
https://doi.org/10.1007/s00145-022-09434-2
J Cryptol (2022)35:27

Research Article

Efficient Perfectly Secure Computation with Optimal
Resilience∗

Ittai Abraham
VMware Research, 5 Sapir St., 4685209 Herzliya, Israel

iabraham@vmware.com

Gilad Asharov
Department of Computer Science, Bar-Ilan University, 5290002 Ramat Gan, Israel

Gilad.Asharov@biu.ac.il

Avishay Yanai
VMware Research, 5 Sapir St., 4685209 Herzliya, Israel

yanaia@vmware.com

Communicated by Manoj Prabhakaran

Received 19 October 2021 / Revised 8 July 2022 / Accepted 10 July 2022
Online publication 27 September 2022

Abstract. Secure computation enables n mutually distrustful parties to compute a
function over their private inputs jointly. In 1988, Ben-Or, Goldwasser, and Wigderson
(BGW) proved that any function can be computed with perfect security in the presence
of a malicious adversary corrupting at most t < n/3 parties. After more than 30 years,
protocols with perfect malicious security, and round complexity proportional to the cir-
cuit’s depth, still require (verifiably) sharing a total of O(n2) values per multiplication.
In contrast, only O(n) values need to be shared per multiplication to achieve semi-
honest security. Sharing �(n) values for a single multiplication seems to be the natural
barrier for polynomial secret-sharing-based multiplication. In this paper, we construct a
new secure computation protocol with perfect, optimal resilience and malicious security
that incurs (verifiably) sharing O(n) values per multiplication. Our protocol requires
a constant number of rounds per multiplication. Like BGW, it has an overall round
complexity that is proportional only to the multiplicative depth of the circuit. Our im-
provement is obtained by a novel construction for weak VSS for polynomials of degree
2t , which incurs the same communication and round complexities as the state-of-the-art
constructions for VSS for polynomials of degree t . Our second contribution is a method
for reducing the communication complexity for any depth 1 sub-circuit to be propor-
tional only to the size of the input and output (rather than the size of the circuit). This

∗A preliminary version of this paper appeared in IACR-TCC 2021. Gilad Asharov: Sponsored by the
Israel Science Foundation (Grant No. 2439/20), by the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and
by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
Grant Agreement No. 891234

© International Association for Cryptologic Research 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-022-09434-2&domain=pdf

27 Page 2 of 43 I. Abraham et al.

implies protocols with sub-linear communication complexity (in the size of the circuit)
for perfectly secure computation for important functions like matrix multiplication.

Keywords. Secure computation, Foundations, Perfect security, Verifiable secret
sharing.

1. Introduction

Secure multiparty computation is a major pillar of modern cryptography. Breakthrough
results on secure multiparty computation in the late ’80s prove feasibility with optimal
resilience: perfect, statistical, and computational security can be achieved as long as
t < n/3 [9], t < n/2 (assuming broadcast) [41], and t < n [31,45], respectively, where
n is the number of computing parties such that at most t of them are controlled by a
malicious adversary.

In this paper, we focus on secure computation with perfect security, which is the
strongest possible guarantee: it provides unconditional, everlasting security. Such pro-
tocols come with desirable properties. They often guarantee adaptive security [14,36]
and remain secure under universal composition [13]. A central foundational result in
this context is the Completeness Theorem of Ben-or, Goldwasser, and Wigderson [9]
from 1988:

Theorem 1.1. (BGW with improvements [4,9,21,29]-informal) Let f be an n-ary
functionality and C its arithmetic circuit representation. Given a synchronous network
with pairwise private channels and a broadcast channel, there exists a protocol for
computing f with perfect security in the presence of a static malicious adversary con-
trolling up to t < n/3 parties, with round complexity O(depth(C)) and communication
complexity of O(n4 · |C |) words over point-to-point channels and no broadcast in the
optimistic case, and additional �(n4 · |C |) words of broadcast in the pessimistic case.1

The communication complexity in the above statement (and throughout the paper) is
measured in words (i.e., field elements), and we assume a word of size O(log n) bits. In
the past three decades, there have been great efforts to improve the communication com-
plexity of the BGW protocol [4,29]. Theorem 1.1 states the round and communication
complexity of the protocols after these improvements. Most recently, Goyal, Liu, and
Song [32], building upon Beaver [6], and Beerliová and Hirt [8], achieved O(n|C |+n3)

communication words (including all broadcast costs) at the expense of increasing the
round complexity to O(n + depth(C)).

In some natural settings, e.g., secure computation of shallow circuits in high-latency
networks, this additive O(n) term in the round complexity might render the protocol
inapplicable. This state of affairs leads to the fundamental question of whether the
communication complexity of perfectly secure computation can be improved without
sacrificing the round complexity. Moreover, from a theoretical perspective, the tradeoff
between round complexity and communication complexity is interesting.

1In the optimistic case, the adversary does not deviate from the prescribed protocol. Thus, in the pessimistic
case (when it does deviate from the protocol), the adversary might only make the execution more expensive.

Efficient Perfectly Secure Computation Page 3 of 43 27

1.1. Our Results

We show an improvement in the communication complexity of perfectly secure protocols
without incurring any cost in round complexity. Notably, our improvement applies both
to the optimistic case and to the pessimistic case:

Theorem 1.2. (Main technical result—informal) Let f be an n-ary functionality and
C its arithmetic circuit representation. Given a synchronous network with pairwise
private channels and a broadcast channel, there exists a protocol for computing f
with perfect security in the presence of a static malicious adversary controlling up to
t < n/3 parties, with round complexity O(depth(C)) and communication complexity
of O(n3 · |C |) words on point-to-point channels and no broadcast in the optimistic case,
and additional O(n3 · |C |) words of broadcast in the pessimistic case.

Our result strictly improves the state of the art and is formally incomparable to the
result of Goyal et al. [32]. Our protocol will perform better in high-latency networks
(e.g., the internet) on shallow circuits when depth(C) � n. Whereas the protocol of
[32] performs better in low-latency networks (e.g., LAN), or when depth(C) ≈ �(n).

Sub-linear perfect MPC for sub-circuits of depth 1 As our second main result, we
show for the first time that for a non-trivial class of functions, there is in fact a sub-linear
communication perfectly secure MPC (in the circuit size). Specifically, we design a
perfectly secure MPC that supports all functionalities that can be computed by depth 1
circuits. The communication complexity of our protocol depends only on the input and
output sizes of the function, but not on the circuit size, i.e., the number of multiplications.
We prove the following:

Theorem 1.3. Let n > 3t , and let F be a finite field with |F| > n. For every arithmetic
circuit G : FL → F

M of multiplication depth 1 (i.e., degree-2 polynomial), there exists a
perfect t-secure protocol that computes (y1, . . . , yM) = G(x1, . . . , xL) in O(1) rounds
and O((M + L) · n3) words over the point-to-point channels in the optimistic case, and
additional O((M + L) ·n3) broadcast messages in the pessimistic case. Specifically, the
communication complexity is independent of |G|.

The above theorem can also be applied to compute circuits with higher depth while
paying only communication complexity that is proportional to the number of wires
between the layers, and independent of the number of multiplications in each layer.
Similar techniques were shown in the statistical case [16], but no protocol is known for
perfect security.

Application: secure matrix multiplication As a leading example of the usefulness of
our depth 1 circuit protocol, consider matrix multiplication of two T × T matrices. This
operation has inputs and outputs of size O(T 2), but implementing it requires O(T 3)

multiplications (at least when implemented naïvely). The starting point (Theorem 1.1)
is communicating �(T 3 · n4) words over point-to-point channels in the optimistic case
(and additional �(T 3 · n4) words of broadcast in the pessimistic case). Theorem 1.3
improves the communication complexity to O(T 2 · n3) in the point-to-point channels
with no additional broadcast in the optimistic case (and additional O(T 2 · n3) words on

27 Page 4 of 43 I. Abraham et al.

broadcast in the pessimistic case). Our protocol also achieves O(1) rounds in both the
optimistic and pessimistic cases.

Secure matrix multiplication is a key building block for various appealing applica-
tions. For example, anonymous communication [1] and secure collaborative learning.
The latter involves the multiplication of many large matrices (see [5,15,37–39,44], to
name a few). For instance, the deep convolutional neural network (CNN) ResNet50 [43]
requires roughly 2000 matrix multiplications, which, when computed securely, results
in more than 4 billion multiplication gates. Using our protocol of matrix multiplica-
tion, computing this task reduces by orders of magnitudes, the communication being
proportional to computing only millions of multiplications.

Secure Multiplication: A Natural Barrier of �(n) Secret Sharings

We give a high-level overview of our technical contribution, pointing to the core of
our improvements. When viewed from afar, all secret-sharing-based MPC protocols
have a very similar flow. The starting point property is that polynomial secret sharing
is additively homomorphic. This allows computing any linear combination (additional
and multiplication by public constants) of secrets locally and with no interaction. The
challenge is with multiplication gates: while multiplication can also be applied homo-
morphically (and non-interactively), it increases the degree of the underlying polynomial
that hides the secret. Secure multiplication uses the fact that polynomial interpolation
is just a linear combination of points on the polynomial, and hence a central part of the
computation can be applied locally.

Given shares of the two inputs, every party shares a new secret which is the locally
computed multiplication of its two shares. Then, all these new shares are locally com-
bined using the linear combination of the publicly known Lagrange coefficients. This
results in the desired new sharing of the multiplication of the two inputs.

This elegant framework for secure multiplication embeds a natural communication
complexity barrier: each multiplication requires �(n) secret sharing (each party needs
to secret share its local multiplication). In the malicious case, the secret sharing protocol
is called Verifiable Secret Sharing (VSS). Hence, the total communication complexity
in this framework is at least �(n · comm(V SS)).

State-of-the-art MPC for almost all settings matches this natural barrier, obtaining
constant-round protocols with optimal resilience using O(n · comm(V SS)) communi-
cation per multiplication, where V SS is the best secret sharing for that setting.

The only exception we are aware of is the family of BGW protocols for a malicious ad-
versary, where all known improvements until now [4,9,29] require �(n2 ·comm(V SS))

communication. This is because each party needs to share n invocations of VSSs of
degree-t polynomials to prove that the secret it shared for the product is indeed equal to
the multiplication of the already shared multiplicands.

Weak VSS and the complexity of perfect MPC The main technical contribution of
this work is a multiplication protocol that meets the natural barrier and achieves com-
munication complexity of O(n · comm(V SS)). Since comm(V SS) is O(n2) words in
the optimistic case (and no broadcast) and O(n2) over the point-to-point channels and

Efficient Perfectly Secure Computation Page 5 of 43 27

additional O(n2) words of broadcast in the pessimistic case, Theorem 1.2 is obtained.
Our improvement can thus be described as follows:

• Semi-honest BGW requires O(n · comm(SS)) communication per multiplication.
• Malicious BGW requires O(n2 ·comm(V SS)) communication per multiplication.
• Our malicious protocol requires O(n · comm(V SS)) communication per multipli-

cation.

Our improved efficiency is obtained by replacing n invocations of degree-t VSSs with
just one invocation of a weak VSS for degree 2t , which we denote by WSS. By weak
VSS, we refer to the setting in which the parties’ shares define a single secret at the end
of the sharing phase, and during the reconstruction phase, the parties can either recover
that secret or ⊥. We show that a single weak VSS for a degree-2t polynomial (along
with a constant number of strong VSS) is sufficient to prove that the secret-shared for
the product is to equal the multiplication of its two already shared multiplicands.

Lemma 1.4. (informal) Given n > 3t , there is a protocol for implementing Weak
Verifiable Secret Sharing with optimal resilience, for a polynomial of degree 2t with
communication complexity of O(n2) words on point-to-point channels in the optimistic
case, and additional O(n2)words of broadcast in the pessimistic case, and O(1) rounds.

Our new weak verifiable secret sharing of degree 2t has the same asymptotic com-
plexity as the verifiable secret sharing of degree t . In addition to improving the efficiency
of the core building block in secure computation (i.e., multiplication), we believe it also
makes it simpler, which is a pedagogical benefit.

Adaptive security and UC We prove security in the classic setting of a static adversary
and stand-alone computation. Protocols that achieve perfect security have substantial
advantages over protocols that are only computationally secure: It was shown [36] that
perfectly secure protocols in the stand-alone setting with a black-box straight-line simu-
lator are also secure under universal composition [13]. Moreover, it was shown [2,14,23]
that perfectly secure protocols in presence of a static malicious adversary for secure
function evaluation that follows some standard MPC technique (as secret-sharing-based
protocols, like BGW) enjoy also perfect security in the presence of an adaptive malicious
adversary (albeit with inefficient simulation).

The broadcast channel model We analyze our protocol in the broadcast model and
count messages sent over private channels and over the broadcast channel separately. In
our setting (t < n/3) the broadcast channel can also be simulated over the point-to-point
channels. However, this comes with some additional costs. There are two alternatives:
replace each broadcast usage in the protocol requires O(n2) communication but O(n)

rounds [10,19], or O(n3) overhead in communication and expected constant rounds
(even with bounded parallel composition [20,28,35]).2

2A broadcast of one bit in constant expected rounds requires expected O(n6 log n) communication com-
plexity in [35]. However, n parallel broadcasts of O(n2 log n) size messages remains expected O(n6 log n).
This is the case in our protocol, i.e., in each multiplication gate, each party invokes a VSS, which might lead to
broadcasting messages of size O(n2 log n) as a dealer, i.e., over the n parallel execution, each party receives
O(n3 log n) bits. O(n6 log n) bits is, therefore, an overhead of O(n3).

27 Page 6 of 43 I. Abraham et al.

1.2. Related Work

Constant-round per multiplication In this paper, we focus on perfect security in the
presence of a malicious adversary, optimal resilience, and constant-round per multiplica-
tion. Our protocol improves state of the art in this line of work. As mentioned in Asharov,
Lindell, and Rabin [4], an additional verification protocol is needed for completing the
specification of the multiplication step of BGW. In Theorem 1.1, we ignore the cost
associated with those verification steps and just count the number of verifiable secret
sharing needed, which is �(n2) VSSs per multiplication gate. The protocol presented
by Asharov, Lindell, and Rabin [4] also requires O(n2) VSSs per multiplication gate.
It results in total communication of O(n4) field elements over the point-to-point chan-
nels and O(n4) field elements over a broadcast channel. Cramer, Damgård, and Maurer
[21] presented a protocol that works differently from the BGW protocol, which also
achieves a constant-round per multiplication. It has worst-case communication com-
plexity of O(n5) field elements over point-to-point channels and O(n5) field elements
over a broadcast channel. The optimistic cost is O(n4) field elements over point-to-point
channels and O(n3) field elements over the broadcast channel. The work of Choudhury
and Patra [18] also works in constant-round per multiplication, separates the protocol
into offline phase and online phase, and requires per multiplication gate a total of O(n4)

field elements over the point-to-point channels and broadcast of O(n4) field elements
over the broadcast channel.

Protocols that are based on the player elimination technique There is a large body
of work [8,22,32–34] that improves the communication complexity of information-
theoretic protocols using the player elimination technique. All of these protocols have
a (worst case) round complexity that is linear in the number of parties. This is inherent
in the player elimination technique since every time cheating is detected, two players
are eliminated, and some computations are repeated. In many cases, player elimination
would give a more efficient protocol than our approach. However, there are some cases,
specifically for a low-depth circuit where n is large and over high-latency networks, in
which our protocol is more efficient. Moreover, our protocol can achieve communication
complexity which is sub-linear in the number of multiplication gates, depending on the
circuits to be evaluated. We do not know how to achieve similar results on protocols that
are based on Beaver multiplication triplets [6], such as the protocol of Goyal et al. [32].
These lines of work are therefore incomparable.

Lower bounds Recently, Damgård and Schwartzbach [25] showed that for any n and
all large enough g, there exists a circuit C with g gates such that any perfectly secure
protocol implementing C must communicate �(ng) bits. Note that Theorem 1.3 is sub-
linear (in the circuit size) only for particular kind of circuits in which the circuit is much
larger than the size of the inputs or its outputs. It is easy to find a circuit C with g
gates in which our protocol must communicate O(n4g) in the pessimistic case. A lower
bound by Damgård et al. [24] shows that any perfectly secure protocol that works in the
“gate-by-gate” framework must communicate �(n) bits for every multiplication gate.
Our protocol deviates from this framework when computing an entire multiplication
layer as an atomic unit.

Efficient Perfectly Secure Computation Page 7 of 43 27

Secret sharing Our solution is based on sharing a bivariate polynomial with degree 2t
in x and degree t in y. We remark that sharing a bivariate polynomial with degree d in
x and t in y for d > t was previously studied in the asynchronous setting [7,40].

1.3. Open Problems

Our protocol improves the communication complexity of constant-round multiplication
with optimal malicious resilience from O(n2 · comm(V SS)) to O(n · comm(V SS)),
matching the number of secret shares in the semi-honest protocol. The immediate open
problem is exploring the optimal communication complexity of verifiable secret sharing
protocol. To the best of our knowledge, we are unaware of any non-trivial lower bound for
perfect VSS (also see the survey by C, Choudhury, and Patra [11]). The VSS protocol
requires O(n2) words in the optimistic case over the point-to-point channel and an
additional O(n2) words over the broadcast channel in the pessimistic case.

Another possible direction to generalize our work is to mitigate between the two
approaches for perfect security: Design a “hybrid” protocol that computes some sub-
circuits using the linear communication complexity approach and some sub-circuits us-
ing the constant-round per multiplication approach and achieve the best of both worlds.
Another interesting direction is to make sub-linear communication complexity improve-
ment compatible with the protocols that are based on multiplication triplets.

2. Technical Overview

In this section, we provide a technical overview of our results. We start with an overview
of the BGW protocol in Sect. 2.1, and then we overview our protocol in Sect. 2.2.

2.1. Overview of the BGW Protocol

In the following, we give a high-level overview of the BGW protocol while incorporating
several optimizations that were given throughout the years [4,29].

Let f be the function that the parties wish to compute, mapping n inputs to n outputs.
The input of party Pi is xi and its output is yi , where (y1, . . . , yn) = f (x1, . . . , xn). On
a high level, the BGW protocol works by emulating the computation of an arithmetic
circuit C that computes f and has three phases. In the first phase, the input sharing
phase, each party secret shares its input with all other parties. At the end of this stage,
the value of each input wire of the circuit C is secret-shared among the parties, such that
no subset of t parties can reconstruct the actual values on the wires. In the second phase,
the circuit emulation phase, the parties emulate a computation of the circuit gate-by-gate,
computing shares on the output wire of each gate using the shares on the input wires.
At the end of this stage, the output wires’ values are secret-shared among all parties.
Finally, in the output reconstruction phase, Pi receives all the shares associated with its
output wire and reconstructs its output, yi .

The invariant maintained in the original BGW protocol is that each wire in the circuit,
carrying some value a, is secret-shared among the parties using some random polynomial
A(x) of degree t with a as its constant term. We follow the invariant of [4], and in our

27 Page 8 of 43 I. Abraham et al.

protocol, the parties hold bivariate sharing and not univariate sharing. That is, the secret
is hidden using a bivariate polynomial A(x, y) of degree t in both variables in which the
share of each party Pi is defined as A(x, αi), A(αi , y), where αi is the evaluation point
associated with Pi . Maintaining bivariate sharing instead of univariate sharing removes
one of the building blocks in the original BGW protocol, where parties sub-share their
shares to verify that all the shares lie on a polynomial of degree t . Obtaining bivariate
sharing essentially comes for free. In particular, when parties share a value, they use a
verifiable secret sharing protocol (VSS, see Sect. 2.2) [17,26,28], which uses bivariate
sharing to verify that all the shares are consistent. However, in BGW, the parties then
disregard this bivariate sharing and project it to univariate sharing. We just keep the
shares in the bivariate form.

The multiplication protocol In the input sharing phase, each party simply shares its
input using the BGW’s VSS protocol. Emulating the computation of addition gates is easy
using the linearity of the secret sharing scheme. The goal of the multiplication protocol
is to obtain bivariate sharing of the value of the output wire of the multiplication gate
using the shares on the input wires. Let a, b be the two values on the input wires, hidden
with polynomials A(x, y), B(x, y), respectively. The protocol proceeds as follows:

1. Each party Pi holds shares f ai (x) = A(x, αi) and f bi (x) = B(x, αi), each are
univariate polynomials of degree t . Each party Pi shares a bivariate polynomial
Ci (x, y) of degree t such that Ci (0, 0) = f ai (0) · f bi (0).

2. Using a verification protocol, each party Pi proves in perfect zero-knowledge that
Ci (0, 0) = f ai (0) · f bi (0). We elaborate on this step below.

3. Given the shares on all (degree t) polynomials C1(x, y), . . . ,Cn(x, y), the parties

compute shares of the polynomialC(x, y)
def= ∑n

i=1 λi ·Ci (x, y), where λ1, . . . , λn
are the Lagrange coefficients, by simply locally computing a linear combination
of the shares they obtained in the previous step.

To see why this protocol is correct, observe that since each one of the polynomi-
als C1(x, y), . . . ,Cn(x, y) is a polynomial of degree t , then the resulting polynomial

C(x, y) is also a polynomial of degree t . Moreover, define h(y)
def= A(0, y) · B(0, y) and

observe that h(y) is a polynomial of degree 2t satisfying h(0) = A(0, 0) · B(0, 0) = ab.
It holds that ab = λ1 · h(α1) + . . . + λn · h(αn). Thus,

C(0, 0)
def=

n∑

i=1

λi · Ci (0, 0) =
n∑

i=1

λi · f ai (0) · f bi (0) =
n∑

i=1

λi · h(αi) = ab ,

as required. Crucially, each Ci (x, y) must hide h(αi) = f ai (0) · f bi (0) as otherwise, the
above linear combination would not result in the correct constant term. This explains
the importance of the verification protocol.

BGW’s verification protocol In the verification protocol, the dealer holds the univariate
polynomials f ai (x), f bi (x) and a polynomialCi (x, y), and each party Pj holds a share on
those polynomials, that is, points f ai (α j), f bi (α j) and degree-t univariate polynomials
Ci (x, α j), Ci (α j , y). The parties wish to verify that Ci (0, 0) = f ai (0) · f bi (0).

Efficient Perfectly Secure Computation Page 9 of 43 27

Toward that end, the dealer defines random degree-t polynomials D1, . . . , Dt under
the constraint that

Ci (x, 0) = f ai (x) · f bi (x) −
t∑

�=1

x� · D�(x, 0) . (1)

As shown in [4,9], the dealer can choose the polynomials D1, . . . , Dt in a special way
so as to cancel all the coefficients of degree higher than t of f ai (x) · f bi (x) and to ensure
that Ci (x, y) is of degree t . The dealer verifiably shares the polynomials D1, . . . , Dt

with all parties, and then each party Pk verifies that the shares it received satisfy Eq. (1).
If not, it complaints against the dealer. Note that at this point, since all polynomials
Ci , D1, . . . , Dt are bivariate polynomial of degree t , and f ai (x), f bi (x) are univariate
polynomials of degree t , it is possible to reconstruct the shares of any party Pk without the
help of the dealer. The parties can then unequivocally verify the complaint. If a complaint
was resolved to be a true complaint, the dealer is dishonest, we can reconstruct its points
and exclude it from the protocol. If the complaint is false, we can also eliminate the
complaining party.

An honest dealer always distributes polynomials that satisfy Eq. (1). For the case of
a corrupted dealer, the term f ai (x) · f bi (x) − ∑t

�=1 x
� · D�(x, 0) defines a univariate

polynomial of degree at most 2t for every choice of degree-t bivariate polynomials
D1, . . . , Dt . If this polynomial agrees with the polynomialCi (x, 0) for all honest parties,
i.e., on 2t + 1 points, then those two polynomials are identical, and thus it must hold
that Ci (0, 0) = f ai (0) · f bi (0), as required.

2.2. Our Protocol

Simplifying the verification protocol In the above verification protocol, the dealer
distributes t polynomials D1, . . . , Dt using VSS. We show how to use a more efficient
technique for accomplishing the verification task. Namely, we introduce a weak secret
sharing protocol, for sharing a polynomial D(x, y) of degree 2t in x and degree t in y.
The dealer then chooses a single random polynomial D(x, y) under the constraint that:

Ci (x, 0) = f ai (x) · f bi (x) − D(x, 0) (2)

The dealer distributes D(x, y) and the parties jointly verify that (a) Eq. (2) holds and
(b) that D(0, 0) = 0.

Our weak secret sharing protocol for distributing such D(x, y)has the samecomplexity
as verifiable secret sharing of a degree-t polynomial, and therefore we improve the
verification protocol’s complexity by a factor of t = O(n). The secret sharing is weak
in the sense that the parties cannot necessarily reconstruct the secret from the shares
without the help of the dealer during the reconstruction. However, the verifiability part
guarantees that there is a well-defined polynomial that can be reconstructed (or, if the
dealer does not cooperate, then no polynomial would be reconstructed). Since the role of
the polynomial D(x, y) is just in the verification phase and requires the involvement of
the dealer, to begin with, this weak verifiability suffices. If the dealer does not cooperate

27 Page 10 of 43 I. Abraham et al.

during the verification phase, then the parties can reconstruct its inputs and resume the
computation on its behalf.

Our weak secret sharing Our weak verifiable secret sharing protocol is similar to
the BGW verifiable secret sharing protocol. Introducing modifications to the protocol
enables sharing of a polynomial of a higher degree, but in that case—satisfies only weak
verifiability. We start with an overview of the verifiable secret sharing protocol and then
describe our weak secret sharing protocol.

The verifiable secret sharing protocol In a nutshell, the verifiable secret sharing pro-
tocol of BGW (with the simplifications of [26]) works as follows:

1. Sharing The dealer wishes to distribute shares of a polynomial D(x, y) of degree
t in both variables. The dealer sends to each party Pi the degree-t univariate
polynomials fi (x) = D(x, αi) and gi (y) = D(αi , y).

2. Exchange sub-shares Each party Pi sends to party Pj the pair (fi (α j), gi (α j)).
Note that if indeed the dealer sent correct shares, then fi (α j) = D(α j , αi) =
g j (αi) and gi (α j) = D(αi , α j) = f j (αi). If a party does not receive from Pj

the shares it expects to receive, then it broadcasts a complaint. The complaint
has the form of complaint(i, j, fi (α j), gi (α j)), i.e., Pi complaints that it receives
from Pj wrong points, and publishes the two points that it expected to receive,
corresponding to the information it had received from the dealer.

3. Complaint resolution—the dealer The dealer publicly reveals all the shares
of all parties that broadcast false complaints—i.e., if party Pi complaints with
points different than those given in the first round, then the dealer makes the share
(fi (x), gi (y)) public.

4. Vote The parties vote that whatever they see is consistent. A party is happy with
its share and broadcasts good if: (a) Its share was not publicly revealed. (b) The
dealer resolved all conflicts the party saw in the exchange sub-shares phase, i.e., all
its complaints were resolved by the dealer by publicly opening the other parties’
shares. (c) All shares that the dealer broadcasts are consistent with its shares. (d)
No parties (j, k) complain about each other, and the dealer did not resolve at least
one of those complaints.

If 2t + 1 parties broadcast good then the parties accept the shares. A party whose share
was publicly revealed updates its share to be the publicly revealed one.

Note that if at least 2t + 1 parties broadcast good then at least t + 1 honest parties
are happy with their shares. Those shares determine a unique bivariate polynomial of
degree t . Moreover, any polynomial that is publicly revealed must be consistent with
this bivariate polynomial, as agreeing with the points of t + 1 honest parties uniquely
determine a polynomial of degree t .

Weak secret sharing Consider this protocol when the dealer shares a polynomial
D(x, y) that is of degree 2t in x and degree t in y, i.e., D(x, y) = ∑2t

i=0
∑t

j=0 di, j x
i y j

for some set of coefficients {di, j }i, j . Here, if t + 1 honest parties are happy with their
shares and broadcast good, their polynomials also define a unique polynomial D(x, y)
of degree 2t in x and degree t in y. However, if there is a complaint and the dealer opens
some party’s share, since fi (x) is of degree 2t it is not sufficient that these t + 1 honest
parties agree with that polynomial fi (x), and fi (x) might still be “wrong.” This im-

Efficient Perfectly Secure Computation Page 11 of 43 27

plies that the honest parties cannot identify whether their shares are compatible with the
shares of the other honest parties (that their shares were publicly revealed), and further
verification is needed, which seems to trigger more rounds of complaints. Guaranteeing
all honest parties obtain consistent shares is a more challenging task.

We, therefore, take a different route and do not require the dealer to publicly open any
of the fi (x) polynomials. Still, it has to publicly open only the gi (y) polynomials, as
those are of degree t . Each honest party broadcasts good only if the same conditions as
in VSS are met (in particular, they must hold both fi (x), gi (y) shares). At the end of this
protocol, some honest parties might not hold fi (x) shares on the polynomial D(x, y).
Those parties will not participate in the reconstruction protocol.

Note that if 2t + 1 parties broadcast good, then there are at least t + 1 honest parties
that hold fi (x) shares (which are of degree 2t). The shares of those parties agree with
all the gi (y) of all honest parties. The 2t + 1 univariate polynomials gi (y) of the honest
parties define a unique bivariate polynomial of degree 2t in x and degree t in y.

In the reconstruction phase, since the corrupted parties might provide incorrect shares
and since some honest parties do not have shares, we cannot guarantee reconstruction
of the polynomial D(x, y) without the help of the dealer. However, we can guarantee
that only the polynomial D(x, y) can be reconstructed, or no polynomial at all.

Concluding the multiplication protocol Recall that in our protocol, the parties also
have to jointly verify that (a) Eq. 2 holds, and that (b) that D(0, 0) = 0. We now
elaborate on those two steps.

To verify that the polynomial D(x, y) satisfies D(x, 0) = f ai (x) · f bi (x) − Ci (x, 0),
each party Pj simply checks that its own shares satisfy this condition, i.e., whether
D(α j , 0) = f ai (α j) · f bi (α j) − Ci (α j , 0). Note that if this holds for 2t + 1 parties,
then the two polynomials are identical. Each party Pj checks its own shares, and if
the condition does not hold then it broadcasts complaint(j). With each complaint, the
dealer has to publicly reveal the shares of Pj . Since all those polynomials were shared
using (weak or strong) verifiable secret sharing, the parties can easily verify whether
the shares that the dealer opens are correct or not. Note, however, that the verification
process involves the participation of the dealer since D(x, y) is shared using only weak
secret sharing. However, if something goes wrong, then the dealer is disqualified.

To check that D(0, 0) = 0, the parties simply reconstruct the polynomial D(0, y).
This is a polynomial of degree t , and it can be reconstructed (with the dealer’s help,
as D is shared using a weak secret sharing scheme). Moreover, it does not reveal any
information on the polynomials f ai (x), f bi (x),Ci (x, 0): In the case of an honest dealer,
the adversary already holds t shares on the polynomial D(0, y) and it always holds that
D(0, 0) = 0, since the dealer is honest.

2.3. Extensions

Our zero-knowledge verification protocol allows the dealer to prove that its shares of
a, b, c satisfy the relation c = ab. The cost of the protocol is proportional to a constant
number of VSSs. We show an extension of the protocol allowing a dealer to prove that its
shares of (x1, . . . , xL), (y1, . . . , yM) satisfy (y1, . . . , yM) = G(x1, . . . , xL), where G
is any circuit of multiplication depth 1 (i.e., a degree-2 polynomial). The communication

27 Page 12 of 43 I. Abraham et al.

complexity of the protocol is O(L + M) VSSs and not O(|G|) VSSs (where |G| is the
number of multiplication gates in the circuit G). This allows computing the circuit in
a layer-by-layer fashion and not gate-by-gate and leads to sub-linear communication
complexity for circuits where |G| ∈ ω(L + M).

2.4. Organization

The rest of the paper is organized as follows. In Sect. 3, we provide preliminaries and
definitions. In Sect. 4, we cover our weak verifiable secret sharing, strong verifiable secret
sharing, and some extensions. Our multiplication protocol (with a dealer) is provided in
Sect. 5 and its generalization to arbitrary gates with multiplicative depth 1 is given in
Sect. 6. In “Appendix A,” we overview how the dealer is removed and how to compute
a general function, following the BGW approach.

3. Preliminaries

NotationsWe denote {1, . . . , n} by [n]. We denote the number of parties byn and a bound
on the number of corrupted parties by t . Two random variables X and Y are identically
distributed, denoted by X ≡ Y , if for every z it holds that Pr[X = z] = Pr[Y = z]. Two
parametrized distributions D1 = {D1(a)}a and D2 = {D2(a)}a are said to be identically
distributed, if for every a the two random variables (a,D1(a)), (a,D2(a)) are identically
distributed.

3.1. Definitions of Perfect Security in the Presence of Malicious Adversaries

We follow the standard, stand-alone simulation-based security of multiparty computa-
tion in the perfect settings [3,12,30]. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
functionality and let π be an n-party protocol over ideal (i.e., authenticated and private)
point-to-point channels and an authenticated broadcast channel. Let the adversary, A,
be an arbitrary machine with auxiliary input z, and let I ⊂ [n] be the set of corrupted
parties controlled by A. We define the real and ideal executions:

• The real execution In the real model, the parties run the protocol π where the
adversary A controls the parties in I . The adversary is assumed to be rushing,
meaning that in every round it can see the messages sent by the honest parties to
the corrupted parties before it determines the message sent by the corrupted parties.
The adversary cannot see the messages sent between honest parties on the point-
to-point channels. We denote by REALπ,A(z),I (
x) the random variable consisting of
the view of the adversary A in the execution (consisting of all the initial inputs of
the corrupted parties, their randomness, and all messages they received), together
with the output of all honest parties.

• The ideal execution The ideal model consists of all honest parties, a trusted party,
and an ideal adversary SIM, controlling the same set of corrupted parties I . The
honest parties send their inputs to the trusted party. The ideal adversary SIM
receives the auxiliary input z and sees the inputs of the corrupted parties. SIM

Efficient Perfectly Secure Computation Page 13 of 43 27

can substitute any xi with any x ′
i of its choice (for the corrupted parties) under

the condition that |x ′
i | = |xi |. Once the trusted party receives (possibly modified)

inputs (x ′
1, . . . , x

′
n) from all parties, it computes (y1, . . . , yn) = f (x ′

1, . . . , x
′
n) and

sends yi to Pi . The output of the ideal execution, denoted as IDEAL f,SIM(z),I (
x) is
the output of all honest parties and the output of the ideal adversary SIM.

Definition 3.1. Let f and π be as above. We say that π is t-secure for f if for every
adversary A in the real world, there exists an adversary SIM with comparable com-
plexity to A in the ideal model, such that for every I ⊂ [n] of cardinality at most t it
holds that

{
IDEAL f,SIM(z),I (
x)

}
z,
x ≡ {

REALπ,A(z),I (
x)
}
z,
x

where
x is chosen from ({0, 1}∗)n such that |x1| = . . . = |xn|.

Corruption-aware functionalities The functionalities that we consider are corruption-
aware, namely, the functionality receives the set I of corrupted parties. We refer the
reader to [3, Section 6.2] for further discussion and the necessity of this modeling when
proving security.

Reactive functionalities, composition, and hybrid-world We also consider more gen-
eral functionalities where the computation takes place in stages, where the trusted party
can communicate with the ideal adversary (and sometimes also with the honest parties)
in several stages, to obtain new inputs and send outputs in phases. See [30, Section
7.7.1.3].

The sequential modular composition theorem is an important tool for analyzing the
security of a protocol in a modular way. Assume that π f is a protocol that securely
computes a function f that uses a subprotocol πg , which in return securely computes
some functionality g. Instead of showing directly that π f securely computes f , one can
consider a protocol π

g
f that does not use the subprotocol πg but instead uses a trusted

party that ideally computes g (this is called a protocol for f in the g-hybrid model).
Then, by showing that (1) πg securely implements g, and; (2) π

g
f securely implements

f , we obtain that the protocol π f securely implements f in the plain model. See [12]
for further discussion.

Remark 3.2. (Input assumption) Definition 3.1 requires that the ideal and real distri-
butions are identical for any input of some specific size. We sometimes present func-
tionalities and protocols that are defined only on some subset of inputs, or when the
inputs are correlated. For instance, that the inputs of the honest parties are all points that
lie on the same degree-t polynomial. To model it, i.e., defining the functionality and
the protocol on all inputs while targeting only some promise on the inputs, we define
that the functionality checks the input assumption (the promise), and in case it does not
hold, then it sends the inputs of the honest parties to the adversary, and let the adversary
singlehandedly determine all of the outputs of the honest parties. Any protocol can then
be simulated relative to such functionality when the promise does not hold. This extends
all our protocols and functionalities for general inputs.

27 Page 14 of 43 I. Abraham et al.

3.2. Robust Secret Sharing

Let F be a finite field of order greater than n, let α1, . . . , αn be any distinct nonzero
elements from F and denote
α = (α1, . . . , αn). For a polynomial q, denote Eval
α(q) =
(q(α1), . . . , q(αn)). The Shamir’s t + 1 out of n sharing scheme [42] consists of two
procedures Share and Reconstruct as follows:

• Share(s). The algorithm is given s ∈ F, then it chooses t independent uniformly
random elements from F, denoted q1, . . . , qt , and defines the polynomial q(x) =
s + ∑t

i=1 qi x
i . Finally, it outputs Eval
α(q) = (q(α1), . . . , q(αn)). Define si =

q(αi) as the share of party Pi .
• Reconstruct(
s). For a set J ⊆ [n] of cardinality at least t + 1, let
s = {si }i∈J .

Then, the algorithm reconstructs the secret s.

Correctness requires that every secret can be reconstructed from the shares for every
subset of shares of cardinality t + 1, and secrecy requires that every set of less than t
shares is distributed uniformly in F. We refer to [3] for a formal definition.

Reed Solomon code Recall that a linear [n, k, d]-code over a field F is a code of length
n, dimension k, and distance d. That is, each codeword is a sequence of n field ele-
ments, there are in total |F|k different codewords, and the Hamming distance of any
two codewords is at least d. Any possible corrupted codeword ĉ can be corrected to the
closest codeword c as long as d(c, ĉ) < (d −1)/2, where d(x, y) denotes the Hamming
distance between the words x, y ∈ F

n .
In Reed Solomon code, let m = (m0, . . . ,mt) be the message to be encoded, where

each mi ∈ F. The encoding of the message is essentially the evaluation of the degree-t
polynomial pm(x) = m0 + m1x + . . . + mt xt on some distinct nonzero field elements
α1, . . . , αn . That is, Encode(m) = (p(α1), . . . , p(αn)). The distance of this code is
n − t . This is because any two distinct polynomials of degree t can agree on at most t
points. We have the following fact:

Fact 3.3. The Reed Solomon code is a linear [n, t + 1, n− t] code over F. In addition,
there exists an efficient decoding algorithm that corrects up to (n− t −1)/2 errors. That
is, for every m ∈ F

t+1 and every x ∈ F
n such that d(x,C(m)) ≤ (n − t − 1)/2, the

decoding algorithm returns m.

For the case of t < n/3 we get that is possible to efficiently correct up to (3t + 1 −
t − 1)/2 = t errors. Putting it differently, when sharing of a polynomial of degree t , if
during the reconstruction t errors were introduced by corrupted parties, it is still possible
to (efficiently) recover the correct value.

3.3. Bivariate Polynomial

We call a bivariate polynomial of degree q in x and degree t in y as (q, t)-bivariate poly-
nomial. If q = t then we simply call the polynomial as degree-t bivariate polynomial.
Such a polynomial can be written as follows:

Efficient Perfectly Secure Computation Page 15 of 43 27

S(x, y) =
q∑

i=0

t∑

j=0

ai, j x
i y j .

Looking ahead, in our protocol, we will consider degree-t bivariate polynomials and
degree (2t, t)-bivariate polynomials.

Claim 3.4. (Interpolation) Let t be a nonnegative integer, and let α1, . . . , αt+1 be
distinct elements in F, and let f1(x), . . . , ft+1(x) be t + 1 univariate polynomials of
degree at most q. Then, there exists a unique (q, t)-bivariate polynomial S(x, y) such
that for every k = 1, . . . , t + 1:

S(x, αk) = fk(x).

Proof. Define the bivariate polynomial S(x, y) via the Lagrange interpolation:

S(x, y) =
t+1∑

i=1

fi (x) ·
∏

j �=i (y − α j)
∏

j �=i (αi − α j)

(where the values of the j in the product are 1 ≤ j ≤ t + 1 with j �= i). It is easy
to see that S(x, y) has a degree (q, t). Moreover, for every k = 1, . . . , t + 1 it holds
that S(x, αk) = fk(x). It remains to show that S(x, y) is unique. Assume that there
exist two different degree (q, t)-bivariate polynomials S1(x, y) = S2(x, y) that satisfy
the conditions in the claim. Consider the polynomial R(x, y) = S1(x, y) − S2(x, y).
Since S1, S2 are two (q, t)-bivariate polynomial, R is also (q, t)-bivariate polynomial.
Moreover, for every 1 ≤ k ≤ t + 1 it holds that R(x, αk) = S1(x, αk) − S2(x, αk) = 0.
As a result, for every β ∈ F, the degree-t univariate polynomial R(β, y) is 0 on t + 1
points R(β, α1), . . . , R(β, αt+1), and therefore R(β, y) is the all-zero polynomial. This
implies that for every β, γ ∈ F it holds that R(β, γ) = 0, i.e., R(x, y) is the all-zero
polynomial, and thus S1(x, y) = S2(x, y). �

Symmetrically, one can interpolate the polynomial S(x, y) from a set of q + 1 poly-
nomials gi (y). The proof is similar to Claim 3.4.

Claim 3.5. (Interpolation) Let t be a nonnegative integer, and let α1, . . . , αq+1 be
distinct elements in F, and let g1(y), . . . , gq+1(y) be q + 1 univariate polynomials of
degree at most t each. Then, there exists a unique (q, t)-bivariate polynomial S(x, y)
such that for every k = 1, . . . , q + 1:

S(αk, y) = gk(y).

Hiding The following is the “hiding” claim, showing that if a dealer wishes to share
some polynomial h(x) of degree q, it can choose a random (q, t)-polynomial S(x, y)
that satisfies S(x, 0) = h(x) and give each party Pi the shares S(x, αi), S(αi , y). The
adversary cannot learn any information about h besides {h(αi)}i∈I , when it corrupts the
set I ⊂ [n]. We prove the following two claims in “Appendix B.”

27 Page 16 of 43 I. Abraham et al.

Claim 3.6. (Hiding I) Let h(x) be an arbitrary univariate polynomial of degree q,
and let α1, . . . , αk with k ≤ t be arbitrary distinct nonzero points in F. Consider the
following distribution Dist(h):

• Choose a random (q, t)-bivariate polynomial S(x, y) under the constraint that
S(x, 0) = h(x).

• Output {(i, S(x, αi), S(αi , y))}i∈[k].
Then, for every two arbitrary degree-q polynomials h1(x), h2(x) for which h1(αi) =
h2(αi) for every i ∈ [k] it holds that Dist(h1) ≡ Dist(h2).

Claim 3.7. (Hiding II) Same as Claim 3.6, except that it holds that h1(0) = h2(0) = β

for some publicly known β ∈ F. The output of the distribution is {(i, S(x, αi), S(αi , y))}
i∈[k] ∪ {S(0, y)}.

4. Weak Verifiable Secret Sharing and Extensions

In this section, we show how to adapt the verifiable secret sharing protocol of [9,27]
to allow weak secret sharing of a polynomial with a degree greater than t (but at most
2t). We start with a description of the verifiable secret sharing protocol and highlight
the main differences for getting a weak verifiable secret sharing protocol (sometimes
we may omit the “verifiable” and write only “weak secret sharing”). We formally define
the functionality of weak verifiable secret sharing (WSS) in Sect. 4.2 and then strong
verifiable secret sharing in Sect. 4.4. We write “strong” just to emphasize the difference
from weak secret sharing; Our strong verifiable secret sharing is just a standard verifiable
secret sharing.

As part of the protocol, parties vote and publicly announce (over the broadcast channel)
whether they are happy with their shares. Thus, the set of parties that are happy with
their shares is known to all parties. In our formalization of weak secret sharing, this is
part of the output of all parties. Moreover, the shares of the parties that are happy with
their shares uniquely define the polynomial. Thus, only parties that are happy with their
shares will participate in the reconstruction. The output of WSS is a set K of all parties
that are happy with their shares, where parties in k ∈ K also output the pair fk(x), gk(y),
whereas parties i �∈ K just output gi (y).

Recall that in the BGW protocol, after the parties verify the shares and obtain fi (x), gi (y),
they project the bivariate shares to univariate shares by outputting fi (0). As mentioned
previously, we maintain bivariate sharing and output (fi (x), gi (y)).

4.1. Verifying Shares of a (q, t)-Bivariate Polynomial

Protocol 4.1. (Weak/Strong Verifiable Secret Sharing of a Polynomial)

• Input: The dealer holds a (q, t)-bivariate polynomial S(x, y) with q ≤ 2t .

Efficient Perfectly Secure Computation Page 17 of 43 27

• Common input: The description of a field F and n non-zero distinct elements
α1, . . . , αn ∈ F.

• The protocol:
1. Sharing – the dealer:

(a) Send to each party Pi the shares (fi (x), gi (y)) defined as fi (x)
def=

S(x, αi), gi (y)
def= S(αi , y).

2. Initial checks – each party Pi :
(a) If (1) fi (x) has degree greater than q; or (2) gi (y) has degree greater than

t ; or (3) fi (αi) �= gi (αi) then broadcast complaint(i) and proceed to
step 5.

(b) Let R = {k | Pk broadcast complaint(k)}.
3. Exchange subshares – each party Pi for i �∈ R:

(a) Send
(
fi (α j), gi (α j)

)
to Pj for each j �∈ R.

(b) Let (u j , v j) be the values received from Pj , for j �∈ R. If no value was
received, then use (⊥,⊥). If u j �= gi (α j) or v j �= fi (α j) then broadcast
complaint(i, j, fi (α j), gi (α j)).

(c) If no party broadcasts complaint(i, j, ·, ·) and R = ∅, then:
VSS: Output (fi (x), gi (y)) and halt.
WSS: Output (fi (x), gi (y), [n]) and halt.

4. Resolve complaints – the dealer:
(a) If Pibroadcasted complaint(i) in Step 2a, or broadcasted complaint

(i, j, u, v) with u �= S(α j , αi) or v �= S(αi , α j) then
VSS: Broadcast reveal(i, S(x, αi), S(αi , y)).
WSS: Broadcast reveal(i, S(αi , y)).

5. Evaluate complaint resolutions – each party Pi :
(a) Add to R all indices k for which the dealer broadcasted reveal(k, . . .).

If i ∈ R, then replace gi (y) with the one provided in the broadcasted in
reveal(i, ·, ·).

VSS: If i ∈ R, then rewrite also fi (x).

If i ∈ R then proceed to Step 6.
(b) Verify that the dealer replied to each complaint(k) message from Step 2a

with reveal(k, . . .). If not, proceed to Step 6.
(c) Upon viewing complaint(k, j, u1, v1) and complaint(j, k, u2, v2) broad-

cast by Pk and Pj , respectively, with u1 �= v2 or v1 �= u2, mark (j, k) as a
joint complaint. If the dealer did not broadcast reveal(k, ·) or reveal(j, ·),
then go to Step 6.

(d) For every j ∈ R verify that fi (α j) = g j (αi),
VSS: and that gi (α j) = f j (αi).

If the verification does not hold for some j ∈ R, then go to Step 6.
(e) Broadcast the message good.

27 Page 18 of 43 I. Abraham et al.

6. Output: Let K be the set of all parties that broadcast good and are not in R.
If |K | < 2t + 1, then output ⊥. Otherwise,

VSS: Output (fi (x), gi (y)).
WSS: Each party Pk for k ∈ K outputs (fi (x), gi (y), K). All other
parties output (gi (y), K).

In the optimistic case, when there are no cheats, the protocol ends at Step 3c and incurs
a communication overhead of O(n2) point-to-point messages and no broadcast. In the
pessimistic (worst) case, however, there may be O(n) and O(n2) complaints (broadcasts)
in Steps 2a and 3b, respectively. Then, in step 4, there are O(n) messages of total size
O(n2) that are broadcasted by the dealer (i.e., in order to reveal the polynomials of
at most t parties who placed their complaint). Finally, there are O(n) broadcasts of
the message good if the secret sharing is successfully verified. Overall, the pessimistic
case incurs a communication overhead of O(n2) point-to-point messages and O(n2)

broadcast messages.

4.2. Weak Verifiable Secret Sharing

In weak verifiable secret sharing, the dealer wishes to distribute shares to all parties and
then allow reconstruction only if it takes part in the reconstruction. The result of the
reconstruction can be either a unique, well-defined polynomial which was determined
in the sharing phase or ⊥. The functionality is defined as follows.

Functionality 4.2. (FWSS – Weak Verifiable Secret Sharing Functionality)

The functionality receives a set of indices I ⊂ [n] and works as follows:

• If the dealer is honest (1 �∈ I):
1. Receive a polynomial S(x, y) of degree (q, t) from the dealer P1 with q ≤ 2t .
2. Send to the ideal adversary the shares {S(x, αi), S(αi , y)}i∈I .
3. Receive back from the adversary a set I ′ ⊆ I and define K = ([n] \ I) ∪ I ′.

• If the dealer is corrupted (1 ∈ I):
1. Receive a polynomial S(x, y) of degree (q, t) from the dealer P1.
2. Receive a set K ⊆ [n].
3. Verify that S(x, y) is of degree (q, t) with q ≤ 2t and that K is of cardinality

at most 2t + 1. If verification fails, overwrite S = ⊥ and K = ∅.

• Output: Send K to all parties. Moreover, for every k ∈ K , send S(x, αk), S(αk, y)
to Pk . For every j �∈ K , send Pj the polynomial S(αk, y).

Theorem 4.3. Let t < n/3. Then, Protocol 4.1 when using theWSS branch is t-secure
for the fWSS functionality (Functionality 4.10) in the presence of a static malicious
adversary. The protocol incurs O(n2) point-to-point messages in the optimistic case
and additional O(n2) broadcast messages in the pessimistic case.

Efficient Perfectly Secure Computation Page 19 of 43 27

Proof. Let A be an adversary in the real world. We have two cases, depending on
whether the dealer is corrupted or not. We note that the protocol is deterministic, as well
as the functionality.

Case 1: The Dealer is Honest In this case in the ideal execution, the honest dealer
always holds a polynomial S(x, y) that is of degree (q, t). We describe the simulator
SIM.

The simulator SIM
1. SIM invokes the adversary A on the auxiliary input z.
2. SIM receives from the trusted party the polynomials of the corrupted parties, that

is, fi (x), gi (y), and simulates the protocol execution for A:

(a) Sharing Simulate sending the shares fi (x), gi (y) to each Pi , i ∈ I , as coming
from the dealer P1.

(b) Initial checks Initialize R = ∅. An honest party never broadcastscomplaint(i).
If the adversary broadcast complaint(i), then add i to R.

(c) Exchange sub-shares send to the adversaryA the shares (gi (α j), fi (α j)) from
each honest party Pj , for each corrupted party i ∈ I\R.
Receive from the adversary A the points (ui, j , vi, j) that are supposed to be
sent from Pi to Pj , for i ∈ I\R and j �∈ I .

(d) Broadcast complaints The simulator checks the points (ui, j , vi, j) that the
adversary sent in the previous step. If ui, j �= fi (α j) or vi, j �= gi (α j) then
SIM simulates a broadcast of complaint(j, i, gi (α j), fi (α j)) as coming from
party Pj .
Moreover, receive complaint(·, ·, ·, ·) broadcast messages from the adversary.
If no complaint message was broadcasted by any party, then send I to the
trusted party (which results in sending K = [n] to all parties by the function-
ality), and halt.

(e) Resolve complaints—the dealer The dealer never reveals the shares of honest
parties. For every complaint(i, j, u, v) message received from the adversary,
check thatu = fi (α j) and v = gi (α j). If not, then broadcast reveal(i, gi (y)) as
coming from the dealer, and add i ∈ R. Moreover, if there was a complaint(i)
in the initial checks step (Step 2a), then broadcast reveal(i, gi (y)).

(f) Evaluate complaint resolutions Simulate all honest parties broadcast good.
Let I ′ be the set of corrupted parties that broadcast good.

3. The simulator sends I ′\R to the trusted party. �

It is easy to see by inspection of the protocol, and by inspection of the simulation,
and since the two are deterministic, that the view of the adversary in the real and ideal
executions is equal. Our next goal is to show that the output of the honest parties is the
same in the real and ideal executions.

Consider the optimistic case, where no reveal(i) messages are broadcasted by the
dealer, and there are no complaint messages by any party. Then, in the real execution,
the output of all honest parties is [n] and likewise, in the simulation, the simulator sends

27 Page 20 of 43 I. Abraham et al.

I to the trusted party, which then sends [n] to all parties. The outputs in the ideal and
real executions are therefore the same.
We now consider cases where there are complaints and a vote. An honest party Pj

broadcasts good if all the following conditions are met:

1. The polynomial f j (x) has degree at most q, g j (y) has degree at most t and
f j (α j) = g j (α j). An honest party Pj therefore never broadcasts complaint(j).

2. While resolving complaints, the dealer never broadcasts reveal(j).
3. Each complaint(k) message is replied by the dealer with reveal(k, ·) message.
4. All reveal(i, gi (y)) messages broadcasted by the dealer satisfy f j (αi) = gi (α j).
5. The dealer resolves all joint complaints (see Step 5c).

It is easy to see that all those conditions are met in the case of an honest dealer. In
particular: (1) holds by the assumption on the inputs; (2) an honest party Pj broadcasts
complaint(j, i, f j (αi), g j (αi)) in Step 3b according to the polynomials f j (·), g j (·) it
received from the dealer; As a result, according to the specification of the protocol, the
dealer never broadcasts reveal(j); (3) is true by inspection of the code of the dealer; (4)
When the dealer broadcasts a polynomial it always agrees with f j (x) that was initially
given to Pj ; (5) By the dealer’s code specifications, it resolves all joint complaints.

Therefore, in the real execution all honest parties broadcastgood, and some additional
parties I ′ ⊆ I that the adversary controls might also broadcast good. Then, all honest
parties exclude from this set the parties in R, and output it. Since the view of the adversary
is equal in the ideal execution, the same parties in the simulated ideal execution broadcast
good. Let I ′ ⊆ I be the set of corrupted parties that broadcast good. The simulator
sends I ′\R to the trusted party, which then defines K to be ([n]\I) ∪ (I ′\R), i.e., all
honest parties and all corrupted parties that broadcast good, excluding those that are in
R. Thus, the outputs of the honest parties in the real and ideal are identical.

Case 2: The dealer is corrupted In this case, the honest parties have no input to the
protocol, and the protocol is deterministic. The simulator can therefore perfectly simulate
the protocol execution, and the view of the adversary in the real and ideal executions
is equal. Nevertheless, we have to extract what input the dealer provides to the trusted
party, and show that the output of the honest parties in the real and ideal executions is
equal. The simulator is as follows.

The simulator SIM
1. SIM invokes the adversary A on the auxiliary input z.
2. SIM simulates the execution of Protocol 4.1 while simulating the honest parties

(which have no inputs).
3. Let j �∈ I be the index of an arbitrary honest party. From its output in the simulated

execution, let K ⊆ [n] be the set of parties that broadcast good in the simulated
execution. Then,

(a) Accept If |K | ≥ 2t + 1 then let G ⊂ K\I be the set of all honest parties that
broadcast good, and let G0 ⊆ G be the set of the lexicographically first t + 1
elements in G. Let S(x, y) be the unique3 bivariate polynomial in degree q in

3The analysis will shortly show that this polynomial is unique.

Efficient Perfectly Secure Computation Page 21 of 43 27

x and degree t in y that satisfies f j (x) = S(x, α j) and g j (y) = S(α j , y) for
all j ∈ G0. The simulator sends (S, K) to the trusted party.

(b) Reject If the output in the simulated execution results in reject (i.e., |K | <

2t + 1), then send S(x, y) = x2t+1 to the trusted party (causing to all parties
to output ⊥ in the ideal execution).

As the simulator just runs the honest parties as in the real execution, the view of the
adversary in the real and ideal executions is the same. We now show that the output of
the honest parties in the ideal execution, as received by the trusted party, is the same as
in the real execution. We consider two cases:

Case I—there exists an honest party that outputs⊥ in the real execution In this case,
we claim that all honest parties output ⊥ in the real execution. An honest party outputs ⊥
only if less than 2t+1 parties broadcast good. Since the vote messages are broadcasted,
then all honest parties output ⊥. Since the real execution and the simulated executions
are identical, also in the ideal execution all simulated honest parties will output ⊥. In
this case, the simulator sends S(x, y) = x2t+1 to the trusted party, and the functionality
FWSS in return rejects S and gives ⊥ to all honest parties.

Case II—no honest party outputs ⊥ in the real execution As a result, we have that
at least 2t + 1 parties broadcast good, and therefore there are at least t + 1 honest
parties that broadcast good. Similarly to the case of an honest dealer, an honest party
Pj broadcasts good if and only if all of the following conditions are met:

1. Its share f j (x) has degree at most q, g j (y) has degree at most t and f j (α j) =
g j (α j).

2. All complaint(i) messages were resolved by the dealer, which broadcasts reveal
(i, gi (y)),

3. The dealer resolved all joint complaints (see Step 5c),
4. All messages reveal(i, gi (y)) that the dealer broadcasts, it holds that j �= i , and

that gi (α j) = f j (αi).

Now, consider the set G0 of the first t+1 honest parties that broadcast good, and let G
be the set of all honest parties broadcast good. For the set of polynomials fk(x), gk(y)
with k ∈ G0, we can reconstruct the polynomial S(x, y) of degree q in x and degree t
in y that satisfies fk(x) = S(x, αk), see Claim 3.4. From the pairwise verification step,
g j (αk) = fk(α j) = S(α j , αk) for every j, k ∈ G0, and thus the two degree-t univariate
polynomials g j (y) and S(α j , y) agree on t +1 points. Thus, g j (y) = S(α j , y) for every
j ∈ G0.

We claim that for all other honest parties H
def= [n]\(I ∪ G0), the polynomial g j (y),

either the one that was used by Pj as an input to the interaction (Steps 2 and 3), or was
revealed by the dealer (Step 4), satisfies g j (y) = S(α j , y). We separate the cases where
g j (y) was publicly revealed or not:

1. If g j (y) was publicly revealed, then it must be of degree at most t , and for all
k ∈ G0 it holds that fk(α j) = g j (αk), as follows from Step 5d. In particular, if
this does not hold, then the honest party Pk would have not broadcast good.

2. If g j (y) was not publicly revealed, then it must be that g j (αk) = fk(α j) for
all k ∈ G0 as well. Otherwise, since both Pj and Pk are honest, during the ex-

27 Page 22 of 43 I. Abraham et al.

change sub-shares phase both parties would have broadcast complaint(j, k, . . .),
complaint(k, j, . . .), and the dealer then must broadcast either reveal(j)or reveal(k).
In the former case, the polynomial g j (y) is publicly revealed. In the latter case, Pk
would have not broadcast good. In both cases, we get a contradiction and conclude
that g j (αk) = fk(α j) for all k ∈ G0.

Since |G0| = t + 1, it holds that the two polynomials g j (y) and S(α j , y) agree on
t + 1 points. Since both g j (y) and S(α j , y) are both of degree t , it holds that g j (y) =
S(α j , y). Moreover, we now claim that for all other honest parties j ∈ G\G1 that
broadcast good, it holds that f j (x) = S(x, α j). Since Pj broadcast good it must hold
that f j (αk) = gk(α j) for all honest parties k ∈ [n]\I , where gk(y) might be the original
input of Pk or was revealed by the dealer later in the protocol. This follows from similar
reasoning as above, and from the fact that all those parties broadcast good. As those
define 2t + 1 points, it holds that f j (αk) = gk(α j) = S(αk, α j) for every k ∈ [n]\I ,
and thus f j (x) = S(x, α j).

In the ideal execution, the simulator first reconstructs S(x, y) using the parties in G0,
and then sends S to the trusted party together with K . The trusted party then checks
that S is of the degree at most (q, t). Note that when the simulator sends a polynomial
S(x, y) and a set K to the trusted party, then:

1. S(x, y) is of degree at most (q, t) from the way the simulator reconstructed S;
2. We already saw that for every j ∈ K\I it holds that S(x, αi) = fi (x) and

S(αi , y) = gi (y).

The trusted party then gives K to all honest parties, and each honest party k ∈ K receives
S(x, αk), S(αk, y), and all honest parties j �∈ K outputs S(αk, y). This is exactly the
same output as the simulated honest parties in the simulated execution, which is identical
to the output of the honest parties in the real execution. �

4.3. Evaluation with the Help of the Dealer

We show how the parties can recover the secret polynomial using the help of the dealer.
Toward this end, we show how the parties can evaluate polynomial gβ(y) for every
β ∈ E , where E is a set of elements in F. By taking E to be of cardinality q + 1, it is
possible to completely recover S (see Claim 3.5). When we are only interested in the
constant term of S, we take E = {0} to obtain g(y) = S(0, y) and then output g(0).
Looking ahead, in Protocol 5.2, in the optimistic case, we will use just E = {0}. In the
pessimistic case, E will contain some other indices of parties that raised a complaint
against the dealer.

The polynomials can be reconstructed with the help of the dealer.4 This is what makes
this sharing weak. When q ≤ t , we can achieve (strong) verifiable secret sharing, in
which reconstruction is guaranteed, and the adversary cannot lead to the reconstruction
of ⊥ once the sharing phase is successful.

4It is easy to construct a more “balanced” protocol where the dealer does not play a special role in
the reconstruction. However, when the reconstruction fails, we anyway disqualify the dealer. Therefore, for
simplicity, we present the protocol where the responsibility is held accountable whenever the reconstructed
value is ⊥.

Efficient Perfectly Secure Computation Page 23 of 43 27

Functionality 4.4. (FWEval: Evaluation of a polynomial in Weak VSS)

The functionality receives a set of indices I ⊆ [n] and works as follows:

1. The functionality receives the sets (K , E) from all honest parties, where E is a set
of elements in F. Moreover, for every k ∈ ([n] \ I) ∩ K it receives the polynomial
fk(x) from Pk . The dealer holds a polynomial S′ of degree (q, t) with q ≤ 2t .
When the dealer is honest (1 �∈ I), it is guaranteed that the indices of all honest
parties are included in K (otherwise, see Remark 3.2).

2. The functionality reconstructs the unique (q, t) bivariate polynomial S that agrees
with the shares of the honest parties. When the dealer is honest (1 �∈ I) it always
holds that S′ = S. Note that if the shares do not define a unique polynomial, then
no security is guaranteed.5

3. If the dealer is honest (1 �∈ I) then send S(x, αi), S(αi , y) for every i ∈ I to-
gether with the set E to the ideal adversary. Moreover, send the set of polynomials
{S(β, y)}β∈E to all parties (and the ideal adversary).

4. If the dealer is corrupted (1 ∈ I) then:
(a) Send the polynomial S(x, y) to the ideal adversary together with (K , {S(β, y)}β∈E).
(b) Receive either ok or ⊥ from the ideal adversary.
(c) If ok, then send {S(β, y)}β∈E to all parties, and otherwise, send ⊥ to all parties.

Protocol 4.5. (Evaluation of a polynomial in Weak VSS)

• Input: All parties hold a set K ⊆ [n] and a set E of elements in F. Each party
Pk with k ∈ K holds fk(x). The dealer holds also a polynomial S(x, y) of degree
(q, t) with q ≤ 2t .

• Input guarantees: When the dealer is honest, the indices of all honest parties are
included in K .

• The protocol:
1. The dealer broadcasts {S(β, y)}β∈E .
2. Each party Pk with k ∈ K checks that the broadcasted polynomials are of

degree at most t , and that S(β, αk) = fk(β) for every β ∈ E . If so, it broadcast
good.

3. Output: If 2t + 1 parties in K broadcast good, then output the message
broadcasted by the dealer. Otherwise, output ⊥.

We will consider an alternative protocol in the optimistic case in which K = [n],
which does not use broadcast. See Remark 4.7.

5In that case, we simply give the adversary all inputs of all honest parties which makes any protocol
vacuously secure as anything can be easily simulated, see Remark 3.2.

27 Page 24 of 43 I. Abraham et al.

Theorem 4.6. Let t < n/3. Protocol 4.5 is t-secure for the FWEval functionality
(Functionality 4.4) in the presence of a static malicious adversary. The protocol in-
curs O(n · |E |) broadcast field elements.

Proof. The dealer broadcasts |E | polynomials, each of degree t ∈ O(n). Each party
broadcasts (or not) good, and therefore there are O(n|E | + n) broadcasts.

We again discuss the case of honest and corrupted dealers separately.

The case of an honest dealer In the case of an honest dealer, by the input guarantees, we
have that K includes all indices of all honest parties. We describe the simulator SIM:

1. SIM invokes A on the auxiliary input z.
2. SIM receives from the trusted party the polynomials S(x, αi), S(αi , y) for every

i ∈ I , the set E and all polynomials S(β, y) for every β ∈ E .
3. SIM simulates the dealer broadcasting the set {S(β, y)}β∈E and all honest parties

broadcasting good.

The view of the adversary is deterministic, and it is easy to see that the adversary’s view
is identical in the real and ideal executions. Moreover, as the adversary has no input to
the functionality in the ideal world, the output of the honest parties in the ideal execution
is always {S(β, y)}β∈E . In the real world, from the input assumption, all the shares of
the honest parties lie on the polynomial S(x, y), and all honest parties are part of the
set K . Therefore, all honest parties always broadcast good, and the output of all honest
parties is {S(β, y)}β∈E .

The case of a corrupted dealer

1. SIM invokes A on the auxiliary input z.
2. SIM receives from the trusted party the polynomial S(x, y), and the sets K , E ,

and simulates an execution of the protocol where the input of each honest party
for j ∈ K is S(x, α j), K , E and for every j �∈ K the input is K , E .

3. If the output of the simulated honest parties is ⊥, then send ⊥ to the trusted party.
Otherwise, send ok to the trusted party.

From our assumption over the inputs, all honest parties hold the same sets K , E and
all honest parties in K hold shares of a (q, t)-bivariate polynomial S(x, y). The ideal
functionality first reconstructs this polynomial and then sends it to the ideal adversary.
Thus, the inputs of the simulated honest parties in the ideal execution are identical to the
inputs of the honest parties in the real execution, and thus the view of the adversary is
identical in both executions. We now show that the outputs of the honest parties in the
real and ideal executions are identical as well.

Clearly, since all messages in the protocol are broadcasted, the view of all honest
parties is the same and therefore the output of all honest parties is the same. There are
two cases to consider:

Case I If the output of the honest parties in the real execution is ⊥, then the output of
the simulated honest parties in the ideal execution is ⊥ as well. The simulator sends ⊥
to the trusted party, and the output of the honest parties in the ideal execution is ⊥.

Case II Otherwise, there must be at least 2t + 1 parties in K that broadcast good in
Step 2. Let K ′ be the set of honest parties in K that broadcast good. It must hold that

Efficient Perfectly Secure Computation Page 25 of 43 27

|K ′| ≥ t + 1. Moreover, from our assumption on the input, there is a unique (q, t)-
bivariate polynomial S(x, y) that is defined by the shares of the honest parties in K (and
also by the parties in K ′). Each polynomial gβ(y) for β ∈ E broadcasted by the dealer is
of degree t and satisfies gβ(α j) = f j (β) for every j ∈ K ′. This completely determines
the polynomial gβ(y), and thus it must hold that S(β, y) = gβ(y). �

Remark 4.7. (On the optimistic case of Protocol 4.5) In the optimistic case, we can
implement Protocol 4.5 without any broadcast messages and with O(n2) field elements
over the point-to-point channels. Specifically, in the optimistic case of the entire protocol
(Protocol 5.2) we have that K = [n] and E = {0}. Each party Pk can send on the point-
to-point channel to every other party Pj the message fk(0). Then, each party Pj uses
the Reed Solomon decoding procedure to obtain the unique degree-t polynomial g0(y)
satisfying g0(αk) = γk for at least 2t + 1 indices k ∈ K , where γk is the point received
from party Pk . Since there are 2t+1 honest parties in K , and since S(0, y) is guaranteed
to be a polynomial of degree t , reconstruction works.

4.4. Strong Verifiable Secret Sharing

We provide the functionality for strong verifiable secret sharing, and prove its security.
The protocol is Protocol 4.1 when using the VSS branch and with q = t . The main
difference from [3] is that the output is the two univariate polynomials and not the
projection to univariate sharing, and we, therefore, provide proof for completeness.

Functionality 4.8. (Strong Verifiable Secret Sharing)

• Input: Receive S(x, y) from the dealer P1.
• Output: If S(x, y) is of degree-t in both variables, then send (S(x, αi), S(αi , y))

to each party Pi . Otherwise, send ⊥.

Theorem 4.9. Let t < n/3. Then, Protocol 4.1 when using the VSS branch and with
q = t is t-secure for the fVSS functionality (Functionality 4.8) in the presence of
a static malicious adversary. The protocol incurs O(n2) field elements in the point-
to-point channels in the optimistic case and additional O(n2) field elements over the
broadcast channel in the pessimistic case.

Proof. We again consider the case of a corrupted dealer and an honest dealer.

The dealer is honest In this case, we follow the case of an honest dealer in Theorem 4.3,
while just making the necessary changes in the simulator as the difference between WSS
and VSS in the protocol. Moreover, the simulator does not send I ′ ⊆ R to the trusted
party at Step 3 in the simulation, and instead sends nothing. Clearly, the views in the real
and ideal executions are equal, and the outputs of the honest parties in the real execution
are the polynomials received by the honest dealer, exactly as in the ideal execution.

27 Page 26 of 43 I. Abraham et al.

The dealer is corrupted We follow the same simulation strategy as in Theorem 4.3, but
with the following Step 3:

Step 3: Let (f j (x), g j (y)) be the output of some arbitrary honest party Pj

1. Accept: If at least 2t + 1 parties broadcast good in the simulated execu-
tion, the let G0 be the set of the first t+1 honest parties. Let S(x, y) be the
unique bivariate polynomial in degree t that satisfies f j (x) = S(x, α j)

for all j ∈ G0. The simulator sends S to the trusted party.
2. Reject: Same as in Theorem 4.3.

Showing the outputs of ideal and real executions are identical also follows from Theo-
rem 4.3.

In the simulation, we defined a polynomial S(x, y) according to the f j (x) shares in
the output of the simulated honest parties for some set G0. That is, for every j ∈ G0 it
holds that f j (x) = S(x, α j), by the definition of the polynomial S(x, y). We claim that
also for every j ∈ G0 it holds that S(α j , y) = g j (y). Clearly, since all parties in G0
broadcast good, we have for every pair j, k ∈ G that g j (αk) = fk(α j) = S(αk, α j),
as otherwise those parties would have complain on each other and the dealer must have
opened one of them. This implies that g j (y) equals to S(α j , y) on t+1 points, and since
those are two polynomials of degree t , it must hold that g j (y) = S(α j , y).

Now, we claim that for all other honest parties H
def= [n]\(I ∪ G0), the polynomials

f j (x), g j (y) outputted by the simulated honest parties satisfy f j (x) = S(x, α j) and
g j (y) = S(α j , y). Clearly, g j (y) holds from similar reasoning as in Theorem 4.3,
where for f j (x) we can apply the same argument in a symmetric way: If f j (x) was
publicly revealed then it must agree with the gk(y) for k ∈ G0, which determines the
polynomial, that is, f j (x) = S(x, α j) since the two polynomials agree on t + 1 points.
If f j (x) was not publicly revealed, then it also agrees with t + 1 points as part of the
pairwise checks, again guaranteeing that f j (x) = S(x, α j).

In the real execution, the honest parties just output fi (x), gi (y) and we just saw that
all lie on the same polynomial S(x, y). In the ideal execution, the simulator reconstructs
S(x, y), sends it to the trusted party, and each party Pj receives S(x, α j), S(α j , y). We
just showed that for every j �∈ I it holds that S(x, α j) = f j (x) and S(α j , y) = g j (y).

�

4.4.1. Evaluation

Once a polynomial was shared using strong VSS, reconstruction is always guaranteed.
Moreover, the parties can also evaluate the polynomial on any value β ∈ F to obtain
S(x, β), S(β, y) without the help of the dealer (each party can provide f j (β), g j (β) and
the parties can use Reed Solomon decoding to obtain S(x, β), S(β, y)).

Nevertheless, for our purposes, whenever we need to evaluate a polynomial that was
shared using VSS, we can use the weaker functionality in which the evaluation uses
the help of the dealer. Therefore, we use Functionality 4.4 to evaluate points on the
polynomial with the help of the dealer. Note that in this case we have that q = t , and
the parties use K = [n]. Note that K might be different from the set of parties that
broadcast good when the polynomial was shared. However, since all honest parties hold
shares (f j (x), g j (y)) it is safe to use K = [n]. Thus, evaluating the points of E on a

Efficient Perfectly Secure Computation Page 27 of 43 27

polynomial that was shared with VSS can be implemented using O(n|E |) field elements
broadcasted, as in Theorem 4.6.

4.5. Extending Univariate Sharing to Bivariate Sharing with a Dealer

Sometimes each party Pi holds a share h(αi) of some univariate degree-t polynomial
h(x). The following functionality allows a dealer, who holds h, to distribute shares of
a bivariate polynomial S(x, y) satisfying S(x, 0) = h(x). The protocol is very simple,
demonstrating the advantage for working with bivariate sharing. This is the functionality
F̃extend from [4]:

Functionality 4.10. (FExtend: Extending Univariate Sharing to Bivariate Sharing)

The functionality receives the set of corrupted parties I ⊂ [n] and works as follows:

• Input: The functionality receives the shares of the honest parties {u j } j �∈I . Let h(x)
be the unique degree-t polynomial determined by the points (α j , u j) for every
j �∈ I . If no such polynomial exists then no security is guaranteed (see Remark 3.2).

• If the dealer is corrupted then send h(x) to the ideal adversary.
• Receive S(x, y) from the dealer. Check that S(x, y) is of degree-t and that S(x, 0) =
h(x).

• If both conditions hold, then send S(x, αi), S(αi , y) to Pi for every i . Otherwise,
send ⊥ to everyone.

Protocol 4.11. (Implementing FExtend in the FV SS-hybrid model)

• Input: Each party holds u j . The dealer holds S(x, y) and h(x).
• The protocol:

1. The dealer uses FV SS to distribute S(x, y).

2. Each party Pi receives (fi (x), gi (y))
def= (S(x, αi), S(αi , y)). If instead ⊥ was

received, then output ⊥ and halt.
3. Each party Pi verifies that gi (0) = u j . If not, it broadcast complaint(i).
4. Output: If there are more than t complaints, then output ⊥. Otherwise, output

(fi (x), gi (y)).

The communication cost of the protocol is the same as Protocol 4.1 for VSS. In
the optimistic case, there are no complaints, and thus there are no additional broadcast
messages.

Theorem 4.12. Let t < n/3. Then, Protocol 4.11 is t-secure for the FExtend function-
ality (Functionality 4.10) in the presence of a static malicious adversary, in the FV SS-

27 Page 28 of 43 I. Abraham et al.

hybrid model. The protocol incurs O(n2) point-to-point messages in the optimistic case
and additional O(n2) broadcast messages in the pessimistic case.

Proof. We separate the cases of an honest dealer and a corrupted dealer.

The case of anhonest dealer In this case, it always holds that S(x, 0) = h(x). Therefore,
in the ideal execution each honest party outputs S(x, α j), S(α j , y) for every j �∈ I . The
simulator receives all points (S(x, αi), S(αi , y)) from the trusted party and sends them
to the adversary as being received from the FV SS functionality. Moreover, no honest
party broadcast complaint(·). Clearly, the adversary’s view is identical in the real and
ideal executions. Moreover, in the ideal execution, each honest party Pj for j �∈ I
always outputs (f j (x), g j (y)), as received from the trusted party. In the real execution,
no honest party complains, and the adversary can broadcast at most t complaints. In that
case, the honest parties accept the dealer’s shares, and the outputs are identical to the
ideal execution.

The case of a corrupted dealer The simulator receives h(x) from the trusted party. It
then receives the polynomial S(x, y) that the adversary sends to the FV SS functionality.
If S(x, y) is not of degree t , then it just replies with ⊥ and sends ⊥ to the trusted party.
If S(x, y) is of degree t , then for every j �∈ I it checks that S(α j , 0) = h(α j) (which is
defined to be also g j (0)), and if not, it simulates Pj broadcasting complaint(j). It also
listens to the complaints coming from the corrupted parties. If there were more than t
broadcasts, then it sends ⊥ to the trusted party, and otherwise, it sends S(x, y).

Clearly, the view of the adversary is identical between the real and ideal. To show that
the outputs of the honest parties are the same between the two executions, we only have
to show why if there are less than t complaints in the simulated execution (i.e., when the
simulated honest parties output f j (x), g j (y)) then it holds that S(x, 0) = h(x) and thus
the trusted party will deliver to each honest party the polynomials S(x, α j), S(α j , y).
Clearly, if less than t parties broadcast complaint, then for t + 1 honest parties it holds
that u j = g j (0). Since g j (y) was obtained from FV SS , and from our input assumption
that all u j ’s lie on a polynomial of degree t , the two degree-t univariate polynomials
S(x, 0) and h(x) agree on t + 1 points and therefore must be identical. �

5. Multiplication with a Constant Number of VSSs and WSSs

We now turn to the multiplication protocol. The multiplication protocol reduces multi-
plication with no dealer to multiplication with a dealer, i.e., when one dealer holds two
univariate polynomials f a(x), f b(x), each party holds a share on those polynomials,
and the dealer wishes to distribute a polynomial C(x, y) of degree t in both variables
in which C(0, 0) = f a(0) · f b(0). We refer the reader to “Appendix A” to see how this
functionality suffices to compute any multiplication gate (i.e., when there is no dealer).
In Sect. 5.1, we show the functionality of this building block, in Sect. 5.2 we show the
protocol that realizes it.

Efficient Perfectly Secure Computation Page 29 of 43 27

5.1. Functionality—Multiplication with a Dealer

Functionality 5.1. (Functionality Fmul t
V SS for sharing a product of shares)

Fmult
V SS receives a set of indices I ⊆ [n] and works as follows:

1. Receive a pair of points (u j , v j) ∈ F
2 from Pj .

2. Compute the unique degree-t univariate polynomials f a(x) and f b(x) satisfying
f a(α j) = u j and f b(α j) = v j for every j �∈ I . (if no such polynomials f a or f b

exist, then no security is guaranteed, see Remark 3.2).
3. If the dealer P1 is honest (1 /∈ I), then:

(a) Choose a random degree-t bivariate polynomial C(x, y) under the constraint
that C(0, 0) = f a(0) · f b(0).

(b) Output for honest: send C(x, y) to P1, and C(x, α j), C(α j , y) to Pj for every
j /∈ I .

(c) Output for theadversary: send f a(αi), f b(αi),C(x, αi),C(αi , y) to the (ideal)
adversary, for every i ∈ I .

4. If the dealer P1 is corrupted (1 ∈ I), then:
(a) Send f a(x), f b(x) to the (ideal) adversary.
(b) Receive a bivariate polynomial C as input from the (ideal) adversary.
(c) If either C is not of degree higher than t in x or y, or C(0, 0) �= f a(0) · f b(0),

then reset C(x, y) = f a(0) · f b(0); that is, C(x, y) is a constant polynomial
that equals f a(0) · f b(0) everywhere.

(d) Output for honest: send C(x, α j),C(α j , y) to Pj , for every j /∈ I . (There is
no more output for the adversary in this case.)

5.2. The Protocol

As mentioned in the technical overview, in our protocol the dealer distributes C(x, y)
using verifiable secret sharing. Moreover, the dealer also distributes a random (2t, t)-
polynomial D(x, y) under the constraint that D(x, 0) = f a(x) · f b(x) − C(x, 0). The
parties then verify that: (1) It holds that D(x, 0) = f a(x) · f b(x) − C(x, 0); and (2)
D(0, 0) = 0.

To verify that D(x, y) indeed satisfies that D(x, 0) = f a(x) · f b(x) −C(x, 0), each
party Pi verifies that D(αi , 0) = f a(αi) · f b(αi)−C(αi , 0) using the shares it received
from P1. If the verification fails, it broadcasts a complaint and all parties reconstruct the
shares of Pi . Since all polynomials are verifiably shared, it is possible to verify whether
the complaint is justified. If the complaint is justified, then the dealer is disqualified.
Moreover, if for all honest parties the verification holds, then it must be that the two
degree-2t polynomials, D(x, 0) and f a(x) · f b(x) − C(x, 0) are equal, as they agree
on 2t + 1 points.

27 Page 30 of 43 I. Abraham et al.

To verify that D(0, 0) = 0, the parties publicly reconstruct the polynomial D(0, y)
and check its constant term. Note that D(0, y) does not reveal any information on
C(x, y), nor on f a(x), f b(x), besides the fact that C(0, 0) = f a(0) · f b(0) if indeed
D(0, 0) = 0.

Protocol 5.2. (Computing Fmult
V SS in the (FV SS, FWSS, FExtend, FWEval)-hybrid model)

• Input:
1. The dealer P1 holds two degree-t polynomials f a(x), f b(x).
2. Each party Pi holds two points (ui , vi) = (f a(αi), f b(αi)).

• Common input: A field F and distinct non-zero elements α1, . . . , αn ∈ F.
• The protocol:

1. Sharing phase:
(a) P1 chooses a degree-t bivariate polynomial C(x, y) under the constraint

that C(0, 0) = f a(0) · f b(0).
(b) P1 chooses a random degree (2t, t)-bivariate polynomial D(x, y) under

the constraint that D(x, 0) = f a(x) · f b(x) − C(x, 0).
(c) Invoke FV SS to share C(x, y), and let (f ci (x), gci (y)) be the output of Pi .
(d) Invoke FWSS to share D(x, y). Let K ⊆ [n] be the output of FWSS , such

that each Pk for k ∈ K also receives (f dk (x), gdk (y)), and each party Pj

for j �∈ K receives gdj (y).
(e) If ⊥ was received in any of the above, then proceed to Step 5b.

2. Verifying that D(x, 0) = f a(x) · f b(x) − C(x, 0):
(a) Each party Pi verifies that gdi (0) = ui · vi − gci (0). If no, broadcast

complaint(i).
(b) If no party broadcasts a complaint, then proceed to Step 4.

3. Complaint resolution (only in pessimistic case):
(a) Let R be the set of all parties broadcast complaint(i), and let E = {αi }i∈R .
(b) P1 chooses two random degree-t bivariate polynomials, A, B under the

constraints that A(x, 0) = f a(x) and B(x, 0) = f b(x). The parties run
the FExtend functionality (Functionality 4.10) twice, where each party Pi
inputs ui and the dealer inputs A(x, y) in the first execution, and each
party Pi inputs vi and the dealer inputs B(x, y) in the second execution.
If ⊥ was received in any of the executions, proceed to Step 5b.

(c) The parties reconstruct gaj (y) for every j ∈ R as in Section 4.4.1 using

their shares on the A polynomial. Likewise, reconstruct gbj (y), g
c
j (y).

(d) The parties call to FWEval where all parties input K , E and each party
Pk inputs its shares on D(x, y). The output of FWEval is gdi (y) for every
i ∈ R. If FWEval returned ⊥, then proceed to Step 5b.

Efficient Perfectly Secure Computation Page 31 of 43 27

(e) For every j �∈ K , all parties verify that gdj (0) = gaj (0) · gbj (0) − gcj (0). If
not, then proceed to Step 5b.

4. Verifying that D(0, 0) = 0:
(a) The parties call to FWEval where all parties input K , {0} and their shares

on the polynomial D(x, y). The output of FWEval is gd0 (y) = D(0, y) to
all parties. If FWEval returned ⊥, then proceed to Step 5b.

(b) Verify that gd0 (0) = 0. If not, proceed to Step 5b.

5. Finalization (Output):
(a) Accept: If the dealer was not rejected, then each party Pi outputs (f ci (x),

gci (y)).
(b) Reject: If the dealer is rejected, then each party Pi sends to Pj its points

ui , vi . The parties reconstruct the polynomials f a(x), f b(x) using Reed-
Solomon decoding, and define their output shares f ci (x) = gci (y) =
f a(0) · f b(0).

The communication cost of the entire sharing phase (Step 1) is a constant number
of invocations of VSS/WSS, since it calls to FV SS for C and FWSS for D. In Step 2
in the optimistic case we have no complaints, no complaint resolution is required, and
therefore, there is no communication cost.

In the pessimistic case, the size of E may be O(n) in the worst case. This leads to
two more invocations of VSS (of A and B, as part of FExtend) in Step 3. Moreover,
the parties reconstruct O(n · |E |) = O(n2) field elements over the broadcast channel.
In total, Step 3 results in communication overhead of O(n2) over the point-to-point
channels and O(n2) over the broadcast channel in the pessimistic case.

Finally, in Step 4 there is a reconstruction of D(0, y). In the optimistic case, this
can be done using O(n2) words over the point-to-point channels and no broadcast (see
Remark 4.5). In the pessimistic case, this requires a broadcast of O(n) field elements.
Step 5b results in O(n2) field elements over the point-to-point channels and no broadcast.

Overall, the optimistic case incurs a communication overhead of O(n2) over the point-
to-point channels, and the pessimistic case incurs an additional communication overhead
of O(n2) over the broadcast channel.

Theorem 5.3. Let t < n/3. Then, Protocol 5.2 is t-secure for the Fmult
V SS functionality

in the presence of a static malicious adversary, in the (FV SS, FWSS, FExtend, FWEval)-
hybrid model. The optimistic case incurs O(n2) point-to-point field elements, and the
pessimistic case incurs additional O(n2) broadcast messages of field elements.

Proof. We again consider separately the case when the dealer is honest and when the
dealer is corrupted.

Case 1—the dealer is honest We now describe the simulator SIM:

1. SIM invokes A on an auxiliary input z.
2. SIM receives from the trusted party all points f a(αi), f b(αi) and the polynomials

C(x, αi),C(αi , y), for every i ∈ I .
3. SIM simulates the view of the adversary A in the protocol:

27 Page 32 of 43 I. Abraham et al.

(a) It simulates the parties invoking FV SS with P1 as a dealer where the output of
each corrupted Pi is C(x, αi),C(αi , y).

(b) The simulator fixes a univariate polynomial d(x) of degree 2t arbitrarily, such
that for every i ∈ I it holds that d(αi) = f a(αi) · f b(αi) − C(αi , 0) and
d(0) = 0.

(c) The simulator chooses a random (2t, t)-bivariate polynomial D(x, y) under
the constraint that D(x, 0) = d(x). Then, it gives to each party Pi the shares
D(x, αi), D(αi , y) as coming from the FWSS functionality. It receives back a
set I ′ ⊆ I , defines K = ([n]\I) ∪ I ′ and sends K to the adversary.

(d) An honest party never complains. If the adversary complains in the name of
some corrupted party Pi , then let R be the set of all complaining parties and
define E accordingly.

i. SIM chooses a random polynomial A(x, y) satisfying A(αi , 0) = f a(αi)

for every i ∈ I , and a random polynomial B(x, y) satisfying B(αi , 0) =
f b(αi) for every i ∈ I .

ii. It simulates the parties invoking the FExtend functionality twice, where
the output of each corrupted party Pi is A(x, αi), A(αi , y) in the first
execution, and B(x, αi), B(αi , y) in the second execution.

iii. It simulates the reconstruction of A(αi , y), B(αi , y) andC(αi , y) for every
i ∈ R as coming from FWEval.

iv. Simulate the reconstruction of D(αi , y) for every i ∈ R as coming from
FWEval.

(e) Simulate the reconstruction of D(0, y) as an output of FWEval and send it to
the adversary.

We now show that the view of the adversary in the ideal execution and the output
of the honest parties is identically distributed to the view of the adversary in the real
execution and the output of the honest parties in the real execution. First, we show that the
outputs are distributed identically. Then, we show that views are identically distributed
conditioned on the outputs.

The output of the honest parties in the ideal execution is shares on a degree-t bivariate
polynomial C . The polynomial is random under the constraint that C(0, 0) = f a(0) ·
f b(0). In the real execution, in Step 1a of the protocol, the dealer chooses a polynomial
C exactly as the trusted party in the ideal execution. All parties receive shares on this
polynomial as guaranteed by FV SS . As follows from the description of FWEval, the
honest parties always successfully reconstruct in the case of an honest dealer. Moreover,
since the dealer chooses the polynomials C(x, y) and D(x, y) as described (and the
polynomials A(x, y), B(x, y) if needed), all the verifications are guaranteed to hold and
the corrupted parties cannot cause the honest parties to reject the dealer. In particular,
an honest party never broadcast complaint. Moreover, every complaint of a corrupted
party results in opening shares that are already known to the adversary, and all satisfy
the condition and do not result in reject. Thus, the outputs are identically distributed in
the real and ideal executions.

We now fix the output of the honest parties, and show that the view of the adversary
is identically distributed conditioned on the output. Fixing f a(x), f b(x),C(x, y), in
the real execution the dealer chooses a polynomial D(x, y) of degree (2t, t) satisfying

Efficient Perfectly Secure Computation Page 33 of 43 27

D(x, 0) = f a(x)· f b(x)−C(x, 0). The view of the adversary is shares on the polynomial
D(x, y). If the adversary falsely complains, then the dealer chooses also A(x, y) and
B(x, y) at random such that A(x, 0) = f a(x) and B(x, 0) = f b(x).

In the ideal, we first choose an arbitrary polynomial d(x) that satisfies d(αi) =
f a(αi) · f b(αi) − C(αi , 0) for every i ∈ I , and then choose a random bivariate (2t, t)-
polynomial D(x, 0) = d(x). Following Claim 3.6, the distribution of the shares on such
polynomial is identical. Moreover, if needed, we choose A(x, y) at random such that
A(αi , 0) = f a(αi) and B(x, y) such that B(αi , 0) = f b(αi) for every i ∈ I , which
again has the same distribution from Claim 3.6.

We then claim that the FWEval calls do not give any new information to the adversary.
An honest party never complains, and thus the polynomials revealed as part of FWEval
reveal only shares that the adversary already knows and appear in its view. The revealing
of the polynomial S(0, y) also does not give any new information, as shown in Claim 3.7.
We therefore conclude that the views of both executions are distributed identically,
conditioned on the outputs.

Case 2—corrupted dealer We describe the simulator SIM:

1. The simulator invokes the adversary A on the auxiliary input z.
2. The simulator receives the polynomials f a(x), f b(x) from the trusted party, and

it simulates an execution of the protocol where the input of each honest party
Pj is f a(α j), f b(α j) for every j �∈ I , and simulates the ideal functionalities of
FWEval, FExtend, FV SS, FWSS .

3. If the output of the simulated honest parties in the execution is just f a(0) · f b(0)

then send C(x, y) = x2t+1 (causing the trusted party to reject the polynomial and
send f a(0) · f b(0) to all parties).

4. Otherwise, let f cj (x), g
c
j (y) be the output of Pj , for every j �∈ I . Let G0 be the

set of first t + 1 honest parties. Reconstruct the polynomial C(x, y) satisfying
C(x, α j) = f cj (x) for every j ∈ G0, and send C(x, y) to the trusted party.

Clearly, the view of the adversary in the real and ideal executions is identical. Note that
each party that is not the dealer is deterministic by the protocol specifications, that the
simulator receives the inputs of the honest parties and therefore can perfectly simulate an
execution of the protocol with the honest parties. We have to show that the output of the
honest parties in both executions is the same, conditioned on the view of the adversary.

We have two cases to consider:

Reject Given a view of the adversary that results in reject, the simulator sends x2t+1

to the trusted party which, in return, sends f a(0) · f b(0) to all parties. In the real
execution, from the guarantee of FV SS, FWSS, FExtend, FWEval, if any honest party ever
receive ⊥ in one of those executions then all honest parties receive ⊥, and all parties will
proceed to Step 5b and reconstruct f a(0) · f b(0). Moreover, if an honest party broadcast
complaint(i), then from the correctness of FWEval it is guaranteed that its share will
become public, and so all parties see that its complaint is justified, and all proceed to
Step 5b and reconstruct f a(0) · f b(0).

Accept Given a view of the adversary that results in accept, the simulator reconstructs a
polynomial C(x, y) from the outputs of the first t + 1 honest parties and sends it to the
trusted party. From the security of FV SS , the shares that the honest parties output all lie

27 Page 34 of 43 I. Abraham et al.

on a degree-t bivariate polynomial. Therefore, clearly, all honest parties output shares
on the same polynomial. The trusted party then checks that C(x, y) is of degree t (which
is already guaranteed), and that C(0, 0) = f a(0) · f b(0) and if so send the shares on
the polynomial C(x, y) to all honest parties in the ideal world. We now show that if the
simulated honest parties accepted the shares then this must be the case.

Since the view does not result in reject, we claim that no honest party broadcast
complaint. As we have seen, each complaint of an honest party must result in a rejection
of the dealer. Since no honest party broadcasts a complaint, it must be that the dealer
used D(x, y) satisfying D(x, 0) = f a(x) · f b(x) −C(x, 0). This is because for 2t + 1
points of honest parties α j it holds that D(α j , 0) = f a(α j) · f b(α j) − C(α j , 0). The
polynomial D(x, 0) is a univariate polynomial of degree 2t , and f a(x) · f b(x)−C(x, 0)

is a univariate polynomial of degree 2t as well. They agree on 2t+1 points which implies
that those two polynomials are identical.

From a similar reasoning, it holds that D(0, 0) = 0. Specifically, parties reconstruct
D(0, y) using FWEval. If D(0, 0) �= 0, then the result is a view where all parties reject
the dealer. We conclude that if all parties accepted the dealer then D(x, 0) = f a(x) ·
f b(x) − C(x, 0) and D(0, 0) = 0, which implies that f a(0) · f b(0) = C(0, 0). The
simulator sends C(x, y) to the trusted party which performs this exact check, and then
sends to each honest party its output C(x, αi),C(αi , y). We conclude that the outputs
in the ideal and real execution are identical. �

By combining Theorems 4.9, 4.3, 4.12, and 4.6 with Theorem 5.3, we obtain the
following Corollary:

Corollary 5.4. Let t < n/3. Then, there exists a protocol that is t-secure for the Fmult
V SS

functionality in the presence of a static malicious adversary in the plain model.

6. Extension: Arbitrary Gates with Multiplicative Depth 1

We show how to extend the protocol in Sect. 5 to allow the dealer distributing any shares
b1, . . . , bL given input shares a1, . . . , aM such that (b1, . . . , bL) = G(a1, . . . , aM)

where G is some circuit of multiplicative depth 1. Section 5 is a special case where
a1 · a2 = G(a1, a2).

Functionality 6.1. (Functionality FG
VSS for sharing a result of an evaluation of G)

FG
V SS receives a set of indices I ⊆ [n] and works as follows, where P1 is the dealer:

1. Receive a sequence of points u j,1, . . . , u j,M ∈ F
M from Pj .

2. Compute the unique degree-t univariate polynomials f a1(x), . . . , f aM (x) satisfy-
ing f am (α j) = u j,m for every j �∈ I and m ∈ [M] (if no such polynomials f am (x)
exist, then no security is guaranteed, see Remark 3.2).

3. Let (a1, . . . , am)
def= (f a1(0), . . . , f am (0)). Evaluate (b1, . . . , bL) = G(a1, . . . , am).

4. If the dealer P1 is honest (1 �∈ I) then:

Efficient Perfectly Secure Computation Page 35 of 43 27

(a) For every � ∈ [L], choose a random degree-t bivariate polynomial C� under
the constraint that C�(0, 0) = b�.

(b) Output for honest: send C� to P1 and (C�(x, α j),C�(α j , y)) to Pj for every
j �∈ I and � ∈ [L].

(c) Output for adversary: send to the (ideal) adversary: (1) f a1(αi), . . . , f am (αi)

for every i ∈ I ; (2) (C�(x, αi),C�(αi , y)) for every i ∈ I .

5. If the dealer P1 is corrupted (1 ∈ I), then:
(a) Send f a(x), f b(x) to the (ideal) adversary.
(b) Receive bivariate polynomials C1, . . . ,CL as input from the (ideal) adversary.
(c) If the degree of C� is greater than t in either x or y, or C�(0, 0) �= b� for some

� ∈ [L], then reset C�(x, y) = b� for every � ∈ [L].
(d) Output for honest: send C�(x, α j),C�(α j , y) to Pj , for every j /∈ I and � ∈

[L]. (There is no more output for the adversary in this case.)

The protocol is similar to Protocol 5.2. Given such a circuit G with L outputs, we
let G1, . . . ,GL be the circuits that define each output. That is, for (b1, . . . , bL) =
G(a1, . . . , am) we let b� = G�(a1, . . . , am) for every � ∈ [L]. In the protocol, the
dealer distributes polynomials C1(x, y), . . . ,CL(x, y) using VSS that are supposed to
hide b1, . . . , bL . Then, it defines L bivariate polynomials of degree(2t, t), D1, . . . , DL

such that for every � ∈ [L] it holds that D�(x, 0) = G(f a1(x), . . . , f am (x))−C�(x, 0).
The dealer distributes them using FWSS . The parties then check from the shares they
received that each one of the polynomials C1, . . . ,CL is correct, and that D�(0, 0) for
every � ∈ [L]. When a party Pi complains the parties open the shares of Pi and publicly
verify the complaint.

Protocol 6.2. (Computing FG
V SS in the (FV SS, FWSS, FExtend, FWEval)- hybrid model)

• Input:
1. The dealer P1 holds M degree-t polynomials { f am (x)}m∈[M].
2. Each party Pi holds a point ui,m for every m ∈ [M] (where ui,m = f am (αi)).

• Common input: A field F and distinct non-zero elements α1, . . . , αn ∈ F.
• The protocol:

1. Sharing phase:
(a) P1 computes (b1, . . . , bL) = G(f a1(0), . . . , f aM (0)).
(b) For every � ∈ [L], P1 chooses a random degree-t bivariate polynomials,

C�(x, y) such that C�(0, 0) = b�.

27 Page 36 of 43 I. Abraham et al.

(c) For every � ∈ [L], P1 chooses a random degree (2t, t)-bivariate poly-
nomial6 D�(x, y) under the constraint that D�(x, 0) = G�(f a1(x), . . . ,
f aM (x)) − C�(x, 0).

(d) For every � ∈ [L], invoke FV SS to share C�(x, y) and let (f b�

i (x), gb�

i (y))
be the resulting share of Pi .

(e) For every � ∈ [L], invoke FWSS to share D�(x, y). Let K� ⊆ [n]be the out-
put of FWSS , such that each Pk for k ∈ K� also receives (f d�

k (x), gd�

k (y)),

and each party Pj for j �∈ K� receives gd�

j (y).
(f) If ⊥ was received in any of the above FV SS or FWSS invocations, then

proceed to Step 5b.

2. Verifying that D�(x, 0) = G�((f a1(x), . . . , f aM (x))) − C�(x, 0) for all
� ∈ [L]:
(a) For every� ∈ [L], each party Pi verifies that gd�

i (0) = G�(ui,1, . . . , ui,M)−
gc�i (0). If not, broadcast complaint(i)

(b) If no party broadcasts a complaint, proceed to Step 4.

3. Complaint resolution (only in pessimistic case):
(a) Let R be the set of all parties broadcast complaint(i), and let E = {αi }i∈R .
(b) For every m ∈ [M], the dealer chooses a random degree-t bivariate poly-

nomial Am such that Am(x, 0) = f am (x). The parties run FExtend where
each party Pi inputs ui,m and P1 inputs Am . Let (f ami (x), gami (y)) be the
output share of Pi .

(c) For every m ∈ [M], the parties call to FWEval where each party Pi inputs
(f ami (x), gami (y), E, [n]) and the dealer inputs Am . Let gamj (y) be the

result for every j ∈ R. Likewise, reconstruct gb�

j (y) for every � ∈ [L]. If
FWEval returned ⊥ in any of those invocations, then proceed to Step 5b.

(d) For every � ∈ [L], the parties call to FWEval where all parties input K�, E
and each party Pk for k ∈ K� inputs also (f d�

k (x), gd�

k (y)) and i �∈ K�

inputs gd�

i (y). The output of FWEval is gd�

j (y) for every j ∈ R. If FWEval
returned ⊥, then proceed to Step 5b.

(e) For every j ∈ R, � ∈ [L], all parties verify that gd�

j (0) = G(ga1
j (0), . . . ,

gaMj (0)) − gc�j (0). If not, then proceed to Step 5b.

4. Verifying that D�(0, 0) = 0 for all � ∈ [L]:
(a) For every � ∈ [L], the parties call to FWEval where all parties input K�, {0}

and each party Pj for j ∈ K� inputs also (f d�

j (x), gd�

j (y)). The output

of FWEval is gd�

0 (y) = D�(0, y) to all parties. If FWEval returned ⊥, then
proceed to Step 5b.

(b) For every � ∈ [L], verify that gd�

0 (0) = 0. If not, proceed to Step 5b.

6We abuse notation and writeG�((f
a1 (x), . . . , f aM (x))) to denote a univariate polynomial in the variable

x . Specifically, we take all polynomials f a1 (x), . . . , f aM (x) and perform the same arithmetic operations as
in G� on those input polynomials to receive a univariate polynomial in x .

Efficient Perfectly Secure Computation Page 37 of 43 27

5. Finalization:
(a) Accept: If the dealer was not rejected, then each party Pi outputs (f c�i (x),

gc�i (y)) for every � ∈ [L].
(b) Reject: If the dealer is rejected, then each party Pi sends to Pj its points

ui,m for every m ∈ [M]. The parties reconstruct the polynomials f am (x)
using Reed-Solomon decoding, and output G(f a1(0), . . . , f aM (0)).

Theorem 6.3. Let t < n/3. Then, Protocol 5.2 is t-secure for the FG
V SS functionality

in the presence of a static malicious adversary, in the (FV SS, FWSS, FExtend, FWEval)-
hybrid model. The communication complexity of the protocol is just O(L) VSSs in the
optimistic case. In the pessimistic case, it corresponds to O(L + M) VSSs.

Proof. The proof is similar to that of Theorem 5.3.

Honest dealer In case where the dealer is honest, observe that an honest dealer always
chooses correct polynomials. The adversary receives from the trusted party the inputs
and outputs of the corrupted parties and simulates the view of the adversary in a similar
manner to the simulator in the proof of Theorem 5.3. In the real execution, the honest
parties always accept the shares of the dealer. Clearly, the outputs of all honest parties
have the same distribution in the ideal and real executions, as the honest dealer chooses
C1, . . . ,CL in a similar manner as the trusted party. The view of the adversary in the real
and ideal executions is also identical, based on Claim 3.6. Moreover, if the adversary
complains then it does not learn any new information as we just reveal its shares, i.e.,
information it already knows.

Corrupted dealer In the case where the dealer is corrupted, the simulator just receives
from the trusted party all the inputs of the honest parties and can perfectly simulate the
protocol execution. It then sees what the output of the honest parties is in the simulated
execution, and it sends to the trusted party the inputs of the adversary accordingly. It is
easy to see that the parties accept only if all honest parties did not complain, and any
complaint of an honest party results in a rejection of the dealer. �

Acknowledgements

Gilad Asharov would like to thank Ilan Komargodski and Ariel Nof for helpful discus-
sions.

27 Page 38 of 43 I. Abraham et al.

A General Secure Computation from Multiplication

A.1 Emulate a Multiplication Gate from O(n) Multiplications with a Dealer

We first show how the parties compute a multiplication gate in the (FV SS, Fmult
V SS)-hybrid

model. Leta andb be the values on the two input wires, hidden using polynomials A(x, y)
and B(x, y), respectively. The goal is that the parties would compute shares on a random
degree-t polynomial C(x, y) for which C(0, 0) = ab. The subprotocol for computing a
multiplication gate is as follows:

• InputEach party Pi holds f ai (x) = A(x, αi), gai (y) = A(αi , y), f bi (x) = B(x, αi)

and gbi (y) = B(αi , y).

• The protocol

1. Each party Pi invokes Fmult
V SS as a dealer while using f ai (x), f bi (x) as its input.

Each party Pj uses in that invocation the shares gaj (αi), gbj (αi) as its input.
As an output of this invocation, Pi holds a degree-t bivariate polynomial Ci (x, y) such
thatCi (0, 0) = f ai (0)· f bi (0), and each party Pj holds f cij (x) = Ci (x, α j) and gcij (y) =
Ci (α j , y).

2. Let (f c1
j (x), . . . , f cnj (x)) and (gc1

j (y), . . . , gcnj (y)) be the obtained shares from the pre-
vious step after each party served as a dealer. Each party Pj locally computes its final
share f cj (x) = ∑n

i=1 λi · f cij (x) and gcj (y) = ∑n
i=1 λi · gcij (y), where λ1, . . . , λn are

the publicly known Lagrange coefficients.

• Output Each party outputs f cj (x), g
c
j (y).

The output shares correspond to the polynomial C(x, y) = ∑n
i=1 λi · Ci (x, y). Its

constant term is
∑n

i=1 λi · Ci (0, 0) = ∑n
i=1 λi · f ai (0) · f bi (0) = ab, as required.

A.2 Emulate Arbitrary Gates with Multiplicative Depth 1

Let G be a multiplicative depth 1 sub-circuit of C , with M inputs and L outputs.
Let a1, . . . , aM be the values on the M input wires, hidden using degree-t bivariate
polynomials A1(x, y), . . . , AM (x, y), respectively. The goal is for the parties to com-
pute shares on random degree-t bivariate polynomials C1(x, y), . . . ,CL(x, y) such that(
C1(0, 0), . . . ,CL(0, 0)

) = G
(
A1(0, 0), . . . , AM (0, 0)

)
. The subprotocol for achieving

those shares is as follows:

• Input Each party Pi holds f ami (x) = Am(x, αi) and gami (y) = Am(αi , y) for every
m ∈ [M].

• The protocol

1. Each party Pi invokes FG
V SS (Functionality 6.1) as a dealer while using

f a1
i (x), . . . , f aMi (x) as input. Each party Pj uses the shares ga1

j (αi), . . . ,

gaMj (αi) as input.
As an output of this invocation, Pi holds degree-t bivariate polynomials Ci,1(x, y), . . . ,
Ci,L(x, y) such that

(
Ci,1(0, 0), . . . ,Ci,L(0, 0)

) = G
(
f a1
i (0), . . . , f aMi (0)

)
. In addi-

tion, each party Pj holds f
Ci,�
j (x) = Ci,�(x, α j) and g

Ci,�
j (y) = Ci,�(α j , y) for all

� ∈ [L].

Efficient Perfectly Secure Computation Page 39 of 43 27

2. Let (f
C1,�

j (x), . . . , f
Cn,�

j (x)) and (g
C1,�

j (y), . . . , g
Cn,�

j (y))be the shares ofC1,�(x, y), . . . ,
Cn,�(x, y) for � ∈ [L], obtained from the previous step, after each party served as a dealer.

Each party Pj locally computes its final share f C�

j (x) = ∑n
i=1 λi · f Ci,�

j (x) and gC�

j (y) =
∑n

i=1 λi · gCi,�
j (y), for � ∈ [L], , where λ1, . . . , λn are the publicly known Lagrange

coefficients.

• Output Each party outputs f C�

j (x) and gC�

j (y) for � ∈ [L].
For every � ∈ [L], the output shares correspond to the polynomial C�(x, y) = ∑n

i=1 λi ·
Ci,�(x, y), which is a polynomial of degree t . Let (b1, . . . , bL) = G(a1, . . . , aM). The
constant term of C� is:

C�(0, 0) =
n∑

i=1

λi · Ci,�(0, 0) =
n∑

i=1

λi · G�(f
a1(αi), . . . , f aM (αi))

=
n∑

i=1

λi h�(αi) = h�(0) = b� ,

where h�(x)
def= G�(f a1(x), . . . , f aM (x)) is a polynomial of degree 2, and from Func-

tionality 6.1 it holds that Ci,�(0, 0) = G�(f a1(αi), . . . , f aM (αi)).

Computing any function F
Let F : Fn → F

n be any function that maps n inputs into n outputs, i.e., we assume for
simplicity that the input and output of each party is a single field element. Let C be an
arithmetic circuit over F that computes F . To compute the circuit C :

• Input sharing phase Each party Pi with input xi chooses a random bivariate
polynomial Si of degree t such that Si (0, 0) = xi . It invokes FV SS on Si .

• The circuit emulation stage The parties maintain the invariant in which each wire
in the circuit is hidden by a bivariate sharing. Let G1, . . . ,G� be the predetermined
topological ordering of the gates of the circuit. For k = 1, . . . , � the parties work
as follows.

1. Case 1—Gk is an addition gate Each Pi locally computes the shares on the
output wires by adding the two input shares of the inputs wires of the gate.

2. Case 2—Gk is a general gate The circuit has M input wires and L outputs
wires. We invoke the subprotocol defined above to obtain shares on the output
wires.

• Output reconstruction phase The parties hold bivariate sharing of the output
wires. Each party Pi is supposed to learn some output yi . The parties send to Pi all
the shares on that wire and Pi can reconstruct it.

In [3] it is shown that this protocol securely computes the functionality F (when using
univariate sharing and not bivariate sharing, but the difference in the proof is straight-
forward). By combining Corollary 5.4 and Theorem 4.9, this leads to a protocol in the
plain model.

27 Page 40 of 43 I. Abraham et al.

B Proof of Claims 3.6 and 3.7

Claim B.1. (Hiding I, Claim 3.6, restated) Let h(x) be an arbitrary univariate poly-
nomial of degree q, and let α1, . . . , αk with k ≤ t be arbitrary distinct nonzero points
in F. Consider the following distribution Dist(h):

• Choose a random (q, t)-bivariate polynomial S(x, y) under the constraint that
S(x, 0) = h(x).

• Output {(i, S(x, αi), S(αi , y))}i∈[k].
Then, for every two arbitrary degree-q polynomials h1(x), h2(x) for which h1(αi) =
h2(αi) for every i ∈ [k] it holds that Dist(h1) ≡ Dist(h2).

Proof. We start with the case where k = t . Fix some h1(x), h2(x) as above, and fix
degree-q polynomials { fi (x)}i∈[k] and degree-t polynomials {gi (y)}i∈[k] for which:

1. fi (α j) = g j (αi) for every i, j ∈ [k],
2. gi (0) = h1(αi) = h2(αi).

We have to show that:

Pr
[
Dist(h1) = {(i, fi (x), gi (y))}i∈[k]

] = Pr
[
Dist(h2) = {(i, fi (x), gi (y))}i∈[k]

]

Note that if the set of polynomials fi (x), gi (y) does not satisfy the above two con-
ditions, then the probability to get this set of polynomials is 0 in both distributions.
Observe also that the support of the two distributions is the same. Now, by fixing the
set { fi (x), gi (y)}ki=1, we show that there exists exactly one bivariate polynomial in the
support of Dist(h1). This follows from Claim 3.4 while taking { fi (x)}ki=1 ∪ h1(x). Let
S(x, y) be the unique polynomial that is guaranteed to exist by the claim. For every
j = [t], i ∈ [k], it holds that gi (α j) = f j (αi) = S(αi , α j). Moreover, we know that
S(x, 0) = h1(x) and since gi (0) = h1(αi) it holds that gi (0) = S(αi , 0). We there-
fore conclude that gi (y) agrees with the degree-t polynomial S(αi , y). Since Dist(h1)

chooses each bivariate polynomial in the support with exactly the same probability, we
get that the probability that those { fi (x), gi (y)} were chosen is exactly 1 over the support
ofDist(h1). Exactly the same analysis can be applied forDist(h2), and using the fact that
the support of the two distributions is the same, we conclude that the two distributions
are identical.
For the case of k < t , one can just add arbitrary polynomials to fi (x), gi (y) (that satisfy
the pairwise checks), and use the law of total probability (see [3, Claim 3.2] for a similar
claim). �

Claim B.2. (Hiding II, Claim 3.7, restated) Same as Claim 3.6, except that it holds
that h1(0) = h2(0) = β for some publicly known β ∈ F. The output of the distribution
is {(i, S(x, αi), S(αi , y))}i∈[k] ∪ S(0, y).

Proof. Let h1(x), h2(x) be arbitrary polynomials of degree q such that h1(0) =
h2(0) = β, and fix degree-q polynomials { fi (x)}i∈[k] and degree-t polynomials
{gi (y)}i∈[k] for which gi (0) = h1(αi) = h2(αi), and fi (α j) = g j (αi) for every

Efficient Perfectly Secure Computation Page 41 of 43 27

i, j ∈ [k]. Moreover, fix an arbitrary degree-t polynomial g0(y) for which for every
i ∈ [k] it holds that g0(αi) = fi (0). Note that in case of k = t , the polynomial g0(y) is
already determined: conditioning that g0(αi) = fi (0) for every i ∈ [k] define t points
on the polynomial, we know that g0(0) = β. So we have t + 1 points which uniquely
define a polynomial of degree t .
We show that the probability to obtain { fi (x), gi (y)}i∈[k] ∪ {g0(y)} is the same under
both distributions. First, observe that the support of the two distributions is the same.
Moreover, just like in the previous claim, for the case of k = t we can apply Claim 3.4,
i.e., there exists a unique bivariate polynomial S(x, y) that is determined by the view
{ fi (x), gi (y)}i∈[k]∪{g0(y)} in each one of the distributions. The probability of obtaining
those polynomials is exactly 1 over the support size, which is the same in both cases. For
the case of k < t , one can just add arbitrary polynomials to the set of fixed polynomials
(that satisfy the conditions), and use the law of total probability as in [3, Claim 3.2].

�

References

[1] I. Abraham, B. Pinkas, A. Yanai, Blinder: MPC based scalable and robust anonymous committed broad-
cast, in ACM CCS (2020)

[2] G. Asharov, R. Cohen, O. Shochat, Static vs. adaptive security in perfect MPC: A separation and the
adaptive security of BGW, in 3rd Conference on Information-Theoretic Cryptography, ITC 2022, July
5–7, 2022, Cambridge, MA, USA, volume 230 of LIPIcs, pp. 15:1–15:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

[3] G. Asharov, Y. Lindell, A full proof of the BGW protocol for perfectly secure multiparty computation.
J. Cryptol., 30(1), 58–151 (2017)

[4] G. Asharov, Y. Lindell, T. Rabin, Perfectly-secure multiplication for any t<n/3, in P. Rogaway, editor,
Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14–18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science (Springer,
2011), pp. 240–258

[5] A. Barak, D. Escudero, A.P.K. Dalskov, M. Keller, Secure evaluation of quantized neural networks.
IACR Cryptol. ePrint Arch., 2019, 131 (2019)

[6] D. Beaver, Efficient multiparty protocols using circuit randomization, in CRYPTO (1991), pp. 420–432
[7] Z. Beerliová-Trubíniová, M. Hirt, Simple and efficient perfectly-secure asynchronous MPC, in K. Kuro-

sawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory
and Application of Cryptology and Information Security, Kuching, Malaysia, December 2–6, 2007,
Proceedings, volume 4833 of Lecture Notes in Computer Science (Springer, 2007), pp. 376–392

[8] Z. Beerliová-Trubíniová, M. Hirt, Perfectly-secure MPC with linear communication complexity, in R.
Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New
York, USA, March 19–21, 2008, volume 4948 of Lecture Notes in Computer Science (Springer, 2008),
pp. 213–230

[9] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract), in J. Simon, editor, STOC (ACM, 1988), pp. 1–10

[10] P. Berman, J.A. Garay, K.J. Perry, Bit optimal distributed consensus, in Springer US, Boston, MA, 1992,
Lecture Notes in Computer Science (1992), pp. 313–321

[11] A. Chandramouli, A. Choudhury, A. Patra, A survey on perfectly-secure verifiable secret-sharing. IACR
Cryptol. ePrint Arch., 2021, 445 (2021)

[12] R. Canetti, Security and composition of multiparty cryptographic protocols, J. Cryptol., 13(1), 143–202
(2000)

[13] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in FOCS
(IEEE Computer Society, 2001), pp. 136–145

27 Page 42 of 43 I. Abraham et al.

[14] R. Canetti, I. Damgård, S. Dziembowski, Y. Ishai, T. Malkin, Adaptive versus non-adaptive security of
multi-party protocols, J. Cryptol., 17(3), 153–207 (2004)

[15] H. Chen, M. Kim, I.P. Razenshteyn, D. Rotaru, Y. Song, S. Wagh. Maliciously secure matrix multipli-
cation with applications to private deep learning, IACR Cryptol. ePrint Arch., 2020, 451 (2020)

[16] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lindell, A. Nof, Fast large-scale honest-
majority MPC for malicious adversaries, in CRYPTO (2018), pp. 34–64

[17] B. Chor, S. Goldwasser, S. Micali, B. Awerbuch, Verifiable secret sharing and achieving simultaneity in
the presence of faults (extended abstract), in FOCS (IEEE Computer Society, 1985), pp. 383–395

[18] A. Choudhury, A. Patra. An efficient framework for unconditionally secure multiparty computation,
IEEE Trans. Inf. Theory, 63(1), 428–468 (2017)

[19] B.A. Coan, J.L. Welch. Modular construction of a byzantine agreement protocol with optimal message
bit complexity. Inf. Comput., 97(1), 61–85 (1992)

[20] R. Cohen, S. Coretti, J.A. Garay, V. Zikas. Probabilistic termination and composability of cryptographic
protocols, J. Cryptol. 32(3), 690–741 (2019)

[21] R. Cramer, I. Damgård, U.M. Maurer, General secure multi-party computation from any linear secret-
sharing scheme, in EUROCRYPT (2000), pp. 316–334

[22] I. Damgård, J.B. Nielsen, Scalable and unconditionally secure multiparty computation, in A. Menezes,
editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science (Springer, 2007), pp. 572–590

[23] I. Damgård, J.B. Nielsen, Adaptive versus static security in the UC model, in S. S. M. Chow, J. K. Liu,
L.C.K. Hui, S.-M. Yiu, editors, Provable Security - 8th International Conference, ProvSec 2014, Hong
Kong, China, October 9–10, 2014. Proceedings, volume 8782 of Lecture Notes in Computer Science
(Springer, 2014), pp. 10–28

[24] I. Damgård, J.B. Nielsen, A. Polychroniadou, M.A. Raskin, On the communication required for uncon-
ditionally secure multiplication, in M. Robshaw and J. Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14–18, 2016,
Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science (Springer, 2016), pp. 459–488

[25] I. Damgård, N.I. Schwartzbach, Communication lower bounds for perfect maliciously secure MPC,
IACR Cryptol. ePrint Arch., 2020, 251 (2020)

[26] P. Feldman, Optimal algorithms for byzantine agreement (1988)
[27] P.N. Feldman, Optimal Algorithms for Byzantine Agreement. Ph.D. thesis, Massachusetts Institute of

Technology (1988)
[28] P. Feldman, S. Micali, An optimal probabilistic protocol for synchronous byzantine agreement, SIAM J.

Comput., 26(4), 873–933 (1997)
[29] R. Gennaro, M.O. Rabin, T. Rabin, Simplified VSS and fast-track multiparty computations with ap-

plications to threshold cryptography, in B. A. Coan and Y. Afek, editors, PODC (ACM, 1998), pp.
101–111

[30] O. Goldreich, The Foundations of Cryptography - Volume 2: Basic Applications (Cambridge University
Press, 2004).

[31] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or A completeness theorem for
protocols with honest majority, in A. V. Aho, editor, STOC (ACM, 1987), pp. 218–229

[32] V. Goyal, Y. Liu, Y. Song, Communication-efficient unconditional MPC with guaranteed output delivery,
in A. Boldyreva, D. Micciancio, editors, CRYPTO, volume 11693 of Lecture Notes in Computer Science
(Springer, 2019), pp. 85–114

[33] M. Hirt, U.M. Maurer, B. Przydatek, Efficient secure multi-party computation, in T. Okamoto, editor,
Advances inCryptology - ASIACRYPT2000, 6th InternationalConference on the Theory andApplication
of Cryptology and Information Security, Kyoto, Japan, December 3–7, 2000, Proceedings, volume 1976
of Lecture Notes in Computer Science (Springer, 2000), pp. 143–161

[34] M. Hirt, J.B. Nielsen, Robust multiparty computation with linear communication complexity, in C.
Dwork, editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20–24, 2006, Proceedings, volume 4117 of Lecture
Notes in Computer Science (Springer, 2006), pp. 463–482

[35] J. Katz, C.-Y. Koo, On expected constant-round protocols for byzantine agreement, J. Comput. Syst. Sci.,
75(2), 91–112 (2009)

[36] E. Kushilevitz, Y. Lindell, T. Rabin, Information-theoretically secure protocols and security under com-
position, SIAM J. Comput., 39(5), 2090–2112 (2010)

Efficient Perfectly Secure Computation Page 43 of 43 27

[37] J. Liu, M. Juuti, Y. Lu, N. Asokan, Oblivious neural network predictions via minionn transformations,
in ACM CCS (2017), pp. 619–631

[38] P. Mohassel, P. Rindal, Aby3: A mixed protocol framework for machine learning, in CCS (2018), pp.
35–52

[39] P. Mohassel, Y. Zhang, Secureml: A system for scalable privacy-preserving machine learning, in SP
(2017), pp. 19–38

[40] A. Patra, A. Choudhury, C.P. Rangan, Efficient asynchronous verifiable secret sharing and multiparty
computation, J. Cryptol., 28(1), 49–109 (2015)

[41] T. Rabin, M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest majority (extended
abstract), in D. S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14–17, 1989, Seattle, Washington, USA (ACM, 1989), pp. 73–85

[42] A. Shamir, How to share a secret, Commun. ACM, 22(11), 612–613 (1979)
[43] A. Verma, H. Qassim, D. Feinzimer, Residual squeeze CNDS deep learning CNN model for very large

scale places image recognition, in UEMCON (2017), pp. 463–469
[44] S. Wagh, D. Gupta, N. Chandran, Securenn: 3-party secure computation for neural network training,

Proc. Priv. Enhancing Technol., 2019(3), 26–49 (2019)
[45] A.C.-C. Yao, How to generate and exchange secrets (extended abstract), in FOCS (IEEE Computer

Society, 1986), pp. 162–167

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

	Efficient Perfectly Secure Computation with Optimal Resilience
	1. Introduction
	1.1. Our Results
	1.2. Related Work
	1.3. Open Problems

	2. Technical Overview
	2.1. Overview of the BGW Protocol
	2.2. Our Protocol
	2.3. Extensions
	2.4. Organization

	3. Preliminaries
	3.1. Definitions of Perfect Security in the Presence of Malicious Adversaries
	3.2. Robust Secret Sharing
	3.3. Bivariate Polynomial

	4. Weak Verifiable Secret Sharing and Extensions
	4.1. Verifying Shares of a (q,t)-Bivariate Polynomial
	4.2. Weak Verifiable Secret Sharing
	4.3. Evaluation with the Help of the Dealer
	4.4. Strong Verifiable Secret Sharing
	4.4.1. Evaluation

	4.5. Extending Univariate Sharing to Bivariate Sharing with a Dealer

	5. Multiplication with a Constant Number of VSSs and WSSs
	5.1. Functionality—Multiplication with a Dealer
	5.2. The Protocol

	6. Extension: Arbitrary Gates with Multiplicative Depth 1
	Acknowledgements
	References

