
https://doi.org/10.1007/s00145-022-09432-4
J Cryptol (2022)35:20

Everlasting UC Commitments from Fully Malicious
PUFs∗

Bernardo Magri
The University of Manchester, Manchester, UK

bernardo.mangri@manchester.ac.uk

Giulio Malavolta
Max Planck Institute for Security and Privacy, Bochum, Germany

Dominique Schröder
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Dominique Unruh
University of Tartu, Tartu, Estonia

Communicated by Serge Fehr

Received 1 March 2021 / Revised 7 June 2022 / Accepted 7 June 2022
Online publication 1 July 2022

Abstract. Everlasting security models the setting where hardness assumptions hold
during the execution of a protocol but may get broken in the future. Due to the strength
of this adversarial model, achieving any meaningful security guarantees for composable
protocols is impossible without relying on hardware assumptions (Müller-Quade and
Unruh, JoC’10). For this reason, a rich line of research has tried to leverage physical
assumptions to construct well-known everlasting cryptographic primitives, such as com-
mitment schemes. The only known everlastingly UC secure commitment scheme, due
to Müller-Quade and Unruh (JoC’10), assumes honestly generated hardware tokens.
The authors leave the possibility of constructing everlastingly UC secure commitments
from malicious hardware tokens as an open problem. Goyal et al. (Crypto’10) constructs
unconditionally UC-secure commitments and secure computation from malicious hard-
ware tokens, with the caveat that the honest tokens must encapsulate other tokens. This
extra restriction rules out interesting classes of hardware tokens, such as physically
uncloneable functions (PUFs). In this work, we present the first construction of an ev-
erlastingly UC-secure commitment scheme in the fully malicious token model without
requiring honest token encapsulation. Our scheme assumes the existence of PUFs and is
secure in the common reference string model. We also show that our results are tight by

∗Partially supported by the Deutsche Forschungsgemeinschaft (DFG, 442893093) and by the State of
Bavaria through the Nuremberg Campus of Technology (NCT). Supported by the ERC consolidator grant
CerQuS (819317), by the PRG team grant “Secure Quantum Technology” (PRG946) from the Estonian
Research Council, by the United States Air Force Office of Scientific Research (AFOSR) via AOARD Grant
“Verification of Quantum Cryptography” (FA2386-17-1-4022), and by the Estonian Centre of Exellence in IT
(EXCITE) funded by ERDF.

© The Author(s) 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-022-09432-4&domain=pdf

20 Page 2 of 39 B. Magri et al.

giving an impossibility proof for everlasting UC-secure computation from non-erasable
tokens (such as PUFs), even with trusted setup.

Keywords. Everlasting security, PUF, Universal composability, Commitment scheme.

1. Introduction

The security of almost all cryptographic schemes relies on certain hardness assumptions.
These assumptions are believed to hold right now, and researchers are even fairly certain
that they will not be broken in the near future. It is widely believed, for example, that the
computational Diffie–Hellmann and the RSA assumptions hold in certain groups. But
what about the security of these assumptions in 10, 20, or 100 years? Can we give any for-
mal security guarantees for current constructions that remain valid in the distant future?
This is certainly possible for information-theoretic schemes and properties. However,
given that many interesting functionalities are impossible to realize in an information
theoretic sense, this leaves us in a very unsatisfactory situation.

To overcome this problem, Müller-Quade and Unruh suggested a novel security no-
tion widely known as everlasting universal composability security [26] (building on the
work of Rabin on virtual satellites [34]). The basic idea of this security notion is to bound
the running time of the attacker only during the protocol execution. After the protocol
run is over, the attacker may run in super-polynomial time. This models the intuition that
computational assumptions are believed to hold right now, and therefore, during the pro-
tocol run. However, at some point in the future, known computational assumptions may
no longer hold. Everlasting UC security1 refers to a composable protocol that remains
secure in these settings. The everlasting UC security model has also been considered
for quantum protocols [35]. Everlasting UC security is clearly a very desirable security
notion, and since it is strictly weaker than statistical UC security, one may hope that
it is easier to achieve. However, Müller-Quade and Unruh showed that everlasting UC
commitments cannot be realized, not even in the common reference string (CRS), or
with a public-key infrastructure (PKI) [27].
Everlasting UC Security From Hardware Assumptions The stark impossibility result of
Müller-Quade and Unruh raises the question whether the notion is achievable at all.
The authors answered this question affirmatively by presenting two constructions based
on hardware assumptions. The first construction is based on a tailored-made hardware
token that embeds a random oracle. The second construction relies on signature cards
[27]. However, both constructions assume that the hardware token is honestly generated.
The authors left open the question whether it is possible to achieve everlasting security
in the setting of maliciously generated hardware tokens. Goyal et al. [18] constructs
unconditionally UC-secure commitments and secure computation (as opposed to ev-
erlasting) from malicious hardware tokens. However, the construction of [18] requires

1We use the terms “everlasting security” and “everlasting UC security” interchangeably in this paper to
describe protocols that are everlasting secure and exhibit a composition theorem which allows a modular
design of such protocols.

Everlasting UC Commitments... Page 3 of 39 20

honest tokens to encapsulate other tokens, ruling out some classes of hardware tokens
such as physically uncloneable functions (PUFs).
Physically Uncloneable Functions (PUFs) In this work, we present an everlastingly UC
secure commitment scheme assuming the existence of PUFs. Loosely speaking, PUFs
are physical objects that can be queried by mapping an input to a specific stimulus and
mapping an observable behaviour to an output set. The crucial properties for a PUF are
(i) that it should be hard (if not impossible) to clone and (ii) that it should be hard to
predict the output on any input without first querying the PUF on a close enough input.

1.1. Our Contributions

We initiate the study of everlasting UC security in the setting of maliciously gener-
ated hardware tokens, such as PUFs. Our model extends the frameworks of [4,8] by
introducing fully malicious hardware tokens, whose state is not a-priori bounded, the
generator of a token can install arbitrary code inside of it, and it can encapsulate (and
decapsulate) other (possibly fully malicious) tokens within itself. Our contributions can
be summarized as follows:

• Aiming at bridging the gap between hardware tokens and PUFs, we propose a uni-
fied ideal functionality for fully malicious tokens that is general enough to capture
hardware devices with arbitrary functionalities such as PUFs and signature cards.

• We put forward a novel definition for unpredictability of PUFs. We argue that the
formalization from prior works [3,24,30] is not sufficient for our setting because it
does not exclude adversaries that may indeed predict the PUF responses for values
never queried to the PUF. We demonstrate this fact in Sect. 4.1.1 by giving a concrete
counterexample.

• We show with an impossibility result that one cannot hope to achieve an everlasting-
ly secure oblivious transfer (OT) (therefore, secure computation) in the malicious
token setting by using non-erasable (honestly generated) tokens; non-erasable to-
kens can keep a state but are not allowed to erase previous states.

• Finally, we present an everlastingly UC secure commitment scheme in the fully
malicious token model. Our protocol assumes the existence of PUFs and allows for
the PUF to be reused for polynomially many runs of the protocol. Our cryptographic
building blocks can be instantiated from standard computational assumptions, such
as the learning with errors (LWE) problem.

1.2. Related Work

Everlasting and Memory Bound Adversaries Everlasting security was first considered
in the setting of memory-bounded adversaries [6,10], and later extended to the UC
setting by Müller-Quade and Unruh [27]. Rabin [34] suggested a construction using
distributed servers of randomness, called virtual satellites, to achieve everlasting security.
The resulting scheme remains secure if the attacker that accesses the communication
between the parties and the distributed servers is polynomially bounded during the key
exchange. Dziembowski and Maurer [15] showed that protocols in the bounded storage
model do not necessarily stay secure when composed with other protocols.

20 Page 4 of 39 B. Magri et al.

Damgård [11] presented a statistical zero-knowledge protocol secure under concur-
rent composition. Although counterintuitive, statistical zero-knowledge may lose its
everlasting property under composition. This was illustrated in [27] for statistically hid-
ing UC commitments [16] which were shown to leak secrets under (even sequential)
composition; they are composable and statistically hiding, but not at the same time (i.e.
the composability only holds for the computational hiding property, intuitively). Techni-
cally, the reason for this is that the common reference string used by the simulator is not
statistically indistinguishable. For the same reason, the protocol of Damgård [11] does
not directly translate into an everlasting commitment scheme: for this specific case, the
gap consists in extracting the witness from adversarial proofs using a common reference
string that is statistically close to the honestly sampled one.
(Malicious) Hardware Tokens A model proposed in [22] allows parties to build hardware
tokens to compute functions of their choice, such that an adversary, given a hardware
token T for a function F , can only observe the input and output behaviour of T . The
motivation is that the existence of a tamper-proof hardware can be viewed as a phys-
ical assumption, rather than a trust assumption. The authors show how to implement
UC-secure two-party computation using stateful tokens, under the DDH assumption.
Shortly after, Moran and Segev [28] showed that in the hardware token model of [22]
even unconditionally secure UC commitments are possible using stateful tokens. This
result was later extended by [19] for unconditionally UC-secure computation, also using
stateful tokens.

One limitation of the model of [22] is the assumption that all parties (including the
adversary) know the code running inside the hardware token it produces; this assumption
gives extra power to the simulator, allowing it to rewind the hardware token in the proofs
of [19,22,28]. However, this assumption rules out real scenarios where the adversary
can create a new hardware token that simply “encapsulates” a hardware token it receives
from some party and that the adversary does not know the code running inside of it.

In this direction, Chandran et al. [8] extended the model of [22] to allow for the
hardware tokens produced by the adversary to be stateful, to encapsulate other tokens
inside of it and to be passed on to other parties. They constructed a computationally secure
UC commitment protocol without setup, assuming the existence of stateless hardware
tokens (signature cards). Unfortunately, the construction of [8] cannot fulfil the notion of
unconditional (or everlasting) security since it requires perfectly binding, and therefore
only computationally hiding, commitments as a building block.

Goyal et al. [18], following the model of [8], prove that statistically secure OT from
stateless tokens is possible if (honest) tokens can encapsulate other tokens. However,
honest token encapsulation is highly undesirable in practice, and in particular not even
compatible with PUFs as they are physical objects. Interestingly, the authors also show
that statistically secure OT (and therefore secure computation) is impossible to achieve
when one considers only stateless tokens that cannot be encapsulated. To circumvent this
impossibility result, Döttling et al. [13,14] studied the feasibility of secure computation
in the stateful token model, where the adversary is not allowed to rewind the token
arbitrarily. Although this model has a practical significance, it does not cover certain
classes of hardware tokens, such as PUFs. Later, a rich line of research investigated on
the round complexity of secure computation using stateless hardware tokens [20,25] in
the computational setting. Unfortunately, it seems that the security guarantees of these

Everlasting UC Commitments... Page 5 of 39 20

Table 1. Comparison of UC secure schemes based on tamper-proof hardware tokens .

References Functionality Model Honest token Fully
malicious?

Katz [22] 2PC Computational Stateful ✗

Moran and Segev [28] Commitments Unconditional stateful ✗

Chandran et al. [8] Commitments Computational signature card ✓

Ostrovsky et al. [30] 2PC Computational PUF ✗

Damgård and Scafuro [17] Commitments Unconditional PUF ✗

Goyal et al. [19] 2PC Computational Stateless ✗

Goyal et al. [19] 2PC Unconditional Stateful ✗

Goyal et al. [18] 2PC Unconditional Stateless (with token
encapsulation)

✓

Dachman-Soled et al. [12] 2PC Unconditional PUF ✗

Badrinarayanan et al. [4] 2PC Unconditional PUF ✗

Our scheme (Sect. 6) Commitments Everlasting PUF ✓

Fully malicious tokens are the ones whose state is not a-priori bounded, the creator of the token can install
arbitrary code inside of it, and the token can encapsulate other (possibly fully malicious) tokens within itself

protocols cannot be lifted to the everlasting model: in Sect. 5, we present an impossibility
result against everlastingly UC secure computation from stateful but non-erasable honest
tokens. The result holds even in the presence of an honestly sampled CRS.
PUFs Brzuska et al. [3] introduced PUFs in the UC framework, and proposed UC con-
structions of several interesting cryptographic primitives such as oblivious transfer, bit
commitment, and key agreement. Ostrovsky, Scafuro, Visconti, and Wadia [30] pointed
out that the previous results implicitly assume that all PUFs, including those created by
the attacker, are honestly generated. To address this limitation, they defined a model in
which an attacker can create malicious PUFs having arbitrary behaviour. Many of the
previous protocols can be easily attacked in this new adversarial setting, but Ostrovsky,
Scafuro, Visconti, and Wadia showed that it is possible to construct universally com-
posable protocols for secure computation in the malicious PUF model under additional,
number-theoretic assumptions. They leave open the question of whether uncondition-
al security is possible in the malicious PUF model. Damgård and Scafuro [17] have
made partial progress on this question presenting a commitment scheme with uncon-
ditional security based on PUFs. However, as shown by [4] in the form of an attack,
the construction of [17] completely breaks when the adversary is allowed to generate
encapsulated PUFs. Dachman-Soled, Fleischhacker, Katz, Lysyanskaya, and Schröder
[12] investigated the possibility of secure two-party computation based on malicious
PUFs. Badrinarayanan, Khurana, Ostrovsky, and Visconti [4] introduced a model where
the adversary is allowed to generate malicious PUFs that encapsulate other PUFs inside
of it; the outer PUF has oracle access to all its inner PUFs. The security of their scheme
assumes a bound on the memory of adversarially generated PUFs.

In Table 1, we show a comparison of UC schemes based on malicious hardware tokens
(including PUFs).

20 Page 6 of 39 B. Magri et al.

1.3. Technical Overview

In the following, we give an informal overview of our everlasting UC commitment
scheme construction, and we introduce the main ideas behind our proof strategy. Besides
PUFs, our protocol assumes the existence of the following cryptographic building blocks:

• A non-interactive statistically hiding (NI-SH) UC-secure commitment (Com).
• A 2-round statistically receiver private UC-secure oblivious transfer (OT).
• A statistical witness-indistinguishable argument of knowledge (SWIAoK).
• A strong randomness extractor H .

The message flow of our protocol is shown in Fig. 1. The protocol is executed by a
committer (Alice) and a recipient (Bob). We assume that both parties have access to a
uniformly sampled common reference string that contains a random image of a one-way
permutation y = f (x).
Protocol OverviewAt the beginning of a commitment execution, Bob prepares a series of
random string-pairs (p0

i , p
1
i), and queries them to the PUF to obtain the corresponding

pair (q0
i , q

1
i); the PUF is then transferred to Alice. Here, we make the simplifying

assumption that a PUF is used only for a single run of the commitment. Note, however,
that one can reuse the same PUF by having Bob computing as many tuples (p0

i , p
1
i) as

needed, and by querying the PUF on all of these values before passing it to Alice.
Alice samples a random string k ∈ {0, 1}�(λ) and engages Bob in many parallel OT

instances, where Alice receives pkii , and where ki denotes the i-th bit of k. Alice queries

the strings pkii to the PUF and sends to Bob:

• a set of NI-SH commitments (com1, . . . , com�(λ)) to the outputs of the PUF,
• an (NI-SH) commitment com to m, and
• the string ω := H(seed, k) ⊕ m‖decom.

Alice then produces a SWIAoK that certifies that either (i) all of her messages were
honestly generated, or (ii) she knows a pre-image x such that f (x) = y.

The idea here is that, if an algorithm recovers k, then it can also recompute H(seed, k)
and extract the message m. Note that the value of k is “encoded” in the OT bits of Alice
for the pkii , and those values are queried by Alice to the PUF. Therefore, an extractor
that sees the queries of Alice can easily recover the message m. What is not clear at this
point is how to enforce Alice to query the PUF on the correct pkii and not on some other
random string. For this reason, we introduce an additional authentication step where Bob
publishes all the pairs (q0

i , q
1
i). In the opening phase, Alice proves (with a SWIAoK)

to Bob that the vector of commitments sent in the previous interaction opens indeed to

qk1
1 , . . . , q

k�(λ)

�(λ)
, up to small errors (or she knows the pre-image of y). Intuitively, Alice

cannot convince Bob without querying all the pkii , since she would need to guess some

qkii without knowing the pre-image pkii (due to the security of the OT). In the proof, the
extractor can recover k by just looking at the queries Alice made to the PUF.

To see why the commitment is hiding, it is sufficient to observe that k hides the mes-
sage in an information theoretic sense, under the assumption that the OT and SWIAoK
protocols are secure. One subtlety that we need to address is that some bits of k might
be revealed by the aborts of Alice. For this reason, we one-time-pad the message m with

Everlasting UC Commitments... Page 7 of 39 20

Fig. 1. Message flow diagram between Alice and Bob for the commitment and opening phases of our protocol
in Sect. 6 .

H(seed, k): the strong randomness extractor guarantees that the value H(seed, k) is
still uniformly distributed even if some bits of k are leaked.
Proof Sketch (Hiding) We show that our commitment scheme is hiding through a series
of hybrids where at the last step Alice can equivocate the commitment to any message
of her choice. Note that every step is information-theoretic.
H1: Alice uses x , the pre-image of y, as a witness to compute the SWIAoK. Since
the AoK is statistically witness indistinguishable, this hybrid is statistically close to the
original protocol.

20 Page 8 of 39 B. Magri et al.

H2: Alice uses the simulator for the OT protocols and extracts both values (p0
i , p

1
i). Since

the OT is statistically receiver-private, this hybrid is statistically close to the previous.
In the full proof, this is shown via a hybrid argument.
H3: Alice computes comi as commitment to a random string. A hybrid argument can
be used to bound the distance of this hybrid with the previous by the statistically hiding
property of the commitment scheme.
H4: Alice chooses the value of k for all sessions upfront. Here, the change is only
syntactical.
H5: Alice no longer queries the PUF token but instead checks that the output pairs
(q0

i , q
1
i) sent by Bob correspond to the correct outputs of the PUF on input (p0

i , p
1
i).

Note that the state of the PUF is fixed once the PUF is sent to Alice and therefore the
consistency of all pairs (q0

i , q
1
i) is well defined. Note that the relation is not efficiently

computable by Alice, but for information-theoretic security the fact that it is defined
is enough. Since Alice retains the ownership of the PUF, this hybrid is identical to the
previous.
H5: Alice samples ω uniformly at random. Note that in H4 the leakage of Alice of k is
bounded by whether she aborts or not. Since Alice aborts at most once and since there
are at most polynomially many sessions, we can bound the leakage of k to O(log λ) bits.
Leveraging the randomness extractor H , we can argue that H4 and H5 are statistically
indistinguishable.
H6: Alice opens the commitment to a message of her choice. Note that inH5 the original
message m is information-theoretically hidden.
Proof Sketch (Binding) To argue that the scheme is binding, we define the following
extractor: the algorithm examines the list of queries made by Alice to the PUF and,
for each i , it checks whether some query q is equal to pbi (for b ∈ {0, 1}), if this
is the case then it sets ki = b. Once the full k is reconstructed, the extractor computes
ω⊕H(seed, k) = m‖decom and outputsm. To show that the extractor always succeeds,
we need to argue that:

1. The value of k is always well defined: if some q = p0
i and some other query

q′ = p1
i , then the bit ki is not well defined. However, this means that Alice learned

both p0
i and p1

i from the OT protocol, which is computationally infeasible.
2. The string k is always fully reconstructed: if no query q is equal to p0

i or p1
i , then

the i-th bit of k is not defined. This implies that Alice never queried p0
i or p1

i to
the PUF. However, note that Alice should produce a commitment comi to either
PUF(p0

i) or PUF(p0
i) and prove consistency. This is clearly not possible without

querying the PUF unless Alice breaks the binding of the commitment or proves a
false statement in the SWIAoK. To establish the latter, we also need to rule out the
case where Alice computes the SWIAoK using the knowledge of x , the pre-image
of y. In the full proof, we show this via a reduction against the one-wayness of the
one-way permutation f .

We are now in the position to show that the extracted messagem is identical to the one that
Alice decommits to. Recall that Alice proves that she committed to the values PUF(pkii)
such that ω ⊕ H(seed, k) = m‖decom. It follows that, if k is uniquely defined, then
the extractor always returns the correct m, unless Alice can break the soundness of the

Everlasting UC Commitments... Page 9 of 39 20

SWIAoK (or inverts the one-way permutation). By the above conditions, this happens
with all but negligible probability.
On the Common Reference String Our protocol needs to assume the existence of a com-
mon reference string to equivocate commitments in the security proof: having access to
the generation of the crs, the simulator can craft proofs for false statements, simulate
the OT, and extract the commitments. Note that the simulation has to be “straight-line”,
since we cannot rewind the adversary in the UC framework. A previous work [29] cir-
cumvented this issue by leveraging some computationally hard problem. Unfortunately,
this class of techniques does not seem to apply to the everlasting setting since the envi-
ronment can distinguish a simulated trace once it becomes unbounded. The work of [17]
builds unconditionally secure commitments from PUFs without a CRS, but as shown
by [4], the construction breaks down in our model where the adversary is allowed to
generate encapsulated PUFs. It is not clear if the techniques of [17] can be adapted to our
setting. We leave the question of removing the necessity of a common reference string
from our protocol as a fascinating open problem.

2. Preliminaries

In the following, we introduce the notation and the building blocks necessary for our
results.

2.1. Notations

An algorithm A is probabilistic polynomial time (PPT) if A is randomized and for
any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most poly(|x |)
steps. We denote with λ ∈ N the security parameter. A function negl is negligible, if
for any positive polynomial p and sufficiently large k, negl(k) < 1/p(k). A relation
R ∈ {0, 1}∗ × {0, 1}∗ is an NP relation if there is a polynomial-time algorithm that
decides (x, w) ∈ R. If (x, w) ∈ R, then we call x the statement and x witness for x .
We denote by hd(x, x ′) the Hamming distance between two bitstrings x and x ′. Given
two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≈ Y to denote that the
two ensembles are statistically indistinguishable, and X ≈c Y to denote that they are
computationally indistinguishable. We denote the set {1, . . . , n} by [n]. We recall the
definition of statistical distance.

Definition 1. (Statistical Distance) Let X and Y be two random variables over a finite
set U . The statistical distance between X and Y is defined as

SD [X,Y] = 1

2

∑

u∈U
|Pr[X = u] − Pr[Y = u]| .

2.2. Cryptographic Building Blocks

One Way Function A one-way function is a function that is easy to compute and hard to
invert. It is the building block of almost all known cryptographic primitives.

20 Page 10 of 39 B. Magri et al.

Definition 2. A function f : {0, 1}∗ → {0, 1}∗ is one way if and only if it can be
computed in polynomial time but for all PPT algorithms A, there exists a negligible
function negl such that

Pr
[
x ′ ← A(1λ, f (x)) : f (x ′) = f (x)

]
≤ negl(λ),

where the probability is taken over the random choice of x . Moreover, we say that f is
a one-way permutation whenever the domain and range of f are of the same size.

Non-interactive Commitment Scheme A commitment scheme (in the CRS model) con-
sists of a pair of efficient algorithms C = (Com,Open) where: Com takes as input
m ∈ {0, 1}λ and outputs (decom, com) ← Com(m), where decom and com are both
of length {0, 1}λ; the algorithm Open(decom, com) outputs a message m or ⊥ if c is
not a valid commitment to any message. It is assumed that the commitment scheme is
complete, i.e. for any message m ∈ {0, 1}λ and (decom, com) ← Com(ck,m), we
have Open(ck,decom,Com(ck,m)) = m with overwhelming probability in λ ∈ N.
For convenience, we assume that the verification is deterministic and canonical (i.e. it
takes as input the random coins used in the commitment phase and checks whether the
commitment was correctly computed).

We require commitments to be (stand-alone) statistically hiding. Let A be a non-
uniform adversary against C and define its hiding-advantage as

Advhid
C,A(λ) = 2 · Pr

[
b = b′

∣∣∣∣
(m0,m1, st) ← A(1λ); b ← {0, 1};
(decom, com) ← Com(mb); b′ ← A(com, st)

]
− 1 .

Definition 3. (Statistically Hiding) C is statistically hiding if the advantage function
Advhid

C,A is a negligible function for all unbounded adversaries A.

Furthermore, we require the commitments to be UC-secure: roughly speaking, an equiv-
ocator (with the help of a trapdoor in the CRS) can open the commitments arbitrarily.
On the other hand, we require the existence of a computationally indistinguishable CRS
(in extraction mode) where commitments are statistically binding and can be efficiently
extracted via the knowledge of a trapdoor. Such commitments can be constructed in
the CRS model from a variety of assumptions [32], including the learning with errors
(LWE) problem. For a precise functionality, we refer the reader to Sect. 3.3.
Oblivious Transfer A

(2
1

)
-Oblivious transfer (OT) is a protocol executed between two

parties called sender S (i.e. Alice) with input bits (s0, s1) and receiver R (i.e. Bob) with
input bit b. Bob wishes to retrieve sb from Alice in such a way that Alice does not learn
anything about Bob’s choice b and Bob learns nothing about Alice’s remaining input
s1−b. In this work, we require a 2-round protocol (SenderOT,ReceiverOT) secure in
the CRS model, which satisfies (stand-alone) statistical receiver privacy. We define the
sender Alice’s advantage of breaking the security of Bob to be

AdvOTS =
∣∣∣∣Pr
[
b ← A (ReceiverOT(b))

]− 1

2

∣∣∣∣ .

Everlasting UC Commitments... Page 11 of 39 20

Definition 4. (Statistical Receiver Privacy) (SenderOT,ReceiverOT) is statistical-
ly receiver-private if the advantage function AdvOTS is a negligible function for all
unbounded adversaries A.

In addition, we require our OT to be UC-secure: for a well-formed CRS, there exists an
efficient equivocator that can (non-interactively) recover both messages of the sender.
Furthermore, there exists an alternative CRS distribution (which is computationally
indistinguishable from the original one) and an efficient non-interactive extractor that is
able to uniquely recover the message of the receiver using the knowledge of a trapdoor.
Such 2-round OT can be constructed from a variety of assumptions [31], including LWE
[33]. For a precise description of the ideal functionality, we refer the reader to Sect. 3.3.
Statistical Witness-Indistinguishable Argument of Knowledge (SWIAoK) A witness-
indistinguishable argument is a proof system for languages in NP that does not leak
any information about which witness the prover used, not even to a malicious verifier.
If the prover is a PPT algorithm, then we call such a system an argument system, and if
it is unbounded, we call it a proof system. For witness-indistinguishable arguments of
knowledge, we formally introduce the following notation to represent interactive execu-
tions between algorithms P and V . By 〈P(y),V(z)〉 (x), we denote the view (i.e. inputs,
internal coin tosses, incoming messages) of V when interacting with P on common
input x , when P has auxiliary input y and V has auxiliary input z. Some of the following
definitions are based on [29].

Definition 5. (Witness Relation) A witness relation for a NP language L is a binary
relation R that is polynomially bounded, polynomial time recognizable, and character-
izes L by L = {x : ∃w s.t. (x, w) ∈ R}. We say that w is a witness for x ∈ L if
(x, w) ∈ R.

Definition 6. (Interactive Argument System) A two-party game 〈P,V〉 is called an
Interactive Argument System for a language L if P , V are PPT algorithms and the
following two conditions hold:

• Completeness: For every x ∈ L , Pr [〈P,V〉 (x) = 1] = 1.
• Soundness: For every x /∈ L and every PPT algorithm P∗, there exists a negligible

function negl(·), such that, Pr
[〈P∗,V〉 (x) = 1

] ≤ negl(|x |).

Definition 7. (Witness Indistinguishability) Let L ∈ NP and (P,V) be an interactive
argument system for L with perfect completeness. The proof system (P,V) is witness
indistinguishable (WI) if for every PPT algorithm V∗, and every two sequences {w1

x }x∈L
and {w2

x }x∈L such that w1
x , w

2
x ∈ R, the following sequences are witness indistinguish-

able:

1. {〈P(w1
x),V(z)

〉
(x)}x∈L ,z∈{0,1}∗

2. {〈P(w2
x),V(z)

〉
(x)}x∈L ,z∈{0,1}∗

Next, we define the notion of extractability for SWIAoKs.

20 Page 12 of 39 B. Magri et al.

Definition 8. (Argument of Knowledge) Let L ∈ NP and (P,V) be an interactive
argument system for L with perfect completeness. The proof system (P,V) is an ar-
gument of knowledge (AoK) if there exists a PPT algorithm Ext, called the extractor,
a polynomial p, and a constant c such that, for every PPT machine P∗, every x ∈ L ,
auxiliary input z, and random coins r , there exists a negligible function negl such that

Pr
[
ExtP

∗(z,r)(x) = w : (x, w) ∈ R
]

≥ 1

p
· Pr
[〈P∗(z; r),V(x)

〉 = 1
]c − negl(λ).

Strong Randomness Extractor A strong randomness extractor is a function that, applied
to some input with high min-entropy, returns some uniformly distributed element in the
range.

Definition 9. (Strong Randomness Extractor) A function H : {0, 1}d × {0, 1}� →
{0, 1}c is called a (t, ε)-strong randomness extractor if for all X ∈ {0, 1}� s.tH∞(X) ≥ t ,
we have that,

SD ((Ud , H(Ud , X)), (Ud ,Uc)) ≤ ε

and L = t − c is called the entropy loss of H .

3. Universal Composability Framework

In this section, we recall the basics of the Universal Composability (UC) framework
of Canetti [5], and later we discuss the Everlasting Universal Composability frame-
work2 following [27] closely. We refer the reader to [5,27] for a more comprehensive
description.

3.1. Basics of the UC Framework

Our description of the UC framework follows [27] closely. The composition of two
provably secure protocols does not necessarily preserve the security of each protocol
and the result may also be no longer secure. A framework that analyses the security of
composed protocols and which is able to provide security guarantees is the Universal
Composability framework (UC) due to Canetti [5].

The main idea of this security notion is to compare a real protocol π with some ideal
protocol ρ. In most cases, this ideal protocol ρ will consist of a single machine, a so-
called ideal functionality. Such a functionality can be seen as a trusted machine that
implements the intended behaviour of the protocol. For example, a functionality F for
commitment would expect a value m from a party C . Upon receipt of that value, the
recipient R would be notified by F that C has committed to some value (but F would
not reveal that value). When C sends an unveil request to F , the value m will be sent to
R (but F will not allow C to unveil a different value).

2The framework was called “Long-term UC” in [26] and renamed to “Everlasting UC” in the follow-up
work [27].

Everlasting UC Commitments... Page 13 of 39 20

Given a real protocol π and an ideal protocol ρ, we say that π realizes ρ (also called
“implements”, “emulates”, or “is as secure as”) if for any adversary A attacking the
protocol π there is a simulatorS performing an attack on the ideal protocol ρ such that no
environmentZ can distinguish between π running withA and ρ running withZ . Here,Z
may choose the protocol inputs and read the protocol outputs and may communicate with
the adversary or simulator (but Z is, of course, not informed whether it communicates
with the adversary or the simulator). First, the environment may communicate with the
adversary during the protocol execution, and second, the environment does not need
to choose the inputs at the beginning of the protocol execution; it may adaptively send
inputs to the protocol parties at any time, and it may choose these inputs depending
upon the outputs and the communication with the adversary. These modifications are
the reason for the very strong composability properties of the UC model.
Network Execution In the UC framework, all protocol machines and functionalities,
as well as the adversary, the simulator and the environment are modelled as interactive
Turing machines (ITM). Throughout a protocol execution, an integer k called the security
parameter is accessible to all parties. At the beginning of the execution of a network
consisting of π ,A, andZ , the environmentZ is invoked with an initial input z. From then
on, every machine M that is activated can send a messagem to a single other machine M ′.
Then that machine M ′ is activated and given the message m and the id of the originator
M ′. If in some activation a machine does not send a message, the environment Z is
activated again. Additionally the environment may issue corruption requests for some
party P . From then on, the machines corresponding to the party P are controlled by
the adversary (i.e. it can send and receive messages in the name of that machine, and it
can read the internal state of that machine). Finally, at some point the environment Z
gives some output m which can be an arbitrary string. By EXCπ,A,Z (k, z) we denote
the distribution of that output m on security parameter k and initial input z. Analogously,
we define EXCρ,S,Z (k, z) for an execution involving the protocol ρ, the simulator S,
and the environment Z .

We distinguish two different flavours of corruption. We speak of static corruption if
the environment Z may only send corruption requests before the begin of the protocol,
and of adaptive corruption if Z may send corruption requests at any time in the protocol,
even depending on messages learned during the execution. In this paper, we will restrict
our attention to the less strict security model using static corruption. We leave the case of
adaptive corruptions, in which the environment may corrupt any party adaptively during
the execution of the protocol as an interesting open problem.
UC Definitions If the ideal protocol ρ consists of an ideal functionality F , for technical
reasons we assume the presence of so-called dummy parties that forward messages
between the environment Z and the functionality F . For example, assume that F is a
commitment functionality. In an ideal execution, Z would send a value m to the party
C (since it does not know of F and therefore will not send to F directly). Then, C
would forward m to F . Then, F notifies R that a commitment has been performed.
This notification is then forwarded to Z . With these dummy parties we have, at least
syntactically, the same messages as in the real execution: Z sends m to C and receives a
commit notification from R. Second, the dummy parties allow a meaningful corruption
in the ideal model. If Z corrupts some party P , in the ideal model the effect would be
that the simulator controls the corresponding dummy party P and thus can read and

20 Page 14 of 39 B. Magri et al.

modify messages to and from the functionality F in the name of P . Thus, if we write
EXCF ,S,Z , this is essentially an abbreviation for EXCρ,S,Z where the ideal protocol ρ

consists of the functionality F and the dummy parties. Having defined the families of
random variables EXCπ,A,Z (k, z) and EXCρ,S,Z (k, z) we can now define security via
indistinguishability.

Definition 10. (Universal Composability [5]) A protocol π UC realizes a protocol ρ,
if for any polynomial-time adversary A there exists a polynomial-time simulator S, such
that for any polynomial-time environment Z ,

{EXCπ,A,Z (k, z)}k∈N,z∈{0,1}poly(k) ≈c {EXCρ,S,Z (k, z)}k∈N,z∈{0,1}poly(k) .

Note that in this definition, it is also possible to only consider environmentsZ that give
a single bit of output. As demonstrated in [5], this gives rise to an equivalent definition.
However, in the case of everlasting UC below, this will not be the case, so we stress the
fact that we allow Z to output arbitrary strings. In particular an environment machine
can output its complete view.

Natural variants of this definition are statistical UC, where all machines (environ-
ment, adversary, simulator) are computationally unbounded and the families of random
variables are required to be statistically indistinguishable, and perfect UC, where all ma-
chines are computationally unbounded and the families of random variables are required
to have the same distribution. In these cases, one often additionally requires that if the
adversary is polynomial time, so is the simulator.
Composition For some protocol σ , and some protocol π , by σπ we denote the protocol
where σ invokes (up to polynomially many) instances of π .3 That is, in σπ the machines
from σ and from π run together in one network, and the machines from σ access the
inputs and outputs of π . (In particular, Z then talks only to σ and not to the subprotocol
π directly.) A typical situation would be that σF is some protocol that makes use of
some ideal functionality F (say, a commitment) and then σπ would be the protocol
resulting from implementing that functionality by some protocol π (say, a commitment
protocol). One would hope that such an implementation results in a secure protocol σπ .
That is, if π realizes F and σF realizes G, then σπ realizes G. Fortunately, this is the
case:

Theorem 11. (Universal Composition Theorem [5]) Let π , ρ, and σ be polynomial-
time protocols. Assume that π UC realizes ρ. Then, σπ UC realizes σρ .

The intuitive reason for this theorem is that σ can be considered as an environment for π

or ρ, respectively. Since Definition 10 guarantees that π and ρ are indistinguishable by
any environment, security follows. In a typical application of this theorem, one would first
show that π realizes F and that σF realizes G. Then using the composition theorem, one
gets that σπ realizes σF which in turn realizes G. Since the realizes relation is transitive
(as can be easily seen from Definition 10), it follows that σπ realizes G.

3For simplicity, we assume throughout this work that the session ids assigned to these instances are
{1, . . . , p} for some polynomial p.

Everlasting UC Commitments... Page 15 of 39 20

This composition theorem is the main feature of the UC framework. It allows us to
build up protocols from elementary building blocks. This greatly increases the manage-
ability of security proofs for large protocols. Furthermore, it guarantees that the protocol
can be used in arbitrary contexts. Analogous theorems also hold for statistical and perfect
UC.
Dummy adversary When proving the security of a given protocol in the UC setting, a
useful tool is the so-called dummy adversary. The dummy adversary Ã is the adversary
that simply forwards messages between the environment Z and the protocol (i.e. it is a
puppet of the environment that does whatever Z instructs it to do). In [5], it is shown
that UC security with respect to the dummy adversary implies UC security. The intuitive
reason is that since Ã does whatever Z instructs it to do, it can perform arbitrary attacks
and is therefore the worst-case adversary given the right environment (remember that
we quantify over all environments).

We very roughly sketch the proof idea. Let protocols π and ρ and some adversary A
be given. Assume that π UC realizes ρ with respect to the dummy adversary Ã. We want
to show that π UC realizes ρ with respect to A. Given an environment Z , we construct
an environment ZA which simulates Z and A. Note that an execution of EXC

π,Ã,ZA
is essentially the same as EXCπ,A,Z (up to a regrouping of machines). Then there is
a simulator S̃ such that EXC

π,Ã,ZA and EXC
ρ,S̃,ZA are indistinguishable. Let S be

the simulator that internally simulates the machines A and S̃ and forwards all actions
performed by A as instructions to S̃ (remember that S̃ simulates Ã, so it expects such
instructions). Then, EXC

ρ,S̃,ZA is again the same as EXCρ,S,Z up to a regrouping of
machines. Summarizing, we have that EXCπ,A,Z and EXCρ,S,Z are indistinguishable.

A nice property of this technique is that it is quite robust with respect to changes
in the definition of UC security. For example, it also holds with respect to statisti-
cal and perfect UC security, as well as with respect to the notion of Everlasting UC
from [27].

3.2. Everlasting UC Security

In this section, we present our definitions of everlasting UC security. Our formalization
builds on Canetti’s Universal Composability framework [5] and extends the notion of
everlasting/long-term security due to Müller-Quade and Unruh [27]. Loosely speaking,
everlasting security guarantees the “standard” notion of UC security during the execution
of the protocol. This means that the security is guaranteed against polynomially bounded
adversaries. Therefore, standard computational assumptions, such as the hardness of the
decisional Diffie-Hellman problem and the existence of one-way functions can be used
as hardness assumptions. However, after the execution of the protocol, we no longer
assume that these assumptions hold, because they may be broken in the future. Müller-
Quade and Unruh model this by letting the distinguisher become unbounded after the
execution of the protocol. Everlasting security guarantees security and confidentiality in
this setting.

20 Page 16 of 39 B. Magri et al.

They showed in [27] that everlasting UC commitments cannot be realized, not even in
the common reference string (CRS) or the public-key infrastructure (PKI) model.4 The
fact that everlasting UC commitments cannot be constructed in the CRS model shows
a strong separation between the everlasting UC and the computational UC security
notion, because commitments schemes do exist (under standard assumptions) in the
computational UC security model [7]. The stark impossibility result of Müller-Quade
and Unruh motivated the use of other trust assumptions, such as trusted pseudorandom
functions (TDF) and signature cards [27]. It is not hard to see that everlasting UC security
is strictly stronger than computational UC security, since the adversary is allowed to
become unbounded after the execution of the protocol, and it is strictly weaker than
statistical UC security, since the adversary is polynomially bounded during the run of
the protocol.

3.2.1. Defining Everlasting UC Security.

The formalization of [27] is surprisingly simple and only extends the original UC defi-
nition by the requirement that the execution of the real protocol and of the functionality
cannot be distinguished by an unbounded entity after the execution of the protocol is
over (that is run by efficient adversaries and environments). Formally, this means that
the output of the environment in the real and ideal worlds is statistically close. A com-
prehensive discussion is given in [27], and we briefly recall the definitions.

Definition 12. (Everlasting UC) A protocol π everlastingly UC-realizes an ideal pro-
tocol ρ if, for any PPT adversary A, there exists a PPT simulator S such that, for any
PPT environment Z ,

{EXCπ,A,Z (λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXCρ,S,Z (λ, z)}λ∈N,z∈{0,1}poly(λ) .

In [27], the authors show that the composition theorem from [5] also holds with respect
to Definition 12.A shortcoming of Definition 12, when applied to the token model, is
that the distinguisher has no access to the hardware token after it becomes unbounded.
Another issue is that Definition 12 does not model the case that the hardware assumption
may be broken in the long-term.

3.2.2. Everlasting UC Security with Hardware Assumptions

We define a notion of everlasting security which allows the participants in a protocol to
leak information in the long term.

With the exception of the environment Z and the adversary A, we give each instance
of a Turing machine (ITI for short) in the protocol an additional output tape, that we call
long-term output tape. We modify the execution model to handle the long-term tapes as
follows. At the end of the execution of the protocol (i.e. when the environmentZ produces
its output m), adversary A is invoked once again, this time with all long-term tapes, and

4Interestingly, UC commitments that are statistically hiding can be constructed in the CRS model, as
shown by [16]. But [27] later shows that those commitments lose their statistically hiding property under
composition.

Everlasting UC Commitments... Page 17 of 39 20

produces an output a. We define the new execution model to be EXC′ := (m, a). A
formal definition follows.

Definition 13. (Everlasting UC with Long-term Tapes) A protocol π everlastingly UC
realizes an ideal protocol ρ if, for any PPT adversary A, there exists a PPT simulator S
such that, for any PPT environment Z ,

{EXC′
π,A,Z (λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC′

ρ,S,Z (λ, z)}λ∈N,z∈{0,1}poly(λ)

In Definition 13, the distinguisher does not get the long-term tapes directly, instead,
the tapes go through the adversary. The real adversary A can, wlog, let the tapes go
unchanged to the distinguisher (i.e. dummy adversary). The simulator S can replace
the long-term tapes by any simulated a of its choice. We point out that Definition 13 is
equivalent to Definition 12 when none of the ITIs in π or ρ have long-term output tapes.

It is easy to show that the composition theorem from [27] carries over to our settings:
the long-term tapes of the honest parties are also given to the adversary/simulator at the
end of the protocol execution; however, the simulator (when communicating with the
environment) can replace them with values of his choice. Formally, this means that the
long-term tapes are just a message sent from protocol to adversary (in the same way as,
e.g. the state is sent in the case of adaptive corruption), and consequently, when proving
the composition theorem, those messages are handled in exactly the same way as the
messages resulting from adaptive corruption.

3.3. Functionalities

In this section, we define some commonly used functionalities that we will need for our
results.
CRS The first functionality is the common reference string (CRS). Intuitively, the CRS
denotes a string sampled uniformly from a given distribution G by some trusted party,
and that is known to all parties prior to the start of the protocol.

Definition 14. (Common reference string (CRS)) Let Dλ (λ ∈ N) be an efficiently
samplable distribution on {0, 1}∗. At the beginning of the protocol, the functionalityFD

CRS
chooses a value r according to the distribution Dλ (where λ is the security parameter)
and sends r to the adversary and all parties Pi .

Multiple commitment Here, we recall the functionality for a commitment scheme.
Throughout the following description, we implicitly assume that the attacker is informed
about each invocation and that the attacker controls the output of the functionality. We
omit those messages from the description of the functionalities for readability. Note that
to securely realize this functionality, a protocol must guarantee independence among
different executions of the commitment protocol.

Definition 15. (Multiple Commitment) Let S and R be two parties, where we call
S the sender and R the receiver. The functionality F S→R,�

MCOM behaves as follows: up-
on the command (commit, sid, x), where x ∈ {0, 1}�(λ), from S, send the message

20 Page 18 of 39 B. Magri et al.

(committed, sid) to R. Upon command (unveil, sid) from S, send (unveiled,

sid, x) to R (with the matching sid). Several commands (commit) or (unveil) with
the same sid are ignored.

Oblivious Transfer Functionality The oblivious transfer functionality allows for the
receiver party to select a bit b and the sender party to send two messages m0 and m1 to
the receiver in such a way that, the sender never learns the bit b the receiver chose, and
the receiver learns only the message mb, and nothing else about mb−1.

Definition 16. (Oblivious Transfer (OT)) Let R and S be two parties. The functional-
ity F S→R,�

OT behaves as follows: upon receiving the command (transfer, id,m0,m1)

from S, with m0,m1 ∈ {0, 1}�(λ), send the message (received, id) to R; party R
replies with (choice, id, b), for b ∈ {0, 1}. Upon receiving (choice, id, b) from R, send
(eliver, id,mb) to R. We call S the sender, and R the receiver.

Remark 17. Looking ahead, we note that we cannot define the protocol of Sect. 6 in
the FOT-hybrid model or in the FMCOM-hybrid model. The former is due to the protocol
of Section 6 requiring an OT with the additional property of statistical receiver privacy,
which is not the case of all OT protocols that realize the FOT functionality. The latter
is due to the protocol requiring a commitment scheme with the additional property
of statistical hiding, which is not the case of all commitment schemes that realize the
FMCOM functionality. Moreover, the protocol of Sect. 6 requires to prove statements
about the contents inside of a commitment, and as shown by [9] this is not possible
using a UC commitment functionality.

4. Physical Assumptions

The functionality FHToken described in this section models generic fully malicious hard-
ware tokens, including PUFs. A fully malicious hardware token is the one that its state
is not bounded a-priori, its creator can install arbitrary code inside of it, and it can en-
capsulate an arbitrary number of (possibly fully malicious) tokens inside of itself, called
children. As far as we know, this is the first functionality to integrate tamper-proof hard-
ware tokens with PUFs, allowing us to design protocols that are transparent about the
type of hardware token used, as the functionality can be instantiated with any of the for-
mer. Moreover, in the particular case of PUFs, our model extends the PUFs-inside-PUF
model of [4] to the more general case of Tokens-inside-Token.5 We handle encapsulated
tokens in the functionality by allowing the parent token (i.e. the token that contains other
token(s)) to have oracle access to all its children during its evaluation; we believe that
token encapsulation models a realistic capability of an adversary and we believe that it
is important to include it in our model for the soundness of the security analysis. We
also note that FHToken is not PPT; this is because the functionality does not impose a
restriction on the efficiency of the malicious code.

5In the model of [4] the malicious PUFs-inside-PUF are stateless, while FHToken allows the malicious
PUFs to be stateful.

Everlasting UC Commitments... Page 19 of 39 20

The functionality FHToken allows tokens to be transferred among parties by invoking
handover; a token can only be queried by the party that currently owns the token by
invoking query. Malicious tokens can be created by the adversary and it can contain
other tokens inside of it. In contrast to [8], the adversary can “unwrap” encapsulated
tokens by invoking openup and read malicious tokens’ state by invoking readout.

Functionality FHToken

FHToken is parameterized by an algorithm HTSamp, a PPT Turing machine Mhonest and a polynomial
p(λ) that bounds the running time of Mhonest . FHToken runs on input the security parameter 1λ, with
parties P = {P1, · · · , Pn}, and adversary A. The list L contains instances of tokens with the attributes
id, st,M, children,owner, honest, that can be accessed with the notation token.attribute, and where
id is a string that uniquely identifies a physical instance of the hardware token, st is the internal state of
the token, M is a TM that contains the code to be executed, children is a list of children (tokens) that
are contained within this token (can also be empty), owner is the party that currently owns the token
(can be embedded in case of children), and honest is a boolean value that is true when the token was
honestly generated, and false otherwise. For simplicity we omit the polynomial p(λ), since wlog any
p(λ) can be considered. We note that FHToken is not PPT, and this is due to the fact that there is no
runtime bound on M. The functionality FHToken receives commands and acts as follows.

• Upon command (create) from P ∈ P , create an empty token tok and do:

− tok.id ←$ {0, 1}λ, tok.honest := true, tok.owner := P , tok.children := ∅, tok.M :=
Mhonest , and (tok.st,pubinfo) ← HTSamp(1λ).

− Add tok to L and return (id,pubinfo) to P .

• Upon command (createmal,M, st, children) from A do: For all tokc ∈ children if
tokc.owner = A then,

− Create an empty token tok, and set tok.id ←$ {0, 1}λ, tok.honest := false, tok.owner :=
A, tok.M := M, tok.children := children, and tok.st := st.

− Add tok to L, and for all tokc ∈ children set tokc.owner := embedded.
− Return tok.id to A.

• Upon command (handover, id, Pj) from Pi ∈ P ∪{A}, where Pj ∈ P ∪{A}: For all tok ∈ L
s.t. tok.owner = Pi and tok.id = id do.

− Set tok.owner := Pj .
− Send (handover, id, Pi) to Pj .

• Upon command (query, id, q) from P ∈ P ∪ {A}: Define the recursive algorithm HTEval as
follows.

− a ← HTEval(1λ, id, q): It takes as input the security parameter, the id of the hardware
token, and a challenge q. It first runs (a, st′) ← M(st, q), where M is interpreted as the
code for an oracle Turing machine with |children| oracles. When M makes an oracle query
q ′ to its i-th oracle, run b ← HTEval(1λ, idi , q ′) recursively and answer the query with
b. M updates its state st to the new state st′ after its execution. Return a.

− For all tok ∈ L s.t. tok.id = id, and tok.owner = P do: Run a ← HTEval(1λ, tok.id, q)

and send a to party P .

• Upon command (readout, id) from A: For all tok ∈ L s.t. tok.id = id, tok.owner = A, and
tok.honest = false do.

− Return tok.st to A
• Upon command (openup, id) from A: For all tok ∈ L s.t. tok.id = id, tok.owner = A, and

tok.honest = false do.

− Remove tok from L, and for each tokc ∈ tok.children:

20 Page 20 of 39 B. Magri et al.

∗ Set tokc.owner := P , for some P ∈ P .

− Return ok to A.

• In all other cases, enter the waiting state without sending a message.

The long-term output tape a records all the information from the tokens in L such that tok.owner = A
(or tokens owned by some other token that is owned by A, for any number of layers).

4.1. Physically Uncloneable Functions (PUFs)

In a nutshell, a PUF is a noisy source of randomness. It is a hardware device that, upon
physical stimuli, called challenges, produces physical outputs (that are measured), called
responses. The response measured for each challenge of the PUF is unpredictable, in
the sense that it is hard to predict the response of the PUF on a given challenge without
first measuring the response of the PUF on the same (or similar) challenge. When a PUF
receives the same physical stimulus more than once, the responses produced may not be
exactly equal (due to the added noise), but the Hamming distance of the responses are
bounded by a parameter of the PUF.

A family of PUFs is a pair of algorithms (PUFSamp,PUFEval), not necessarily
PPT. PUFSamp models the manufacturing process of the PUF: on input the security
parameter, it draws an index σ , that represents an instance of a PUF that satisfies the
security definitions for the security parameter (that we define later). PUFEval models a
physical stimulus applied to the PUF: Upon a challenge input x , it invokes the PUF with
x and measures the response y, that is returned as the output. The length of a response
y returned by algorithm PUFEval is a bitstring of size rg. A formal definition follows.

Definition 18. (Physically Uncloneable Functions) Let rg denote the size (in bits)
of the range of the PUF responses of a PUF family. The pair PUF = (PUFSamp,

PUFEval) is a PUF family if it satisfies the following properties.

• Sampling. LetIλ be an index set. On input the security parameter λ, the stateless and
unbounded sampling algorithm PUFSamp outputs an index σ ∈ Iλ. Each σ ∈ Iλ

corresponds to a family of distributions Dσ . For each challenge x ∈ {0, 1}λ, Dσ

contains a distribution Dσ (x) on {0, 1}rg(λ). It is not required that PUFSamp is a
PPT algorithm.

• Evaluation. On input (1λ, σ, x), where x ∈ {0, 1}λ, the evaluation algorithm
PUFEval outputs a response y ∈ {0, 1}rg(λ) according to the distribution Dσ (x).
It is not required that PUFEval is a PPT algorithm.

Additionally, we require the PUF family to satisfy a reproducibility notion that we
describe next. Reproducibility informally says that, the responses produced by the PUF
when queried on the same random challenge are always close.

Definition 19. (PUFReproducibility) A PUF familyPUF = (PUFSamp,PUFEval),
for security parameter λ, is δ-reproducible if for σ ← PUFSamp(1λ), x ←$ {0, 1}λ,

Everlasting UC Commitments... Page 21 of 39 20

and y ← PUFEval(σ, x), y′ ← PUFEval(σ, x), we have that,

Pr
[
hd(y, y′) ≤ δ

] ≥ 1 − negl(λ),

for a negligible function negl(λ).

Many PUF definitions in the literature [3,4,12,30] have had problems with the super-
polynomial nature of PUFs. In particular, the possibility of PUFs solving hard computa-
tional problems, such as discrete logarithms or factoring, was not excluded, or excluded
in an awkward way. We take our inspiration from the idea that a PUF can be thought as
a function selected at random from a very large set, and therefore cannot be succinctly
described; however, it can be efficiently simulated using lazy sampling. Conceptually,
we will only consider PUFs that can be efficiently simulated by a stateful machine.

Definition 20. A polynomial-time (stateful) interactive Turing machine (MSamp,

MEval) is a lazy sampler for (PUFSamp,PUFEval) such that for all sequences
(x1, . . . , xn) of inputs, the random variables (Y1, . . . ,Yn) and (Y ′

1, . . . ,Y
′
n), defined

by the following experiments, are identically distributed.

st ← MSamp(1λ); Y1 ← MEval(x1), . . . ,Yn ← MEval(xn);
σ ← PUFSamp(1λ); Y ′

1 ← PUFEval(σ, x1), . . . ,Y
′
n ← PUFEval(σ, xn);

where st denotes the initial state of the TM M.

Security of PUFs The security of PUFs has been mainly defined by the properties of
unpredictability and uncloneability [1,3,4,24,30]. In Sect. 4.1.1, we introduce a novel
unpredictability notion for PUFs, and we later discuss why the standard unpredictability
notion is not suited for our setting.

4.1.1. Fully adaptive PUF Unpredictability.

In contrast to the standard definition of unpredictability [3], in this work we require a
stronger notion of adaptive unpredictability. Loosely speaking, unpredictability should
capture the fact that it is hard to learn the response of the PUF on a given challenge without
first querying the PUF on a similar challenge. Note that this implies uncloneability: if
one could clone the PUF, one could use the cloned PUF to predict the answers of the
original PUF. We express the similarity of inputs/outputs of the PUF in terms of the
Hamming distance hd, however, our results can be easily adapted to other metrics.

Definition 21. (Adaptive PUF Unpredictability) A PUF family PUF = (PUFSamp,

PUFEval), for security parameter λ, is (γ, δ)-unpredictable if for all adversaries A,
there exists a negligible function negl(λ), such that,

Pr

⎡

⎢⎢⎣(hd(y, y′) ≤ δ) ∧ (hd(q, x) ≥ γ, ∀q ∈ Q) :
σ ← PUFSamp(1λ);

x ←$ {0, 1}λ;
y ← APUFEval(1λ,σ,·)(x);
y′ ← PUFEval(1λ, σ, x);

⎤

⎥⎥⎦ ≤ negl(λ),

20 Page 22 of 39 B. Magri et al.

where Q is the list of all queries made by A.

The adaptive PUF unpredictability says that the only way to learn the output of
PUFEval(1λ, σ, x) is to query the PUF on x (or something close enough to x). Our
definition captures this by allowing adversary A to know the challenge x before having
oracle access to PUFEval.
The unsuitability of the standard PUF unpredictability of [3]. We first recall the standard
unpredictability definition of [3]. As the definition itself is based on the notion of average
min-entropy, for convenience, we present that first.

Definition 22. (Average Min-entropy [3]) The average min-entropy of the measure-
mentPUFEval(q) conditioned on the measurements of challengesQ={q1, · · ·, qpoly(λ)}
for the PUF family PUF = (PUFSamp,PUFEval) is defined by

H̃∞(PUFEval(q)|PUFEval(Q)) =
= − log
(
Eak←PUFEval(qk)

[
max
a

Pr
[
PUFEval(q)=a

∣∣∣a1 =PUFEval(q1), · · ·, apoly(λ) =PUFEval(qpoly(λ)
]])

= − log
(
Eak←PUFEval(qk)

[
2H∞(PUFEval(q)|a1=PUFEval(q1),··· ,apoly(λ)=PUFEval(qpoly(λ)))

])

where the probability is taken over the choice of σ from Iλ and the choice of possible
PUF responses on challenge q. The term PUFEval(Q) denotes a sequence of random
variables PUFEval(q1), . . . ,PUFEval(qpoly(λ)), each corresponding to an evaluation
of the PUF on challenge qk , for 1 ≥ k ≥ poly(λ).

Definition 23. (PUFUnpredictability [3]) A (rg, δ)-PUF familyPUF = (PUFSamp,

PUFEval) for security parameter λ is (γ (λ),m(λ))-unpredictable if for any q ∈ {0, 1}λ
and challenge list Q = {q1, . . . , qpoly(λ)}, one has that, if for all 1 ≥ k ≥ poly(λ) the
Hamming distance satisfies hd(q, qk) ≥ γ (λ), then the average min-entropy satisfies
H̃∞(PUFEval(q)|PUFEval(Q)) ≥ m(λ), where PUFEval(Q) denotes the sequence
of random variables PUFEval(q1), · · · ,PUFEval(qpoly(λ)), each corresponding to an
evaluation of the PUF on challenge qk . Such a PUF family is called a (rg, δ, γ,m)-PUF
family.

We now argue why Definition 23 is not suited for our setting. We present a PUF
family that satisfies Definition 23 and yet allows for an adversary to predict the response
of the PUF on a challenge never queried to the PUF (and far apart from the other queried
challenges). We prove the following theorem next.

Theorem 24. There exists aPUF familyPUF = (PUFSamp,PUFEval) that satisfies
Definition 23 (with m > 0), such that there exists a PPT adversary A that can predict
with probability 1 the output of the PUF on an input far from every other input queried
to the PUF prior (thereby contradicting Definition 21).

Proof. Let PUF = (PUFSamp,PUFEval) be a PUF family for challenges of size
(n + 1)-bits and responses of size n-bits, We construct the family PUF as follows:

Everlasting UC Commitments... Page 23 of 39 20

• PUFSamp(1λ): Samples x∗ ←$ {0, 1}n , and f ←$ ({0, 1}n → {0, 1}n). Return
σ := (x∗, f).

• PUFEval(1λ, σ, x):

− Upon query PUFEval(1λ, σ, 0n+1) output x∗.
− Upon query PUFEval(1λ, σ, 0‖m) with m �= 0n output f (m).
− Upon query PUFEval(1λ, σ, 1‖m) output f (m ⊕ x∗).

We first show how an adversary can predict with probability 1 the output of a PUF
from the family described above on a fresh input. Given some arbitrary fresh challenge
input b‖m, the adversary can find the corresponding response PUFEval(1λ, σ, b‖m),
without ever querying the PUF on b‖m, by doing the following: Compute x∗ :=
PUFEval(1λ, σ, 0n+1) and compute y := PUFEval(1λ, σ, b̄‖m ⊕ x∗). Note that both
queries are far apart from b‖m, yet the adversary learns y = PUFEval(1λ, σ, b‖m) =
PUFEval(1λ, σ, b̄‖m ⊕ x∗).

Now we show that the PUF family described above satisfies Definition 23.6 Fix any
polynomial-size challenge list Q = {q1, . . . , qκ−1} and any challenge query qκ such
that, for any k ∈ [κ − 1] : hd(qκ , qk) ≥ 1, which is clearly minimal. Since f is a
random function, it holds that PUFEval(1λ, σ, q) has maximal average min-entropy,
unless the PUF is queried on two inputs (qi , q j) that form a collision for f . Note that
this happens only if qi ⊕ q j = 1‖x∗. Thus, all we need to show is that, for any fixed
set of queries {q1, . . . , qκ } the probability that qi ⊕ q j = 1‖x∗ is negligible, over the
random choice of x∗. This holds because

Pr
x∗←{0,1}n

[∃ (i, j) : qi ⊕ q j = 1‖x∗]

= 1 − (1 − 2−n)κ2 ≤ 1 − 1

1 + κ22−n
= κ22−n

1 + κ22−n

by applying the Bernoulli inequality. The above expression approaches 0 exponentially
fast, as n grows. This concludes our proof. �

Contrasting our unpredictability definition with the one of [3]. The motivation behind
our newly proposed adaptive unpredictability notion (Definition 21) is that the standard
PUF unpredictability notion of [3] implicitly assumes that PUFs are only dependent
on random physical factors (likely introduced during manufacturing), and in particular
it does not capture families of PUFs that could have some programmability built in,
allowing to predict the output of a PUF on an input by querying a completely different
input. What our new PUF unpredictability notion explicitly captures is that a “good”
PUF must solely depend on random physical factors, and in particular cannot have any
form of programmability. On a more philosophical level, we believe that our new notion
is what was meant to be modelled as a property for PUFs from the start. Since PUFs
are inherently randomized devices that are specifically built to be unpredictable and

6This unpredictability definition is considered in many previous works, such as [3,4,24,30].

20 Page 24 of 39 B. Magri et al.

uncontrollable, a PUF family such as the one described above should not be considered
to be a “good” PUF family; however, the previous notion fails to capture this fact.7

Overall, our new definition of unpredictability does not hinder in any way the progress
and development of new real-world PUFs, but merely addresses a technical oversight
by the previous unpredictability notion. Therefore, we conjecture that most real-world
PUFs that satisfy the unpredictability notion of [3] will most likely also satisfy our
unpredictability notion, since real PUFs are inherently randomized physical devices
built to be unpredictable and uncontrollable.

5. Impossibility of Everlasting OT with Malicious Hardware

In this section, we prove the impossibility of realizing everlasting secure oblivious trans-
fer (OT) in the hardware token model, even in the presence of a trusted setup. The result
carries over immediately to any secure computation protocol due to the completeness
of OT [23]. We consider honest tokens to be stateful but non-erasable (Definition 25)
and the tokens produced by the adversary can be malicious but not encapsulate other
tokens (note that this restriction on malicious tokens only makes our result stronger, as
the impossibility holds even against an adversary that is more limited). The adversary
A is PPT during the execution of the protocol, but A becomes unbounded after the ex-
ecution is over (i.e. everlasting security). This extends the seminal result of Goyal et al.
[18] that shows the impossibility of having statistically (as opposed to everlasting) UC
secure oblivious transfer from stateless (as opposed to non-erasable) tokens. We stress,
however, that our negative results does not contradict the work of Döttling et al. [13,14],
since they assume honest tokens to be non-resettable or bounded-resettable (i.e. tokens
cannot be reset to a previous state, or only reset up to an a-priori bound), whereas for
our result to hold the token must be non-erasable.

In the following, we show the main theorem of the section. The result holds under the
assumption that the token scheduling is fixed a-priori, which captures most of the known
protocols for secure computation [13,14,20]. The scheduling of the tokens determines
the exchange of the tokens among parties. We stress that we do not impose any restriction
on which party will hold each hardware token in the end of the execution. For a formal
definition of OT, we refer the reader to Sect. 2.2. We first define “non-erasability” for
hardware tokens next.

Definition 25. (Non-erasable hardware token) A (stateful) hardware token is said to
be non-erasable if any state ever recorded by the token can be efficiently retrieved.

Note in particular that stateless tokens are trivially non-erasable, as the former cannot
keep any state.

7The authors of [3] discuss in Appendix C the different notions of security for PUFs and their relationships,
and in particular mention that their definition of unpredictability assumes that the creation process of the PUF
is not controllable.

Everlasting UC Commitments... Page 25 of 39 20

Theorem 26. Let� be a hardware token-based everlasting OT protocol between Alice
(i.e. sender) and Bob (i.e. receiver) where the honest tokens are non-erasable and the
scheduling of the tokens is fixed. Then, at least one of the following holds:

• There exists an everlasting adversary S ′ that uses malicious and stateful hardware
tokens such that Adv�

S ′ ≥ ε(λ), or
• there exists an everlasting adversaryR′ that uses malicious and stateful hardware
tokens such that Adv�

R′ ≥ ε(λ),

for some non-negligible function ε(λ).

Proof. The proof consists of the following sequence of modified simulations. Let the
game G0 define an everlastingly secure OT protocol for S and R. Then, by assumption,
we have that for all everlasting adversaries S ′ and R′, it holds that

AdvG0
S ′ ≤ negl(λ) and AdvG0

R′ ≤ negl(λ).

We define a quasi-semi-honest adversary to be an adversary that behaves semi-honestly
but keeps a log of all queries ever made to the hardware token (i.e. the non-erasable
token assumption). Let the game G1 define an everlastingly secure OT protocol where
S ′ and R′ are quasi-semi-honest. Since we are strictly reducing the capabilities of the
adversaries and the tokens are non-erasable, we can state the following lemma.

Lemma 27. For all quasi-semi-honest S ′ and R′, it holds that

AdvG1
S ′ ≤ negl(λ) and AdvG1

R′ ≤ negl(λ).

Let G2 be the same as G1 except that whenever S ′ (resp. R′) queries a token from R
(resp. S) that will return to R (resp. S), instead of making that query to the token, S ′
queries directly R who answers it as the token would have. Since the distribution of the
answers for the queries does not change, we can state the following lemma.

Lemma 28. For all quasi-semi-honest S ′ and R′, it holds that

AdvG2
S ′ ≤ negl(λ) and AdvG2

R′ ≤ negl(λ).

Let game G3 be exactly the same as G2 except that whenever S ′ (resp. R′) sends a
token to R (resp. S) that will not return to S ′ (resp. R′), then S ′ sends a description
of the token instead. Since we consider everlasting adversaries we assume that after the
execution of the protocol all tokens can be read out. Therefore, both parties will have
the description of all the tokens, even the ones that are not sent to the other party. Note
that at this point there are no hardware tokens involved, and only description of tokens.
Therefore, a quasi-semi-honest adversary is identical to a semi-honest everlasting one.8

8An everlasting semi-honest adversary follows the protocol honestly, but can behave arbitrarily after the
protocol runs is over and it becomes unbounded.

20 Page 26 of 39 B. Magri et al.

Lemma 29. For all semi-honest everlasting S ′ and R′, it holds that

AdvG3
S ′ ≤ negl(λ) and AdvG3

R′ ≤ negl(λ).

We point out that a semi-honest unbounded adversary S ′ (resp. R′) is also a semi-honest
everlasting adversary, since during the execution of the protocol it performs only the
honest (PPT) actions. We are now in the position of stating the final lemma.

Lemma 30. For all semi-honest unbounded S ′ and R′, it holds that

AdvG3
S ′ ≤ negl(λ) and AdvG3

R′ ≤ negl(λ).

It was shown [2] that it is not possible to build a secure OT protocol against semi-
honest unbounded adversaries (even in the presence of a trusted setup), what gives us a
contradiction and concludes our proof. �

6. Everlasting Commitment from Fully Malicious PUFs

In this section, we build an everlastingly secure UC commitment scheme from ful-
ly malicious PUFs. Let C = (Com,Open) be a statistically hiding UC-secure com-
mitment scheme, let (SenderOT,ReceiverOT) be a 1-out-of-2 statistically receiver-
private UC-secure OT, let f : {0, 1}λ → {0, 1}λ be a one-way permutation, and let
H : {0, 1}d(λ) × {0, 1}�(λ) → {0, 1}c be a strong randomness extractor, where d and �

are two polynomials such that H allows for (�(λ) − c)-many bits of entropy loss, for
c := |m‖decom|. Let

R1 :=
{ (

y, {comi }i∈[�(λ)]
)
,({mi ,decomi }i∈[�(λ)], x
)
∣∣∣∣

y = f (x)∨
{mi = Open(decomi , comi)}i∈[�(λ)]

}

and let

R2 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
y, seed,m, com, ω,

{comi , q0
i , q1

i }i∈[�(λ)]

)

(
k,decom, x,

{decomi }i∈[�(λ)]

)

∣∣∣∣∣∣∣∣∣∣

y = f (x)∨⎛

⎜⎜⎝

m‖decom = H(seed, k) ⊕ ω∧
m = Open(com,decom))∧{

si = Open(decomi , comi)

∧hd(si , q
ki
i) ≤ δ

}

i∈[�(λ)]

⎞

⎟⎟⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

We denote by (P1,V1) and (P2,V2) the statistically witness-indistinguishable arguments
of knowledge (SWIAoK) for the relations R1 and R2, respectively. Our commitment
scheme is described next.

Everlasting UC Commitments... Page 27 of 39 20

Everlasting Commitment scheme from PUF

Setup: Let G be the distribution for a random y in the range of the one-way permutation f , let seed be
a random seed for the strong randomness extractor H , and let crs, be the CRS for the non-interactive

commitment and crsOT for the OT protocol. The ideal functionality FG
CRS samples a random crs from

the distribution of valid values, where crs := (y, seed, crs,, crsOT) and provides Alice and Bob with

crs. We denote by x ∈ {0, 1}λ the pre-image such that f (x) = y, used by FG
CRS to sample y.

Commitment: On input (commit, id, m), for a fresh id, Alice engages with Bob in the following
interactive protocol.

1. Bob samples a PUF token by querying FPUFEval,PUFSamp
HToken on message (create), and re-

ceives back (idPUF, pubinfo); it then samples �(λ)-many random tuples of the form (p0
i , p1

i) ∈
{0, 1}2λ and queries FPUFEval,PUFSamp

HToken on all pairs to obtain (q0
i , q1

i). Bob finally transfers
the token to Alice by querying (handover, idPUF, Alice).

2. Alice samples a random string k ← {0, 1}�(λ), and computes (, , decom) ← Com(m). Then
for all i ∈ [�(λ)] she engages with Bob in an oblivious transfer protocol on input αi ←
ReceiverOT(ki). All messages of the oblivious transfer are tagged with id.

3. Bob responds to each i-th instance of the oblivious transfer with SenderOT(p0
i , p1

i).

4. For all i ∈ [�(λ)]Alice queriesFPUFEval,PUFSamp
HToken onαi and parses the response asβi . If the to-

ken does not return a valid output, Alice sets βi = 0�(λ). Alice then commits to (,i , decomi) ←
Com(βi) and sends the tuple (id, , , ω := H(seed, k)⊕m‖decom, {,i }i∈[�(λ)]) to Bob. Final-
ly, Alice interacts with Bob with the algorithmP1((y, {,i }i∈[�(λ)]), ({βi ,decomi }i∈[�(λ)], 0)).
All messages of the SWIAoK are tagged with id.

5. Bob executes V1(y, {,i }i∈[�(λ)]) and aborts all interactions with Alice if the algorithm does
not return 1, including other instances of this commitment protocol. Otherwise Bob sends
(id, {(q0

i , q1
i)}i∈[�(λ)]) to Alice and outputs (commited, id).

Opening: On input (unveil, id), Alice parses (, , decom, ω, k, {,i }i∈[�(λ)], {decomi }i∈[�(λ)],
{q0

i , q1
i }i∈[�(λ)]) as the information generated in the commitment phase with the same id, if any,

and m as the corresponding message. Then it interacts with Bob in the following manner.

1. In the opening phase Alice sends m to Bob and executes P2((y, seed,m, , , ω,

{,i }i∈[�(λ)], {q0
i , q1

i }i∈[�(λ)]), (k, {decomi }i∈[�(λ)], decom, 0)) in interaction with Bob.

2. Bob receives m and runs V2(y, seed,m, , , ω, {,i }i∈[�(λ)], {q0
i , q1

i }i∈[�(λ)]) in interaction with
Alice. If the protocol returns 1, then Bob returns (unveiled, id,m).

We note that many instances of the previously described protocol (with a different id) may run concur-
rently.

Theorem 31. Let

• C = (Com,Open) be a statistically hiding and computationally binding commit-
ment scheme,

• (SenderOT,ReceiverOT) be a UC-secure 1-out-of-2 statistically receiver-private
oblivious transfer,

• H : {0, 1}d(λ) × {0, 1}�(λ) → {0, 1}c be a strong randomness extractor, where d
and � are two polynomials such that H allows for (�(λ) − c)-many bits of entropy
loss,

20 Page 28 of 39 B. Magri et al.

• and let (P1,V1) and (P2,V2) be SWIAoK systems for the relations R1 and R2,
respectively.

Then, the protocol above everlastingly UC-realizes the functionality FMCOM in the

FPUFEval,PUFSamp
HToken -hybrid model.

Proof. We consider the cases of the two corrupted parties separately. The proof consists
of the description of a series of hybrids and we argue about the indistinguishability of
neighbouring experiments. Then, we describe a simulator that reproduces the real-world
protocol to the corrupted party while executing the protocol in interaction with the ideal
functionality.

Corrupted Bob (recipient) Consider the following sequence of hybrids, with H0 being
the protocol as defined above in interaction with A and Z:
H1: Defined exactly as in H0 except that, for all executions of commitment and opening
routines, the SWIAoK for R1 and R2 are computed using the knowledge of x , the pre-
image of y. This is possible as the FCRS functionality is simulated by the simulator that
samples an f (x) = y such that it knows x . In order to avoid trivial distinguishing attack,
we additionally require Alice to explicitly check that ∀i ∈ {[�(λ)]} : hd(βi , q

ki
i) ≤ δ and

abort (prior to computing the SWIAoK) if the condition is not satisfied. The two protocols
are statistically indistinguishable due to the statistical witness indistinguishability of
the SWIAoK scheme. In particular, for all unbounded distinguishers D querying the
functionality polynomially many times, it holds that

{EXC′
H0,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC′

H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2, . . . ,H�(λ)+1: Each H1+i for i ∈ [�(λ)] is defined exactly as H1 except that in all
of the sessions Alice uses the simulator of the statistical receiver private OT protocol
(that implements the FOT functionality) to run the first i instances of the oblivious
transfers. Note that the simulator (using the knowledge of the CRS trapdoor) returns
both of the inputs of the sender, in this case (p0

i , p
1
i). By statistical receiver privacy

of the oblivious transfer, it holds that the simulated execution is statistically close to a
honest run, and therefore, we have that for all unbounded distinguishers D that queries
FPUFEval,PUFSamp
HToken polynomially many times:

{EXC′
H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC′

H�(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H�(λ)+2, . . . ,H2·�(λ)+1: Each H�(λ)+1+i for i ∈ [�(λ)] is defined exactly as H�(λ)+1
with the difference that, in all of the sessions, the first i-many commitments comi are
computed as Com(ri), for some random ri in the appropriate domain. Note that the
corresponding decommitments are no longer used in the computation of the SWIAoK.
Therefore, the statistically hiding property of the commitment scheme guarantees that
the neighbouring simulations are statistically close for all unbounded D. That is

{EXC′
H�(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC′

H2�(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

Everlasting UC Commitments... Page 29 of 39 20

H2·�(λ)+2: Let n be a bound on the total number of sessions. The hybrid H2·�(λ)+2 is
defined as the previous except that Alice chooses some random values (k1, . . . , kn) ∈
{0, 1}�(λ) at the beginning of the execution. In the i-th session Alice uses the value of
ki instead of a fresh k in the interaction with the functionality FPUFEval,PUFSamp

HToken . The
changes between the two hybrids are only syntactical, and therefore, it holds that

{EXC′
H2·�(λ)+1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC′

H2·�(λ)+2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·�(λ)+3: Let f be the following deterministic stateless oracle: f is initialized with the
initial state of the physical token sent by Bob, the tuples (k1, . . . , kn), and a random tape.
On input an index i , a set {q0

j , q
1
j } j∈[�(λ)], and a set {p j } j∈[�(λ)], the oracle f returns 1 if

and only if for all j ∈ [�(λ)] : hd(q
ki, j
j , β j) ≤ δ, where β j is the output of the token on

input p j . In this hybrid, Alice no longer queries the token but computes a valid opening
for the i-th commitment only if f returns 1 on inputs i , {q0

j , q
1
j } j∈[�(λ)], and {p j } j∈[�(λ)].

Where the elements {q0
j , q

1
j } j∈[�(λ)] and {p j } j∈[�(λ)] are defined in the i-th session. If

f returns 0, then Alice interrupts all of the executions simultaneously. Note that this
modification does not affect the view of the adversary: since Alice keeps ownership of
the token, the state of the token is not included in the long-term tapes. Also note that
Alice never uses the values β j , except for the check mentioned above. Thus, we have
that

{EXC′
H2·�(λ)+2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC′

H2·�(λ)+3,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·�(λ)+4: Let Fi be the set of tuples {q0
j , q

1
j } j∈[�(λ)] and {p j } j∈[�(λ)] such that f on

input i and those tuples returns 0. Note that Fi is well defined as soon as Bob sends the
token to Alice. In the i-th session, Alice no longer queries f but just checks whether
({q0

j , q
1
j } j∈[�(λ)], {p j } j∈[�(λ)]) ∈ Fi and aborts all of the executions if this is the case. We

denote by γ ∈ {1, . . . , n,∞} the session in which Alice aborts. Here, the two hybrids
need to be equivalent only up to the first query to f that returns 0, thus

{EXC′
H2·�(λ)+3,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC′

H2·�(λ)+4,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·�(λ)+5: Defined exactly as H2·�(λ)+4 with the difference that for all sessions i of the
protocol ωi is computed as Hi ⊕ m‖decom, where Hi is a random string in {0, 1}c.
To prove the indistinguishability of H4 and H5, we define the intermediate hybrids
(H2·�(λ)+4,0, . . . ,H2·�(λ)+4,n), where in H2·�(λ)+4,i the strings (ω1, . . . , ωi) are com-
puted as in H2·�(λ)+5, whereas the strings (ωi+1, . . . , ωn) are computed as in H2·�(λ)+4.
Note that H2·�(λ)+4,0 = H2·�(λ)+4 and H2·�(λ)+4,n = H2·�(λ)+5. By definition the hy-
brids H2·�(λ)+4,i−1 and H2·�(λ)+4,i differ only in the value of Hi (which is H(seed, ki)
in the former case and a random string in the latter). Note that ki is used only in the
computation of Hi and that the only variable that depends on ki is γ . Since γ is from a
set of size n + 1, we can bound from above the entropy loss of ki to log(n + 1)-many
bits. Recall that (n + 1) � 2λ, therefore we have that �(λ) − c > log(n + 1), for an
appropriate choice of �(). Hence, by the strong randomness of H we have that

20 Page 30 of 39 B. Magri et al.

{EXC′
H2·�(λ)+4,i−1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ)

≈ {EXC′
H2·�(λ)+4,i ,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

Since the distance betweenH2·�(λ)+4,0 andH2·�(λ)+4,n is the sum of the bounds obtained
by the leftover hash lemma [21], we can conclude that

{EXC′
H2·�(λ)+4,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC′

H2·�(λ)+5,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·�(λ)+6: Defined as H2·�(λ)+5 except that in all sessions com is a commitment to a
random string s. Note that in the execution ofH2·�(λ)+5 the value of decom is masked by
a random string Hi and therefore it is information theoretically hidden to the eyes of the
adversary. By the statistically hiding property of Com, we have that for all unbounded
distinguisher A the following holds:

{EXC′
H2·�(λ)+5,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC′

H2·�(λ)+6,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2·�(λ)+7: Defined as H2·�(λ)+6 except that Alice opens the commitment to an arbitrary
message m′. We observe that the execution of H2·�(λ)+6 is completely independent from
the messagem, except whenm is sent to Bob in clear in the opening phase. Therefore, we
have that for all unbounded distinguishers D that query the functionality polynomially
many times:

{EXC′
H2·�(λ)+6,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC′

H2·�(λ)+7,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

S: We now defineS as a simulator in the ideal world that engages the adversary in the sim-
ulation of a protocol when queried by the ideal functionality on input (committed, sid).
The interaction of S with the adversary works exactly as specified in H2·�(λ)+7, with the
only difference that the message m′ is set to be equal to x , where (unveil, sid, x) is the
message sent by the ideal functionality with the same value of sid. Since the simulation
is unchanged to the eyes of the adversary we have that

{EXC′
H2·�(λ)+7,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC′

ρ,S,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

By transitivity, we have that H0 is statistically indistinguishable from S to the eyes of
the environment Z . We can conclude that our protocol everlastingly UC-realizes the
commitment functionality FMCOM for any corrupted Bob. We stress that that we allow
Bob to be computationally unbounded and we only require that the number of sessions
is bounded by some polynomial in λ.
Corrupted Alice (committer) Let H0 be the execution of the protocol as described above
in interaction with A and Z . We define the following sequence of hybrids:
H1: Defined as H0 except that the following algorithm is executed locally by Bob at the
end of the commit phase of each session, in addition to Bob’s normal actions.

E(1λ): Let K be a bitstring of length �(λ), the extractor parses the list of queries Q
that Alice sent to FPUFEval,PUFSamp

HToken before the last message of Bob in the

Everlasting UC Commitments... Page 31 of 39 20

commitment phase. Then, for all Q j ∈ Q it checks whether ∃ j ∈ [�(λ)] such
that ∃z ∈ {0, 1} such that hd(Q j , p

z
i) ≤ γ , where pzi is defined as in the

original protocol. If this is the case the extractor sets Ki = z. If the value of Ki

is already set to a different bit the extractor aborts. If at the end of list Q there
is some i such that Ki is undefined, the extractor aborts. Otherwise it parses
ω ⊕ H(seed, K) as m′||decom and it returns (m′,decom).

Note that Bob does not use the output of E and therefore, for all distinguishers D, we
have that:

{EXC′
H0,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC′

H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

H2: Let H2 be defined as H1 except that Bob outputs the message m′ as computed by E
instead of the message m as sent by Alice in the opening phase. For the indistinguisha-
bility of H1 and H2, we have to argue that if the opening of the adversary succeeds,
then the extraction succeeds with overwhelming probability, i.e. m = m′. For the ease
of exposition, we assume that the sessions are enumerated with a unique identifier, e.g.
according to their initialization order. Let Abort be the event such that there exists a
session j ∈ [n] such that the simulator aborts but the opening is successful. We are
going to prove the following lemma.

Lemma 32. Pr
[
Abort : H2

] ≤ negl(λ).

Proof. We define NoUnique as the event such that there exists a session j ∈ [n] such
that the corresponding K j as defined in E is not uniquely defined but the commitment
is successful, i.e. there exists some i ∈ [�(λ)] such that K j

i = 0 and K j
i = 1. Let

NoDefined be the event such that there exists a j ∈ [n] and i ∈ [�(λ)] such that K j
i is

undefined at the end of the iteration, but the corresponding opening phase is successful.
By definition of E , we have that

Pr
[
Abort : H2

] ≤ Pr
[
NoUnique : H2

]+ Pr
[
NoDefined : H2

]
.

The rest of the proof proceeds as follows:

• We show through a series of intermediate hybrids (HU
0 , . . . ,HU

3) that the event
NoUnique happens only with negligible probability.

• We show through a series of intermediate hybrids (HD
0 , . . . ,HD

4) that the event
NoDefined happens only with negligible probability.

• The proof of the lemma follows by a union bound.

We first derive a bound for the probability that the event NoUnique happens. Consider
the following sequence of hybrids.
HU

0 : The experiment HU
0 identical to H2 except that we sample some j∗ from the

identifiers associated to all sessions and some i∗ from [�(λ)]. Let n be a bound on
the total number of session and let NoUnique(j∗, i∗) be the event where NoUnique
happens in session j∗ and for the i∗-th bit. Since j∗ and i∗ are randomly chosen we have
that

20 Page 32 of 39 B. Magri et al.

Pr
[
NoUnique : H2

] ≤ Pr
[
NoUnique(j∗, i∗) : HU

0

]
· n�(λ).

HU
1 : The experiment HU

1 is defined as HU
0 except that it stops before the execution of

the i∗-th OT in session j∗. Let st be the state of all the machines in the execution of HU
0 ,

the experiment does the following:

• Continue the execution of HU
0 from st.

• Input/output all the i∗-th OT messages from session j∗.
• Simulate all other messages internally.

The experiments sets the bit b = 1 if and only if the commitment of the j-th session
succeeds. Let NoUnique∗(j∗, i∗) be the event that K j∗

i∗ is not uniquely defined. Since
the execution does not change to the eyes of Alice we have that

Pr
[
NoUnique(j∗, i∗) : HU

0

]
= Pr

[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

1

]
.

HU
2 : Defined as HU

2 except that the CRS for the OT is sampled to be in extraction mode.
By the computational indistinguishability of the CRS, it holds that

Pr
[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

1

]
≈ Pr

[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

2

]
.

HU
3 : Defined as HU

2 except that the extractor for the OT is used in the i∗-th OT of the
j∗-th session. The experiment sets b = 1 if the simulation succeeds. Recall that the
simulator outputs the choice of the receiver bi∗ and expects as input the value p

bi∗
i∗ . Note

that this implies that the value p
1−bi∗
i∗ is information theoretically hidden to the eyes of

Alice. Also note that

Pr
[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

3

] =∑
st,i∗, j∗,pi∗ ,Q,ω,seed, s.t. NoUnique∗(j∗,i∗) · Pr

[
b = 1 : HU

3

]

by the simulation security of the OT we can rewrite

∑
st,i∗, j∗,pi∗ ,Q,ω,seed, s.t. NoUnique∗(j∗,i∗) · Pr

[
b = 1 : HU

3

] ≥∑
st,i∗, j∗,pi∗ ,Q,ω,seed, s.t. NoUnique∗(j∗,i∗) · Pr

[
b = 1 : HU

2

]

thus by Jensen’s inequality we have that

Pr
[
NoUnique(j∗, i∗) : HU

3

]
≥ Pr

[
b = 1 ∧ NoUnique∗(j∗, i∗) : HU

2

]
.

As we argued before the value of p
1−bi∗
i∗ is information theoretically hidden to the eyes

of Alice. However, by definition of NoUnique∗(j∗, i∗) Alice queries both (p0
i∗ , p

1
i∗) to

the functionality FPUFEval,PUFSamp
HToken . It follows that we can bound the probability of the

event NoUnique∗(j∗, i∗) to happen to a negligible function in the security parameter.
Therefore, we have that

Everlasting UC Commitments... Page 33 of 39 20

Pr
[
Abort : H3

] ≤ negl(λ) + Pr
[
NoDefined : H3

]
.

In order to show a bound on the probability of NoDefined to happen in H2, we define
another sequence of hybrids.
HD

0 : The experiment HD
0 identical to H2 except that we sample some j∗ from the

identifiers associated to all sessions. Let n be a bound on the total number of session and
let NoDefined(j∗) be the event where NoDefined happens for the session j . Since j∗
is randomly chosen we have that

Pr
[
NoDefined : H2

] ≤ Pr
[
NoDefined(j∗) : HD

0

]
· n.

HD
1 : The experiment HB

1 is defined as HD
0 except that it stops before the execution of the

SWIAoK in the commitment of session j∗. Let st be the state of all the machines in the
execution of HD

0 under the assumption that no machine keeps a copy of the pre-image
x after generating crs. Let P∗ be the following algorithm:

• Continue the execution of HD
0 from st.

• Input/output all the SWIAoK messages from session j∗.
• Simulate all other messages internally.

The experiment HD
1 runs b ← 〈P∗(st; r),V1(y, {comi }i∈[�(λ)])

〉
, where {comi }i∈[�(λ)]

are the messages sent in session j∗ from Alice. Let NoDefined∗(j∗) be the event that
there exists some K j∗

i that is undefined before the execution of the SWIAoK in session
j∗. Then, we have that

Pr
[
NoDefined(j∗) : HD

0

]
= Pr

[
b = 1 ∧ NoDefined∗(j∗) : HD

1

]
,

by definition of NoDefined(j∗).
HD

2 : Defined as HD
1 except that the extractor ({mi ,decomi }i∈[�(λ)], x) ← ExtP

∗(st)

(y, {comi }i∈[�(λ)]; r) is executed instead of the SWIAoK. Note that

Pr

⎡

⎣
{mi ,decomi }i∈[�(λ)] ← ExtP

∗(st)(y, {comi }i∈[�(λ)]; r) :
({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1

∧NoDefined∗(j∗) : HD
2

⎤

⎦

=∑st,ω,seed, j∗,Q s.t. NoDefined∗(j∗) Pr
[
st, ω, seed, j∗,Q]

· Pr

[{mi ,decomi }i∈[�(λ)] ← ExtP
∗(st)(y, {comi }i∈[�(λ)]; r) :

({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1

]

by the extraction property of the SWIAoK we can rewrite

∑
st,ω,seed, j∗,Q s.t. NoDefined∗(j∗) Pr

[
st, ω, seed, j∗,Q]

· Pr

[{mi ,decomi }i∈[�(λ)] ← ExtP
∗(st)(y, {comi }i∈[�(λ)]; r) :

({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1

]

≥∑st,ω,seed, j∗,Q s.t. NoDefined∗(j∗) Pr
[
st, ω, seed, j∗,Q]

·Pr
[

1 = 〈P∗(st; r),V3(y, {comi }i∈[�(λ)]))
〉]c

p .

20 Page 34 of 39 B. Magri et al.

By Jensen’s inequality, we can conclude that

Pr

⎡

⎣
{mi ,decomi }i∈[�(λ)] ← ExtP

∗(st)(y, {comi }i∈[�(λ)]; r) :
({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1

∧NoDefined∗(j∗) : HD
2

⎤

⎦

≥ Pr
[
b = 1 ∧ NoDefined∗(j∗) : HD

1

]c

p
.

HD
3 : The experiment HB

3 is defined as HD
2 except that it stops before the execution of

the SWIAoK in the opening of session j∗. Let st be the state of all the machines in the
execution of HD

2 under the assumption that no machine keeps a copy of the trapdoor x
after generating crs. Let P∗ be the following algorithm:

• Continue the execution of HD
2 from st.

• Input/output all the SWIAoK messages from the opening phase of session j∗.
• Simulate all other messages internally.

The experiment HD
1 runs b ← 〈P∗(st; r),V1(y, seed,m, com, ω, {comi }i∈[�(λ)],

{q0
i , q

1
i }i∈[�(λ)])〉, where the input of the verification algorithm corresponds to the mes-

sages exchanged in session j∗. To the eyes of Alice, this change is only syntactical, and
therefore, we have that

Pr

⎡

⎣
{mi ,decomi }i∈[�(λ)] ← ExtP

∗(st)(y, {comi }i∈[�(λ)]; r) :
({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1

∧NoDefined∗(j∗) : HD
2

⎤

⎦

= Pr

⎡

⎣
{mi ,decomi }i∈[�(λ)] ← ExtP

∗(st)(y, {comi }i∈[�(λ)]; r) :
({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1

∧b = 1 ∧ NoDefined∗(j∗) : HD
3

⎤

⎦ .

HD
4 : Defined as HD

3 except that the extractor (k, {decomi }i∈[�(λ)],decom, x) ←
ExtP

∗(st)(y, seed,m, com, ω, {comi }i∈[�(λ)], {q0
i , q

1
i }i∈[�(λ)]; r) is executed instead of

the SWIAoK. An argument identical as above can be used to show that

Pr

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

{mi ,decomi }i∈[�(λ)] ← ExtP
∗(st)(y, {comi }i∈[�(λ)]; r) :

({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1∧
(k, {decom′

i }i∈[�(λ)],decom, x) ← ExtP
∗(st)

(
y, seed,m, com, ω,

{comi , q0
i , q1

i }i∈[�(λ)]
; r
)

:

((k, {decom′
i }i∈[�(λ)],decom, x),

(
y, seed,m, com, ω,

{comi , q0
i , q1

i }i∈[�(λ)]

)
∈ R2

∧NoDefined∗(j∗) : HD
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥
Pr

⎡

⎢⎢⎣

{mi ,decomi }i∈[�(λ)] ← ExtP
∗(st)(y, {comi }i∈[�(λ)]; r) :

({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1

∧b = 1 ∧ NoDefined∗(j∗) : HD
3

⎤

⎥⎥⎦

c

p .

Everlasting UC Commitments... Page 35 of 39 20

In the following analysis, we ignore the case where the two extracted witnesses are a valid
trapdoor for the common reference string y, as this event can be easily ruled out with
a reduction to the one-wayness of f . Let us denote by βi ← Open(comi ,decom′

i).
Now it is now enough to observe that the successful termination of the protocol implies
that for all i ∈ [�(λ)] we have that hd(qkii , β ′

i) ≤ δ, for some k = k1|| . . . ||k�(λ). By
definition of NoDefined∗(j∗) there exists some i∗ such that A never queried any p′
to FPUFEval,PUFSamp

HToken such that neither hd(p′, p0
i∗) ≤ γ nor hd(p′, p1

i∗) ≤ γ , before
seeing the last message of the commitment phase. By the unpredictability of the PUF, it
follows that Pr

[
(hd(mi∗ , q0

i∗) ≤ δ) ∨ (hd(mi∗ , q1
i∗) ≤ δ)

] ≤ negl(λ). We can conclude
that there exists an i∗ such that βi∗ �= mi∗ . Since decomi∗ and decom′

i∗ are valid
opening information for mi∗ and βi∗ , respectively, then we can derive the following
bound

Pr

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

{mi ,decomi }i∈[�(λ)] ← ExtP
∗(st)(y, {comi }i∈[�(λ)]; r) :

({mi ,decomi }i∈[�(λ)], (y, {comi }i∈[�(λ)])) ∈ R1∧
(k, {decom′

i }i∈[�(λ)],decom, x) ← ExtP
∗(st)

(
y, seed,m, com, ω,

{comi , q0
i , q1

i }i∈[�(λ)]
; r
)

:

((k, {decom′
i }i∈[�(λ)],decom, x),

(
y, seed,m, com, ω,

{comi , q0
i , q1

i }i∈[�(λ)]

)
∈ R2

∧NoDefined∗(j∗) : HD
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ),

by the binding property of the commitment scheme. Therefore, we can conclude that

Pr
[
Abort : H2

] ≤ negl(λ).

This proves our lemma. �

In order to conclude our proof, we need to show that the extractor always returns
a valid message-decommitment pair for the same message that Alice outputs in the
opening phase. More formally, let NoExt be the event such that for the output of the
extractor (m′,decom) ← E(1λ) it holds that m′ �= Open(com,decom), where com
is the variable sent by Alice in the same session. Additionally, let BadExt be the event
such that the output of extractor (m′,decom) is a valid opening for com but m′ �= m,
where m is the message sent by Alice in the opening for the same session. We are now
going to argue that the probability that either NoExt or BadExt happens is bounded by
a negligible function.

Lemma 33. Pr
[
NoExt : H2

] ≤ negl(λ).

Proof. Consider the sequence of games HD
0 , . . . ,HD

4 as defined in the proof of
Lemma 32. Let NoExt∗(j∗) be the event that the algorithm E returns an invalid open-
ing for the commitment in session j∗ and the extractors of the zero knowledge proofs
output a valid pair of witnesses. With an argument along the same lines of the proof of
Lemma 32, we can show that

Pr
[
NoExt : H2

] ≤ Pr
[
NoExt∗(j∗) : HD

4

]c

p
.

20 Page 36 of 39 B. Magri et al.

We now observe that whenever the extractor of the SWIAoK is successful then, for all i ∈
[�(λ)] it holds that that βi ← Open(comi ,decom′

i) and that hd(qkii , βi) ≤ δ, for some
k = k1|| . . . ||k�(λ). Additionally, we have that H(k, seed)⊕ω is a valid decommitment
information for com. By definition of NoExt, we have that m′ �= Open(com,decom),
where (m′,decom) is the output of E and it is defined as ω⊕H(seed, K). This implies
that K �= k, since the function H is deterministic. Therefore, there must exists some i∗
such that Ki∗ �= ki∗ . By Lemma 32, we know that K is uniquely defined and therefore
Alice did not queryFPUFEval,PUFSamp

HToken for any p′ such that hd(pzii , p′) ≤ γ for zi �= Ki ,
and therefore for all i ∈ [�(λ)] it holds, by the unpredictability of the PUF, that

Pr
[
hd(βi , q

1−Ki
i) ≤ δ

]
≤ negl(λ),

and in particular we have that βi∗ �= mi∗ . Sincedecomi∗ anddecom′
i∗ are valid openings

for mi∗ and βi∗ with respect to comi∗ , the probability of NoExt∗(j∗) to happen in HD
4

can be bound to a negligible function by the binding property of the commitment scheme.
This proves the initial lemma. �

Lemma 34. Pr
[
BadExt : H2

] ≤ negl(λ).

Proof. The formal argument follows along the same lines as the proof of Lemma 33.
The main observation here is that the argument implies that the output of E and the tuple
(m,decom), where m is sent in plain by Alice and decom is the output of the extractor
for the SWIAoK, must be identical with overwhelming probability. �

By the union bound we have that

Pr
[
Abort : H2

]+ Pr
[
NoExt : H2

]+ Pr
[
BadExt : H2

] ≤ negl(λ).

It follows that for all session j ∈ [n] our extractor as defined above does not abort except
with negligible probability and outputs the same message that the adversary opens to
with overwhelming probability. Therefore, we can conclude that

{EXC′
H1,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) ≈ {EXC′

H2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

S: We can now define the simulator S that is identical to H2 except that the output m′
of the algorithm E (defined as above) is used in the message (commit, sid,m′) to the
ideal functionality FMCOM. The corresponding decommitment message (unveil, sid)

is sent when the adversary returns a valid decommitment to some message m. Since the
interaction is unchanged to the eyes of the adversary, we have that

{EXC′
H2,A,D(λ, z)}λ∈N,z∈{0,1}poly(λ) = {EXC′

ρ,S,D(λ, z)}λ∈N,z∈{0,1}poly(λ) .

This implies that our protocol everlastingly UC-realizes the commitment functionality
FMCOM for any corrupted Alice and concludes our proof. �

Everlasting UC Commitments... Page 37 of 39 20

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] F. Armknecht, D. Moriyama, A.-R. Sadeghi, M. Yung. Towards a unified security model for physically
unclonable functions. in K. Sako, editor, Topics in Cryptology – CT-RSA 2016, vol. 9610 of Lecture
Notes in Computer Science, San Francisco, CA, USA. (Springer, Heidelberg, 2016), pp. 271–287

[2] D. Beaver. Correlated pseudorandomness and the complexity of private computations. in 28th Annual
ACM Symposium on Theory of Computing, Philadephia, PA, USA. (ACM Press, 1996), pp. 479–488

[3] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser. Physically uncloneable functions in the universal
composition framework. in P. Rogaway, editor, Advances in Cryptology – CRYPTO 2011, vol. 6841 of
Lecture Notes in Computer Science, Santa Barbara, CA, USA, (Springer, Heidelberg, Germany, 2011),
pp. 51–70

[4] S. Badrinarayanan, D. Khurana, R. Ostrovsky, and I. Visconti. Unconditional UC-secure computation
with (stronger-malicious) PUFs. in J.-S. Coron, J. B. Nielsen, editors, Advances in Cryptology – EU-
ROCRYPT 2017, Part I, vol. 10210 of Lecture Notes in Computer Science, Paris, France. (Springer,
Heidelberg, 2017) pp. 382–411

[5] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. in42ndAnnual
Symposium on Foundations of Computer Science, , Las Vegas, NV, USA. (IEEE Computer Society Press,
2001), pp. 136–145

[6] C. Cachin, C. Crépeau, J. Marcil. Oblivious transfer with a memory-bounded receiver. in 39th Annual
Symposium on Foundations of Computer Science, (Palo Alto, CA, USA, 1998). IEEE Computer Society
Press, pp. 493–502

[7] R. Canetti, M. Fischlin. Universally composable commitments. in J. Kilian, editor, Advances in
Cryptology—CRYPTO 2001, vol. 2139 of Lecture Notes in Computer Science, Santa Barbara, CA,
USA (Springer, Heidelberg, Germany, 2001), pp. 19–40

[8] N. Chandran, V. Goyal, and A. Sahai. New constructions for UC secure computation using tamper-proof
hardware. In N. P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, vol. 4965 of Lecture
Notes in Computer Science, Istanbul, Turkey, (Springer, Heidelberg, Germany, 2008) pp. 545–562

[9] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and multi-party secure
computation. in 34th Annual ACMSymposium on Theory of Computing. (ACM Press, Montréal, Québec,
Canada, 2002), pp. 494–503

[10] C. Cachin, U. M. Maurer. Unconditional security against memory-bounded adversaries, in B. S. Kaliski
Jr., editor, Advances in Cryptology – CRYPTO’97, vol. 1294 of Lecture Notes in Computer Science,
Santa Barbara, CA, USA. (Springer, Heidelberg, Germany 1997), pp. 292–306

[11] I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. in B. Preneel, editor,
Advances in Cryptology – EUROCRYPT 2000, vol. 1807 of Lecture Notes in Computer Science, Bruges,
Belgium (Springer, Heidelberg, Germany, 2000) pp. 418–430

[12] D. Dachman-Soled, N. Fleischhacker, J. Katz, A. Lysyanskaya, D. Schröder. Feasibility and infeasibility
of secure computation with malicious PUFs. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part II, vol. 8617 of Lecture Notes in Computer Science, Santa Barbara,
CA, USA. (Springer, Heidelberg, Germany, 2014), pp. 405–420

[13] N. Döttling, D. Kraschewski, J. Müller-Quade, T. Nilges. General statistically secure computation with
bounded-resettable hardware tokens. in Y. Dodis, J. B. Nielsen, editors, TCC 2015: 12th Theory of
Cryptography Conference, Part I, vol. 9014 of Lecture Notes in Computer Science, Warsaw, Poland,
(Springer, Heidelberg, Germany, 2015), pp. 319–344

http://creativecommons.org/licenses/by/4.0/

20 Page 38 of 39 B. Magri et al.

[14] N. Döttling, D. Kraschewski, J. Müller-Quade. Unconditional and composable security using a single
stateful tamper-proof hardware token. in Y. Ishai, editor, TCC 2011: 8th Theory of Cryptography Con-
ference, vol. 6597 of Lecture Notes in Computer Science, Providence, RI, USA. (Springer, Heidelberg,
Germany, 2011), pp. 164–181

[15] S. Dziembowski, U. M. Maurer. The bare bounded-storage model: The tight bound on the storage
requirement for key agreement. IEEE Trans. Inf. Theory, 54(6), 2790–2792 (2008)

[16] I. Damgård, J. B. Nielsen. Perfect hiding and perfect binding universally composable commitment
schemes with constant expansion factor. in Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,
vol. 2442 of Lecture Notes in Computer Science, Santa Barbara, CA, USA, August 18–22. (Springer,
Heidelberg, Germany, 2002) pp. 581–596

[17] I. Damgård, A. Scafuro. Unconditionally secure and universally composable commitments from physical
assumptions. in K. Sako, P. Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part II, vol.
8270 of Lecture Notes in Computer Science, Bangalore, India, December 1–5. (Springer, Heidelberg,
Germany, 2013), pp. 100–119

[18] V. Goyal, Y. Ishai, M. Mahmoody, A. Sahai. Interactive locking, zero-knowledge pcps, and unconditional
cryptography. in T. Rabin, editor, Advances in Cryptology – CRYPTO 2010, vol. 6223 of Lecture Notes
in Computer Science, Santa Barbara, CA, USA, August 15–19. (Springer, Heidelberg, Germany, 2010),
pp. 173–190

[19] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, A. Wadia. Founding cryptography on tamper-proof hardware
tokens. in D. Micciancio, editor,TCC2010: 7th Theory ofCryptographyConference, vol. 5978 ofLecture
Notes inComputer Science, Zurich, Switzerland, February 9–11. (Springer, Heidelberg, Germany, 2010),
pp. 308–326

[20] C. Hazay, A. Polychroniadou, M. Venkitasubramaniam. Composable security in the tamper-proof hard-
ware model under minimal complexity. in Theory of Cryptography Conference. (Springer, 2016), pp.
367–399

[21] R. Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-way functions
(extended abstracts). In 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, USA,
May 15–17. (ACM Press, 1989), pp. 12–24

[22] J. Katz. Universally composable multi-party computation using tamper-proof hardware. in M. Naor,
editor, Advances in Cryptology – EUROCRYPT 2007, vol. 4515 of Lecture Notes in Computer Science,
Barcelona, Spain, May 20–24. (Springer, Heidelberg, Germany, 2007), pp. 115–128

[23] J. Kilian. Founding cryptography on oblivious transfer. in 20th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, May 2–4. (ACM Press, 1988), pp. 20–31

[24] R. Maes. Physically Unclonable Functions: Constructions, Properties and Applications, vol.
9783642413957. 11, 2013.

[25] J. Mechler, J. Müller-Quade, T. Nilges. Universally composable (non-interactive) two-party computation
from untrusted reusable hardware tokens. IACR Cryptology ePrint Archive, 2016:615 (2016)

[26] J. Müller-Quade and Dominique Unruh. Long-term security and universal composability. In S. P. Vadhan,
editor, TCC 2007: 4th Theory of Cryptography Conference, vol. 4392 of Lecture Notes in Computer
Science, Amsterdam, The Netherlands, February 21–24. (Springer, Heidelberg, Germany, 2007), pp.
41–60

[27] J. Müller-Quade, D. Unruh. Long-term security and universal composability. Journal of Cryptology,
23(4):594–671 (2010)

[28] T. Moran, G. Segev. David and Goliath commitments: UC computation for asymmetric parties using
tamper-proof hardware. in N.P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, vol. 4965
of Lecture Notes in Computer Science, Istanbul, Turkey, April 13–17. (Springer, Heidelberg, Germany,
2008), pp. 527–544

[29] C. Orlandi, R. Ostrovsky, V. Rao, A. Sahai, I. Visconti. Statistical concurrent non-malleable zero knowl-
edge. in Y. Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, vol. 8349 of Lecture
Notes in Computer Science, San Diego, CA, USA, February 24–26. (Springer, Heidelberg, Germany,
2014), pp. 167–191

[30] R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia. Universally composable secure computation with
(malicious) physically uncloneable functions. In T. Johansson, P. Q. Nguyen, editors, Advances in Cryp-
tology – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, Athens, Greece,
May 26–30. (Springer, Heidelberg, Germany, 2013), pp. 702–718

Everlasting UC Commitments... Page 39 of 39 20

[31] C. Peikert, V. Vaikuntanathan, B. Waters. A framework for efficient and composable oblivious transfer.
in D. Wagner, editor, Advances in Cryptology – CRYPTO 2008, vol. 5157 of Lecture Notes in Computer
Science, Santa Barbara, CA, USA, August 17–21. (Springer, Heidelberg, Germany, 2008), pp. 554–571

[32] C. Peikert, B. Waters. Lossy trapdoor functions and their applications. in R. E. Ladner, C. Dwork, editors,
40th Annual ACMSymposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20.
(ACM Press, 2008), pp. 187–196

[33] W. Quach. Uc-secure OT from lwe, revisited. in C. Galdi, V. Kolesnikov, editors, Security and Cryptog-
raphy for Networks - 12th International Conference, SCN 2020, Amalfi, Italy, September 14–16, 2020,
Proceedings, vol. 12238 of Lecture Notes in Computer Science. (Springer, 2020), pp. 192–211

[34] M. O. Rabin. Hyper encryption and everlasting secrets. in Algorithms and Complexity, 5th Italian Con-
ference, CIAC 2003, Rome, Italy, May 28–30, 2003, Proceedings, (Rome, Italy, 2003), pp. 7–10

[35] D. Unruh. Everlasting multi-party computation. in R. Canetti, J. A. Garay, editors, Advances in Cryptol-
ogy – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, Santa Barbara, CA,
USA, August 18–22. (Springer, Heidelberg, Germany, 2013), pp. 380–397

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Everlasting UC Commitments from Fully Malicious PUFs
	1. Introduction
	1.1. Our Contributions
	1.2. Related Work
	1.3. Technical Overview

	2. Preliminaries
	2.1. Notations
	2.2. Cryptographic Building Blocks

	3. Universal Composability Framework
	3.1. Basics of the UC Framework
	3.2. Everlasting UC Security
	3.2.1. Defining Everlasting UC Security.
	3.2.2. Everlasting UC Security with Hardware Assumptions

	3.3. Functionalities

	4. Physical Assumptions
	4.1. Physically Uncloneable Functions (PUFs)
	4.1.1. Fully adaptive PUF Unpredictability.

	5. Impossibility of Everlasting OT with Malicious Hardware
	6. Everlasting Commitment from Fully Malicious PUFs
	References

