that this new way of
partitioning the ciphertexts allows us to find high-absolute-correlation masks for all the
32 partitions, up from the 24 used with the original [1].

B. Understanding Partition Points

B.1. A Simple Toy Example

We transfer the above terminology to the simple toy example given in Fig. 17 and already
discussed earlier in Sect. 2.2. In this example, for a fixed i ≥ 2, we want to evaluate
z0[i] or z0[i] ⊕ z0[i − 1] by using the partitioning rules as expressed in Lemma 2 and
Lemma 3. For this, we say that (z0[i], z0[i]⊕ z0[i −1]) defines a partition point ζ . This
partition point gives rise to a 2-dimensional subspace P which can be defined by two
parity check equations, i.e., P is a complement space of the space

R = {(x1, x0) ∈ F
2m
2 | x0[i − 1] ⊕ x̄1[i − 1] = 0 and x0[i − 2] ⊕ x̄1[i − 2] = 0}.

For example, P can be chosen as {([], []), ([i − 1], []), ([i − 2], []), ([i − 2, i − 1], [])}.
To demonstrate the attack from the previous section, we split F

2m
2 into the direct sum

P ⊕ R. By the isomorphism between P and F
2
2, we can identify the elements p ∈ P

by two-bit values p ∼= b0b1, where b0 indicates the parity of x0[i − 1] ⊕ x̄1[i − 1] and
b1 indicates the parity of x0[i − 2] ⊕ x̄1[i − 2]. We then consider the following four
tuples (Tb0b1, �

(b0b1)
out , γ (b0b1)) and corresponding εb0b1 , whose definition come from the

properties presented in Lemmas 2 and 3:
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T00 = R ⊕ 00 = S00 �
(00)
out = ([], [i])

γ (00) = ([i], [i, i − 1]) ε00 = −1

T01 = R ⊕ 01 = S01 �
(01)
out = ([], [i])

γ (01) = ([i], [i, i − 1]) ε01 = −1

T10 = R ⊕ 10 = S10 �
(10)
out = ([], [i])

γ (10) = ([i], [i, i − 2]) ε10 = −1

T11 = R ⊕ 11 = S11 �
(11)
out = ([], [i])

γ (11) = ([i], [i, i − 3]) ε11 = −2−1.

and

T00 = R ⊕ 00 = S00 �
(00)
out = ([], [i, i − 1])

γ (00) = ([i], [i, i − 1, i − 2]) ε00 = −1

T01 = R ⊕ 01 = S01 �
(01)
out = ([], [i, i − 1])

γ (01) = ([i], [i, i − 1, i − 3]) ε01 = −2−1

T10 = R ⊕ 10 = S10 �
(10)
out = ([], [i, i − 1])

γ (10) = ([i], [i]) ε10 = 1

T11 = R ⊕ 11 = S11 �
(11)
out = ([], [i, i − 1])

γ (11) = ([i], [i]) ε11 = 1.

For example, we give an intuition for the choice of the second tuple when (y1, y0) ∈
S01. Lemma 2 tells us that 〈([], [i]), (z1, z0)〉 = 〈([i], [i, i − 1]), (y1, y0)〉 ⊕ 1, i.e.,
ε01 = Cory∈T01[〈([], [i]), z〉⊕〈([i], [i, i −1]), y〉] = −1. On the other hand, Lemma 3
tells us that there is no linear representation with absolute correlation 1. Thus, if available,
we should use �

(01)
out = ([], [i]) for this subset.

We further have

W = Span{γ (a) ⊕ γ (b) | a, b ∈ F
2
2}

= {([], []), ([], [i − 1]), ([], [i − 2]), ([], [i − 1, i − 2]),
([], [i − 3]), ([], [i − 1, i − 3]), ([], [i − 2, i − 3]), ([], [i − 1, i − 2, i − 3])},

and we could recover the three bits, k0[i − 1], k0[i − 2], and k0[i − 3], by the last step
using the fast Walsh–Hadamard transform.
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B.2. Toy Example Using Multiple Partition Points

Let us now look at another example which consists of two branches of the structure
depicted in Fig. 17 in parallel, i.e., (y3, y2, y1, y0) = (F(z3, z2), F(z1, z0)) and ci =
yi ⊕ ki . By using a single partition point as done in the above example, we can only
evaluate the parity of at most two (consecutive) bits of z = (z3, z2, z1, z0). Instead of just
one single partition point, we can also consider multiple partition points. For example, if
we want to evaluate the parity involving three non-consecutive bits of z = (z3, z2, z1, z0),
we can use three partition points, i.e.,

ζ1 = (z0[i], z0[i] ⊕ z0[i − 1]),
ζ2 = (z0[ j], z0[ j] ⊕ z0[ j − 1]),
ζ3 = (z2[�], z2[�] ⊕ z2[� − 1]),

where i, j, � ≥ 3. In a specific attack, the choice of the partition points depends on the
definition of the linear trail. Those partition points give rise to three subspaces P1, P2,
and P3, defined by two parity-check equations each, i.e., Pi is a complement space of
Ri , where

R1 = {(x3, x2, x1, x0) ∈ F
4m
2 | x0[i − 1] ⊕ x̄1[i − 1] = 0, x0[i − 2] ⊕ x̄1[i − 2] = 0}

R2 = {(x3, x2, x1, x0) ∈ F
4m
2 | x0[ j − 1] ⊕ x̄1[ j − 1] = 0, x0[ j − 2] ⊕ x̄1[ j − 2] = 0}

R3 = {(x3, x2, x1, x0) ∈ F
4m
2 | x2[� − 1] ⊕ x̄3[� − 1] = 0, x2[� − 2] ⊕ x̄3[� − 2] = 0}.

By defining12 P = P1 ⊕ P2 ⊕ P3 and R to be a complement space of P , we split F
4m
2

into the direct sum P ⊕ R.
We can identify the elements p ∈ P by nP -bit values p ∼= b0b1 . . . bnP−1. We can

then again define tuples

(Tb0b1...bnP−1 , �
(b0b1...bnP−1)

out , γ (b0b1...bnP−1)) (9)

by using the properties presented in Lemma 2 and Lemma 3. For example, if nP = 6,
we can define

T010101 = {(x3, x2, x1, x0) ∈ F
4m
2 |x0[i − 1] �= x1[i − 1], x0[i − 2] = x1[i − 2],

x0[ j − 1] �= x1[ j − 1], x0[ j − 2] = x1[ j − 2],
x2[� − 1] �= x3[� − 1], x2[� − 2] = x3[� − 2]},

�
(010101)
out = ([], [�], [], [i, j]), γ (010101) = ([�], [�, �−1], [i, j], [i, i−1, j, j−1]),

and ε010101 = −1 by using the first case of Lemma 2.

12Note that P is not necessarily a direct sum of P1, P2, and P3. In other words, the dimension of P might
be smaller than 6, for instance if i = j , i.e., ζ1 = ζ2.
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We can also use the three partition points to compute the parity of more than three
bits of z. For example, if nP = 6, by using Lemma 2 and 3, we can define

T001011 = {(x3, x2, x1, x0) ∈ F
4m
2 |x0[i − 1] �= x1[i − 1], x0[i − 2] �= x1[i − 2],

x0[ j − 1] = x1[ j − 1], x0[ j − 2] �= x1[ j − 2],
x2[� − 1] = x3[� − 1], x2[� − 2] = x3[� − 2]},

and

�
(001011)
out = ([], [�, � − 1], [], [i, i − 1, j])

γ (001011) = ([�], [�], [i, j], [i, i − 1, i − 2, j, j − 2]), ε001011 = 1,

which evaluates the parity of five bits of z. Again, several choices for the definition of
the tuples in Eq. (9) are possible.

B.3. Analysis for Two Consecutive Modular Additions

To avoid the usage of long linear trails and to reduce the data complexity, we may use
the partition technique for the more complicated structure of two consecutive modular
additions. Inspired by the round function of Chaskey, we consider the case depicted in
Fig. 16.

Suppose that we have two partition points, i.e.,

ζ1 = (z2[i], z2[i] ⊕ z2[i − 1]),
ζ2 = (z3[ j], z3[ j, j − 1]),

where i, j ≥ 3. We use the same strategy described in “Appendix B.2”. Namely, we
identify the elements p ∈ P by (5 + 2)-bit values, where 5-bit and 2-bit indicators
come from the partition point ζ1 and ζ2, respectively. The applied linear mask and
corresponding correlation can be computed as depicted in Figs. 15 and 16.

C. Exploiting the Conditions for Finding Chaskey Relations

In Fig. 18, we have depicted the relations and the influence of the input bits on the
conditions of the differential path. The bits that stay white (and have no pink color
beneath, coming from the carries of the furthest additions) are the bits that do not affect
the differential transitions.

It is easy to see how the bits provided in [1] as available for sampling with probability
one are the only white ones, and therefore not needed for the differential conditions:
[31,30,25,24,23,22,20,19,18,17,16] from v2 and [23,22,20,19,18,17,16] from v3. The
differences are represented in gray. Dependencies in colors. A ‘g’ in the position of a
difference means that this difference will go away (be absorbed) after the next addition.
An ‘s’ means that the difference stays where it is, while ‘m’ means that it moves one
position to the left. The color of the bits with differences in each transition will be
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applied to all the bits that might affect this transition. Carries are not directly applied to
the involved bits but to the upper row to report the difference this implies.

Please note that for instance bits 28 and 27 from v2 cannot be included as the carry of
the position 29 is needed by the orange bit relations, i.e., the differences after one round
at position 29 of v2 and v3, but as said in Sect. 5.3, the bits of previous positions to 26
and 27 will not affect this orange carry anymore due to the particular configuration of
26 and 27. The bits provided in [1] that are neutral with very high probability are 20 and
19 from v1 and 31, 20 and 19 from v0 and 25 and 24 of v3.

Let us now see how can we use the conditional differential ideas and Fig. 18 in order to
recover for free the value of some keybits and also to find additional bits of information
for sampling and increasing the dimension of U from 18 as given in [1] (and involving
exclusively one-bit relations) to 22, or 23 if one-bit relation on the key is known.

Additional space for sampling
Using Fig. 18 we can try to exploit the conditions to find more evolved relations for

increasing the size of U . Let us provide an example: Let us imagine we flip the bit from
v0[8]. The corresponding difference, marked with a ‘g’, will have a change of parity. In
order for this difference to be absorbed, we need to also flip the other blue difference
that will be used for absorbing this one: v1[8]. However, if we flip this one, the value
of the bit v1[13] after one round, that does not contain a difference, will be flipped also,
as to produce it, v1[8] is shifted of 5 positions and XORed with the sum of v0 and v1,
that has a difference in position 13, marked with an ‘s’: these differences cancel out in
both cases, but the value of the resulting bit will change with the parity of v1[8], and
the value of this pink will affect the final light-pink transition in the third round, as can
be seen in the picture. In order to avoid this, we have to also flip v1[13]: the state v1
after 1 round will be known the same, but the orange bit v2[29] after one round that
contains a difference and a ‘g’ will have the parity changed. In order to make the related
transition be satisfied, we need to also change the parity of the other orange bit with
a ‘g’: we flip v2[29] from the first round, that does not have a difference, but that will
change the parity of v3[29] after the XOR. This bit will not have any more influence in
the remaining transitions, so we have found our close relation. In total, we found four
new probability-one relations by hand using this same technique. We have verified these
relations as well as exhaustively searched all the ones with weight at most 3, and found
that no other such relations exist.
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